
Better Semijoins Using Tuple Bit�Vectors

Zhe Li Kenneth A� Ross

Computer Science Department Computer Science Department
Columbia University Columbia University
New York� NY ����� New York� NY �����
li�cs�columbia�edu kar�cs�columbia�edu

Technical Report No� CUCS	���	
�
April ��� �

�

Abstract

This paper presents the idea of �tuple bit�vectors� for distributed query processing�

Using tuple bit�vectors� a new two�way semijoin operator called �SJ�� that enhances

the semijoin with an essentially �free� backward reduction capability is proposed� We

explore in detail the bene	ts and costs of �SJ�� compared with other semijoin variants�

and its e
ect on distributed query processing performance� We then focus on one

particular distributed query processing algorithm� called the �one�shot� algorithm�

We modify the one�shot algorithm by using �SJ�� and demonstrate the improvements

achieved in network transmission cost compared with the original one�shot technique�

We use this improvement to demonstrate that equipped with the �SJ�� technique� one

can improve the performance of distributed query processing algorithms signi	cantly

without adding much complexity to the algorithms�

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Better Semijoins Using Tuple Bit�Vectors

Zhe Li Kenneth A� Ross�

Computer Science Department

Columbia University

New York� NY �����

fli�karg�cs�columbia�edu

Abstract

This paper presents the idea of �tuple bit�vectors� for distributed query processing�

Using tuple bit�vectors� a new two�way semijoin operator called �SJ�� that enhances

the semijoin with an essentially �free� backward reduction capability is proposed� We

explore in detail the bene	ts and costs of �SJ�� compared with other semijoin variants�

and its e
ect on distributed query processing performance� We then focus on one

particular distributed query processing algorithm� called the �one�shot� algorithm�

We modify the one�shot algorithm by using �SJ�� and demonstrate the improvements

achieved in network transmission cost compared with the original one�shot technique�

We use this improvement to demonstrate that equipped with the �SJ�� technique� one

can improve the performance of distributed query processing algorithms signi	cantly

without adding much complexity to the algorithms�

� Introduction

With present day technology� the main cost of query processing in distributed databases is the
overhead of network communication� particularly over wide	area networks� Thus� distributed
query processing strategies should attempt to minimize the amount of data transmitted over
the network� A popular technique for reducing network transmission volume is the use of
semijoins�

Semijoins were introduced in �BC
�� BG
��� Suppose two relations R and S are stored
at di�erent sites� A semijoin from relation R to relation S �written S �� R� is implemented
as follows� �a� Project R on the join attributes of R and S to get a new relation PR� then
�b� ship PR to the site of S and �c� perform the join of PR with S� The result S� of this join

�This research was supported by NSF grants IRI�������� and CDA��������	
 by a grant from the AT�T

Foundation
 and by a David and Lucile Packard Foundation Fellowship in Science and Engineering�

�



is often much smaller than the original relation S� while it still contains all the information
necessary to construct the full join with R� S� can then be sent to R�s site �or to a third
site� to construct the full join�

Semijoins are one possible step in a distributed query processing algorithm� Much work
had been done on optimizing the cost of distributed query processing using various cost
models �ESW�
� HY�
� AHY
�� Won��� YC
�� RK
�� WCS
�� CY
��� Most of them can
be classi�ed as semijoin based� and a distributed query is typically processed in the following
manner�

�� Initial local processing� All local selection� projection and local join operations are
performed �rst�

�� Semijoin reduction� After the preprocessing by the �rst step� the only operations left
are remote joins between di�erent sites� A cost	e�ective semijoin program is then
derived and executed �usually in sequential steps� but possibly in parallel� to reduce
the size of the relations involved� Often both the local processing cost and network
transmission cost can be reduced signi�cantly�

�� Final assembly� All the reduced relations that are needed to compute the �nal result
are shipped to a �nal site where the result is assembled�

An important extension of the semijoin operation is the �two	way� semijoin operation�
which we abbreviate as �SJ� In the terminology of the description above� an additional step is
performed� S � is projected onto the join attributes to get a new relation PS� � PS� is sent back
to the site of R� R can be joined with this projection to reduce its size and thus reduce the
cost of later transmitting R� Two	way semijoins are particularly useful when both relations
R and S need to be transmitted to a third site� either because that is where the answer is
needed� or because a third joining relation is stored at a third site� The �SJ technique has
been extended in �RK
�� to send back to R�s site the smaller of PS� and PR � PS� � We call
this improved version �SJ��

This paper presents the idea of Tuple Bit	Vectors and a new two	way semijoin operator
called �SJ�� which enhances the semijoin with an essentially �free� backward reduction
capability� The basic idea is as follows� Instead of transmitting PS� back to R� send a bit	
vector that contains one bit for every tuple in PR� That bit is set to � if it is in PS� and �
otherwise� The order of the bits in this bit vector is the same tuple order that R�s site sent
initially� Assuming that R�s site can easily reconstruct this order� the value of PS� can be
reconstructed at R�s site from the bit vector�

In many cases the bit vector will be signi�cantly smaller that the original PS� � For
example� suppose the cardinality of PR is ������� that the cardinality of PS� is ������ and
that the size of the join attribute in these relations is � bytes� Then the size of PS� is ������
bytes� while the size of the bit vector is only ����� bytes� The tuple bit vector is a lot smaller
than PS� � and negligible in size compared to the cost of sending PR in the �rst place �������
bytes�� In other words� the cost of the �backward� reduction is much smaller than the cost
of the �forward� reduction�

We explore in detail the pros and cons of �SJ�� compared with other semijoin variants�
We then use the �one	shot� parallel distributed query processing algorithm �WCS
�� as
an application of �SJ��� We use �SJ�� within the one	shot algorithm and demonstrate

�



the improvements achieved in the network transmission cost� We use this application to
demonstrate that equipped with the conceptually simple yet generally applicable �SJ��
idea� we can improve the performance of distributed query processing algorithms signi�cantly
without adding much complexity to the algorithms�

The rest of the paper is organized as follows� Section � gives the terminology and
assumptions adopted throughout this paper� In Section � we introduce the notion of tuple
bit	vectors and use them to de�ne a two	way semijoin operator ��SJ���� Section � gives
a brief overview of the �one	shot� algorithm� In Section � we describe the performance
improvements that can be achieved by incorporating �SJ�� into the one	shot algorithm� In
Section � we conclude and describe further research problems�

� Terminology and Assumptions

We assume that we have n relations R�� � � � � Rn� located at n distinct sites �� � � � � n� The
query that we are trying to answer is of the form

�A�C�R� � R� � � � � � Rn�

where A is a set of attributes� and C is a condition on the attributes of R�� � � � � Rn�
A distributed query processing algorithm is de�ned to be a set of relational operations

and network transmission steps� such that� at the end of executing the algorithm� the n	way
join result is computed and present at the query originating site�

We list below some of the notations we use throughout this paper�

Ri �� Rj semijoin�
jRj cardinality of R�
X�i�j� join attribute�s� common to Ri and Rj�
RX �X�R�� removing duplicates�
�ij join�semijoin selectivity of Rj with respect to Ri�

W �R� width of a tuple in R �in bytes��
V �X� width of the join attribute�s� X �in bytes��
Dj per byte constant cost of network transmission from site j�
Ej network setup time at site j�
F the coe�cient of the most signi�cant term in the join cost�
Ci the scanning cost of Ri at site i�

Logarithms are all base ��
Throughout the paper we make the following assumptions�

� Attribute values are distributed uniformly�

� The cost of applying a hash function is negligible�

� The network cost is measured as the number of bytes transmitted�

� Tuple Bit Vectors

In this section we describe several semijoin techniques and extend them using the tuple
bit	vector idea�

�



��� Hash Filters

Hash �lters were introduced in �Blo��� Bab�
� and promoted later in �Mul
�� Mul
��
Qad

�� A hash �lter is a bit vector used to encode the joining relationship� When joining
Ri with Rj� the join attribute values of Ri are hashed to some addresses in the bit vector
whose corresponding bits are then set to �� A zero bit after hashing would indicate that no
attribute value that hashes to that bit participates in the join� A signi�cant reduction in
network cost can often be obtained compared with sending the actual semijoin projection
values� For instance� let R be a relation� and let PR be the projection of R onto its join
attributes� Suppose that the join attributes have total size � bytes� and that the size of the
hash vector is four times the cardinality of PR� We end up with sending � � jPRj	
 � jPRj	�
bytes of a hash �lter compared with sending � � jPRj bytes of semijoin values� a saving by a
factor of 
�

The two major drawbacks with the hash �lter based approach are �a� that only equality
join can be handled� and �b� the hash collisions result in a loss of join information� so the
actual reduction e�ect would be worse than joining with the actual attribute values�

The problem of how to choose the size of a hash �lter to e�ectively control hash collisions
is not well addressed in previous research� Suppose we wish to compute Rj ��X Ri and
assume that jRij � jRjj� and that �ji is very small� Even in the presence of a perfect hash
function f �that distributes join keys uniformly�� if the hash �lter size H is small compared
with jRjj� hash collisions would occur frequently and the corresponding semijoin reduction
e�ect on Rj would be compromised by a large factor� The following example illustrates the
problem in more detail�

Example ���� Let jRij � ���� jRjj � ���� H � ��h� Assume Ri�X and Rj �X are key
attributes in both relations and Ri�X � Rj�X� �Thus� duplicates play no role in this
example�� If we use a standard value	based semijoin� the number of unmatched Rj tuples
would be ��� � ���� the result size jRj ��X Rij would be ��� and the selectivity �ji � �����

Now assume a hash function f is applied to Ri�X and the hash �lter is sent to Rj to
perform a semijoin� After hashing on Ri�X� there are �assuming few collisions� approximately
��� bits set in the hash �lter� When we hash on Rj�X� the probability that each unmatched
tuple in Rj hashes to a bit set by Ri is ����h� Thus the expected number of spurious hash
matches in Rj is�

E�spurious matches� � ���� � ���� � ����h � �����h

�
The net reduction factor is�

��� � �����h

���
� ���� � ����h

For instance� if h � �� the reduction e�ect on Rj using hash �lter based approach
would be two orders of magnitude smaller compared with that achieved by using value	
based semijoin� Even with h � 
� half of the hash matches are spurious tuples� e�ectively
doubling the number of tuples of Rj that are later transmitted�

With h � ��� the number of spurious tuples drops to about ��� In this case� even using a
compressed representation of the hash table �sending ��	bit table addresses� see Section ����
the amount of data transmitted would be about ����� bytes� If the size of the attribute X

�



were � bytes� then sending the values would require only ����� bytes� and yield no spurious
tuples� �

To summarize� the size of a hash �lter may need to be a lot bigger than the larger of
the joining relations to avoid a severe collision problem� As a result� the network cost of
sending a hash �lter may be higher than simply sending the actual join values� Additionally�
unmatched tuples will be unnecessarily sent later to the assembling site� which adds extra
network and local	processing delays to the overall query processing time�

Chosen appropriately however� semijoins based on hash �lters can yield orders of magni	
tude reduction in network overhead and lower semijoin cost at the receiving site� If the hash
�lter can �t into the receiving site�s memory� we need only scan the receiving relation once
to perform hashing and produce the semijoin result�

��� Two�Way Semijoins

The two	way semijoin �henceforth referred to as �SJ� was introduced in �Dan
�� and later
promoted in �Seg
��� It is usually implemented as follows� for Ri � Rj with join attribute�s�
X� we �a� send RX

j to site i� �b� perform Ri �� RX
j yielding a new relation P � then �c� send

back to site j the reduced PX for a restriction of Rj�
In �RK
��� an improvement of �SJ was proposed� We denote the new operator by

��SJ��� It is implemented by modifying step �c� above to send back the smaller of PX and
RX
j � PX � Clearly� the additional transmission cost of �SJ� over the semijoin is bounded

by half of jRX
j j� In contrast� �SJ always sends jPX j tuples during the backward reduction

phase� When jPX j � jRX
j j	�� �SJ� is more e�ective�

Lemma � in �RK
�� shows that if the original semijoin is cost	e�ective� in a formally
de�ned sense� then the �SJ� is also cost	e�ective� Moreover� the backward reduction is
always cost	e�ective� In other words� it always pays to do the backward reduction if the

initial relation is going to be transmitted to another site�

In the next section we show how we can reduce the cost of the backward reduction even
further�

��� Improving �SJ� with Tuple Bit�Vectors

We present a further improvement of �SJ� �RK
���

De�nition ���� Let R be a relation whose tuples are ordered in some fashion� A tuple bit

vector VR of relation R is an array of jRj bits� The ith bit of the array corresponds to the
ith tuple of R��

We now explain how tuple	bit vectors can speed	up the backward reduction phase of
�SJ�� Suppose we construct a tuple bit vector V � VRX

j
and place a � in V in the bit

position of every tuple in PX �as de�ned above�� V encodes PX � PX can be reconstructed
at site j given V and the original order of RX

j �
The tuple bit	vector size jVRj of relation R is bounded by jRj� Thus� if jPX j � jRX

j j	��
we send jRX

j j bits instead of �� � jRX
j j bits �assuming that attribute X occupies � bytes��

Even if jPXj � jRX
j j we can use a compression scheme to transmit jPXj log�jRX

j j� bits rather
than �� � jPXj bits �see Section �����

�



Since the size of the tuple bit	vector could be orders of magnitude smaller than the size of
the semijoin projection� and because the semijoin with a tuple bit	vector can be implemented
by a one	pass scan of the receiving relation� tuple bit	vectors make the backward reduction
phase of �SJ�� essentially �free� compared with the cost of forward reduction�

The cost of �SJ�� is that the actual value of PX needs to be reconstructed rather
than being directly available� This means that we must remember how the initial relation
was scanned �i�e�� the whole relation sequentially� via an index� a sequential range within
the relation� etc�� and make sure to scan it in the same way� Storing the access method
used should use very little space� Note that only one pass of the data is needed to apply
the �backward� semijoin� encoding the backward semijoin as a tuple bit vector does not
necessitate additional passes over the initial relation during the local processing phase�

��� Improving Hash Filters with Tuple Bit�Vectors

Similar techniques can be used in a backward reduction phase for hash �lters� Imagine a
hash table N bits long that has M bits set� Instead of returning a hash table H that is N
bits long� we return a table T that is M bits long� The ith bit of T is set if the ith �	bit
of the original hash table is set� Given the original hash table and T � the table H can be
reconstructed� The savings will be particularly high if the table H is sparse� �As illustrated
in Example ��� we may try to generate a sparse table to minimize collisions��

Thus we shall also consider a two way semijoin based on hash �lters that uses tuple bit
vectors for the backward reduction as an example of �SJ��� Note that �SJ� does not apply
in this case�

��� Comparing �SJ�� with �SJ� and Parallel Semijoins

In the following discussion we measure the cost and bene�t of a semijoin as the network cost�
i�e�� the number of bytes transmitted and reduced�

In �RK
�� it is proved that the backward reduction of �SJ� is always cost	e�ective� i�e��
that its bene�ts outweigh the costs� when the original site�s relation needs to be transmitted
to another site� In this section we prove that we can� in principle� always do at least as well
as �SJ�� and often much better�

Lemma ���� Let Ri and Rj be two relations� and suppose we wish to perform a two	way
semijoin of these relations over join attribute�s�X� Let V be the size �in bytes� of attribute�s�
X� Then the cost of �SJ�� is less than or equal to the cost of �SJ� if 
 � V � log�jRX

j j��
Proof � Let X be the join attribute�s�� let N � jRX

j j be the cardinality of RX
j � and let

S � dlog�N�e represent the number of bits needed to index the relation RX
j � We have two

options in �SJ�� if we allow compression� �a� send the tuple bit vector for the whole table�
with cost N	
� or �b� send the addresses of the �	bits �or the �	bits if there are fewer of
them� with cost S�M

	 where M is the number of matched �respectively� unmatched� tuples�
We choose the smaller of these two costs� The cost of �SJ� is V �M � The cost of �SJ��

is at most S�M
	 � Thus �SJ�� is cheaper if 
 � V � S� and the result is proved�

When combined with results from �RK
��� Lemma ��� states that the extension of the
semijoin to the �SJ�� semijoin is always done in a cost	e�ective way if 
�V � S� For every
single attribute value or table address transmitted by the �SJ�� in the backward reduction�

�



at least one whole tuple in the Rj relation is eliminated� Note that the tuple bit	vector
scheme used doesn�t lose join information�

If 
 � V is smaller than S in Lemma ��� above then it may be preferable to send the join
values directly if 
 � V �M 	 jRX

j j� All of the parameters necessary for this estimation are
available in order to calculate the best strategy� Thus we can augment �SJ�� with a test
for the above condition� and revert to �SJ� in that case� However� we should remark that
it would require an extreme circumstance for 
 � V 	 S to hold� if V � � then we need at
least ��� tuples in the original transmitted projection�

On the other hand� the saving may be very large� For example� if V � �� N � ��
� M �
��	� then the reduction in the cost of the backward	reduction phase is at least N

	�V �M � �
	 �

Note that it is possible that with the reduced cost of the backward reduction� a semijoin
that the optimizer did not previously believe was pro�table may now become pro�table as
part of a larger distributed query processing plan�

Another important point to observe is that performing a two	way semijoin using �SJ��
may be faster than doing two single semijoins in parallel� Since the backward reduction
phase is so cheap� it is relatively likely that it could be performed in the time gap between
the completion of the �rst and second semijoin reductions�

To show that the gap between the two parallel single semijoins is large with respect
to the size of the backward reduction� we calculate below the di�erence in the network
transmission time in both directions� Assume that Di � Dj � and that� without loss of
generality� jRX

j j � jRX
i j� The di�erence in response time for the parallel single semijoins is

approximately Di � V � �jRX
j j � jRX

i j� where V is the size of the join attribute�s� X� The
transmission cost of the backward	reduction phase is Di � jRX

i j	
 which is less than the
di�erence above if

� �
�


 � V
	
jRX

j j

jRX
i j

which is likely unless RX
i and RX

j are extremely close in size�

��	 Compression of Hash Tables and Tuple Bit�Vectors

In �Qad

�� two compression techniques were proposed to further reduce the network cost
of sending hash �lters� They are based on the assumption that hash �lters are usually very
sparse� that is� they contain a small number of bits with the value ��� scattered among very
many bits having the value of ���� This is true if the number of bits in the hash vector
is a large multiple of the relation size �as in Example ���� or if there is a high degree of
duplication in the join column��

The two compression schemes are as follows�

Scheme � � In this scheme� instead of sending all the bits in the hash �lter� only the hash
addresses of those bits in that �lter which have the value ��� are sent� A site receiving
the bit hash addresses could use them to set up its own hash �lter�

Scheme � � The number of zero�s between two adjacent nonzero bits in the bit vector is
converted into a binary number of length �� 
� ��� � � � bits� The code words generated
by a node are collected into pages� The set of code pages generated by the sending site
is transmitted across the network to the receiving site� The receiving site then uses
the received code words to set up the hash �lter�






The experimental data obtained in �Qad

� suggests a substantial improvement in the
performance of a hybrid	hash	join algorithm implemented using hash �lters after taking
advantage of these two compression schemes� In addition� scheme � is suggested to be the
best choice�

If H is the size of the hash table �in bits�� then it takes dlog�H�e bits to encode an address
in the table� If there are N �	bits in the table� we prefer to send addresses rather than the
whole table if N � dlog�H�e 	 H� i�e�� if

N 	
H

dlog�H�e

� Overview of the �One�Shot� Algorithm

The �one	shot� algorithm was proposed in �WCS
��� As opposed to the traditional sequen	
tial semijoin paradigm �HY�
�� this method executes all applicable semijoins to the relations
in parallel� That is� each relation will be reduced by a set of semijoins at one time� i�e� in
�one shot�� and the semijoin processing at all sites can be performed simultaneously� As a
result� each relation needs to be scanned only once to process all applicable semijoins� The
One	Shot algorithm uses hash	�lters for its semijoins�

The aim of the one	shot algorithm is to optimize response time rather than the amount
of work done� Thus� some extra work in the form of additional �parallel� data transmission
is tolerated in order to improve the overall response time�

The query optimizer chooses a semijoin program which is a set �instead of a sequence�
of semijoins for each relation� For each site j� a set Bj of other sites is chosen� Site i 
 Bj

if we want to apply the semijoin Rj �� Ri to Rj � The goal is to �nd a set fB�� B�� � � � � Bng
that minimizes the overall response time�

Let sji be the total time needed to project Ri� hash on the join attribute values� and
transmit the hash �lter to the site where Rj is located� The cost model of �One	Shot�
method can be expressed as follows� using the terminology of Section �� The response time
RESP �B�� B�� � � � � Bn� is given by

max
��j�n

�
�max
i�Bj

sji � Cj � Ej �Dj � jRjj �
Y
i�Bj

�ji

�
A� F �

nY
j��

�jRjj �
Y
i�Bj

�ji � ���

Given an appropriate database pro�le� including selectivity statistics� etc�� the response
time above can be estimated� The authors of �WCS
�� made the following two observations
to reduce the search space for optimal query processing strategies from exponential to
polynomial�

�� If Bj is optimal and i 
 Bj� then fhjsjh � sjig � Bj� Intuitively speaking� if we�re
sending a semijoin projection from site i to site j� and the semijoin projection from
site h would arrive at site j before the information from site i� then we may as well send
the projection from site h� The projection from site h can further reduce the size of Rj

without introducing an extra delay in response time �assuming network availability��

�� Let vj denote the subterm of Formula � inside the outer maximum� Let m be the value
of j such that vm achieves the maximum in Formula �� In other words� Rm is the last






relation to arrive at the �nal assembly site� Therefore� for any relation Rh �including
Rm�� Bh must be chosen such that vh 	 vm� However� among all Bh�s which satisfy
this requirement� the optimal strategy has to pick the one with the smallest selectivity
because the �nal size of Rh can thus be most reduced without incurring extra delay to
the overall response time�

For readers interested in the correctness of the cost model and the details of the opti	
mization algorithm� we refer to �WCS
�� for further details�

One potential problem with the �one	shot� algorithm is that each participating relation is
not always fully reduced by the semijoin program� One reason is because Bj is not necessarily
a complete set of sites whose relations share a join attribute with the relation at site j� The
other reason is hash collisions caused by using hash �lters� We may end up transmitting more
data to the �nal assembly site� This way we end up with additional I�O costs incurred by
this incomplete �ltering during the �nal assembly join phase� which contributes a signi�cant
cost factor to the total response time�

Another potential problem with the One	Shot Algorithm is that it does not take advan	
tage of the relative e�ciency of a two	way semijoin compared with the parallel execution of
two one	way semijoins�

� Improvements to �One�Shot� Algorithm

In principle� �SJ�� can be used to enhance any parallel execution of distributed queries� In
this section� we show how one such algorithm can be extended�

��� �SJ�� Based 
One�Shot� Algorithm

As we have seen in Example ���� hash �lters may not always be the best way to implement
a semijoin� An initial step in the improvement of the one	shot algorithm would be to use
database statistics to estimate when sending the attribute values would be preferable to
sending the hash �lters� Since hash �lters can be used only for equality joins� sending
attribute values may be necessary if the joins are not equality joins� For di�erent semijoins
in the semijoin program there may be di�erent choices�

For either choice� i�e�� hash �lters or attribute values� the idea of sending tuple bit vectors
for the backward reduction phase still applies�

There are several ways that using �SJ�� rather than a sequence of single semijoins could
either improve the response time or reduce the total amount of network bandwidth used�
The �rst observation is that the one	shot algorithm may choose to have i 
 Bj and j 
 Bi�
performing the two single semijoins in parallel� As discussed in Section ���� the two	way
�SJ�� semijoin is likely to be preferable�

Using the two	way semijoin rather than two single parallel semijoins has two bene�ts� Let
us assume that site i receives the projection from site j before site j receives the projection
from site i� in other words� i �nishes �rst� Then the backward reduction from site i to site j
could be performed resulting �usually� in site j �nishing sooner� Thus� if site j is the slowest
site� the response time for the whole query will be reduced� This is the �rst bene�t� The
second bene�t is that it uses fewer network resources to transmit the backward reduction�
and so the total amount of work done is smaller�

��



The next observation is that the optimizer can know that �SJ�� is being used� and can
predict the smaller cost of the two	way semijoin �compared with two one	way semijoins��
This extended optimizer may choose to perform a two	way semijoin when it would have only
performed a one	way semijoin originally� The semijoin in the opposite direction may have
been too expensive� In fact� since we have observed that the cost of the backward reduction
is insigni�cant compared with the cost of the forward reduction� it is likely that the optimizer
would choose to use �SJ�� for every semijoin operation�

With this extra option for optimization� the reduction e�ect can only be improved in the
semijoin phase of one	shot algorithm with the semijoin phase taking less time� Thus� the
overall response time may be dramatically reduced�

To illustrate the potential gains� we present an example below� In this example� we
count only the network cost� to simplify the discussion� The same principle holds when local
processing cost is taken into account� a more detailed example will be presented in the full
version of this paper�

Example ���� Suppose we have three sites� �� �� and �� The result of R� � R� is required
at site �� Let X be the join attribute� Let jR�j � ����� ����� jR�j � ��
�� ����� and assume
R��X and R��X are key attributes in both relations� �Thus� duplicates play no role in this
example�� Suppose that there are ��� matching pairs of tuples in R� and R�� Suppose we
use hash �lters for the semijoin with a hash table size of ��� bits and assume �for simplicity�
that there are no hash collisions� Finally� suppose that the size of a tuple in R� is x bytes�
�say x � �	� and the size of a tuple in R� is y bytes �say y � �	�� Since the hash table has
size ���� it requires �� bits �or � bytes� to represent a hash address�

Let the per	byte network cost between any pair of sites be one unit in an appropriate
scale� �We assume� for simplicity of presentation� that the network cost is uniform��

The One	Shot algorithm would consider the following four cases�

�� B� � B� � �� i�e�� no semijoin reduction� The total network cost is x�����y���
 � ��	�
The response time is max�x � ���� y � ��
� � ��	�

�� B� � f�g� B� � �� i�e�� a semijoin from site � to site �� The total network cost is
���	
 � x � ��� � y � ��
 � ��	� The response time is max����	
 � x � ���� y � ��
� � ��	�

�� B� � �� B� � f�g� i�e�� a semijoin from site � to site �� Applying the compression
scheme of sending hash addresses to site � instead of the bigger hash �lter� the total
network cost is � � ��� �x � ���� y � ��� � � � ��
� The response time is max�x � ���� � �
��� � y � ���� � ����

�� B� � f�g� B� � f�g� i�e�� two parallel semijoins� The total network cost is � � ��� �
���	
�x�����y���� � ���� The response time is max����	
�x����� ������y����� �
� � ��
�

The one	shot algorithm equipped with a two	way �SJ�� semijoin using hash �lters�
starting at site � has the following costs�

Total network cost � � ��� � ���	
 � x � ��� � y � ��� � ����

Response time max�� � ��� � y � ���� � � ��� � ���	
 � x � ���� � ��
�

��



Thus� in this case� we achieve an improvement by a factor of ��� in the total network cost and
an improvement by a factor of � in �the network component of� response time� Note that
the One	Shot algorithm would not have chosen to perform two semijoins�� since that option
�number � above� performs worse than the single semijoin option �number ��� Nevertheless�
the two	way semijoin using �SJ�� proved better than all of the One	Shot plans� �

The improvement of �SJ�� over �SJ� is apparent when �a� using semijoin values rather
than hash �lters� since �SJ� does not apply in the hash	�lter case� and when �b� x and y
�as in Example ���� are relatively small� In that case� the cost of the semijoin is a larger
proportion of the total cost� and the saving can be signi�cant�

	 Conclusions

The main contribution of this paper is the idea of �Tuple Bit	Vector�� A new two	way
semijoin operator called �SJ�� is designed which enhances the semijoin with an essentially
�free� backward reduction capability�

We compare �SJ�� with other semijoin variants� and analyze its e�ect on distributed
query processing performance� Using the �one	shot� algorithm �WCS
�� as an application�
we show that �SJ�� could be used to enhance the performance of distributed query pro	
cessing strategies� These observations and ideas are� in principle� also applicable to other
distributed query processing algorithms� and could be easily implemented within them�

In future work� we plan to implement the �SJ�� techniques in the context of a distributed
relational query processing system being developed at Columbia University� We hope to
demonstrate the practical utility of �SJ��� together with other optimizations� within a
realistic general distributed query processing framework�

References

�AHY
�� P�M�G� Apers� A�R� Hevner� and S�B� Yao� Optimization algorithm for distributed
queries� IEEE Trans� Software Eng�� SE	
��� �
� �

��

�Bab�
� E� Babb� Implementing a relational database by means of specialized hardware�
ACM Transactions on Database Systems� ������ �
� �
�
�

�BC
�� P�A� Bernstein and D�M� Chiu� Using semi	joins to solve relational queries� J�ACM�
�
������ ��� �

��

�BG
�� P�A� Bernstein and N� Goodman� The power of natural joins� SIAM J� Computi��
������ ���� �

��

�Blo��� Burton H� Bloom� Space�time trade	o�s in hash coding with allowable errors�
Communications of the ACM� ��������� ���� �
���

�CY
�� Ming	Syan Chen and Philip S� Yu� Combining join and semi	join operations
for distributed query procesing� IEEE Transactions on Knowledge and Data

Engineering� �������� ���� �

��

�Considering only the network cost�

��



�Dan
�� D Daniels� Query compilation in a distributed database system� IBM Res� Rep�
RJ ����� IBM� �

��

�ESW�
� R� Epstein� M� Stonebraker� and E� Wong� Distributed query processing in a
relational database system� In Proceedings of the ACM�SIGMOD International

Conference on Management of Data� pages ��
 �
�� �
�
�

�HY�
� A�R� Hevner and S�B� Yao� Query processing in distributed database system� IEEE
Trans� Software Eng�� SE	����� �
�
�

�Mul
�� James K� Mullin� A second look at bloom �lters� Communications of the ACM�
���
����� ���� �

��

�Mul
�� James K� Mullin� Optimal semijoins for distributed database systems� IEEE

Transactions on Software Engineering� ��������
 ���� �

��

�Qad

� Ghassan Z� Qadah� Filter	based join algorithms on uniprocessor and distributed	
memory multiprocessor database machines� In Lecture Notes in Compure Science

���� pages �

 ���� �


�

�RK
�� Nick Roussopoulos and Hyunchul Kang� A pipeline n	way join algorithm based
on the �	way semijoin program� IEEE Transactions on Knowledge And Data

Engineering� ������
� �
�� �

��

�Seg
�� Arie Segev� Optimization of join operations in horizontally partitioned database
systems� ACM Transactions on Database Systems� �������
 
�� �

��

�WCS
�� Chihping Wang� Arbee L�P� Chen� and Shiow	Chen Shyu� A parallel execution
method for minimizing distributed query response time� IEEE Transactions on

Parallel And Distributed Systems� �������� ���� �

��

�Won��� E� Wong� Retrieving dispersed data from sdd	�� A system for distributed
databases� In Proceedings of the �nd Berkeley Workshop on Distributed Data

Management and Computer Networks� �
���

�YC
�� C�T� Yu and C� C� Chang� Distributed query processing� ACM Computing

Surverys� pages �

 ���� �

��

��


