
A New Client�Server Architecture for
Distributed Query Processing

Zhe Li Kenneth A� Ross

Computer Science Department Computer Science Department
Columbia University Columbia University
New York� NY ����� New York� NY �����
li�cs�columbia�edu kar�cs�columbia�edu

Technical Report No� CUCS	��
	�

April ��� ���

Abstract

This paper presents the idea of �tuple bit�vectors� for distributed query processing� Using

tuple bit�vectors� a new two�way semijoin operator called �SJ�� that enhances the semijoin

with an essentially �free� backward reduction capability is proposed� We explore in detail the

bene	ts and costs of �SJ�� compared with other semijoin variants� and its e
ect on distributed

query processing performance� We then focus on one particular distributed query processing

algorithm� called the �one�shot� algorithm� We modify the one�shot algorithm by using �SJ��

and demonstrate the improvements achieved in network transmission cost compared with the

original one�shot technique� We use this improvement to demonstrate that equipped with the

�SJ�� technique� one can improve the performance of distributed query processing algorithms

signi	cantly without adding much complexity to the algorithms�

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A New Client�Server Architecture for

Distributed Query Processing

Zhe Li Kenneth A� Ross�

Computer Science Department

Columbia University

New York� NY �����

fli�karg�cs�columbia�edu

Abstract

This paper presents a new client�server architecture to process distributed queries� We

transform an N�way join query into an N�way join operation on the join attribute values only� and

a concatenation operation to assemble the 	nal join result� Rather than relying on conventional

semijoin techniques� we use tuple bit vectors to e
ectively reduce the network overhead� We

demonstrate that under this new architecture� the autonomy of the remote sites involved in

executing the distributed query is preserved to a maximum degree� no direct communication

link or network tra�c among the remote sites is necessary� the available access paths on the

participating relations can be e
ectively utilized and each joining relation is usually scanned

only twice� The bulk of the processing is done by the client� allowing better utilization of the

server� Several techniques are proposed to handle the potential processing bottlenecks that

might occur before and during the 	nal assembling stage� Finally we explore some of the query

optimization and performance issues encountered when following this architecture to process

distributed N�way join queries�

� Introduction

Much work had been done on optimizing the cost of distributed query processing �henceforth
abbreviated as DQP
 under various cost models �ESW��� HY��� AHY��� Won��� YC�
� RK���
WCS��� CY���� Most DQP algorithms rely on some variants of the semijoin technique �BC���
BG���� and concentrate on reducing the cost of inter	site data movement� A distributed query is
typically processed in the following stages �YC�
��

�� Initial local processing� All local selection� projection and local join operations are performed
�rst�

�� Semijoin reduction� After the preprocessing by the �rst step� the only operations left are
remote joins between di�erent sites� A cost	e�ective semijoin program is then derived and

�This research was supported by NSF grants IRI�������� and CDA��������	
 by a grant from the AT�T
Foundation
 by a Sloan Foundation Fellowship
 and by a David and Lucile Packard Foundation Fellowship in Science
and Engineering�

�

executed �usually in sequential steps� but possibly in parallel
 to reduce the size of the relations
involved� Often both the local processing cost and network transmission cost can be reduced
signi�cantly�

�� Final assembly� All the reduced relations that are needed to compute the �nal result are
shipped to a �nal site where the result is assembled�

Note that no indexes will be shipped with the reduced relations to the �nal assembly site�
It is likely that the join operation would be executed using the more costly versions of join
algorithms �SALP���� In the case of a low join selectivity� i�e�� the query result is a near
cartesian product� the �nal assembly join operation would be very expensive� representing a
dominant cost factor in the overall query processing time�

There are a number of disadvantages for this architecture� First� the optimality of the query
plans generated by the corresponding algorithms all depend on the accuracy of semijoin selectiv	
ity and intermediate join result size estimations� The semijoin selectivity estimation techniques
adopted in the past are simply inherited or derived from the model in �Yao��� BGW����� which
makes simplistic assumptions about the data such as uniform distribution of values� Due to the
severe estimation error propagation e�ects �IC���� the optimal strategies produced are sometimes
no superior than a randomly chosen plan� Second� this architecture also makes the assumption
that the optimizer can dispatch the workloads to any participating sites� e�g�� site autonomy is not
preserved at all� This is not necessarily the case in a real world setting� as it is perfectly legitimate
that a remote server is only willing to provide the service of fetching requested data through �ltered
table scans� rather than providing the computing resources to service the join requests of external
users�

This paper presents a new client	server architecture to process distributed queries� We trans	
form an N	way join query into an N	way join operation on the join attribute values only� and a
concatenation operation to assemble the �nal join result� Rather than relying on the conventional
semijoin techniques which are sensitive to inaccurate database statistics� we use tuple bit vectors
to e�ectively reduce the network overhead� We demonstrate that under this new architecture� the
autonomy of the remote sites involved in executing the distributed query is preserved to a maximum
degree� no direct communication link or even network tra�c among the remote sites is necessary�
the available access paths on the participating relations can be e�ectively utilized� and each joining
relation is usually scanned only twice� Several techniques are proposed to handle the potential
processing bottlenecks that might occur before and during the �nal assembling stage� Finally we
explore some of the query optimization and performance issues encountered when following this
architecture to process distributed N	way join queries�

The rest of the paper is organized as follows� Section ��� gives the terminology and assumptions
adopted throughout this paper� In Section � we introduce the notion of tuple bit	vectors and
present their advantages over other semijoin variants� Section � describes the new distributed
query processing architecture and its advantages� In section
 techniques are presented to e�ec	
tively parallelize join operations and handle the potential bottlenecks that might occur at various
processing stages� In Section � we give an example to show the performance improvements that
can be achieved following this architecture compared with one of the parallel and distributed query
processing algorithm� Section � surveys related work� In Section � we conclude and describe further
research problems�

�

��� Terminology and Assumptions

We assume that we have n relations R�� � � � � Rn� located at n distinct sites �� � � � � n� The query that
we are trying to answer is of the form

�A�C�R� � R� � � � � � Rn

where A is a set of attributes� and C is a condition on the attributes of R�� � � � � Rn�
A distributed query processing algorithm is de�ned to be a set of relational operations and

network transmission steps� such that� at the end of executing the algorithm� the n	way join result
is computed and present at the query originating site�

A tuple connector is de�ned as as a projection of relation R on all the joining attributes and the
corresponding tuple identi�ers �TID
 �RK���� Each row in the tuple connector uniquely identi�es
a whole tuple in the corresponding relation�

The canonical representation of a join is a set of tuples �TIDR�
� � � � �TIDRn
 containing the

tuple identi�ers of the matching tuples in the component relations� The join result tuple connector

contains tuples that have both the tuple identi�ers of the matching tuples together with the actual
values of the join attributes that are present in the result relation�

We list below some of the notation we use throughout this paper�

Ri�� Rj semijoin�
�X�R
 The projection of R onto X without removing duplicates�
jRj cardinality of R�

W �X
 width of the attribute�s
 X �in bytes
�
Vi the tuple bit vector for Ri�

� Tuple Bit Vectors

In this section we describe the use of tuple	bit	vectors� as proposed in �LR�
��

��� Improving Two�Way Semijoins with Tuple Bit�Vectors

A one	way semijoin aims to reduce a relation R to contain only those tuples that match with tuples
from another relation S� A two	way semijoin aims to simultaneously reduce both R and S so that
they each contain only tuples that match the other relation�

The two	way semijoin �henceforth referred to as �SJ
 was introduced in �Dan��� and later
promoted in �Seg���� It is usually implemented as follows� for Ri � Rj with join attribute�s
 X �
we �a
 send �XRj to site i� �b
 perform Ri�� �XRj yielding a new relation P � then �c
 send back
to site j the relation �XP for a restriction of Rj � We refer to steps �a
 and �b
 as the �forward
reduction� phase� and to step �c
 as the �backward reduction� phase�

In �RK���� an improved technique for two	way semijoins was proposed� We refer to this
technique as ��SJ��� In the backward reduction phase� the set of matching values� or the set
of nonmatching values if this set is smaller� is sent back to reduce the other relation�

In �LR�
�� this technique was further improved using tuple bit	vectors� as illustrated below�
This new technique we call ��SJ����

De�nition ���� Let R be a relation whose tuples are ordered in some fashion� A tuple bit vector

VR of relation R is an array of jRj bits� The ith bit of the array corresponds to the ith tuple of R�
�

We now explain how tuple	bit vectors can speed	up the backward reduction phase of �SJ��
Suppose we construct a tuple bit vector V � V�XRj and place a � in V in the bit position of every
tuple in �XP �as de�ned above
� V encodes �XP � �XP can be reconstructed at site j given V and
the original order of �XRj �

The tuple bit	vector size jVRj of relation R is bounded by jRj� Thus� if j�XP j � j�XRj j��� we
send j�XRjj bits instead of �� � j�XRj j bits �assuming that attribute X occupies
 bytes
� Even if
j�XP j � j�XRj j we can use a compression scheme to transmit j�XP j log�j�XRj j
 bits rather than
�� � j�XP j bits�

Since the size of the tuple bit	vector could be orders of magnitude smaller than the size of
the semijoin projection� and because the semijoin with a tuple bit	vector can be implemented by
a one	pass scan of the receiving relation� tuple bit	vectors make the backward reduction phase of
�SJ�� essentially �free� compared with the cost of forward reduction�

The cost of �SJ�� is that the actual value of �XP needs to be reconstructed rather than being
directly available� This means that we must remember how the initial relation was scanned �i�e��
the whole relation sequentially� via an index� a sequential range within the relation� etc�
 and make
sure to scan it in the same way� Storing the access method used should use very little space� Note
that only one pass of the data is needed to apply the �backward� semijoin�

��� Improving Hash Filters with Tuple Bit�Vectors

Hash �lters �Blo��� Bab��� can be used in a fashion similar to semijoin projections� Rather than
transmitting the values for the join attribute� one hashes the values into a hash table and transmits
the table� The hash table is often signi�cantly smaller than the total size of the projection� although
they do not give perfect reduction information due to hash collisions�

Similar tuple bit	vector techniques can be used in a backward reduction phase for hash �lters�
Imagine that the forward reduction uses a hash table N bits long that has M bits set� Instead of
returning a hash table H that is N bits long in the backward reduction phase� we return a table T
that is M bits long� The ith bit of T is set if the ith �	bit of the original hash table is set� Given
the original hash table and T � the table H can be reconstructed� The savings will be particularly
high if the table H is sparse �which is usually the case in order to minimize collisions �LR�
�
�

Thus we also consider a two way semijoin based on hash �lters that uses tuple bit vectors for
the backward reduction as an example of �SJ��� Note that �SJ� does not apply in this case�

� A Novel DQP Client�Server Architecture

The basic architecture is illustrated below in Example ���� �Further re�nements are presented
later�
 Basically we transform the N	way join into a projection join operation on the join attribute
values only and a new �concatenation� operation�

De�nition ���� Let M be the canonical representation of an N	way join� The concatenation

operation is the mapping from M to the actual join result� �

Concatenation can be de�ned similarly if we start from the join result tuple connector rather than
from the canonical representation�

The di�erence between concatenation and join is that the concatenation operation takes a
canonical representation of the already computed join result �with each column representing the
list of TIDs of those matched tuples in the corresponding relation
� We will show later that this
new algebraic operation can be performed much more cheaply than a normal join operation�

One important point to note about tuple identi�ers in our case is that we can use them without
transmitting them� We do not have to transmit TIDs� instead we use the tuple ordering to determine

�

implicit TIDs� The �rst tuple transmitted has TID �� the second has TID �� and so on� As long
as the transmitting site remembers the order in which the tuples were sent �which is necessary to
use the tuple bit	vector techniques anyway
 the client and the server can accurately refer to their
tuples using the implicit TIDs�

Example ���� Consider a chain query R��A�B�C�D�X� Y
 � R��Y�E� F�G�Z
 � R��Z�H� J�W

among three equally sized relations distributed over three remote server sites� site �� site � and site �
respectively� The client at site
 expects the result of the form �A�B�C�E�X�Y�W �R� � R� � R�
�

Client

Server 1 Server 2 Server 3

R
1

(A,B,C,D,X,Y) R2(Y,E,F,G,Z) R3(Z,H,J,W)

Y ZYZ

Step 1: Send Projections

Client

Step 2: Perform Join, Maintaining Tuple Positions

Client

Server 1 Server 2 Server 3

R
1

(A,B,C,D,X,Y) R2(Y,E,F,G,Z) R3(Z,H,J,W)

bv bv bv

Step 3: Return Tuple Bit Vectors

Client

Server 1 Server 2 Server 3

R
1

(A,B,C,D,X,Y) R2(Y,E,F,G,Z) R3(Z,H,J,W)

W EABCX

Step 4: Send Remaining Attributes for Participating Tuples

Client

Step 5: Perform Concatenation Operation at the Client

Figure �� The Architecture

The basic steps involved in executing the query are listed below�

�� All three sites involved in the �	way join query perform local projections and generate the
projections �preserving duplicates
 on their join attributes in parallel� and send them out to
either a chosen assembling site or to some other processing sites in parallel� In our case� site �
sends �Y R�� site � sends �Y ZR�� site � sends �ZR� to the client site where user submits the
query�

�

�� The assembling site �typically the query originating site
 receives all the �reduced
 join
projections and performs a join among them� While performing the join� the tuple bit
vectors corresponding to the joining relations are built at the same time� Imagine every
join projection has an implicit column which has values being the logical tuple numbers
within that projection �i�e�� tuple i is of the form �TIDi� i

� After the join is done� we have
a join result tuple connector with values being the matched tuples� ordering indexes in each
tuple bit vector� and the join attribute values that are present in the result�

�� Once the tuple connectors are constructed� we send them back to the remote sites� Note that
the ordering of these tuple bit vectors are identical to those original scan ordering at each
remote site� So if the original scan is an index scan� the second pass scan can still utilize the
available index�

� After each site receives its tuple bit vector� it scans the joining relation once� �lters out the
tuples that do not participate in the join result based on information encoded in the received
tuple bit vector� and ships the matched tuples to the assembling site�

�� Once the assembling site receives all the result tuples from the joining sites� it performs a
concatenation operation to construct the �nal join result�

Note that if we didn�t want W in the result� R� would contribute to the join reduction but not
to the �nal join result� so there would be no need to send back to R� its tuple bit vector� �

In order for the tuple bit vector technique to work� remote sites are required to send the actual
join projection values and keep the necessary scan state information in order to reconstruct the
original scan order� The tuple bit vector would always be a set of bits that �lters out a subset of
the original relation tuples� In �LR�
� we show that the network overhead incurred by tuple bit
vectors is very small compared with other semijoin variants�

��� Advantages of this Architecture

One important aspect of this architecture is that we can handle cyclic join queries� Semijoin based
algorithms will not work since cyclic queries do not have full	reducer semijoin programs �BC���� The
tuple bit vectors sent back to each joining relation encode the complete join reduction information
collected after constructing the full join result tuple connector� Thus our algorithm does not
depend on the acyclic query property� In contrast� semijoin programs only carry a subset of the
join reduction information� so it is possible for semijoin based algorithms to send spurious tuples to
the assembly site without reducing the joining relations to the maximum degree� which adds extra
network transmission overhead�

In a distributed heterogeneous database environment� it is typically the case that the query
optimizer has only partial and possibly stale information about cost parameters at remote sites�
The optimal execution plans generated by semijoin based algorithms rely heavily on the correct
estimation of intermediate join result sizes� therefore are not robust to estimation errors �IC����
Because our architecture does not depend on the semijoin technique� the importance of correctly
estimating the sizes of intermediate relations resulting from a join or semijoin is signi�cantly
reduced� No error propagation in the estimation is incurred�

In addition� maximum site autonomy is maintained� Our architecture treats each remote
database system as page servers �DMFV���� and is relatively insensitive to heterogeneous ad	
ministration policy and data models at the remote sites� Remote DBMS are only required to
provide the services of �ltered relation scan for this architecture to work� So an object oriented
database system can be easily incorporated in this architecture as long as it provides the �le scan

�

functionality� There is no requirement on the remote sites to always export accurate statistics as
our algorithm is relatively insensitive to these statistics anyway� No inter	site connection is needed
between remote sites� and thus we do not need to make assumptions about the availability of such
connections� No inter	site communication tra�c is incurred� Finally it imposes little processing
load on the remote servers� Usually two relation scans on each server would su�ce�

This architecture does not require connections between the remote servers� This can be very
important for accounting purposes� The connections between remote servers are not visible to the
client� who is presumably paying for the data service� With our architecture� the only connections
are between the client and the remote servers� Thus the client can easily monitor the actual network
tra�c and verify the cost attached to answering the given query�

Even though remote DBMS servers are typically con�gured with large main memory cache
and fast disk devices with su�cient storage capacity� they are likely to be overloaded most of
the time� By only requiring them to provide the lightweight service of �ltered relation scan and
not dispatching time consuming join operations on them� we obtain two bene�ts� Firstly� since the
clients do most of the work� the servers can be better utilized by more clients operating concurrently�

Secondly� the optimizer usually depends on the estimated response time of remote servers in
its optimization cost model� If the remote servers are heavily loaded and manifest very unpre	
dictable response time� the optimality of the query plan generated becomes questionable� Since
remote DBMS should be full	�edged database systems capable of handling concurrency control and
recovery� their query engines may not be very e�cient due to these maintenance overhead �such as
acquiring locks� blocking for locks etc� �Moh���
� In our architecture� the query originating site is
the only site required to have query processing capabilities� And we could use specially designed
high performance query engine such as parallel� main memory based system to serve this need�

��� Re�nements

Our basic architecture needs several re�nements in order to have competitive performance charac	
teristics�

One potential problem occurs when the relations at remote sites have sizes that di�er signif	
icantly� We may end up waiting too long for the larger relation�s join attributes� when we could
have reduced the size of the join attribute projection with a semijoin from the smaller relation�

We wish to achieve this kind of semijoin reduction without requiring a direct connection between
the remote sites� for the reasons outlined in the previous section� In order to get such a reduction
we can use the client as an intermediary between the remote sites� With some database statistics
from the remote sites� the client will know when there is a large disparity in relation sizes� and can
pipeline the values from one remote site to another for use in a semijoin� in order to achieve better
overall performance�

Alternatively� one could provide a direct connection �if one was available
 between two remote
sites to apply a semijoin or a hash �lter� In principle� this would require one network hop rather
than two� but would not preserve site autonomy as discussed above�

The other potential bottlenecks are the join operation and the concatenation operation� which
are done at the client site� In order to speed these operations up� we can use parallelism� We
can divide the join and concatenation work among many slave processors and �with reasonable
load	balancing
 get a linear speedup� We discuss this issue in the next section�

� Parallel Processing and Load Balancing

Processing distributed N	way join queries e�ciently on extremely large data sets requires a huge
amount of CPU and memory resources� One design objective of this architecture is to utilize the

�

aggregate computing resources of network clustered workstations to meet this demand� In a typical
con�guration� there would be a master process running at the query originating site which manages
a virtual pool of lightly loaded slave workstations� Each slave host can dynamically join and quit
the pool� depending on its load threshold� At any moment� the aggregate computing power of the
virtual pool can be fully utilized to process the query� The master and slaves are interconnected
via a fast local	area network�

��� Parallelizing the Projection Join

Given the con�guration of our architecture� there are two schemes applicable to parallelize the �rst
round N	way projection join� One was presented in the FR algorithm �ESW��� and the Symmetric
FR algorithm �SY���� They basically unicast the whole of the largest relation and multicast the
whole of the remaining N�� relations to each participating slave site� Since each slave only receives
a disjoint portion of the work� they can proceed in parallel without inter	slave synchronization� This
scheme is very costly in network transmission because the whole relations are transmitted� thus
unsuitable for our architecture which assumes a low bandwidth wide area network to remote sites�

The second scheme is to construct a data�ow pipeline using hybrid	hash join algorithms� This
scheme� de�ned as the scheduling problem among left	deep� right	deep and bushy query tree formats
used to execute the N	way join query� has been an active research topic �SD��� WA��� LCRY���
CLYY���� We give an example to show how the �rst round projection join can be parallelized using
this scheme�

Example ���� Consider the equality join

�AXBY CD�R��A�X
 � R��B�X� Y
 � R��C� Y� Z
 � R��Z�D

with the tuple instances shown in Fig ��
In the diagram shown� for the example
	way equality join we could allocate
 slave sites

to receive �XR�� �XYR�� �Y ZR� and �ZR� respectively and build the hash tables for R�� R�

and R� at each slave site in parallel� Each of the hash tables would have an entry of the form
�Join Attribute Value� TID
� Slave
 in the data�ow pipeline also receives �ZR� in parallel which
acts as the probe input�� This way we can construct a three stage data�ow pipeline at the assembling
site �or the query site
 and achieve parallel speedup for the projection join operation� The join result
tuple connector is also shown in the diagram� For example� the second entry �r
� s�� t
� p�� ��� d

means the fourth tuple in R�� the second tuple in R�� the fourth tuple in R� and the �rst tuple in
R� would form a join result tuple together with X	value �� and Y 	value d� The orders referred to
correspond to the original scan orders of generating the join projections� �

One potential problem with the above scheme is that hash table over�ow could occur at certain
pipeline stages� They would form the bottlenecks in the pipeline throughput and degrade join
performance signi�cantly� For example� let�s consider a two	stage pipeline with R at stage � being
the probe input and S at stage � being the build input having one in	memory and one disk	resident
over�owed hash partition �denoted as PM � PD respectively
� Suppose the �rst probe tuple from
R references PD� the next probe tuple of R references PM �which was just paged out to disk due
to swapping PD in memory
� and the reference pattern PM � PD� � � � continues� This �thrashing� of
hash partitions might involve signi�cant disk I�O overhead which could defeat all the bene�ts of
parallelism�

Previous research �SD��� WA��� LCRY��� CLYY��� usually focused on a multiprocessor envi	
ronment� Due to the limited resources of multiprocessor machines� the probability of hash table

�We can either spool �ZR� to slave �
s disk then initiate the probing process
 or send R�
s tuple packet across the
network and stored in slave �
s memory on a demand basis�

�

r4

probe
input
stream

(y,RID,RID)

Slave 1 Slave 2 Slave 3

r1

r2
r3
r4

10
40

30
20

TID X Y

s1

s2
s3
s4

20

10

30

40

a

d

b
c

TIDTID Y Z Z

t1

t2
t3

t4

a

c

d
e

c1

c3
c4
c0

c0

c1

c2

c6

p1

p2

p3

p4

r1 s1 t1 p2

t4 p1

Slave 4

(z,RID)

s2

TID XA

:

:

:
:

R1.X

hash
table
R1.X

hash
table
R2.Y

hash
table
R3.Z

R2.XY R3.YZ R4.Z

B

:

:

:

:

R1 R2 R3 R4

C

:

:
:

:

D

:

:

:
:

(x,y,RID,RID,RID)

R1 R2 R3 R4 X Y

10 a

20 d

join result tuple connector

Figure �� The Graph for Parallelizing The First Round Join

over�ows given a large joining relation R is not negligible� In contrast� our architecture utilizes a
dynamically con�gured virtual pool of slave machines having a highly scalable aggregate amount
of computing resources �CPU� memory
� We can always allocate a su�cient number of slaves to
hold partitions of R� Thus it is almost always the case that hash tables of all joining relations be
entirely resident in the aggregate distributed memory of the slave machines� If hash table over�ow
is unavoidable using the above strategy� the optimizer based on our architecture can allocate R to
an intermediate pipeline stage� tune the partition functions so that some slaves store the partitions
of R in	memory and some store R�s over�owed partitions on disk� The probing tuples coming from
the previous pipeline stage could be routed di�erently based on their reference locality� thus the
queue lengths at the over�owed slave sites are e�ectively shortened� To the best of our knowledge�
this problem has not been seriously addressed in previous work�

In summary� we can construct a data�ow pipeline to parallelize the projection join� Compared
with the previous work on parallel join processing architectures� the problem of hash table over�ow
is alleviated signi�cantly in our architecture� A near	zero probability of hash table over�ow in our
architecture also means the hash join algorithms are more likely to reach their peak performance�

��� Parallelizing the Final Concatenation Operation

From De�nition ���� we know the concatenation operator takes the join result tuple connector and
sets of reduced relation tuples forming the join result as inputs� Given the already computed join
result information encoded in the join result tuple connector� it is expected that a concatenation
shall be performed more cheaply than a join� We will show below how linear costs in terms of
number of scans over each reduced relation can be achieved� and how parallelism can be applied to
parallelize the concatenation operation�

The data�ow pipeline used to parallelize the projection join generates a stream of join result

��

tuple connectors at its last pipeline stage� One strategy is to store each column of a join result tuple
connector at its corresponding slave processor �which also stores the corresponding relation�s join
projection
� After the projection join is done� each slave processor would have a complete vertical
partition of the join result tuple connector with the same order as the join result tuple order� The
value of each partition is a list of tuple position values of matched tuples in the corresponding
relation together with some join attribute values� A tuple bit vector is then built using each
partition and sent to its corresponding remote site� Each remote relation would be scanned once
and its reduced tuples would be retrieved and sent back to each corresponding slave processor for
the concatenation operation� Figure � illustrates this basic strategy�

r4

probe
input
stream

(y,RID,RID)

Slave 1 Slave 2 Slave 3

r1

r2
r3
r4

10
40

30
20

TID X Y

s1

s2
s3
s4

20

10

30

40

a

d

b
c

TIDTID Y Z Z

t1

t2
t3

t4

a

c

d
e

c1

c3
c4
c0

c0

c1

c2

c6

p1

p2

p3

p4

r1 s1 t1 p2

t4 p1

Slave 4

(z,RID)

s2

TID XA

:

:

:
:

R1.X

hash
table
R1.X

hash
table
R2.Y

hash
table
R3.Z

R2.XY R3.YZ R4.Z

B

:

:

:

:

R1 R2 R3 R4

C

:

:
:

:

D

:

:

:
:

(x,y,RID,RID,RID)

R3 R4R1 R2

TID X

10

20

TID Y

a

d

TID TID

Figure �� The Graph for Parallelizing the Concatenation

It is typically the case that there are fewer incoming tuples at each slave site than there were
values of join attributes sent initially� In order to preserve the linear cost of concatenation� we build
a mapping table between the tuple positions and their corresponding incoming tuples for random
retrieval purposes� The mapping table can be built using the tuple bit vector alone� When the
actual tuples arrive from the remote site� they are stored sequentially in an array� The mapping
table can be used to index into this array given the index of the original join attribute value�

Figure
 illustrates this technique in more detail�
In this example� slave i holds the vertical partition of the join result tuple connector Vi � �
� �� �

corresponding to relation Ri� The tuple bit vector sent is ������� corresponding to the second�
fourth and sixth values of the join attribute� Using the tuple bit	vector it is clear that the �rst
tuple returned will correspond to the second join attribute value� that the second tuple returned
will correspond to the fourth join attribute value� and that the third tuple returned will correspond
to the sixth join attribute value� This information is represented in the mapping table�

The incoming tuples �b� e� h
 are ordered di�erently from Vi� Thus we need to be able to
randomly access tuples sent �in constant time
 rather than rely on processing them in sequence�
Hence the mapping table is necessary if we wish to perform concatenation in linear time�

��

R

1

2

3

4

5

6

7 a

b

d

e

g

h

j

Slave i

4

2

6

1

2

3

4

5

6

7

/

1

/

2
/

3

/

1

2

3

b

e

h

Tuple Bit Vector
(2,4,6)=0101010

Mapping table

(b,e,h)
Matching Tuples

i

Figure
� Constructing the Mapping Table

One potential problem with the above technique is the existence of gaps in the mapping table if
the number of matched tuples is small compared with the original relation cardinality� Fortunately
this is not a problem since the extra level of indirection can be processed before the actual tuples
arrive from the remote sites� Thus� by the time all the tuples arrive from the remote sites we can
have the join value tuple connectors referring to the local physical tuple locations� and not to the
original locations that were based on the remote site ordering of the join attribute�

If the slave processor has to spill the incoming tuples to disk� then the scan utilizing the above
mapping table would resemble a non	clustered index scan� In this case� a smart bu�er manager is
critical�

Other strategies to parallelize the concatenation operation exist� One is to partition each output
N	arity join result tuple connector into N tuple positions� pipeline the transmission of these position
values to their corresponding remote sites and retrieve the relevant tuples� Although having the
property of faster response time for the �rst few join result tuples� this scheme requires multiple
scanning of the remote relations and is likely to yield inferior performance� The second strategy
is to horizontally partition the join result tuple connectors among a set of slave processors� The
advantage is that each slave processor would have a disjoint subset of the join result tuple connector�
and they can carry out the concatenation operation independently without requiring inter	slave
synchronization� One disadvantage is the partitioning scheme might cause certain tuples to be
replicated at some slave sites� This means the remote site has to multicast these replicated tuples
to their slave sites which could incur additional network overhead� We plan to investigate the
tradeo�s present in these strategies in future work�

��� Potential Bottlenecks for Parallel Execution

There are three major stages where load imbalances could occur� the initial transmission of join
projections� the hash join probing phase and the �nal transmission of relevant input tuples� We
addressed the �rst of these in Section ���� In this section we discuss the parallel join and parallel
concatenation bottlenecks�

It the slave sites receive join projections with di�erent sizes� uneven CPU load and memory
consumption could easily happen and lead to bottlenecks in the hash join pipeline�

��

The dynamic nature of our master�slave paradigm to parallelize the projection join facilitates
load balancing� Provided the aggregate available memory in the cluster of slave machines is enough
to accommodate the hash tables for those join projections� we can fragment a big join projection and
allocate multiple slave processors to hold the hash tables of its fragments� We can use round	robin�
range or hash partition strategies to achieve this� If tuples in the join projection is distributed in a
round	robin fashion� the join load at each slave machine is easily balanced� However� each output
tuple connector generated by the previous stage of the data�ow pipeline has to be multicasted to the
set of slave processors holding the fragment�s hash tables� this might incur extra join and network
load� If range or hash partitioning is used� each output probing tuple connector has to be hashed
or range partitioned on the partitioning attribute and unicasted to the appropriate slave processor�
In this case� tuple bit vector technique still works� although this requires involved maintenance of
the relative tuple ordering at each slave site and the partitioning information at each remote site�

If memory is scarce� the optimizer could allocate one slave processor to hold several join
projections provided they together can �t into this slave processor�s memory� Otherwise the hash
tables have to be spooled to disk�

Due to the quadratic nature of the join operation� the intermediate result sizes corresponding
to one probing input can grow polynomially in the worst case� This is basically an optimal join
ordering problem� By ordering the relations at di�erent stages of the data�ow pipeline� we can
avoid cartesian products and minimizing the intermediate result sizes� The probing relation should
be the one with maximum reduction e�ect� It would be ideal if the join selectivities of each relation
are in ascending order from the beginning of the data�ow pipeline to the end� This way the total
number of intermediate tuple connectors shipped across the pipeline is minimized�

The backward reduction phase which consists only of the tuple bit vectors can be estimated
accurately by the optimizer because their sizes are available very cheaply at run	time� Also we only
depend on the scanning time parameter of those remote servers� which are relatively stable and
robust parameters �e�g�� once the disk is attached to the remote server� scanning time is relatively
�xed
�

� Performance Improvements

In a sense� our architecture is at a potential disadvantage compared with architectures that �unre	
alistically
 assume a connection between the remote sites� since there is an additional data path in
these alternative proposals� Nevertheless� there are situations in which our architecture outperforms
some of these proposals�

This architecture can be a winner compared with the traditional semijoin based three	stage
architecture to process N	way join� for instance� compared with the �One	Shot� algorithm presented
in �WCS���� In our architecture� we construct the full join in the tuple connector form� We then
send back the tuple bit vectors� which e�ectively eliminates all the unmatched tuples at each remote
site� In contrast� semijoin based approaches may eliminate only a subset of the unmatched tuples�

Example 	��� Suppose we are dealing with R�A�X
 � S�B�X� Y
 � T �Y� C
 where A� B� C are
the set of result attributes� Assume X� Y are key attributes in all three relations �thus duplicates
play no role in this example
� Let W �X
 � W �Y
 �
 bytes� W �A
 � W �C
 � �� bytes� and
W �B
 � �� bytes� so that tuples in R� S and T are ��� bytes long� and let jRj � jSj � jT j � K�
�XR has values of the form n� �XY S has values of the form ��n� �n
� and �Y T has values of the
form n � K� for � � n � K� The following table illustrates the instances of these relations given
K � ����

��

R

A X

�

�

�
���

��

��
���

��

���

S

B X Y

� �

� �
���

���

��� ���

��� ���
���

���

��� ���

��� ���

T

Y C

���

���

���
���

���

���
���

���

���

R and T would be reduced in size by half after semijoining with S separately� and S would be
empty after semijoining together with both R and T � The basic �aw of the one	shot algorithm is
that for examples like this� one shot is not enough� Despite the semijoin� the reduction e�ect is far
from optimal� We now analyze the cost �i�e�� response time� counting just the network transmission
time in bytes
 of the one	shot algorithm on this example�

As described in �WCS���� the one	shot algorithm uses hash �lters to compress the semijoin
information in order to reduce the network overhead� In �LR�
�� we argue that the number of bits
used in the hash �lters� i�e�� the size of the hash table� should be at least equal to the cardinality of
the larger joining relation� in order to reduce the e�ect of hash collisions� So� suppose thatK � ����
and let the hash �lters be ��� bits long� The optimal strategy produced by the one	shot algorithm
would perform these hash �lter based semijoins in parallel� R �� S� S �� R� S �� T � T �� S�
The total response time includes the transmission time of hash �lters and the transmission time
for reduced R and T � and is given by�

���

�
�

���

�
� ��� � � � ��� bytes�

Our architecture would send all the join projections to the assembling site� and send back their
tuple bit vectors if the projection join is not empty� In this example� the projection join is empty�
so the total response time is � � ���� a factor of � better�

Note that by translating the tuples in �XR� we can slowly increase the number of matched
tuples in S up to ������ In this case� the response time of one	shot would stay constant� and our
architecture would send back ����� bits of tuple bit vectors and receive the reduced R� S� T tuples�
Let 	S be the join selectivity of S � T on R �or S � R on T
� By solving the following inequality

� � ��� �
���

�
� 	S � ��� � ��

� �
���

�
�

���

�
� ���

we can conclude that when 	S � ��
� our architecture would win�
The reason for one	shot�s poor response time is that in order to minimize response time� one	

shot considers only parallel execution of semijoin programs without any sequential propagations�
This means the reduction e�ect from T �or R
 to S is not propagated to R �or T
� thus one	shot
would always send half of R and T � which contain spurious tuples� to the assembling site� In
contrast� using our architecture� we pay the overhead of sending the join projections and their
tuple bit vectors� but receive optimal number of relation tuples back at the assembling site because
we utilize the whole join reduction information� �

The class of cyclic join queries doesn�t have a full	reducer �BC���� For this class of queries�
semijoin based algorithms would fail to perform e�ective network cost reduction and little opti	
mization could be done to reduce the total query processing and response time� In contrast� our

�

architecture computes a full join of the projected relations� and is capable of fully reducing cyclic
join queries as well�

Example 	��� Suppose we are dealing with R�A�X� Y
 � S�B� Y� Z
 � T �C�Z�X
 where A� B� C
are the set of result attributes�� Suppose the current join attribute values of these relations are
XY � fa�b�� a�b�� � � � � anbng� Y Z � fb�c�� b�c�� � � � � bncng� ZX � fa�c�� a�c�� � � � � ancn��� a�cng�
for some n� A moment�s re�ection tells us that the join of these three relations is empty� and no
semijoin step can change any of the three relations� Thus� not only is there no one semijoin program
that reduces the relations independent of their initial values� but there is no semijoin program at
all that works for this initial database�

Assume each of the join attributes X � Y and Z takes four bytes and A� B� C each takes ��
bytes� Let n be ���� The one	shot algorithm would send all of R� S� and T in parallel to the
assembling site� The response time �even ignoring the hash	�lter cost
 is

��� � ��� � ���

Our algorithm would send XY � Y Z� ZX �rst and realize there are no input tuples to form the
results� The response time is

� � ����

We achieve a factor of twelve saving in terms of response time�
In our architecture which is not based on semijoin operators� we construct the full join result

tuple connector �rst by sending XY � Y Z� ZX to the assembling site� Knowing the �nal join
connector is empty� we don�t need to send back the tuple bit vectors at all� The overhead we pay
in this example is only the network cost of join projections instead of the whole tuple values� �

� Survey of Related Work

In �RK��� the concept of tuple connector is used to construct a pipeline to handle an N	way join
query� An improved semijoin variant denoted as �SJ� �LR�
� is combined with caching to obtain
a pipelined N	way join algorithm� Because all nonjoining attributes are not included in the tuple
connectors during the semijoin �or join
 reduction stage� they are typically a lot smaller than their
corresponding relations� thus incurring less network overhead� Because of their compact size� tuple
connectors can usually be stored in unnormalized main memory data structures that further reduce
their size and access time� The main goal of the algorithm is to eliminate the need of shipping�
storing� and retrieving foreign relations and�or intermediate results on the local disks of the remote
and the query site during the processing of the N	way join�

Our work di�ers from �RK��� in that we use an even better primitive based on the idea of the
tuple bit	vector �LR�
�� Instead of sending back the matched �or unmatched if the number is
smaller
 join attribute values during the backward reduction phase� we send a much more compact
bit vector with bits corresponding to matched �or unmatched
 tuples set to � to deliver the same
reduction information� The tuple bit vector is positional in nature so it is possible to eliminate the
need to ship the actual TID values because we can overload the tuple ordering �record numbers

within the join projections as logical TIDs and encode this ordering information for those matched
tuples for future tuple retrievals� Thus we pay much less network overhead during the forward
transmission phase of join projections� After constructing the join result tuple connector� �RK���
sends back the actual TIDs for the matched tuples� In contrast� we send back a tuple bit vector

�This example is based on one from �Ull����

��

which is usually cheaper in network cost�� Also our pipeline model to construct the join result
tuple connector is more sophisticated and employs parallelism aggressively� Parallelism issue is not
addressed in �RK����

In �SD��� WA��� LCRY��� CLYY���� the problem of pipelined hash	based processing of N	
way join queries in a tightly coupled� shared	nothing multiprocessor database environment is
investigated� It is demonstrated that right	deep scheduling strategies can generally provide signi�	
cant performance advantages in a large multiprocessor database machine compared with left	deep
scheduling strategies� even when the aggregate memory is limited�

The environment we are investigating is a distributed� heterogeneous environment with partici	
pating sites interconnected through a high latency� low bandwidth wide area network� So reducing
the network cost when reducing and moving relations to the assembling site before starting the
actual join operation is the major goal� In a multiprocessor environment the interconnection
network typically has a very high bandwidth� Data distribution is relatively cheap� and e�ciently
utilizing the memory is usually the chief optimization criterion� For instance in �LCRY���� only
hash table building and join probing costs are considered which primarily consist of CPU costs only�
In our scheme the calculation of hash table building costs would have to explicitly take into account
the relation scanning time and network transmission cost� We have shown in previous sections how
we tailored these pipelined hash	join techniques to parallelize the �rst stage projection join� and to
seamlessly integrate the pipeline with the second stage concatenation operation�

� Conclusions

The main contribution of this paper is the proposal of a novel client	server architecture to process
distributed N	way join queries in a distributed� heterogeneous database environment� This archi	
tecture is highly scalable by exploiting the aggregate computing resources of a cluster of networked
machines to parallelize the expensive join processing� It also has the advantages of maintaining
maximal remote site autonomy and robust to inaccurate database statistics� By adopting the tuple
bit vector idea rather than the commonly used semijoin technique� the network overhead is more
e�ectively reduced�

We compared our tuple bit vector based DQP algorithm within this architecture with other
semijoin based DQP algorithms� Using the �one	shot� algorithm �WCS��� as a representative of
parallel semijoin based DQP algorithms� we demonstrated that our algorithm can lead to better
performance for both commonly encountered chain queries and cyclic queries than conventional
DQP algorithms� Note the ideas presented in this paper are� in principle� also applicable to other
distributed query processing algorithms� and could be easily implemented within them to enhance
their performance�

In future work� we plan to implement this architecture in the context of a distributed relational
query processing system being developed at Columbia University� We hope to demonstrate the
practical utility of this architecture� together with other optimizations� within a realistic general
distributed query processing framework�

References

�AHY��� P�M�G� Apers� A�R� Hevner� and S�B� Yao� Optimization algorithm for distributed
queries� IEEE Trans� Software Eng�� SE	���� ��� �����

�Even if we send the tuple ordering indexes of the set bits in the tuple bit vector as a means of compression
 the
size of the ordering indexes is bounded by log� Join Projection Size�� So a � byte address can represent �GB join
projection� On the other hand
 physical TIDs are usually constrained to be a multiple of the machine word size�

��

�Bab��� E� Babb� Implementing a relational database by means of specialized hardware� ACM
Transactions on Database Systems�
��
�� ��� �����

�BC��� P�A� Bernstein and D�M� Chiu� Using semi	joins to solve relational queries� J�ACM�
����
���
�� �����

�BG��� P�A� Bernstein and N� Goodman� The power of natural joins� SIAM J� Computi��
������ ���� �����

�BGW���� Philip Bernstein� Nathan Goodman� Eugene Wong� Christopher L� Reeve� and James B�
Rothie� Query processing in a system for distruibuted databases�sdd	�
� ACM

Transactions on Database Systems� ��

���� ���� �����

�Blo��� Burton H� Bloom� Space�time trade	o�s in hash coding with allowable errors� Com�

munications of the ACM� ����
�
��
��� �����

�CLYY��� M�	S� Chen� M�	L� Lo� P�S� Yu� and Y�C� Young� Using segmented right	deep trees
for the execution of pipelined hash joins� In Proceedings of the ��th International

Conference on Very Large Data bases� pages �� ��� �����

�CY��� Ming	Syan Chen and Philip S� Yu� Combining join and semi	join operations for
distributed query procesing� IEEE Transactions on Knowledge and Data Engineering�
���
���
 �
�� �����

�Dan��� D Daniels� Query compilation in a distributed database system� IBM Res� Rep� RJ
�
��� IBM� �����

�DMFV��� David J� DeWitt� David Maier� Philippe Futtersack� and Fernando Velez� A study of
three alternative workstation	server architectures for object oriented database systems�
In Proceedings of the ��th VLDB conference� pages ��� ���� �����

�ESW��� R� Epstein� M� Stonebraker� and E� Wong� Distributed query processing in a relational
database system� In Proceedings of the ACM�SIGMOD International Conference on

Management of Data� pages ��� ���� �����

�HY��� A�R� Hevner and S�B� Yao� Query processing in distributed database system� IEEE

Trans� Software Eng�� SE	���
� �����

�IC��� Y� Ioannnidis and S� Christodoulakis� On the propagation of errors in the size of join
results� In Proceedings of the ACM�SIGMOD International Conference on Management

of Data� pages ��� ���� �����

�LCRY��� Ming	Ling Lo� Ming	Syan Chen� C� V� Ravishankar� and Philip S� Yu� On optimal
processor allocation to support pipelined hash joins� In Proceedings of the ���� ACM

SIGMOD International Conference on Management of Data� pages �� ��� �����

�LR�
� Zhe Li and Ken Ross� Better semijoins using tuple bit	vectors� Technical Report
CUCS	���	�
� Columbia University� New York� NY ������ ���
�

�Moh��� C� Mohan� Interactions between query optimization and concurrency control� In
Second International Workshop on Research Issues on Data Engineering	 Transaction

Processing and Query Processing� pages �� ��� �����

�RK��� Nick Roussopoulos and Hyunchul Kang� A pipeline n	way join algorithm based on the
�	way semijoin program� IEEE Transactions on Knowledge And Data Engineering�
��

�
��
��� �����

��

�SALP��� P� Gri�ths Selinger� M� M� Astrahan� R�A� Lorie� and T� G� Price� Access path selection
in a relational database management system� In Proceedings of the ��
� SIGMOD

Conference� pages �� �
� �����

�SD��� D� A� Schneider and D� J� DeWitt� Tradeo�s in processing complex join queries
via hashing in multiprocessor database machines� In Proceedings of the ��th VLDB

conference� pages
��
��� �����

�Seg��� Arie Segev� Optimization of join operations in horizontally partitioned database
systems� ACM Transactions on Database Systems� ����
�
� ��� �����

�SY��� James W� Stamos and Honesty C� Young� A symmetric fragment and replicate algo	
rithm for distributed joins� IEEE Transactions on Parallel And Distributed Systems�

���
���
� ���
� �����

�Ull��� J� D� Ullman� Principles of Database and Knowledge Base Systems� Computer Science
Press� Rockville� MD� ����� �Two volumes
�

�WA��� A� Wilschut and P� Apers� Data�ow query execution in parallel main	memory environ	
ment� In Proceedings of �st conference on parallel and distributed information systems�
pages �� ��� �����

�WCS��� Chihping Wang� Arbee L�P� Chen� and Shiow	Chen Shyu� A parallel execution method
for minimizing distributed query response time� IEEE Transactions on Parallel And

Distributed Systems� ���
���� ���� �����

�Won��� E� Wong� Retrieving dispersed data from sdd	�� A system for distributed databases�
In Proceedings of the �nd Berkeley Workshop on Distributed Data Management and

Computer Networks� �����

�Yao��� S�B� Yao� Approximating block accesses in database organizations� Communications

of the ACM� ���

���� ���� �����

�YC�
� C�T� Yu and C� C� Chang� Distributed query processing� ACM Computing Surverys�
pages ���
��� ���
�

��

