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Abstract
This paper presents a new method for computing the lower bounds for multihop network

design problems which is particularly well suited to optical networks�
More speci�cally� given N stations each with d transceivers and pairwise average tra�c values

of the stations� the method provides a lower bound for the combined problem of �nding optimum
	i
 allocation of wavelengths to the stations to determine a con�guration� and 	ii
 routing of the
tra�c on this con�guration while minimizing congestion  de�ned as the maximum �ow assigned
on any link�

The lower bounds can be computed in time polynomial in the network size� Consequently�
the results in this work yield a tool which can be used in 	i
 evaluating the quality of heuristic
design algorithms� and 	ii
 determining a termination criteria during minimization�

The lower bound computation is based on �rst building �ow trees to �nd a lower bound on
the total �ow� and then distributing the total �ow over the links to minimize the congestion�
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� Introduction

In recent years there has been an increasing interest in optimization of multihop lightwave

network design ��� �� �� ��� This is primarily motivated by the vast bandwidth of a �ber which

can be exploited by employing concurrency with Wavelength Division Multiplexing 	WDM
 ���

�� ��� In this paper we address the combined problem of routing and design� in linear multihop

lightwave networks� and present tools to compute a lower bound for this problem� Particularly�

we consider linear multihop lightwave networks without channel sharing in which tuning a pair

of transceivers to the same wavelength establishes a logical connection� Therefore� allocation of

the wavelengths to the stations constructs a logical topology 	i�e�� con�guration
 which can be

realized by broadcastandselect property of WDM lightwave networks�

The choice of the con�guration may depend on the tra�c characteristics� However once

the logical topology is determined� the performance of a routing algorithm is limited by that

topology� Therefore� the routing and the con�guration are mutually dependent� The problem of

�nding an optimal con�guration and routing is NPHard 	see ���
 thus the previous approaches

are based on heuristics which hopefully yield nearoptimal solutions� Performance criteria to

determine a �good� con�guration can be based on minimizing the maximum total �ow 	i�e��

congestion
� on any edge as suggested in ��� �� �� �� or based on minimizing the propagation

delay ��� ��� Since the problem can only be solved approximately� it is natural to ask about

the quality of the approximation� One way of answering this is to empirically compare various

heuristics on particular sample problems� Another is to to compare the approximate solution�

for every problem instance to a good lower bound� such as those developed in this paper� In

addition� the lower bound techniques developed herein are computationally attractive and could

therefore be used as part of a termination criterion for such optimization heuristics�

This paper addresses the development of lower bounds on the combined problem of �nding

	i
 allocation of wavelengths to the stations 	con�guration
� and 	ii
 routing of the tra�c on this

con�guration while minimizing the value congestion� Given a pairwise 	average
 tra�c matrix T �

number of stations N � and d transceivers at each station� we denote an instance of this combined

problem by the triplet 	T�N� d
�

In this paper we present a sequence of polynomial time algorithms which� given an instance of

the problem 	i�e�� 	T�N�d

� compute lower bounds on the congestion for that problem instance�

The computed lower bounds can be used in assessing the performance of heuristic solutions

in lightwave network design� as well as in deciding termination of the heuristics 	i�e�� stop the

heuristic when its performance is close enough to the computed lower bound
�

�



Although it is presented in the context of lightwave networks� the techniques presented in this

work can be applied�as a general tool�for deriving lower bounds in network design problems

which have �owbased objective functions�

This paper is organized as follows� In the following section� we de�ne the problem� In section

�� we present a novel technique for computing instantspeci�c lower bounds� Section � explains

how to implement the suggested technique to obtain an e�cient tool� The work is concluded in

Section ��

� Problem De�nition

In this section we de�ne the problem precisely� explaining the formulation and parameters�

Given average pairwise tra�c T of N stations each with d transceivers� we consider the problem

of how 	i
 to �nd a topology 	i�e�� a con�guration
� and 	ii
 how to route the tra�c in T on this

con�guration with minimum congestion� The average tra�c for N stations� is represented by

the matrix T � �ts�t� such that each entry ts�t is the expected amount of tra�c to be sent from

a source station s to a destination t� 	For simplicity we assume that ti�j values are normalized

to integers
� A con�guration is a representation of a 	logical
 network topology in which each

node corresponds to a station and each edge to a logical 	physical
 connection� Precisely� a

con�guration is a digraph of N nodes� with no selfloops� such that each node has equal� in�out

degree which is d� Given the tra�c matrix T and a con�guration� routing R is an assignment

of the tra�c ts�t to some directed path	s
 in the con�guration from source s to destination t� for

all s and t� Note that a directed edge in the con�guration may carry the tra�c of various s� t

pairs� Hence we de�ne congestion zi�j	R�T 
 on a directed edge 	i� j
 as the accumulated amount

of tra�c carried on this edge for routing R of tra�c T � Let Z � max�i�j�fzi�j	R�T 
g be the

maximum value of congestion�

�� Z �
P

k f
k
�i�j�� �k� � pair	i� j


��
P

i f
k
�i�j� �

P
i f

k
�j�i� � tk�j � k� j where k �� j�

�� � � fk�i�j� � 	
P

u tk�u
xi�j

��
P

j xi�j �
P

j xj�i � d� � i� j

�For simplicity� it is assumed that each station has exactly d transceivers� The work herein can be generalized

in various ways to handle non�uniform degree constraints�
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�� xi�j � ��� ��

�� f i�i�j� � �

There are two variables of interest� the 	integer
 �ow variable fki�j� the �� integer variable xi�j

which is �� if there is an edge from i to j� � otherwise� We note that directly solving the above

mixed integer programming problem computationally too expensive ��� 	shown via transformation

from minimum cut linear arrangement problem ����
� Thus approximate solutions are sought

by heuristics� In the next section� we construct lower bounds of this problem to evaluate the

performance of heuristics�

� Lower Bounds

Given an instance of the problem 	i�e�� T � N � d
 in this section we present a new technique

to compute a lower bound 	instancespeci�c
 on the congestion Z 	i�e�� the maximum �ow on an

edge
� First note that an immediate lower bound on the congestion can be found by choosing a

node for which the incoming or the outgoing tra�c is the maximum and dividing that amount

by the degree d ���� Precisely� let LBI denote the immediate lower bound�

LBI �
maxi�jf

P
ti�j�
P
tj�ig

d
	�


In general� this lower bound may not be very sharp since it does not take into account the routing

of the tra�c� A better bound may be possible if the total �ow in the network is considered�

In this paper we develop algorithms yielding provable lower bounds on the total �ow and use

these to get better lower bounds on the congestion� The tool for computing a lower bound uses

minimum �ow trees for each commodity and generalize to other �owbased objective functions�

Our approach has the following two steps� 	�
 �nding a lower bound on the total �ow carried

in the network for a given tra�c matrix 	using minimum �ow trees
� and 	�
 �nding a lower

bound on congestion� by dividing the lower bound on the total �ow 	computed at step �
� by the

total number of edges Nd� This two step approach was also originally proposed in ��� though no

proven lower bounds are given�

The discussion of the technique starts with the simplest structure� a �ow graph� then intro

duces minimum �ow trees and �nally constrained minimum �ow trees�

�
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Figure �� A feasible network 	con�guration
 and a routing of the tra�c on this

con�guration which induces the �ow graphs� A set of feasible �ow trees 	FFTs


is also shown�

��� Flow Graphs and Flow Trees

Given a tra�c matrix T � a con�guration G� and a routing R of the tra�c T on G� let FGr

denote a DAG called the �ow graph for commodity r� FGr is connected and can be constructed

from an union of all the paths from the root node r to all others nodes� as speci�ed by the

routing R� Each arc 	u� v
 in FGr is associated with a weight 	i�e�� its cost
 which is the sum of

the tra�c routed on this edge from the root r�

For example consider Figure � in which each node has two units of tra�c to be sent� A

possible routing R of the tra�c for each commodity i is shown on the corresponding �ow graph

FGi� The weight on the edge 	A�B
 of the �ow graph FGA is � units is obtained as the sum

of the tra�c routed on this edge from the root A to the nodes B 	A � B directly� � units
� C

	A� C via B� � unit
� and D 	A� D via B� � unit
� One can easily check the total �ow is ��

and the maximum congestion is � 	e�g�� edge BC
�
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Let FFTr be a feasible �ow tree rooted at node r which is obtained from a breath�rst search

of FGr� Note that FFTr is feasible since it uses a subset of the edges of the underlying 	feasible


�ow graph� However� the cost on the edges of a FFTr may be di�erent since the tra�c is not

split� Precisely� the cost on an edge 	i� j
 is the sum of tr�j and the tra�c to all the nodes

reachable from j� Figure � shows example FTTs and the associated costs�

Let level	j
 of a node j be the length 	number of hops
 of the path from the root to j in the

associated �ow tree� Then we observe the following�

Observation � Cost	FFTr
 �
P

�i�j��FFTr level	j
	 tr�j� where �i�j� denotes a directed edge�

Note that the �ow tree FFTi has an induced routing R such that all tra�c �ows from the

root to each node of the tree� Let Cost	G
 be the total �ow on a con�guration G� Note that

the distance in FFTr from r to any other node j is no larger than the distance from r to j in

FGr� While splitting the tra�c from r destined for node j 	i�e�� using multiple paths in FGr


can reduce the congestion in FGr� it cannot decrease the total �ow� Moreover� if the paths used

are not of the same length� such splitting will increase the total �ow since tra�c values will be

propagated on more edges� For example� the total �ow on the FFTs in Figure � is �� and the

maximum congestion is �� From the above discussion we observe�

Observation 	

Cost	FGr
 � Cost	FFTr
�r and

Cost	G
 �
X

r

Cost	FGr
 �
X

r

Cost	FFTr


This observations give a lower bound on the �ow for a given tra�c and routing� 	Recall FGr

depends on the routing
� What we desire� however� is a lower bound over all routings� But since

we cannot get the minimal routing� we will obtain a lower bound by considering an easier problem�

the one with a relaxed feasibility constraint� In particular� we allow each commodity node to

choose any edge to route its tra�c so as to minimize the �ow needed for this routing� Each

commodity is considered independently� A network 	which will most likely be infeasible
 can

then be obtained from the union of the routes considering all the commodities� Informally� such

a network would give a lower bound on the real total �ow since we only relaxed the constraints�

Once such a network is obtained� the total amount of �ow is distributed equally on the feasible

number of links 	i�e��Nd
 in order to bound the congestion� This is not always a good bound since

there are fewer constraints� For example� suppose d is much smaller than N and the infeasible

�
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For the sake of simplicity xi�j � � if i �� j � otherwise

Figure �� A Sample 	Average
 Tra�c Matrix

network� obtained from the union of the routes� is a complete graph� Then each 	r� j
 would

only carry the tra�c tr�j yielding a loose lower bound on the total �ow� The more accurately we

can determine the lower bound on the total �ow� the tighter we can make the lower bound on

congestion� In the next section we show how to construct 	infeasible
 networks with good lower

bounds on the total �ow by using trees with minimum total �ow�

��� Minimum Flow Trees

Given the triplet 	T�N� d
� a minimum 
ow tree 	MFTr
 is a d�ary directed� balanced and

weighted spanning tree routed at each commodity r such that the nodes with larger tr�j values

are closer to the root r� For example� in Figure � some of the minimum �ow trees of the tra�c

matrix of Figure � are shown 	the trees routed at the nodes xi 	i � �� �� 
 
 
 �
 are omitted since

any breadth �rst search tree is a minimum �ow tree
� Intuitively� the objective behind building

minimum �ow trees is to minimize the propagation of larger tra�c values�

Each minimum �ow tree de�nes a weighted shortest path routing 	from the root to each

node via tree links
� Thus� the de�nition of cost in Observation � still applies� Cost	MFTr
 �
P

�i�j��MFTr level	j
	 tr�j� For example in Figure � the tree MFTa has cost ��� � �	�� � ��
 �

�	�� � � � � � �
 � �	� � � � � � � � � � � � � � �
� and the edge 	b� h
 has cost �� � �� 	ta�h


� � 	ta�f
 on MFTa� Since the total cost of an edge 	considering all the �ow trees
 is the total

�ow carried on this edge to route all the tra�c in the network� the edge 	b� h
 has total cost ��

� �� 	on MFTa
 � � 	on MFTd
 � � 	on MFTf
�

We can use these minimum �ow trees to derive a lower bound on the total �ow associated

with a tra�c matrix T � and hence on the congestion on any network carrying that tra�c� First

let us derive a lower bound on the total �ow�

�
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Figure �� Some MinimumFlow Trees for the sample tra�c matrix shown in �gure �� The trees

rooted at xi� i � ���� are all BFS trees�

Lemma � Given a tra�c matrix T the following is true for any feasible �ow tree �FFT�

�r� Cost	MFTr
 � Cost	FFTr


Proof�

Without lost of generality� we consider commodity r� Let FFT �
r be a feasible �ow tree which

has minimum total cost 	over all possible �ow trees rooted at r
�

Then it is su�cient to show�

X

�i�j��MFTr

level	j
	 tr�j �
X

�i�j��FFT �

r

level	j
	 tr�j

We show this by transforming FFT �
r into MFTr without increasing its total cost 	however�

�



the cost may decrease
� Since FFT �
r was de�ned to have minimum cost over all the feasible �ow

trees� the lemma follows�

Since the tra�c values 	tr�j
 are constant in both trees� the cost di�erence depends on the

location of the nodes in the trees� We make the following two observations� First� note that any

permutation of the nodes at the same level does not change the cost of a �ow tree� Second� we

note that if two nodes have the same tra�c values� swapping their locations in a �ow tree 	FFT �
r

or MFTr
 does not change the cost of the tree� Therefore� permutation operations and swapping

operations preserve the cost and yield a cost equivalent set of �ow trees� Consequently� only the

use of these operations during the transformations of the FFT �
r into MFTr is considered�

We compare 	transform
 the trees at each level k 	k � �� �� 
 
 
 � logdN � �
 of the minimum

�ow tree� We show by induction on level k that FFT �
r can be transformed to MFTr without

increasing the total �ow� unless the promise that FFT �
r is a minimum cost feasible �ow tree is

contradicted� Let level	i
 �MFTr denote the level of node i on the tree rooted at r�

Basis� k � � trivial since only the root node resides in this level in both trees�

Hypothesis� suppose for k � logdN � � both of the trees are cost equivalent� Let j be a

node at level k�� of the MFTr and suppose that its level in FFT �
r is k�� By induction we know

k� � k � � 	note that k� � k � � can be omitted since the nodes between these two levels must

have the same amount of tra�c from the root
� If k� is equal to k � �� then no transform is

necessary so we only consider k� � k � ��

Given that both trees are d�ary there are two cases to consider� Case �� there exists a node

i which occupies the space in level k � � of the FFT �
r where node j should be and case �� the

FFT �
r has one node less at level k � � 	i�e�� the space required by j is vacant
�

Case �� consider the tra�c tr�i to node i from the root�

By the induction hypothesis we know that level	i
 � MFTr � level	j
 � MFTr thus� by

de�nition of the minimum �ow tree it follows that tr�i � tr�j�

Case ���� if tr�i � tr�j then swapping of i and j preserves the cost� thus the FFT �
r can be

transformed to MFTr and induction holds for this case�

Case ���� if tr�i � tr�j then let FFT ��
r be a feasible �ow tree obtained by switching the location

of only two nodes in FFT �
r namely the nodes i and j� Since the rest of the FFT ��

r and FFT �
r

is identical any cost di�erence must be due to the change of these nodes� By Observation � we

see the total cost on FFT ��
r is less than the total cost on FFT �

r which is a contradiction to the

assumption that FFT �
r has the minimum total cost� Thus� by contradiction� this case of the

induction holds�

�



Case 	 where FFT �
r has a �empty space� on level k � ��

This case also leads to a contradiction to the assumption that FFT �
r has the minimum total

cost� Since one can decrease the cost of FFT �
r by moving any node closer to the root on the

FFT �
r� Thus� at level k��� FFT �

r and MFTr must be cost equivalent 	i�e�� both trees are sorted

according to the tra�c values in an increasing order from root to level one
� �

Combining the lemma with Observation �� it follows that holds for any feasible con�guration

Cost	
X

r

MTFr
 � Cost	
X

r

FGr


Recall that the minimum �ow trees are constructed independently for each commodity so as

to minimize the weighted distance from each root� Thus the number of edges in the 	infeasible


network�obtained by an edgeunion of the minimum�ow trees�is at least that of in any feasible

network and is often larger� Intuitively� the amount of total tra�c on each edge is expected to

be less� A lower bound on congestion is given in the following theorem�

Theorem � For any 	T�N� d
 and routing R we have

LB� �
Cost	

P
rMTFr


Nd
� max�i�j�fzi�j	R�T 
g

Proof� It is su�cient that equation of Lemma � holds for any feasible �ow tree� since once a

lower bound on the total �ow is computed� the best one can do is to distribute 	route
 this total

�ow uniformly over Nd links to minimize the maximum �ow on any edge��

We note that LB� is mostly instructive� and will be superseeded in the next section by a

more complex lower bound which uses constrained minimum �ow trees� However the bound

derived in this section is cheaper to compute and hence may still be of some practical use�

��� Constrained Minimum Flow Trees

In the computation of LB�� we did not enforce any constraint on the selection of the edges�

If we knew an edge� say 	i� j
 occurred in the optimal solution� then we could �constrain� the

�ow trees by forcing them to �accommodate� this edge� Since the tree is limited to dary� the

e�ect of the accommodated edge is to �push� some nodes farther away from the root and hence

increase the total cost 	i�e�� the total �ow
 which consequently would improve the lower bound

on the congestion� We note that to accommodate the edge does not require any �ow assignment

on this edge� but its place in the �ow tree must not be used by another edge�

�



a

b c

h e d g

14 13

11 8 7 6

5

f

parallel edge

1     1         1     1          1    1        1

a c d

e f

g

h

b
12 11

10 9 9 8

7
1     1        1     1       1      1        1

a

b

c

he

d

g

f

15 15

12 11 8 7

7 1     1         1     1          1     1        1

a

b c

h e d

g

14 13

11
8

7

6 5

f

1 1
1 1

1 1 1

x1 x2 x3 x4

x5 x6 x7

down edge

a

c

d

e

f g

h

b
12

11 10

9

9 8

7 1     1        1     1       1      1        1

a

b

c

he

d

g

f

15 15

12 11 8

77

up edge

x1 x2 x4

1 1 1 1

1 1 1

x5 x6 x7

DCR operation

VOID operation

VOID operation

(before) (after)

x1     x2     x3     x4    x5     x6    x7

x1     x2     x3     x4    x5     x6    x7

x1     x2     x3     x4    x5     x6    x7

x1     x2     x3     x4    x5     x6    x7

x3

Figure �� Possible accommodation of edge 	b�c
 into some Minimum Flow Trees 	before and

after


A natural question is �Which edge should be chosen for accommodation in the trees�� It

is tempting to use heuristics such as �use the edge with the largest point to point tra�c��

Unfortunately� the optimal solution may not actually use this edge� especially if there are many

edges of nearly the same magnitude� However� some external constraints or priorities require an

edge to occur in the solution� Otherwise� each possible edge must be considered as a candidate to

be a part of the solution� Thus� we maintain our lower bound property by 	i
 trying all possible

edges 	note that there are N	N ��
 possible edges
� and 	ii
 �accommodating� the edge on each

minimum �ow tree with minimum cost increase�

This leads us to the following de�nition� A constrained 
ow tree CFT �i�j�
r is a �ow tree

rooted at commodity node r� such that directed edge 	i� j
 is forced to be accommodated in

building CFT �i�j�
r regardless of the tr�j value� If the edge would carry no �ow� then it may be

logically ignored� but its space in the dary tree cannot be �lled by another edge�

A constrained minimum 
ow tree CMFT �i�j�
r is a constrained �ow tree such that

Cost	CMFT �i�j�
r 
 � Cost	MFTr
 is minimum� For example consider the minimum �ow trees

in Figure � and suppose the edge to be accommodated is 	b� c
� Some of the constrained mini

mum �ow trees accommodating this edge are shown in Figure �� The cost of the tree rooted at

��



node a is Cost	CMFT �b�c�
a 
 � �	�����
��	������
��	�����������
��	�����
 � ����

which is higher than the cost of MFTa� Therefore� we can obtain a lower bound on the total �ow

by considering all possible edges 	i�e�� all pairs of 	i� j
 for i �� j
� and building the associated

constrained minimum �ow trees�

Theorem 	 minijf
P

r cost	CMFT �i�j�
r 
g � Cost	

P
r FGr


Proof�

From Lemma � and the de�nition of a constrained minimum �ow tree it follows that
P

r CMFT �i�j�
r is a lower bound on the total �ow� if we know edge 	i� j
 is in the solution�

We note that the �nal graph must have at least one edge and since we take the minimum overall

	i� j
� the theorem holds��

Let 	u� v
 be the edge for which the total �ow 	computed over all the constrained �ow trees


is minimum 	over all possible edges
� then we can obtain a better lower bound 	LB�
 than LB�

by distributing this total �ow over Nd edges� Thus given an instance 	T�N� d
 of the problem

Theorem � For any routing R of T

LB� �
minijf

P
r
cost�CMFT

�i�j�
r �g

Nd
� LB�

Proof�

For each possible edge 	i� j
 	�i �� j
 construct a hypothetical graph G
�i�j�
� which is obtained�

over all commodities� by the union of the edges of the CMFT �i�j�
r trees� The total �ow carried

on this graph is the sum of the costs 	�ow
 on its edges as before� Let G�u�v�
� be the graph

induced by accommodating the edge 	u� v
 such that the total �ow on G�u�v�
� is minimum over all

hypothetical graphs G�i�j�
� that is

Cost	G
�u�v�
� 
 � min�i�j�f

X

r

cost	CMFT i�j
r 
g

In other words� �ow carried on this graph is the least� among all networks required for routing

of the tra�c T with the given edge constraint� As in the computation of LB�� we distribute the

total �ow on this graph equally over only the feasible number of the edges obtaining the lower

bound LB��

Due to the de�nition of a minimum constrained �ow tree

P
r cost	MFTr
 � minijf

P
r cost	CMFT �i�j�

r 
g thus LB� � LB���
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� An Algorithm to Compute the Lower Bounds

In this section we consider the computational complexity of �nding the lower bounds LB�

and LB�� Since our input is the tra�c matrix with M � N� entries 	where N is the number

nodes
� we express our bounds in terms of M �

Computing LB� is quite straightforward� �rst we sort each row of the tra�c matrix in time

O	M logM
 and then build a dary tree for each row� Therefore the total cost for computing

LB� is O	M logM
�

However� e�cient computation of LB� is much less trivial and achieved by a tree maintenance

algorithm as described below� Construction of the constrained minimum �ow trees is based on

de�ning a set of accommodation operations de�ned on the minimum �ow trees� The CMFT �i�j�
r

can be obtained from MFTr by applying exactly one of the insertion operations� The accom

modation operations are chosen in order to minimize the cost increase on the minimum �ow

trees�

Consider a directed edge 	i� j
 forced to be accommodated in the all the minimum �ow trees�

Depending on level	i
 and level	j
 in the MFTr� the edge� 	i� j
 under consideration can be clas

si�ed as of the three types�

�� If level	i
 � level	j
 then 	i� j
 is a down edge�

�� If level	i
 � level	j
 then 	i� j
 is an up edge�

�� If level	i
 � level	j
 then 	i� j
 is a parallel edge�

Given a MFTr� reserving space for edge 	i� j
 into a minimum �ow tree is based on exactly

one of the �ve operations shown in Figure ��

��



Theorem � Given T�N and d� algorithm compute LB��T�N�d� constructs minimum �ow trees

and computes the lower bound LB��

Proof� Termination of the algorithm is ensured since there are nested two loops with total

O	N�
 iterations�

The correctness of the algorithm is proven by showing that two invariants of the algorithm�

tree�property and cost�property�are maintained after each accommodation operation of Figure

�� The treeproperty requires that after each operation performed on a minimum �ow tree

�� the same node remain as the root with degree exactly d�

�� there is a path from the root node to all the others�

�� degree of each node is at most d

�� no cycles exist

Given an edge 	i� j
 to be accommodated on the MFTr� each operation checks if the root r

is the same as j 	except for DCR and VOID operations for which r �� j by de�nition of these

operations
� There is no cycle since VOID operations do not establish the edge 	i� j
� and the

rest of the operations do not result multiple parents 	i�e�� no operation establishes any parallel

or up edges
� Given that there is no cycle� it is ensured that there is a path from the root to

all others� since each node 	except r
 has a father� Since MFTr is a d�ary� the degree of the

nonleaf nodes is at most d after VOID operations� and remains the same as before for all other

operations�

Therefore� performing an accommodation operation on a minimum �ow tree maintains a �ow

tree 	i�e�� constrained �ow tree
 on which tra�c from the root �ows down to all the nodes�

To show that the constrained �ow tree has minimum cost we prove that the cost increase

on the underlying minimum �ow tree is minimal after the accommodation operation 	i�e�� cost

property is maintained
�

Let 	i� j
 be an edge to be accommodated in all the minimum�ow trees� The set of accommo

dation operations 	shown in Figure �
 is complete� since no other operation is possible without

violating the treeproperty� Note that each accommodation operation of the algorithm preserves

a lower and�or upper cost equivalent components with the minimum �ow tree MFTr 	see Figure

�
� That is the the set of the edges in MFTr such that their cost remains the same as before

after the accommodation operation� Note that any other tree must also have at least the same

��



cost in the equivalent components with the MFTr 	since the MFTr is a sorted dary tree
 in

order to ensure at most the same cost with CMFT �i�j�
r � Consequently we can limit our argument

to the segment of the minimum �ow tree that is modi�ed by the accommodation operation�

In the modi�ed segment� some nodes are pushed away from the root 	i�e�� their levels are

incremented by one
 and some nodes are moved closer to the root� The number of UM 	upward

migrating
 and DM 	downward migrating
 nodes are determined directly by the chosen accom

modation operation� The UM set contains the nodes with largest tra�c to be moved up in the

tree 	i�e�� the cost decrease is maximized
� On the other hand the DM set contains the nodes

with the smallest amount of tra�c at each level involved in the insertion operation� Thus� the

cost increase is minimized by carrying the minimal amount of tra�c away from the root

The algorithm chooses the feasible operation for which the net cost increase is minimal among

all the feasible operations to accommodate the edge 	i� j
 	i�e�� the constrained �ow tree rooted

at r is the CMFT �i�j�
r 
�

At step �� of the algorithm an edge 	among all possible edges
 for which the sum of the �ow

on all the constrained minimum �ow trees 	accommodating this edge
 is chosen� Thus according

to the Theorem �� the output of the algorithm is the lower bound LB�� �

Time Complexity� It requires O	logN
 time to �nd the nodes of interest in a MFT and

the remaining operations depend on the amount of the tree a�ected which� in the worse case� is

O	N
� Since we must do this for all M possible pairings edges and N nodes� we end up with a

O	M�
 algorithm for computing lower bound LB�� Since the bound only needs to be computed

once this computable lower bound can be considered a reasonable component of an upper bound

algorithm� e�g�� it can be used in a termination criterion or to evaluate heuristic quality�

� Summary and Conclusions

In this paper we presented a useful tool to measure the performance of heuristics in the

design of multihop lightwave networks with minimum congestion routing� Given an instance of

the problem the lower bounds can be computed in polynomial time in the network size� Thus

the tool can be integrated into the heuristics� Indeed� it was applied in ��� �� for the analysis of

heuristic algorithms for allocation�routing in WDM networks�

Particularly� we derived � di�erent lower bounds� a �immediate one� LBI which ignored �ow�

and two �ow tree based ones LB�� LB�� We also showed that LB� � LB�� However we note

that it is possible to determine the cases where LB� � LB�� For example if there is an edge

which occurs on all the MFT� or if i is a leaf� or if i and father of j are at the same level then

��



the equality holds� Thus it is possible to test these conditions and avoid performing expensive

computation for LB��

Next� let us consider the relation between LB� and LBI � Unfortunately LB� � LBI is not

always true� For instance consider a tra�c matrix in which one or two nodes have much larger

incoming and outgoing number of messages than the rest� In this case the �ow tree approach

does not perform well since one or two CMFT trees will have much higher cost than the others

and their cost can be distributed over the other edges� Therefore� in practice� we compare LB�

and LBI and take the maximum�

LB � MAX	LB�� LBI
�

We note that the constrained �ow tree technique could be extended to force the �ow trees to

include �� � or any number of edges� The tradeo� is that doing so would require computing the

CMFT over all pairs� all triples� etc�

Although we assumed that each node had �x degree d it is straightforward to generalize it

to varying degree� Furthermore� if some of the nodes have in�out degree of one this information

can be directly used in the constrained �ow tree technique� Similarly� if other constraints allow

one to determine an edge which must occur in the solution� the CMFT approach can use this

information to further increase the lower bound�
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Existing edge� NOP

If the edge already exists in this tree then nothing is needed to accommodate it�

Down edge with Parent Replacement� DPR

Let v be the father of j� If i � r then this operation is not de�ned� Otherwise� de�ne the set UM
of upward migrating nodes as the leftmost nodes of the MFTr between the level of i and v� �i�e��
jUM j � k � level�v� � level�i���

Operation� �� replace the parent of j with i� level�i� � level�v� �� move up� level�u� � level�u����
�u � UM �

Cost of DPR� T �DPR� � k � tr�i �
P

u�UM
tr�u� That is the di�erence between the cost increase

caused by moving i down thus carrying the �ow tr�i k times more and the �ow decrease caused my
shortening the distance of the nodes in UM from the commodity node r�

Down edge with Child Replacement� DCR

Let v be a child of i� De�ne the set DM of downward migrating nodes as the rightmost nodes of
the MFTr between the level of j and v� �i�e�� jDM j � k � level�j� � level�v���

Operation� �� replace the child by bringing j up at the same level with v� level�j� � level�v� ��

move down� level�u� � level�u� � �� �u � DM �

Cost of DCR� T �DCR� �
P

u�DM ��k � tr�j�

Parallel�Up edge with Void Replacement� VOID

Let m be the depth of the MFTr and let n � m � level�i� � �� Note that n is the height of the

subtree rooted at j� De�ne the set DM of downward migrating nodes as the set of rightmost �k

nodes at level�i� � � � k where k � �� �� � � � � n� ��

Operation� �� level�u� � level�u� � � �u � DM �

Cost of VOID� T �V OID� �
P

u�DM tr�u

Parallel�Up edge with Parent Replacement� PUPR

Let v be the father of j� If v � r or j � r� this operation is not de�ned else de�ne the set
DM of k downward migrating nodes as the set of rightmost nodes whose level is in between
level�i�� � � � � level�v�� �k � level�i�� level�v���

Operation� �� bring i to the same level as the parent of j� level�i� � level�v�� �� move the right�
most ones one level down level�u� � level�u� � �� �u � DM �

Cost of PUPR� T �PUPR� �
P

u�DM tr�u � �k � tr�i�

Parallel�Up edge with Child Replacement� PUCR

Let v be a child of i� If j � r then it is not de�ned else de�ne the set UM of k upward migrating

nodes as the set of leftmost nodes whose level is in between level�j�� � � � � level�v��

Operation� �� level�j� � level�v�� �� level�u� � level�u� � �� �u � UM �

Cost of PUCR� T �PUCR� � k � tr�j �
P

u�UM tr�u

Figure �� Set of possible operations de�ned on minimum �ow trees to obtain con
strained minimum �ow trees from accommodating edge 	i� j
�
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Algorithm Compute LB��T�N�d�
input� Tra�c matrix T � degree d� of N nodes
output� LB�

begin

preprocessing� for all commodity r� build MFTr
begin� Do for all possible pairs �i� j�

begin� Do for all commodity r
�	 if the edge is on the MFTr skip the rest and consider next commodity
�	 determine the direction of the edge
�	 If it is a Down edge then compute and chooseminfT �DPR�� T �DCR�g
�	 Else compute and choose minfT �PUPR��T �PUCR�� T �VOID�g	

end

end


	 Determine the edge �u� v� s	t
P

r
Cost�CMFT

u�v
r � is minimal over all edges

�	 LB� �

P
r

Cost�CMFT
u�v

r
�

dN
end

VOID Operation

i j

v

DM
Nodes

j

v

i

UM
Nodes

DPR Operation

DM
Nodes

DCR Operation

v

i

j

i

v

j

PUPR Operation

or
j

v

i

PUCR Operation

i j

v

Upper
Equivalent C.

Upper
Equivalent C.

Lower
Equivalent C.

Lower
Equivalent C.

or

Figure �� Edge Accommodation Operations
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