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Abstract: A high resolution climate record from a thick, continuous ~edimentary sequence 
in the Newark basin provides the basis for an astronomically calibrated time scale for the 
Late Triassic. The astronomical vernier, indexed to radiometric dates that indicate an age of 
202 Ma for the Triassic/Jurassic boundary, suggests that the Late Triassic was about 31 m.y. 
long, or constituted about 2/3 of the entire Triassic. A detailed geomagnetic polarity time 
scale developed in conjunction with the cycle stratigraphy provides a mechanism to extend 
the astronomical chronology to other sections in the world. 

Introduction 

Construction of a numerical geologic time scale for the Mesozoic has tradi­
tionally involved the integration of radiometric dates, biozones and stage bounda­
ries. However, even the most recently compiled inventory of radiometric dates is 
inadequate to constrain directly the ages of most stage boundaries (Gradstein et at. 
1994). Stage boundary ages therefore need to be interpolated using some proxy of 
time. The Cenozoic time scale is mainly scaled by biostratigraphic correlations to 
an age-calibrated geomagnetic polarity reversal sequence derived from marine 
magnetic anomalies (Cande and Kent 1992. 1995. Berggren et al. 1995b). Howev­
er, this unifying interpolation mechanism is available only back to the middle 
Jurassic (e.g. Channell et al. 1995). In the absence of magnetic anomaly profiles 
for older parts of the Mesozoic, expedient but not well justified concepts such as 
equal-duration of stages (e.g. Harland et al. 1982) or more commonly equal-dura­
tion of biozones (e.g. Kent and Gradstein 1985) have been used for interpolation 
between tie-points. As summarized by Gradstein et al. (1994), differences in se­
lection criteria for the few and often inconsistent radiometric dates, combined 
with different interpolation schemes, have led to a wide variety of published Mes­
ozoic time scales. 

A phenomenon whose application is revolutionizing the precision and accu­
racy of geologic time scales is Milankovitch cyclicity. This technique relies on 
matching continuous, high resolution records of climate change to known quasi­
periodic variations in Earth's orbital parameters. The astronomical dating tech­
nique has been hugely successful in the Plio-Pleistocene (Shackleton et a1. 1990, 
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Hilgen 1991) where it now constitutes the definitive time scale for the past 5.3 Ma 
(Berggren et al. 1995a,b). Although complete solutions to the celestial mechanics 
of Earth's orbital motions become less certain with increasing age, specific astro­
nomical variations are likely to have remained stable or changed only slowly in a 
statistical sense over time scales that encompass the Mesozoic and longer (Berger 
et a!. 1992). Application of Milankovitch cyclicity thus has the potential for mak­
ing precise estimates of durations, ideally to within a precession cycle (-20 k.y.), 
for significant parts of geologic history. This would greatly increasing the resolu­
tion of geologic time scales when integrated with biochronological, magnetochrono­
logical and geochronological constraints. 

We have recently developed an astronomically tuned time scale for more 
than 30 m.y. of the Late Triassic, based on an exceptionally thick (4000+ meter) 
sedimentary sequence that was continuously cored under the Newark Basin Cor­
ing Project (NBCP) in the Newark rift basin of eastern North America (Kent et a!. 
1995, Olsen and Kent 1996, Olsen et a!. I 996a). The high resolution internal chro­
nology was developed in entirely non-marine, mainly lacustrine, sedimentary facies. 
However, available palynofloral and land vertebrate biostratigraphies allow stage­
level correlation to standard subdivisions of the Triassic. In addition, a character­
istic geomagnetic reversal sequence, consisting of 58 polarity zones with a mean 
duration of about 0.5 m.y., provides a framework for more detailed correlation on 
a regional to global scale. The Late Triassic geomagnetic polarity time scale is 
described elsewhere (Kent and Olsen 1999). Here we summarize the chronostrati­
graphy of the Newark section and explore some of the implications of the astro­
nomically tuned chronology for Triassic time scales. 

Late Triassic time scale 

The Newark basin is one of a series of Mesozoic rift basins in eastern north 
America that formed in the initial stages of breakup of Pangea and contains sever­
al thousand meters of continental sediments and volcanics referred to as the Ne­
wark Supergroup. Palynofloral assemblages indicate that the Newark section is 
Late Triassic to Early Jurassic in age (Cornet and Olsen 1985, Cornet 1993). The 
Carnian/Norian, NorianlRhaetian, and Triassic/Jurassic boundaries are apparently 
all recorded in the Passaic Formation (Fig. I). The land vertebrate faunachrons 
identified in the Newark basin are generally consistent with these palynofloral age 
assignments (Huber and Lucas 1996) and compare well with those of the Chinle 
Group of the western V.S. that has a recognized late Carnian through late Norian/ 
Rhaetian age (Lucas and Hunt 1993). 

In the Newark Basin, the Triassic/Jurassic palynological boundary has been 
identified in the Exeter member in the uppermost Passaic Fm., a few meters below 
the first lava tlows (Fowell and Olsen 1993, Fowel! et al. 1994). Where the inter­
val has been sampled in sufficient detail, the Triassic/Jurassic boundary is brack­
eted above by the lavas and below by a short (-25 k.y.) reverse polarity Chron 
E23r (renamed from E23n.lr; Kent and Olsen [19991) that straddles the base of the 
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Exeter member (Olsen et al. 1996a). Cycle stratigraphic analysis indicates that the 
entire interval between the base of the Exeter member and the base of the lavas is 
only about three precession cycles long (Fowel! and Olsen 1993, Fowel! et al. 
1994). The preservation of a fern/spore abundance peak at the boundary (Fowel! 
et al. 1994) and the consistent occurrence of a closely associated short reverse 
polarity magnetozone (Ch"m E23r) in sections more than 100 km apart (Kent et 
al. 1995, Olsen et al. 1996a, Kent and Olsen 1999) suggest that the Triassic/Jurassic 
boundary interval is continuous and not associated with a hiatus. 

The only radiometric dates in the Newark basin suitable for time scale cali­
bration are concordant U-Pb and 40 ArP9 Ar dates from a feeder intrusion of the 
basalt flows which indicate an age of 20 1-202 Ma (Dunning and Hodych 1990, 
Ratcliffe 1988, SUller 1988). Milankovitch cyclostratigraphy of the sedimentary 
units interbedded with the lavas in the Newark basin indicates that the entire igne­
ous extrusive sequence erupted over less than 600 k.y. (Olsen et a!. 1996b). This 
leads to a rounded estimate of 202 Ma for the subjacent Triassic/Jurassic bounda­
ry. Virtually the same age (202 ± I Ma) was inferred for the palynological Trias­
sic/Jurassic boundary in the Fundy basin on the basis of V-Pb zircon dates associ­
ated with the North Mountain Basalt (Hodych and Dunning 1992). 

The continuous NBCP drill core makes possible detailed cycle stratigraphic 
analysis of the fluvial-deltaic to lacustrine facies of the upper Stockton, Locka­
tong and Passaic formations where a complete spectrum of Milankovitch climate 
variations is expressed as lithofacie indicators of lake level (Olsen et al. I 996a, 
Olsen and Kent 1996). The variations range from the precession cycle of -20 k.y. 
to modulating eccentricity cycles of -100 k.y., -400 k.y., and even longer perio­
dicities. The most readily recognized of these variations is the 404 k.y. eccentric­
ity cycle which corresponds to the mappable lithostratigraphic members or 
McLaughlin cyclcs that can be correlated throughout the basin. 

The 404 k.y. eccentricity cycle is believed to be the most stable of the Mi­
lankovitch orbital variations (Berger et a1. 1992; Laskar 1999) and provides a ro­
bust metric for scaling a stratigraphic section in time. A total of 60 complete 
McLaughlin cycles plus the truncated Exeter member have been delineated in the 
upper Stockton, Lockatong and Passaic formations (Olsen and Kent 1996, Kent 
and Olsen 1999). The cyclical Late Triassic part of the Newark section therefore 
represents about 24.3 m.y. of time. In the Princeton drill core, there are 662 meters 
(in NBCP-normalized depth units, Olsen et a!. [1996al) of Stockton Fm. below 
the lowermost McLaughlin cycle (RaR-8). Extrapolation using an average sedi­
mentation rate of 96.2 meters/m.y. (in NBCP-normalized depth units) for the up­
per cyclical part of the Stockton Fm. in the Princeton drill core implies that an 
additional 6.9 m.y. is represented by the mainly fluvial sediments of the lower to 
middle Stockton Fm. 

Biostratigraphic constraints on the age of the Stockton Formation, unfortu­
nately, are not definitive. At least the upper part of the Stockton Formation belongs 
to the New Oxford-Lockatong palynofloral zone of late Carnian (Tuvalian) age al­
though no diagnostic palynofloral assemblages have been recovered from the lower 
and middle Stockton Fm. (Cornet 1993). The palynotloral evidence is nevertheless 
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Middle and Early Triassic 

The age range of the Late Triassic estimated from cycle stratigraphy places 
important constraints on the chronology of the Middle and Early Triassic (Fig. 2; 
Table I). For the older boundary of the Triassic, recently estimated ages have 
ranged from only 245 Ma (Harland et al. 1990) to 250 Ma (Forster and Warrington, 
1985). An age at the older end of this spectrum is supported by recent work using 
40 Arj39 Ar data on volcanic tuffs in marine sections in southern China which yield 
a date of 250 ± 0.2 Ma for the Permianrrriassic boundary (Renne et al. 1995). 
Accordingly, if the base of the Carnian (Late Triassic) is 233 Ma as suggested by 
the Newark chronology, the Early and Middle Triassic together would be only 
about 17 m.y. long. This is more expansive than the 10 m.y. allotted to the Early 
and Middle Triassic in the widely used Harland et al. (1990) geologic time scale 
but considerably shorter than the 21 m.y. duration estimated in the more recent 
Mesozoic time scale by Gradstein et al. (1994) (Fig. 2). 

The age of the Early/Middle Triassic boundary has been consistently esti­
mated between 240-242 Ma in many geologic time scales, for example, 241.7 ± 
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Fig. 2. Comparison of some recently published time scales for the Triassic and a chronolo­
gy suggested here that includes astronomical tuning of the Late Triassic in the Newark 
hasin section (Table 1). Subdivision and correlation of Germanic Triassic to standard stages 
is after Menning (1995). 
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Table I. Age estimates for stage boundaries of the Triassic. 

Stage boundary Age. Ma Source of age estimate 

Rhaetian/Hettangian 202 4°Ar/39Ar: Sutter(1988); U/Ph: 
(Tri assic/J urassic) Dunning and Hodych (1990), 

Hodych and Dunning (1992) 

Norian/Rhaetian 208 Newark astrochronology 

Carnian/Norian 218 Newark astrochronology 

Ladinian/Carnian 233 Newark astrochronology 
(Middle/Late Triassic) 

Anisian/I ... adinian 241 U/Pb: Mundil et a!. (1996) 

Scythian/Anisian 243 Anisian/Ladinian plus 2 m.y. 
(Early/Middle Triassic) 

Tatarian/Scythian 250 40 Ar/39 Ar: Renne et a1. (1995) 
(Permianrrriassic) 

4.7 Ma by Gradstein e1 al. (1994) (Fig. 2). However, new high precision U-Pb 
zircon dates from ash layers in the Ladinian Buchenstein Beds from the Southern 
Alps (Italy) range from 238 to 241 Ma (Brack et al. 1996, Mundil ct al. 1996). 
These dates, although not without controversy (Hardie and Hinnov 1997), point to 
an age of about 241 Ma for the base of the Ladinian (Mundil et al. 1996) and 
would imply that the Early/Middle Triassic boundary should be another -2 m.y. 
older, or about 243 Ma, to accommodate the Anisian following Harland et al. (1990). 

Discnssion 

The 202 Ma age we favor for the Triassic/Jurassic boundary is generally 
younger than most published estimates, for example, 205 Ma by Odin and Odin 
(1990),208 Ma by Harland et al. (1990) and 210 Ma by Haq et al. (1987). Never­
theless, 202 Ma is within the formal quoted uncertainty of 205.7 ± 4.0 Ma in the 
recent Mesozoic time scale by Gradstein et al. (1994). The only individual date in 
the listing of Gradstein et al. (1994) that apparently conflicts with a 202 Ma Trias­
sic/Jurassic boundary age is item A478 which is based on K-Ar dating of plutons 
that crosscut greenshist metamorphosed Upper Triassic sediments and volcanics 
in Idaho (Armstrong and Besancon 1970). A 21 0 ± 6 Ma age is cited by Gradstein 
et al. (1994) for item A478. However, Armstrong and Besancon (1970) reported 
K-Ar dates that range from 181 to 200 Ma for biotite and 201 and 217 Ma for 
hornblende separates and simply took the mean of the three highest dates as their 
best choice for a minimum age. Given also the uncertain stratigraphic relation­
ships of the samples, these results do not seem sufficiently precise for a modern 
calibration of a geologic period boundary. New U-Pb dates on ash layers in am-
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monoid-bearing marine strata from the North American Cordillera also seem to 
point to a young age of about 200 Ma for the Triassic/Jurassic boundary (Palfy et 
a!. 1998). 

The Triassic may therefore have a duration of about 48 m.y., extending from 
202 Ma to 250 Ma. Cycle stratigraphy of the Newark section shows that the Late 
Triassic is at least 24 m.y. long and may be as long as 31 m.y., with the Carnian at 
~ 15 m.y. becoming the longest stage in the Triassic. The Late Triassic would thus 
constitute at least one-half to perhaps two-thirds of the entire Triassic period. For 
the eponymous tripartite division of the Germanic Triassic, a consequence of the 
astronomically tuned time scale outlined here is that the Keuper (late Ladinian to 
Triassic/Jurassic boundary) must occupy at least one-half to perhaps two-thirds of 
the total time represented by the sediments in the basin (Fig. 2). 

Finally, from the standpoint of magnetic stratigraphy, the astronomically tuned 
geomagnetic polarity time scale from the Newark section indicates an average 
reversal rate of 1.9 m.y.-' for 31 m.y. of the Late Triassic (Kent and Olsen 1999). 
A magnetostratigraphic framework for the Early and Middle Triassic is being de­
veloped and there are still stratigraphic gaps in the Middle Triassic. Nevertheless, 
recent compilations of the most reliable data indicate there are about 16 polarity 
chrons in the Early Triassic and at least 22 polarity chrons in the Middle Triassic 
(Ogg and Steiner 1991, Opdyke and Channell 1996, Muttoni et a!. 1997). A total 
of about 38 polarity chrons for the estimated 17 m.y. duration of the Early and 
Middle Triassic gives a mean reversal rate of about 2.2 m.y.-1. This is not very 
different from the better established, astronomically calibrated reversal rate for 
the Late Triassic. With the polarity chrons documented in the Newark basin for the 
Late Triassic, the entire Triassic has a total of about 100 polarity chrons providing 
a rich and powerful medium for temporal correlation. 
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