
Expanding the Repertoire

of Process�based Tool Integration

� MS Thesis Proposal �

Giuseppe Valetto

Department of Computer Science

Columbia University

��� West ���th St�

New York� N�Y�

�����

CUCS	��
	�

February �� ���

Abstract

The purpose of this thesis is to design and implement a new protocol for tool enveloping�

in the context of the Oz Process Centered Environment� This new part of the system would

be complementary to the already existing Black Box protocol for Oz and would deal with ad�

ditional families of tools� whose character would be better serviced by a di�erent approach�

providing enhanced �exibility and a greater amount of interaction between the human opera�

tor� the tools and the environment during the execution of the wrapped activities� To achieve

this� the concepts of persistent tool platforms� tool sessions and transaction�like activities

will be introduced as the main innovative features of the protocol� We plan to be able to

encapsulate and service conveniently classes of tools such as interpretive systems� databases�

medium and large size applications that allow for incremental binding of parameters and par�

tial retrieving of results� and possibly multi�user tools� Marginal modi�cation and upgrading

of the Oz general architecture and components will necessarily be performed�

c����� Giuseppe Valetto

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

� Introduction

The issue of integrating a set of tools in a Software Development Environment �SDE� ���	 is

of great relevance to the degree of functionality that the SDE can provide
 to its �exibility

and power
 to its ability to model a variety of operations and to assist users in many ways

and in di�erent situations
 The more generic is the set of software engineering activities to

be supported
 the more diverse are the necessary tools and the more �exible must be the

integration principle
 Therefore
 in the �eld of Process Centered Environments �PCEs� ���	

���	
 which are a subclass of SDEs designed to de�ne
 enforce and support a variety of

software processes using a built�in process modeling formalism
 the need for such generality

becomes clearly of utmost importance

The approaches to tool integration can be very di�erent
 They vary from the de�nition of

a tool family dedicated to the SDE
 according to the speci�cations and the structure of the

environment �an option that can be very costly without allowing a high degree of generality

although achieving the best results in terms of e�ciency and simple design�
 to the use of

interfaces supporting a dialogue between existing external tools and the SDE
 that can be

usually implemented with relatively little and repetitive modi�cations to the tools� structure

and code
 to the use of commercial o��the�shelf tools �COTS� without modi�cations
 In

the latter case the SDE must provide a generic mechanism for interaction with the tool

which allows for parameter passing and retrieving results
 and for some deal of control over

the activity performed by the tool
 Such an approach is commonly referred to in the SDE

community as tool enveloping
 Conceptually
 envelopes
 beside executing activities
 perform

the task to extract data from the internal representation in the SDE
 to present them to their

�wrapped� applications in the correct format and
 in general
 to provide mapping between

the system�s data repository and the tool�s own one

Oz Overview

Oz ��	 ��	 is a multi�user PCE that realizes the process description and support with a rule�

based approach
 and stores all the data
 software components and their mutual relations in

�

an object oriented repository called the objectbase
 It is based on the experience gained in

developing the Marvel �
� PCE ���	
 to which it is intended to be the successor
 and while it

inherited from Marvel most of its main features
 it di�ers from it in several ways
 noticeably

in the fact that it is more oriented towards distributed use
 The implementation of this

thesis will be carried on as a part of the Oz project

Marvel �
� represented one of the few examples of PCEs employing already existing tools

to carry on the activities de�ned in the process on its objects
 No dedicated tools
 nor code

changes
 nor recompilation were necessary
 since Marvel fully exploited the principle of tool

enveloping� Oz follows the same approach

The current mechanism to achieve this kind of integration is called the Shell Envelope

Language �SEL� ���	
 SEL realizes augmented versions of shell scripts that handle the

passing of parameters to the envelope from outside
 execute the tool inside the script using

the parameters to customize the execution and to provide the tool with arguments
 and return

to the external caller a status code and other relevant output data
 Each SEL envelope is

invoked during the execution of an Oz rule �de�ned in a speci�c language called MSL ��	�

which consists of several di�erent parts�

� A name and a list of typed parameters that it accepts
 This is what is called the

signature of the rule�

� The condition section� �rst
 additional objects
 related to the parameters
 are gathered

from the objectbase� then
 the system veri�es for each of the objects in this set if some

speci�ed properties hold
 The objects which don�t comply with these conditions are

then discarded from the set�

� The activity section in which a rule�speci�c operation is performed on the objects col�

lected by the condition
 In this context
 the SEL script is the envelope or wrapper that

represents the activity�s implementation
 The activity executes in a very straightfor�

ward fashion� an input � execution � output sequence�

� One or more mutually exclusive sets of e�ects
 to be chosen in accordance to the return

code from the activity� the e�ects are assertions in which data returned by the envelope

�

are recorded into some of the objects bound in the condition section
 therefore modifying

the state of the objectbase and of the process

One of the peculiar properties of the Oz and Marvel systems is how process enaction is

carried on� following from the modi�cations incurred because of the e�ects
 automatic �ring

of additional rules
 whose conditions match the new state of the process
 is performed
 This is

what we call forward chaining
 Backward chaining can also automatically occur in Oz when

a rule is invoked and its conditions are not entirely satis�ed by the bound objects� rules

whose e�ects could ful�ll those requirements are then �red
 Both backward and forward

chaining are recursive and represent a method to provide the PCE with automation facilities

and to enforce the process� policies and its desired behavior

We call the protocol provided by SEL for handling tool enveloping and activities� execution

a Black Box protocol
 since it is not concerned at all with the internal structure and nature

of the wrapped tool
 but only with passing input data and retrieving outputs to the tool in

a convenient way
 The execution mechanism
 as seen above
 is very simple and therefore it

is also quite useful
 Actually
 it can adequately support a rather wide range of conventional

tools� most Unix utilities
 for example
 accept all their arguments from the command line

at invocation time and return simple status information at the end of execution

However there are numerous tools which don�t �t this description and may be convenient

to integrate into Oz processes
 To do this it would be necessary to augment the current tool

enveloping facility and its underlying Black Box concept

� Motivation

The main concern of this work is to design and implement a new tool enveloping protocol

for the Oz PCE
 It should be general enough to apply to several classes of tools
 with

di�erent characters and needs
 This should greatly extend the ability of Oz in describing

and supporting an increasing number of di�erent processes

Of course
 it is highly unlikely to be able to de�ne a general�purpose mechanism that can

encapsulate in our rule�based process description any chosen tool
 It is therefore important

�

to focus on some classes that we consider more important or urgent to integrate in our

system

Some interesting test cases would be�

� Tools that allow incremental request of parameters and�or return partial results during

their execution� also
 tools that support heavily interactive work sessions with the user

These tools are quali�ed here as medium size
 referring to the duration of the work

session and the amount of resources allocated to them
 Good examples are provided by

multi�bu�er text editors such as GNU Emacs
 We have already in the past conducted

experiments on this class
 aimed to provide a way to exploit at a greater degree its

functionality
 with some modi�cations to the Black Box approach of SEL
 The testbench

for these experiments has been the GNU Emacs text editor
 for which an ad hoc protocol

had been written
 We classi�ed it as Grey Box
 since we needed to use the GNU Emacs

extension language E�Lisp to implement it
 �In principle
 tool enveloping using a similar

Grey Box approach can be done for all those tools having their own extension language

We classify an approach as White Box if the internal code of the tool itself needed to

be manipulated
�

� Tools based on interpretive query systems� KBSA tools written in Lisp �for example

FUF or OPS�� or databases are classic examples
 In this class we could gather all those

systems that allow the users to run
 after their initial invocation
 series of functions
 each

having their own parameters
 Many of these tools have an intrinsic interpretive nature

and keep track of the activities performed and of the state of the data manipulated by

querying the interpreter
 The interaction between such systems and the user is heavy

and long and the amount of computing power necessary to handle the queries and keep

track of their results can be huge
 Therefore
 they are referred to here as large size tools

Even if
 in principle
 such tools could be handled by a Black Box protocol
 with each

query mapping to a di�erent envelope
 this is highly impractical
 sometimes because

of the start�up overhead
 but mainly because it would not be possible to keep track

of the state of the program and the data across di�erent invocations
 unless the work

session and the state were saved and loaded each time �clearly an ine�cient solution�

�

Degree of concurrency

Degree of interactivitycommand−line tools

Unix utilities

incremental input tools

GNU Emacs GDB debugger

query systems

si
ng

le
 u

se
r

m
ul

ti−
us

er
no

n−
m

ul
ti−

th
re

ad
ed

m
ul

ti−
us

er
 a

nd
m

ul
ti−

th
re

ad
ed

co
lla

bo
ra

tiv
e

to
ol

s
to

ol
s

to
ol

s
to

ol
s

MEdit (Flecse)TeleConf (Flecse)

Oz PCE

KBSA Tools

Databases

ConversationBuilder

Figure �� Dimensions of Interest for a New Approach to Tool Integration

�

To deal with such tools
 the wrapping mechanism of the environment should be able to

conduct a highly interactive transaction and should provide means to support the user

during it� for example
 dealing with automation of the most trivial tasks
 coping with

the changes made to the data �and hence the objectbase� during di�erent phases of the

transaction
 suggesting to the user what operations are more likely to be executed at a

given moment
 and so on

� Multi�user tools
 including those allowing collaboration among the users �addressing

issues like concurrent debugging
 collaborative code inspection
 or teleconferencing�

 the ones which provide isolated service for multiple individuals at the same time

�as for example some database systems�
 which we refer to as multi�threaded tools
 or

the ones accepting to service many users
 queueing their requests and executing them

sequentially
 sometimes called multi�user but non�multi�threaded programs
 Steps to

investigate and experiment with collaborative SDEs have been conducted recently
 It

is clear that the use for such a tool family is endless in the context of a multi�user PCE

such as Oz
 Their integration and use would carry along a number of questions and

problems not addressed yet
 mainly related to other main components of our system

including the process modeling language and the concurrency model� however it is the

job of the enveloping facility to handle their invocation and execution
 as necessary

parts of the integration

These examples should be fairly representative of the reasons why we need a new tool

enveloping protocol

Some important characteristics we anticipate as desirable would be a greater degree of

interaction between the human users
 the wrapping facilities and the tools
 as well as the

ability to run several activities on the same persistent instance of a program

We believe that such features would help to integrate a number of new tool families

proportionally enhancing the �exibility of Oz and its power to model a larger set of processes

�

� Related Work

Tool integration is a topic of central importance to every e�ort to build e�cient and practical

SDEs� several studies have concentrated on de�ning and exploring the meaning and the

di�erent dimensions of the term integration as applied to SDEs
 Wasserman ���	 for example

identi�ed �ve kinds of integration �platform
 presentation
 data
 control
 process�
 Moreover

Earl ���	 proposed a well known reference model for Computer Aided Software Engineering

Environments �CASEEs
 another term for addressing SDEs�
 in which a lot of emphasis is

on the issues of portability and interoperability of tools

In the attempt to ful�ll these requirements for integration in SDEs
 a large number of

di�erent approaches to the problem have been investigated

One of the most popular is equipping common tools with standard interface modules

These modi�ed applications are then able to communicate with a centralized message server

in order to coordinate their operations
 Here
 the message server and the interfaces constitute

the subsystem in charge of tool integration
 This component is often referred to as a message

bus
 Such an approach is used
 among others
 by Field ���	
 Conversation Builder ���	 ��	

and SoftBench ��	 ���	

PCTE ���	 ���	 is one of the most representative examples of e�orts directed to de�ne a

widely recognized and accepted public standard for building tools with better portability

The aim is to create a set of services and facilities
 called a public tool interface
 complete

enough to support tool writers in very di�erent situations and domains
 The result would be

a generation of homogeneous tools
 widely reusable under the PCTE speci�cations
 Many

SDE prototypes and projects ���	 ��	 ���	 in Europe as well as in the USA have already

adopted the PCTE standard
 However
 such a standardized approach is only useful if the

SDE developers can or choose to abide to the standard conventions and their unavoidable

limitations

Another widely explored approach
 and probably the most �exible and general one
 is tool

wrapping or tool enveloping
 in which the aim is the encapsulation in the environment of

external tools with no changes to their code
 The envelope idea was �rst introduced by the

�

ISTAR ���	 system

Marvel envelopes are augmented Unix shell scripts ���	
 invoking external tools and able

to achieve tool integration without modi�cation in a Black Box ���	 fashion
 The Marvel

project �on which Oz is based� also explored a di�erent enveloping mechanism with the

experimental implementation of a Grey Box style protocol
 that allows feeding of parameters

in an incremental fashion to medium size tools during their execution
 The chosen test case

was the GNU Emacs text editor
 This protocol needs to add further functionality to the tools

�the Emacs extension language was used in our test case� in order to equip them with some

means to carry on a simple dialog with Marvel
 The system then accomplishes incremental

requests as if the same tool had been invoked multiple times with di�erent arguments

However
 all the invocations map to the same instance of the program
 One of the limitations

of our implementation is that all invocations must complete at the same time and cannot

return separate status codes
 This does not allow the separate handling of each object during

the e�ect part of the rule� for example
 if any of the �les incrementally loaded in the multiple

bu�ers of GNU Emacs is written at some point and then saved
 all of them
 regardless if

they underwent changes or not
 will be treated in the same way
 Among the issues that were

not explored thoroughly enough is also the potential interaction between multiple di�erent

rule chains generated by di�erent argument requests
 Such automatic rule invocations could

at any point con�ict with each other
 for example by binding overlapping sets of objects
 or

by undoing changes to the objectbase just performed by another independent chain

The Grey Box experiment was conducted on the Emacs case with an ad hoc implementa�

tion
 which is neither robust nor reusable with di�erent examples

The implementation of our new protocol for Oz will maintain the extreme �exibility typical

of the �wrapper� concept
 trying to address most of the shortcomings of the simplistic Black

Box mechanism
 We call it the Multi Tool Protocol �MTP�
 where Multi refers to the fact

that its enveloping facilities will accept to performmultiple activities with their separate data

sets and multiple commands issued during each activity
 as well as multiple users operating

on the same instance of the tool
 Once such features are available
 the generality of our tool

enveloping method for integration would be greatly improved

�

The ability to integrate multi�user collaborative tools in SDEs would allow existing multi�

user environments to support not only team work
 but also concurrent software engineering

activities in a very �exible manner
 Currently
 a few extensive tool�kits are available
 that

allow for cooperation� Patel and Kalter realized a Unix tool�kit called COeX ���	
 providing

primitives for building diverse collaborative applications in a high�level fashion
 abstract�

ing basic multi�user issues and implementation details
 Another e�ort
 speci�cally directed

towards group editing and using a similar approach
 is DistEdit ���	
 which exploits the

communication mechanism available in another tool�kit
 called ISIS ��	
 GroupDesign ���	

allows group sessions and it is oriented towards drawing in structured graphics
 It supports

this kind of activity providing features as �Tele�Conference� and means of recognizing ac�

tions performed on the current project by each member of the group
 Dewan and Riedl

presented FLECSE ��	
 a Software Engineering environment using dedicated collaborative

tools
 all built on the common framework provided by multi�user Suite ��	

While all of these these tool�kits maintain a certain amount of integration
 none of them

can fully enforce rules and desirable behaviors in collaborative software development
 We

hope that the ability to use some of these tools inside a PCE such as Oz
 intrinsically able to

de�ne and support such policies in its process
 would bene�t team work on software projects

as much as the availability of collaborative applications and primitives already does

� Goals and Scope of the Research

In extending the Oz tool enveloping facilities to classes of applications that are not currently

properly handled by the Black Box protocol
 we focus on speci�c classes of tools
 which we

think expecially interesting and suitable

The �rst and minimal goal would be to open Oz to integrate large size tools and query

systems
 such as Lisp�based AI tools or databases
 We will use as a testbench for this phase

an NLP tool named FUF
 concerned with generation of natural language sentences
 given

a grammar and a well�formed data structure as input
 The need
 during a typical working

session
 to incrementally modify the grammar and the input and to run complex interactive

�

debugging sections within Lisp and FUF makes this a perfect example to test a new model of

activity protocol
 that would go beyond the simple input � execute � output schema and

would require more interaction to take place
 Some other similar tools would be considered

and tested for generality

Moreover
 to e�ciently run multiple activities on FUF or other AI applications
 the system

should provide a way to maintain the underlying Lisp environment persistently through all

related rule invocations
 This would constitute a platform that can also be used by multiple

tools to perform di�erent operations

This part of the implementation would also account for dealing with those medium size

programs that allow for a relatively limited form of interaction
 as incremental binding of

new arguments and releasing of partial results

An additional goal that could be achieved would be providing a way to integrate multi�

threaded and non�multi�threaded multi�user applications
 We believe that the platform

concept expressed above could be helpful in this additional phase
 the platform being the

multi�user tool itself
 to which the envelopes rely to ful�ll requests
 The basic concept seems

to be the same
 with a persistent process acting as basic support to the activities invoked

via multiple concurrent rules

We feel we would �nd increasing levels of complexity in integrating the following in Oz

� Large size tools

� Non�multi�threaded but multi�user tools

� Multi�threaded but non�collaborative tools

� Collaborative tools

For the latter category
 it would de�nitely be necessary to reuse other parts of our system

but the integration protocol could possibly vary just slightly from the one necessary for the

previous ones
 We perceive the implementation of the facilities to allow and control multi�

user collaborative work from inside Oz mainly as an advanced feature of MTP
 that could

be the theme for a future extension or upgrade to the protocol�s functionalities
 if it cannot

be directly addressed in this thesis

��

� Design Requirements and Highlights

The new protocol should either be fully compatible with or completely disjoint from SEL

The approach we foresee is that the process architect �also called the Administrator� would

choose at the process de�nition phase which activities need the new protocol and which not

on the basis of the speci�c tools employed for that activity
 In the Oz process de�nition

language
 MSL
 activities are expressed as follows�

�tool�name� �� superclass TOOL�

�activity�name� � string � ��envelope�name� �parameters locks���

�activity�name� � string � ��envelope�name� �parameters locks���

���

end

The envelope contains the actual tool invocation �the locks information is concerned with

the desired concurrency and coordination policy for the parameters and will be brie�y men�

tioned below�
 We could extend the MSL de�nition of TOOL
 in order to include some

other parameters expressing additional useful properties
 one of which would be the chosen

protocol�

�tool�name� �� superclass TOOL�

�protocol�

�activity�name� � string � ��envelope�name� �parameters locks���

�activity�name� � string � ��envelope�name� �parameters locks���

���

end

The tool integration should be as transparent as possible to both the tool and the Oz

system �that is
 as little change as possible should be made to the code and structure of

both�� it is possible that some deeper insight of the structure of the tools is necessary to

implement the new protocol
 partially dropping the fact that COTS tools can be used without

modi�cations �i
e

 we might have to abandon for the MTP protocol the Black Box approach

to tool integration we use in SEL�

��

We should fully support incremental binding of objects to be used in the tool operations

given the nature of the tools we want to integrate
 In the current Black Box protocol
 all the

data needed by a rule and its activity are gathered from the objectbase at the beginning
 in

the parameters speci�cation and in the condition section
 which bind objects to the rule
 In

the activity section
 the envelope receives sets of data extracted from those bound objects

as its only input
 The envelope and its tool then process them� once the activity section

is entered there is no way to feed the tool with more pieces of useful information
 since no

further interaction is supported
 The Grey Box experiment tried to address exactly this

limitation and MTP would overcome it

We need to support long�duration transactions involving the human user
 the tool and Oz

with its objectbase� attached to this fact are considerations about the locks and concurrency

mechanisms to be adopted for objects involved in the transaction
 It would be important

to cause minimal hindrance at all to other users who would access those same objects from

outside the transaction
 For example
 given an interpretive tool that allows for incremental

binding of data and multiple incremental queries
 we could have USER� executing a rule

whose activity part ��activityA� �arg�setA�� would map to a transaction
 In its context

USER� would issue a number of di�erent commands
 sometimes introducing new data
 which

would be presented to the application in the same fashion as the initial parameters �e
g

�arg�setB� etc
�� possibly
 the results of each single command in the transaction context

might be relevant to the process� they should then be sent to the environment to be recorded

The duration of such an activity can be long and numerous objects may be involved

in it as part of arg�setA �initially bound� and arg�setB �incrementally bound�
 If USER�

needed some of those objects for other tasks
 we would run into concurrency control problems

that could hinder USER��s work for a while
 unless the concurrency policy is appropriately

planned and �nely tuned to the needs of the users
 The option to de�ne di�erent types of

locks on the objects passed to the envelopes
 as we saw above
 together with other means

�not discussed here� allow the Administrator of an Oz environment to de�ne �exible policies

We therefore believe this kind of situation can be properly handled
 but the implementation

of the protocol should not be too demanding
 nor rely exclusively on the Administrator�

��

We need to introduce the concept of a platform process
 that stays persistent across

multiple invocations of rules
 providing a basic environment on which to employ di�erent

tools in the same family
 or to address multiple requests for operation to a single tool
 This

brings along some non�trivial issues
 as for example how the system can recognize when

an activity is over �expecially if it is an interpretive one�
 or how to deal with multiple

simultaneous activities requested by di�erent users
 We can think of the platform process

as having the same role that Unix itself implicitly holds now
 when we run Unix utilities

as tools� as this particular family lives on Unix
 we could say
 for instance
 that FUF or

other similar KBSA applications live on Lisp
 We therefore need to provide a persistent

Lisp instance on which to run those tools
 when we support a process in which Lisp�based

applications are widely used

The protocol should be able to assist users with as much automatization as possible

during operations related to the transaction in the light of the process designed for the given

environment
 In the context of a transaction
 every time some intermediate results are sent

back to the environment
 there is potential for a change in the state of the process
 This

could lead to �ring chains of rules
 according to the Oz automation mechanism
 as soon as

the activity part of the rule is over and we get to the e�ect part

� Design Insights

��� Modi�cation of the System Architecture

Oz is currently organized in a Client�Server fashion
 with multiple clients attached to each

server �see Figure ��

The client processes usually represent users and their means to interact with the environ�

ment and to address requests to it
 The server processes are persistent
 with respect to the

clients
 and communication between clients and servers is handled via sockets
 While the

clients run under their operators� User ID
 the server runs under the Oz User ID
 Activities�

processes are currently forked by the clients

Since one of the basic points for our tool enveloping approach is to provide persistent

��

cl
ie

nt
cl

ie
nt

cl
ie

nt

O
z

Se
rv

er

O
bj

ec
tb

as
e

F
ile

 S
ys

te
m

en
vi

ro
nm

en
t

cl
ie

nt
cl

ie
nt

cl
ie

nt

O
bj

ec
tb

as
e

F
ile

 S
ys

te
m

en
vi

ro
nm

en
t

O
bj

ec
tb

as
e

F
ile

 S
ys

te
m

O
z

Se
rv

er

ad
m

in
is

tr
at

or
lo

ca
l

ad
m

in
is

tr
at

or
lo

ca
l

O
z

C
on

ne
ct

io
n

Se
rv

er

O
z

C
on

ne
ct

io
n

Se
rv

er

O
z

C
on

ne
ct

io
n

Se
rv

er

Figure �� The Client�Server structure of Oz

��

processes
 called platforms
 on which to run certain families of applications
 the system must

have some means to deal with them
 The servers are a persistent part of the model and it is

therefore natural to think that the platform processes should be hierarchically dependent on

them
 In order to keep the greatest amount of modularity and to change as little as possible

the structure of the system
 we decided to introduce the concept of Special Purpose Clients

�SPCs�
 which are created and handled by the servers
 with the main purpose of forking and

maintaining the platforms �see Figure ��

SPCs di�er from the usual ones �that we�ll call from now on General Purpose Clients �

GPCs� in a few ways
 primarily in the fact that they are as persistent as their parent server

and not used or controlled directly by any human operator
 They are mainly a convenient

mechanism to handle communication with the persistent processes and the tools and to run

MTP�activities

The ability of the servers to work with multiple clients on di�erent hosts is exploited by

our design and it is used to run tools that are available only on certain machines
 or on

speci�c architectures

As usual
 the request for an MTP�tool is sent from a GPC to the connected server� this

recognizes the need of employing the MTP protocol and assigns the execution of the activity

to the most appropriate SPC
 instead of to the calling GPC� the SPC sends the commands to

the tool and retrieves the results for the GPC� communication between the GPC �the user�

and the tool passes therefore through the server and the SPC
 exploiting the client�server

dialogue facility already provided by Oz
 Note that both the SPC and its tool would run

under the common Oz User ID
 since they are forked by the server

��� Modi�cations to the Process Language

The Administrator must specify in the process de�nition phase which tools are going to be

used under the MTP protocol
 For MTP�tools some additional data must be stored in the

tool description
 to account for�

� path into the �le system to retrieve the binaries of the tool�

��

� de�nition of the architecture on which the tool must be run�

� alternatively
 de�nition of a speci�c host on which the tool must be run�

� maximum number of instances of the tool that we want our SPC to handle at the same

time �this is strictly dependent
 among all other considerations
 on the size of the tool��

a value of � for this parameter means that a possibly in�nite number is legal�

� the multi�user character of the tool� for example
 to describe a multi�user and multi�

threaded program
 we could assign � to the instance number parameter and set a �ag

to MULTI

The MSL de�nition of a tool would then change as follows�

�tool�name� �� superclass TOOL�

	

protocol �
MTP� SEL� �

path � ����� �
string�

architecture �
sun
� ���� �

host � ����� �
string�

instances � ��� �
integer�

multi�flag �
MULTI� UNI� �

�

�activity�name� � string � ��envelope�name� �parameters locks���

�activity�name� � string � ��envelope�name� �parameters locks���

���

end

All the new data
 enclosed in the square brackets
 would be optional
 When all of these

are missing in a tool de�nition
 the parser for MSL would assume that the activities speci�ed

should be executed according to the default Black Box protocol
 In the case that only the

architecture
 but not the host machine is speci�ed
 the servers should have a way to choose

a default machine with the chosen architecture on which to run the tool
 We foresee that

��

these additional speci�cation are useful extentions to MSL not just for the MTP�tools
 but

also in the general case

��� Modi�cations to the Server

In the schema described above
 the servers have the additional task of dealing with their

SPCs and with requests from GPCs involving MTP�tools

First of all
 a server must be able to recognize when the the activity requested by a GPC

involves an MTP protocol and
 if this is the case
 it must execute the activity on the right

SPC� currently
 since we don�t support the concept of an SPC
 all the activities are started

on the calling GPC
 instead
 This would be still appropriate for the usual SEL tools

Moreover
 if none of the currently existing SPCs are suitable for the task
 the server

should be able to create a new SPC
 on the right machine and architecture
 according to

those speci�ed in the tool de�nition
 To be able to choose which machines supporting certain

architectures are to be chosen by default
 we need to keep such information in a service �le

that the server can read and the Administrator modify
 Further pieces of data could be stored

there
 such as if some SPC needs to be created at server�startup �for example
 for a tool

requiring a long initialization
 we would not like to do it in real time
 when it is requested for

the �rst time by a GPC�
 or if other process�speci�c customizations and set�ups are needed

This would result in an even greater �exibility of the processes and the whole system

We foresee that to achieve these functionalities
 an acceptably small amount of changes

has to be performed on the current Oz server

��� The Protocol

The new MTP protocol
 that is the central point of this work
 deals mainly with the way the

activity part of a rule �the one involving tool invocation� is performed
 Currently
 according

to the Black Box approach of SEL
 each single activity maps to something in the form�

Activity� begins

activity invocation� �system tool�� �arg�set��

��

User Interface

Activity
Manager

GPC

Activity
Manager

SPC

XMOVE

CLIENTCLIENTCLIENTGPCs

GUI

D
A
T
A

TOOL

Tools

Host: Machine B

Activity
Manager

SPC

XMOVE

GUI

D
A
T
A

TOOL

Tools

Host: Machine A

Platform Platform

SERVER

Object Management

Services

Ob Image

Query

Finder

Synchronization

Coordination

Add
Delete

Rule Processor

Interfaces

Process Server

Language−Dependent
Runtime Support

Query

Figure �� SPCs and persistent tools for MTP

��

command execution

return of �return�arg�set��

Activity� ends

The pair �system tool� represents a program
 which is loaded with �arg�set�
 executes

and returns results in �ret�arg�set� via the wrapping mechanism
 �Actually
 the system

speci�cation is at the moment implicit and unrequired
 since the common underlying plat�

form on which the program is run is the Unix operating system
� The program is instantiated

and terminated by the SEL envelope at each single invocation

Therefore
 beside the modi�cations caused by the activities and stored into the internal

data repository of the system
 there is no memory of what happened in Activity� when

we perform Activity�
 even if both invoke the same program
 since we run two completely

separated instances of it

For interpretive systems
 which would hold the whole history of the supplied data and

operations on the program state
 and for other applications which can be incrementally

queried by new commands and fed with more data
 this is a very serious limitation
 Our

approach should rather allow multiple activities to refer to the same program instance
 as

long as this is useful
 The program is not terminated at the end of an activity
 but is

persistent
 until a user decides to close it

����� Tool Sessions

To do this
 we decided to allow users to specify the duration of each MTP�tool�s persistency

We introduce the concept of session for a tool� a session begins with an OPEN�TOOL

command and its body is made up of multiple activities
 with their own sets of parameters�

it is closed by a CLOSE�TOOL command

A session has therefore the following form�

��

OPEN�TOOL �system tool��

�tool�� �MTP�activityA� �arg�setA�
this maps to a single rule�

�tool�� �MTP�activityB� �arg�setB�

�

�

�

CLOSE�TOOL �tool��

The system here could be any of the various persistent platform programs handled by

the SPCs
 to provide support to diverse families of applications� currently the only available

platform is Unix itself and it never needs to be speci�ed
 but in the more general MTP case

it must be

According to our design
 it would also be possible to use an application without being

compelled to issue the OPEN�TOOL and CLOSE�TOOL commands every single time� in

this case
 if an instance of the application is already running on some SPC
 the activity is

assigned to it
 while if none is available
 an implicit atomic session �with just one MTP�

activity in its body�
 is executed
 Also multiple copies of the same tool could be present

simultaneously
 as long as they don�t exceed the limit �xed in the instances �eld of the tool

de�nition
 as seen above

Our idea of sessions would certainly allow several classes of applications to be integrated

but it would also open a number of questions on how di�erent users could access the same

instance of the persistent tool
 The answers are largely dependent on whether the tools are

multi�user

Imagine that USER� opened TOOL� and is executing MTP�ruleA on it� now USER�

wants to execute MTP�ruleB on TOOL��

� If TOOL� is not multi�user
 or multi�user but not multi�threaded
 then USER��s request

should be held in a queue until U� closes the transaction for MTP�ruleA� for each tool

session
 therefore
 the SPC must have the ability to properly handle what we call an

Activity Queue
 It is important to notice that
 given the nature of the Oz system

��

USER� would not be stuck
 waiting for its request to be processed
 but could still

execute di�erent operations �as long as they don�t interfere with the objects chosen as

parameters of MTP�ruleB�
 or even decide to abort the rule and try later�

� If TOOL� is multi�threaded
 but not collaborative
 then USER��s request is handled

by the multi�threaded nature of TOOL�
 and USER� and USER� work in isolation

Possible con�icts
 because of overlapping object sets bound by the users
 would have

been dealt with by the Oz concurrency control mechanism already in the condition

section of the rules�

� If TOOL� is multi�user and allows for collaborative work
 then
 even if it is likely that

most of the machinery to deal with it is o�ered by the tool itself
 MTP must still

provide the means for communicating with the tool and an appropriate concurrency

control policy to account for the full sharing of the data involved

����� Transaction�like activites

Besides the concept of session that we just introduced
 we also plan to modify the way each

single activity in a session is handled
 For several of the tool categories we want to address

we found that a transaction�like structure of the activities is desirable
 Therefore we would

like to add one more level of nesting and complexity beyond the one represented by tool

sessions� every single

�tool� �MTP�activity� �arg�set�

triplet could lead to a transaction or interactive work session
 so that a more complete view

of operating a tool can be the following�

��

OPEN�TOOL �system tool��

�tool�� �MTP�activityA� �arg�setA�

transaction A begins

�

�

�

transaction A ends

�tool�� �MTP�activityB� �arg�setB�

transaction B begins

�

�

�

transaction B ends

�tool�� �MTP�activityC� �arg�setC�

transaction C begins

�

�

�

transaction C ends

�

�

�

CLOSE�TOOL �tool��

A single transaction would involve heavy communication between the GPC
 the SPC and

the Oz objectbase and could resemble something like this�

��

TOOL
handled by SPC� USER
GPC� OBJECTBASE

� invoke rule

���������������������� issue command

� exec command

�

�

 send results���

� rec� results � rec� results

� CHANGE ENV�

� ask for data�������������������

�������������������� acknowledge data

���������������������� issue command

��� send data

�� exec command

�

�

�

�� send results��

�� rec� results �� rec� results

�
 CHANGE ENV�

�� close transaction

�� send �ret�code��

and �ret�arg�set�

The activity part of the current rule is exhausted �and the e�ect part is evaluated� only

after the transaction is explicitly closed by the user
 It is easy to see how this model enhances

the interaction between the user and the tool
 a property that can and needs to be exploited

with some applications
 However
 it is more complex and demands for some problems to

be solved
 Inter�process communication during the transaction is conducted via the normal

means
 the sockets connecting the SPC and GPC with the server
 It is important to see

��

that we need some mechanism at the OBJECTBASE end
 to screen the result data arriving

during the transaction and to enact modi�cations to the state of the environment accordingly

Moreover
 the way we deal with the e�ect part of the rules
 because of possible modi�cations

to the state of the process occurring in the middle of the transaction
 must be di�erent

When we return from the activity part
 we have four sets of relevant data to deal with�

� A � a return code�

� B � a set of return arguments �optional��

� C � a set of objects which were bound to the activity at rule invocation and in the

condition section and are released at the end of the transaction�

� D � possibly
 a set of objects which have been modi�ed during the transaction

The return code would tell if the activity was successful or not and
 if it was
 which e�ect

to be executed
 The assertions in the e�ect would usually modify a subset of C �let us call it

E�� according to the changes occurred to objects in E
 chaining would be then instantiated

Under MTP
 modi�cations could have occurred also to the set�

F � �D � C� � E

during di�erent phases of the transaction� it would be therefore necessary for the process

enaction mechanism to take those elements in account
 too
 and to evaluate if the changes

to them could �re additional chains of rules

Another point of interest is how the rollback mechanism needs to be modi�ed� beside the

trivial case of a single rule with no chains attached
 in Oz roll back is only necessary during

a consistency chain
 This is a set of rules �red one after the other
 in a forward chain that

must �according to the process de�nition� succeed or fail in an atomic fashion� if one of these

rules fails
 then all the work performed by previous rules in the chain is rolled back
 Under

MTP
 we would need to record those changes which occurred in the activity part of the rules

�i
e

 during the transaction� as well as in the e�ect part
 to be able to roll back also those

ones
 if necessary

��

��	 The Special Purpose Client

Even if the general structure of the already existing Oz clients will remain the same
 SPCs

will have a number of peculiar features
 given their di�erent role in the system�

� SPCs don�t need to interact directly with any human operator
 therefore no user inter�

face is needed� however
 they will run the tool applications and need to manage input

to and output from them
 This task involves also making the tools� user interfaces

available to the various GPCs executing activities in the context of tool sessions
 This

is expecially relevant to applications that are not multi�user or are multi�user but not

multi�threaded
 while real multi�threaded tools are usually already able to dispatch dif�

ferent copies of their user interface to their users
 To accomplish this task
 we plan to

exploit an utility written for another project
 called xmove ���	
 which allows the GUI

of a tool to be transfered across hosts and terminals
 It would be the SPC�s responsi�

bility to properly use xmove to dispatch the user interface of its children tool processes

accordingly to the GPC�s requests�

� SPCs must also be able to handle multiple children tools at the same time
 according

to our design� this feature has already been implemented for Oz GPCs and should

therefore not be too hard to replicate�

� Every SPC must deal with the concept of sessions and keep track of the number of

di�erent instances of a tool active at any moment in the whole Oz system
 This may

not exceed at any time the value speci�ed in the tool�s MSL de�nition �see �
��
 As

a consequence
 when the boundary has been hit
 the users requesting new instances

should be noti�ed of the fact that the resource is not available at the moment and

should have the choice to withdraw their requests or to leave them waiting in what we

call the Session Queue
 OPEN�TOOL commands in this queue will be sequentially

serviced by the SPC each time a currently running session is over �after a CLOSE�TOOL

command is issued�

��

� We already examined that additional queueing may be necessary internally to each

session
 when dealing with non�multi�threaded applications �see �
�
��
 Because of the

new concept of transactions
 though
 it may not be always clear when an activity is

�nished and a new one can be extracted from the Activity Queue and executed
 The

human user must therefore explicitly specify when each transaction is to be closed�

following this
 the e�ect part of the rule is performed
 together with all the involved

chaining
 After this phase
 a new activity can be performed by the non�multi�threaded

tool
 Moreover
 when the current activity is a CLOSE�TOOL command and the Activity

Queue is not empty
 we must choose a policy to handle the remaining requests
 We

foresee two main approaches� either to close that instance of the tool and to execute

each activity in the queue inside an atomic session �this may be very costly
 for the

amount of overhead due to atomic sessions for large size tools�
 or to delay the end of

the current session until all the requests held on the queue are serviced
 This approach

should deal also with the fact that in the meanwhile new requests might arrive
 These

should be queued separately
 in a new session context
 which would be instantiated

right away or after the previous one is �nally closed
 depending on the boundary on the

number of contemporary active sessions

� Contributions

We hope to expand the spectrum of tools that can be integrated e�ciently in the Oz system

and
 as a consequence
 the domain of processes to which it can be applied and its conceptual

generality

In order to achieve this
 we introduce�

� The concept of a new enveloping protocol that goes beyond the current Black Box

approach
 thanks to the two basic ideas of tool sessions and transaction�like activities

This would account for increased interaction between the users and the wrapped tools�

� Persistent platform processes on which to conveniently run large tools or multi�user

tools
 fully exploiting their nature and without paying the price of invoking and shutting

��

them down at each single activity execution
 as under the current enveloping approach�

this includes providing the means to manage such processes and to allow communication

between them and the clients
 a task carried out by the new Special Purpose Clients�

� The ability of dispatching activities� execution on the most appropriate host machine

a nice feature for a multi�user and multi�site environment such as Oz and that can be

available for any tool with marginal modi�cations to the process de�nition language

�MSL� and to the server structure

� Schedule

The following is a rough schedule of the milestones of this project
 that we plan to follow�

we will try to use as much as possible an incremental approach towards the implementation

of the core of the protocol
 as towards support of di�erent classes of tools�

� November ���� 	 Implementation of persistent clients
 platform processes and com�

munication between the components of the system

� December ���� 	 Modi�cations to MSL language and the server

� February ���� 	 Prototype implementation of tool sessions and transactions� experi�

ments in supporting large�size interpretive tools

� March ���� 	 Re�nements to the protocol features as sessions and transactions� ex�

periments with multi�user tools

� April ���� 	 Re�nements to the wrapping mechanism and concurrency control policy

in order to fully support multi�user tools

� May ���� 	 Writing and defending of the dissertation

��

References

��	 George T
 Heineman Gail E
 Kaiser Naser S
 Barghouti and Israel Z
 Ben�Shaul
 Rule
Chaining in Marvel� Dynamic Binding of Parameters
 IEEE Expert
 ����������
 De�
cember ����

��	 Israel Z
 Ben�Shaul
 Oz� A Decentralized Process Centered Environment
 Technical
Report CUCS�������
 Columbia University Department of Computer Science
 April
����
 PhD Thesis Proposal

��	 Israel Z
 Ben�Shaul and Gail E
 Kaiser
 A paradigm for decentralized process modeling
and its realization in the oz environment
 In �	th International Conference on Software

Engineering
 Sorrento
 Italy
 May ����
 In press

��	 Kenneth Birman
 ISIS� A System for Fault�tolerant Distributed Computing
 Technical
Report TR�������
 Cornell University
 Department of Computer Science
 Ithaca
 NY

November ����

��	 Christian Bremeau
 The PCTE Contribution to Ada Programming Support Environ�
ments �APSE�
 In Fred Long
 editor
 Software Engineering Environments International
Workshop on Environments
 volume ��� of Lecture Notes in Computer Science
 pages
�������
 Chinon
 France
 September ����
 Springer�Verlag

��	 M
 R
 Cagan
 The HP SoftBench Environment� An Architecture for a New Generation
of Software Tools
 Hewlett�Packard Journal
 �����������
 June ����

��	 Alan M
 Carroll
 The ConversationBuilder Kernel and Applications
 Technical report

University of Illinois
 ����
 PhD thesis

��	 Prasun Dewan and Rajiv Choudary
 A High�level and Flexible Framework for Im�
plementing Multiuser User Interfaces
 ACM Transactions on Information Systems

�������������
 October ����

��	 Prasun Dewan and John Riedl
 Toward Computer�Supported Concurrent Software En�
gineering
 Computer
 �����������
 January ����

���	 Anthony Earl
 Principles of a Reference Model for Computer Aided Software Engineer�
ing Environments
 In Fred Long
 editor
 Software Engineering Environments Interna�

tional Workshop on Environments
 volume ��� of Lecture Notes in Computer Science

pages �������
 Chinon
 France
 September ����
 Springer�Verlag

���	 F
 Gallo
 G
 Boudier
 and I
 Thomas
 Overview of PCTE and PCTE
 ACM SIGPLAN

Notices
 �����
 February ����

���	 Mari Georges and Claude Koemmer
 Use and Extension of PCTE� The SPMMS Infor�
mation System
 In Fred Long
 editor
 Software Engineering Environments International
Workshop on Environments
 volume ��� of Lecture Notes in Computer Science
 pages
�������
 Chinon
 France
 September ����
 Springer�Verlag

��

���	 C
 Gerety
 A New Generation of Software Development Tools
 Hewlett�Packard Journal

�����������
 June ����

���	 Mark A
 Gisi and Gail E
 Kaiser
 Extending a Tool Integration Language
 In Mark
Dowson
 editor
 �st International Conference on the Software Process
 Manufacturing

Complex Systems
 pages �������
 Redondo Beach CA
 October ����
 IEEE Computer
Society Press

���	 G
 E
 Kaiser
 N
 S
 Barghouti
 and M
 H
 Sokolsky
 Preliminary Experience with Process
Modeling in the Marvel Software Development Environment Kernel
 In ��rd Annual

Hawaii International Conference on System Sciences
 volume II
 pages �������
 Kona
HI
 January ����

���	 Israel Z
 Ben�Shaul Gail E
 Kaiser and George T
 Heineman
 An Architecture for
Multi�User Software Development Environments
 Computing Systems� The Journal of

the USENIX Association
 �����������
 Spring ����

���	 Simon M
 Kaplan
 Conversationbuilder� An open architecture for collaborative work
 In
D
 Diaper
 D
 Gilmore
 G
 Cockton
 and B
 Shackel
 editors
 IFIP TC �� �rd Interna�

tional Conference on Human�Computer Interaction
 INTERACT ���
 pages �������

Cambridge
 United Kingdom
 August ����
 North�Holland

���	 Alain Karsenty
 Cristophe Tronche
 and Michel Beaudouin�Lafon
 GroupDesign� Shared
Editing in a Heterogeneous Environment
 Computing Systems
 ������������
 ����

���	 Michael J
 Knister and Atul Prakash
 DistEdit� A Distributed Toolkit for Supporting
Multiple Group Editors
 In CSCW��
 Conference on Computer�Suppported Cooperative

Work
 pages �������
 Los Angeles
 California
 October ����

���	 S
 G
 Kochan and P
 H
 Wood
 editors
 UNIX Shell Programming
 Hayden Books

Indianapolis
 ����

���	 Dorab Patel and Scott D
 Kalter
 A UNIX Toolkit for Distributed Synchronous Col�
laborative Applications
 Computing Systems
 ������������
 spring ����

���	 Steven P
 Reiss
 Connecting Tools Using Message Passing in the Field Program Devel�
opment Environment
 IEEE Software
 ����������
 July ����

���	 Wilhelm Schafer
 editor
 �th International Software Process Workshop
 State of the

Practice in Process Technology
 Wadern
 Germany
 March ����
 IEEE Computer Society
Press

���	 �nd International Conference on the Software Process
 Continuous Software Process

Improvement
 Berlin
 Germany
 February ����
 IEEE Computer Society Press

���	 Ethan Solomita
 James Kempf
 and Dan Duchamp
 xmove� A Pseudoserver for X
Window Movement
 Technical report
 SMLI
 ����

��

���	 Vic Stenning
 An introduction to ISTAR
 In Ian Somerville
 editor
 Software Engineering
Environments
 volume � of IEEE Computing Series
 pages ����
 Peter Peregrinus Ltd

London
 ����

���	 Ian Thomas
 PCTE Interfaces� Supporting Tools in Software�Engineering Environ�
ments
 IEEE Software
 ����������
 November ����

���	 Ian Thomas
 Tool Integration in the Pact Environment
 In ��th International Confer�

ence on Software Engineering
 pages �����
 Pittsburgh PA
 May ����
 IEEE Computer
Society Press

���	 Ian Thomas and Brian A
 Nejmeh
 De�nitions of Tool Integration for Environments

IEEE Software
 ����������
 March ����

���	 A
 I
 Wasserman
 Tool Integration in Software Engineering Environments
 In Fred Long

editor
 Software Engineering Environments
 International Workshop on Environments

volume ��� of Lecture Notes in Computer Science
 pages �������
 Chinon
 France

September ����
 Springer�Verlag

��

