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Abstract

In regular architectures of identical processing elements, a widely used technique to im-
prove the reconfigurability of the system consists of providing redundant processing elements
and mechanisms of reconfiguration.

In this paper we consider linear arrays of processing elements, with unidirectional bypass
links of length ¢. We count the number of particular sets of faulty processing elements. We
show that the number of catastrophic faults of ¢ elements is equal to the (g — 1)-th Catalan
number. We also provide algorithms to rank and unrank all catastrophic sets of g faults.
Finally, we describe a linear time algorithm that generate all such sets of faults.
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1 Introduction

Linear arrays of processors are regular architectures consisting of a large number of identical
processing elements connected in a regular fashion: each processing element is connected with
the subsequent processing element. Since the number of processing elements is very large, the
probability that a set of processing elements becames faulty is not small, hence we have to
provide fault-tolerant mechanisms to avoid that faulty processing elements take part in the
computation. A widely used technique to achieve reconfigurability consists of providing redun-
dant processing elements, called spares, and additional connections, called bypass links. Bypass
links are links that connect each processor with a processor at a fixed distance greater than 1.
A reconfiguration algorithm has to avoid faulty processing elements using spares and additional
connections. However, there are sets of faulty processing elements for which no reconfiguration
strategy is possible. Such sets are called catastrophics. If we have to reconfigure a system when
a faulty set occurs, it is necessary to known if the set is catastrophic or not. Therefore it is
important to study the properties of catastrophic sets.

Nayak, Santoro and Tan [9] proved that a catastrophic set must contain a number of faulty
processing elements which is greater or equal than the length of the longest bypass link. They
analyze catastrophic sets having the minimal number of faults and describe algorithms for con-
structing a catastrophic set. Nayak, Pagli and Santoro [7] describe algorithms for testing whether
a set of faults is catastrophic or not.

Given a linear array with a set of bypass links, an important problem is to count the number
of catastrophic sets. The knowledge of the number of catastrophic sets enables us to estimate
the probability that the system operates correctly. Pagli and Pucci [10] proved tight upper and
lower to the number F'B (g) of catastrophic sets of size g for a linear array with one bidirectional
bypass link of length g. In particular they proved that FB(g) = @(39/93/2). They also proved
that FU(g) = 0(109/¢%/?), where FU(g) is the number of catastrophic sets of size ¢ for a linear
array with one unidirectional bypass link of length g¢.

In this paper we consider linear arrays with bypass unidirectional links of length ¢g. We
compute the exact number of catastrophic sets of size g. We prove that FU(g) is equal to the
(¢ — 1)-th Catalan number. This enables us to prove that FU(g) = ©(49/¢%?). In order to
characterize these catastrophic sets, we also give a classification of all the catastrophic sets: we
rank and unrank all catastrophic sets and we provide an efficient algorithm that generates such
sets. The rank of catastrophic sets turns to be useful, for example, when one wants to choose
at random a catastrophic set.

This paper is organized as follows. In Section 3 we count the number of particular fault
sets. As a special case we obtain that the number of catastrophic sets for a linear array with
unidirectional bypass link of length ¢ is the (¢ —1)-th Catalan number. In Section 4 we rank and
unrank all such catastrophic sets. In Section 5 we describe and analyze a linear time algorithm
that generate all the catastrophic sets.



2 Preliminaries

In this section we give preliminaries, definitions and some known results. We refer the reader to
[6], [7], [9], [10], for a justification of the definitions and for proofs of the results.

Let A ={po,p1,...,py_,} be a linear array of processing elements, which are connected by
regular links (p;, piy1) and by bypass links (p;, piy,) of fixed length ¢ > 2, both unidirectional.
We refer to this structure as a linear array with link redundancy ¢ or simply as a linear array,
when ¢ is clear from the context or immaterial. The following picture shows a linear array of 15
processing elements.

O H2 B HI-B Ho HiH O HH B0

We assume the presence of an external input processor, called I, which is connected with

Po,P1, - - -, Py—1, and an external output processor, called O, which is connected with p,__,py_ ;-

These special connections of I and O give the same degree of reconfigurability to all processing
elements, and enable us to focalize our attention on that part of A beginning at the first faulty
processor and ending at the last faulty processor, assuming that there are more than g processors
before the first fault and after the last fault. I and O always operate correctly. In other words
we can assume that A is an infinite array: no matter how many processors there are before the
first fault and after the last fault. The connections with I and O, except the regular ones, are
not drawn in the previous picture.

For a linear array of size N and any link redundancy, a fault pattern F starting at a fixed
P, 1s a set of integers F' = {fo, f1,..., fm—1}, where f;_y < fi for 1 <7 < m and f,,-1 < N.
Processor py, is faulty if and only if f; € F'. The cardinality of I is m.

Given a linear array A, a fault pattern F is catastrophic for A if and only if no path exists
between I and O, once the faulty processors p;,¢ € F, and their links are removed.

We denote a fault pattern by FP and a catastrophic fault pattern by CFP.

The special connections of I and O make indistiguishable each processor from others in the sense
that any translation of a fault pattern does not affect the property of catastrophe of the pattern.
Therefore we assume, without loss of generality, that the first fault of any pattern is pp.

A catastrophic fault pattern F' for A must contain at least ¢ fault processors. As done in
[9],[10], we consider only fault pattern of cardinality g, so, in general, F' = {0, f1,..., fy_1}.

The width wr of a fault pattern F' is defined to be the number of processors between and
including the first and the last fault processor in F, that is, wp = f;—1 — fo + 1.

A necessary condition for a fault pattern F to be catastrophic is ¢ < wp < (g — 1)2+ 1 [9].

A convenient way to represent a fault pattern F, starting at the fixed processor pg, is the
matriz representation [7]. The fault pattern F' is represented as a boolean matrix W of size
(9 — 1) x g, defined by

Wi, j] = {1 if (ig+j) € F

0 otherwise.

<y Pyv_q-



Example 1. Consider the case g = 6 and F' = {0,5,10,14,15,19}. The matrix representation
of I’ is the following

=

[l
olololo|—
o|l—lolo|lo
o|lol—lo|lo
o|lol—lo|lo
ololol—|o
olololo|—

Observe that in the matrix W each regular link corresponds either to two consecutive elements
in the same row or to the last element in a row with the first element in the following row,
whereas each bypass link corresponds to two consecutive elements in the same columns. For a
CFP F, W contains only one entry filled by 1 for each column. Indeed, if there were a column
of W with two 1, then there would be a column of W with only 0 entries, as F has cardinality
g. Using the bypass links of this column we can pass over the fault zone, contradicting the
hypothesis that F is catastrophic. Therefore a CFP can be represented by the set of row indices
corresponding to the entry 1 in columns. Formally, the row representation of a CFP F is
the g-upla (ro,71,...,74-1), where each r; is the unique integer such that Wr;,i] = 1. Another
convenient way to represent a CFP is the catastrophic sequence [10]. A catastrophic fault pattern
is represented as a sequence of g — 1 integer moves (mq,ma, ..., my_1), where m; represents the
distance from the row index of the element set to 1 in column ¢ — 1, to the one in column 1.
Formally, we have that m; = r;_1 — ;.

Example 2. Let ¢ = 6 and F' = (0,5,10,14,15,19). Its catastrophic sequence is (—=3,1,0,1,1)
and its row representation is (0,3,2,2,1,0).

3 Counting catastrophic faults

In this section we count the number of sets of faulty processors, starting at the fixed processor

po, that satisfy particular conditions. We will use this counting in order to rank and unrank all

the CFPs (Section 4) and to design an algorithm that generates all the CFPs (Section 5). The

counting gives us the number of catastrophic fault patterns, of size g, which turns out to be the

(g — 1)-th Catalan number. An alternative and more simple proof of this fact is also provided.
To prove our results we need the following theorem.

Theorem 1 [9] Necessary and sufficient conditions for a fault pattern F of cardinality g to be
catastrophic for a unidirectional array with link redundancy ¢ are:

1. W[0,0]=W[0,g—1]=1

2. for 1 <k<g-—2,if Wlh,k — 1] = 1 then only one among
WIlh — 1,k], W[h,k],...,W[g — 1, k] is equal to 1

3. for 1 <k<g-—2,if Wlh,k + 1] = 1 then only one among
W10, k], W[L,k],....W[h+ 1,k] is equal to 1.



Observe that Theorem 1 is equivalent to the following proposition.

Proposition 1 Necessary and sufficient conditions for a fault pattern F of cardinality g to be
catastrophic for a unidirectional array with link redundancy g are:

1. W[0,0]=W[0,g—1]=1

2. for0<k<g-—2,if Wlh,k + 1] = 1 then only one among
W10, k], W[L,k],....W[h+ 1,k] is equal to 1.

Making use of the concepts of sequence of moves and of row representation, Proposition 1 can
be rewritten as follows.

Proposition 2 [10] Necessary and sufficient conditions to have that (mq,...,my_1) is the
catastrophic sequence of a CFP for a unidirectional linear array with link redundancy g are:

1. m<lfori=1,...,9—1
2. Zlemi§0f0rk:1,...,g—2
3. Y9 'm; = 0.

Proposition 3 Necessary and sufficient conditions to have that (ro,r1,...,74-1) is the row
representation of a CFP for a unidirectional linear array with link redundancy g are:

1. Tg=r4_1=0

2. for0<c<g—2,r.<repq+ 1.

Now, we introduce the notion of (¢, j)-fault pattern.

Definition 1 An (3, j)-fault pattern, for i > 0 and j > 1, is a fault pattern of cardinality j + 1,
whose matriz representation satisfies

1. W[0,0] =1

2. for0<k<j—1,if Wlh,k+ 1] =1 then only one among
WI0, k], W[L,k],...., W[h+ 1,k] is 1

3. Wli,j]=1.

Roughly speaking, an (¢, 7)-fault pattern, (¢, 7)-FP for short, is a piece of a CFP, characterized
by a matrix representation equal to that of the CFP up to the j-th column, and filled by zeroes
from column j + 1 to column ¢ — 1. Notice that the definition of (7, j)-FP is independent from
g.

Example 3. Consider the fault pattern F' = {0,14,19}, with link redundancy ¢ = 6. The
matrix representing F' is:



17010(0]0|0
010(]0]0(0]0
W=10]0[{1]0]|0]0
011700010
010(]0]0(0]0

Fis a (2,2)-FP. If we add to F the set {5,10,15}, F' becames catastrophic, for a linear array
with link redundancy g. Other (2,2)-FPs are {0,7,14}, {0,1,14}, {0,13,14},{0, 14,25}.

Define N;;, for i > 0,7 > 0, as the number of (¢,7)-FPs. Next, we derive and solve a
recurrence relation for NV; ;.

Lemma 1 Integers N; ; satisfy the relation
Nij=Noj-1+...+Nij-1+Nig1 ;o1 for i2>0,7>2 (1)

and
Nii=1 for +2>0. (2)

Proof. An (7,1)-FP has two fault processors, namely py and p;z41. Thus, there is a unique
(7,1)-FP, which implies N;; = 1.

Condition 2. in Proposition 1 tells us that by adding the processor p;,4; to a (k,j — 1)-FP,
where 0 < k < i+ 1, we obtain an (7, j)-FP and that any (¢,7)-FP can be constructed in this
way. Thus, the number of (¢, 7)-FPsis the sum of the number of (k,j—1)-FPsfor 0 <k <i+1.

0
Notice that Ngg =1 and N;o = 0 for ¢ > 0, so that (1) is true for j = 1, too.

Lemma 2 The solution of the recurrence (1)-(2) is

(2j+¢—1)!

Nij=(i+ 2)(]' +i+ 1) - 1)

(3)
fori>0andj > 1.

Proof. We prove the formula by induction. Let j = 1, we get from (3) that N;; = 1. Fix a row
r > 0 and a column ¢ > 2, and suppose that (3) is true for every N;; in the previous column,
i.e., for 2 > 0 and j < ¢, and for all previous elements on the column ¢, i.e., for i < r and j = c.
For the induction step we distinguish between two cases: r = 0 and r > 0.

If » =0, from (1), we have:

Noe = Noe—1+ Ny

(2¢ —3)! (2¢ —2)!

cl(e—2)! (c+ 1D)l(e—2)!
(2¢ —1)!

(c+ D)l(e— 1)
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Whereas if r > 0, from (1) we have:

Nr,c = NO,C—I +...+ Nr,c—l + NT—I—l,c—l
= Nr—l,c + NT—I—l,c—l

_ (2¢+ r —2)! . (2¢+ r —2)!
= U e T e -
R s

(r+c+Dlc—1"
0

Observe that there is an isomorphism between CFPs of a linear array with link redundancy g¢
and (0,¢— 1)-FPs. This is straightforward from the definition of (i, 7)-FP and from Proposition
1. Thus Ng 41 is equal to the number FU(g) of unidirectional CFPs for a linear array with link
redundancy ¢g. Hence

FY(g) = No g (4)

and

FU(g):2(29_3)! _ 3(29_2)'

gl g—2)! g\g—1

Next theorem provides a more simple proof of this fact.

Theorem 2 The number of CFPs for a linear array with unidirectional bypass links of length
g is the (g — 1)-th Catalan number, i.e.,

ig)= 1(29 - 2).
g\g—1
Proof. It is well known that the (g — 1)-th Catalan number represents the number of well
formed expressions over the alphabet {(,)} of length 2¢g — 2 (for example see [4]). Recall that a
well formed expression of length 2k is a sequence of k& “(” and k “)” that satisfy the following
property: for each i,1 < i < 2k, the number of “(” among the first ¢ letters of the sequence
is greater than or equal to the number of “)”. In order to prove the theorem it is sufficient to
show an isomorphism between the set of CFPs and the set of well formed expressions of length
2g — 2. Let I be a CFP and (mq,...,my_1) its catastrophic sequence. To each integer m; we
associate the string s(m;) = ((...((), consisting of 1 — m; “(” followed by a single “)”. To the
CFP F we associate the string s(F') obtained by concatenating s(mq)s(mg)...s(my_1). As an
example, the CFP I considered in the Example 2, whose catastrophic sequence is (—=3,1,0,1,1),
has s(F) = (((())())). From Proposition 2 we have that s(F") is a well formed expression. On
the other hand, s(F’) contains exactly g —1 “)”, so it is a well formed expression of length 2¢g — 2.
Conversely, every well formed expression of length 29 — 2 can be viewed as a concatenation of

/

g — 1 strings s(m’), i =1,...,¢9— 1. From the definition of well formed expression we have that

integers m}, i = 1,...,9 — 1, satisfy Proposition 2. 0



Using the well known Stirling approximation [4],

w=vam(2) (140 ()

we obtain the following asymptotic estimate of the number of CFPs as function of g,
49 1
B :7(1 o(_)).
9= T 1O\

A concept which will turn to be useful in Section 4 and in Section 5 is the complement of an

(i,7)-FP.

Definition 2 A complement of an (i,j)-fault pattern, for a linear array with link redundancy
g, for 0 <1 < j < g—1, is a fault pattern of cardinality g — j, whose matriz representation
satisfies

1. W[0,g—1] =1

2 forg—2>k>j+1, if Wlh,k+ 1] = 1 then only one among
WI0, k], W[L,k],...., W[h+ 1,k] is 1

3. Wi, j]= L.

Informally, a complement of an (¢, j)-F'P is a piece of a CFP, characterized by a matrix repre-
sentation filled by zeroes from the first column up to the column j — 1 and equal to that of a
CFP from the j-th column to column g — 1. Notice that the definition of a complement of an
(i,7)-FP depends from g¢.

Example 4. Consider the fault pattern F' = {5,10, 14,15}, with bypass links of length ¢ = 6.
The matrix representing F' is:

=

[l
olo|lololo
olo|lololo
olo|l—lolo
olo|l—lolo
olo|lol—|o
olo|olo|—

Fis a complement of a (2,2)-FP. If we add to F' the set {0,19}, F' becames catastrophic.

We denote a complement of an (4, 7)-FP with (i, j)°-FP. Let M, ; be the number of (i, j)¢-
FPs. Next we evaluate M; ;.



Lemma 3 Integers M; ; satisfy the relation
Mij=Mi1jpi+Mijp+...+My_j1j41 for 120,720
where M_q i, for k > 0, is assumed to be 0. Moreover

Mog—1 = 1
Miy,oi = 0 fori>0.

Proof. The proof is similar to the proof of Lemma 1.

Next corollary follows immediately from Lemma 3.
Corollary 1 Integers M; ; satisfy the relations
M ;= Mip1;+ Mi—q 4

and
Mig-1—s=1 for ¢>0.

(5)

(6)

Observe that My ; = M; ; for 7 =0,1,...,9 — 2, since the number of (O,j)O—FPs is equal to the

number of (1, 7)°-FPs.

Lemma 4 The number of (i,j)°-FPs and the number of (i,j)-FPs, for 0 <i < j<g—1, are

related by
Mij = Ni-1g-i-j.

Proof. Define D; ;, for : > 0 and j > 0, as follows
Dij = Mit1g-1-(i+j)-
Then, one gets M; ; = D;_q 4_(i4j)- Using this fact and (5) we have that
Dij = Mit1g-1-(itj)
Miys g-1-(ij) + Mig—(i+j)

Digajor + Miga gy + Micag—(i4i)+1
Ditrj-1+ Dijjor + Mig—(irjy+1 + Mizzg—(i4j)+2

Dijija+Di; 1 +Diqja+...+Myg_j1+ Myg—;

Diyijo1+Dija+Dicaja+ .o+ Dijor + Mg
Diyija+Di;a+Diqja+...+ D1+ Doj1.

From (6) it is easy to see that D;; = Mii1g-1-(i41) = 1 for @ > 0. Hence, by Lemmas 1 and 2

we conclude that D; ; = N; ;.

0



From Lemmas 2 and 4 it follows that, for 0 < i< j <g—1,
Mij = Nicig-i-j
) 20— 2t —2j+¢—1-1)!
= (i+1) .(g. i ; .). ,
(g—i—j+i-1+1g—1—j-1)
(29 —1—2j — 2)!
(Mg —i—7 -1

Notice that fixing an entry (¢,7) of the matrix W, the number of CFPs which contain the
processor represented by (¢, 7),1.e., the processor p;44;, is N; ;M; ;. Since any CFP must contain
one and only one of the processors represented by the elements of a fixed column ¢ of W, with
1 <e¢<g—2, we have that

= (i+1)

C

Ni cMi,c-

)

g—

=y

Example 5. The following tables show the N; ;s and the M; ;’s for g = 8.

1 1 2 5 14 | 42| 132|429
0 1 3 91 281 90| 297
0 1 41 14| 48 | 165
0 1 51 20| 75
N= 0 1 6 | 27
0 1 7
0 1
0
429 | 132 | 42| 14 5 2 1 1
429 | 132 | 42| 14 5 2 1 0
297 | 90 | 28 9 3 1 0 0
M= 165 | 48 | 14 4 1 0 0 0
75 20 5 1 0 0 0 0
27 6 1 0 0 0 0 0
7 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

4 Ranking and unranking catastrophic faults

In this section we provide an invertible mapping defined over the set of CFPs for a linear array
with unidirectional link redundancy g, which assumes values in the set of integers 0, 1,..., FY(g) — 1.
This function enables us to rank all CFPs. The inverse of the ranking function is given as an
algorithm. In the following we consider the row representation of a CFP.

10



The rank of a CFP F whose row representation is (rg,71,...,74—1) is the integer given by
the sum of the N; ;’s that satisfy ¢« < r;, for j =0,...,¢9 — 1. Formally, the rank of F’ is

g—1

R(F)= 3" R(F) (7)

c=0

where o ‘
Ro(F) = {Ef:o Ny }f . >0
0 if r. = 0.
Observe that Ro(F') = Ry_1(F) = 0 since for any CFP F we have rg = 7,1 = 0.
In order to prove that R is an isomorphism between the set of CFPs for a linear array with
unidirectional bypass links of length g and the set of integers {0, 1,..., FY(g) — 1}, we need the
following lemma.

Lemma 5 The integers N; ;’s, for 1,7 > 0, satisfy the following equality

J

1
N, . (8)

1i4j
Nij =
:

Z;f

0

1[0~

C

Proof. From (1) we have that

Ni; = ZNT,]‘—1+N¢+1,J‘—1

r=0
i i1
= Z Nyj-1+ Z Nyj—o+ Nigojo
r=0 r=0
j—litj—c—1

-y Y we
c=0 r=0

0

The maximum value of R is reached when each r., ¢ = 1,..., g— 2, assumes its maximum value.
From Proposition 3 we have that r. < g — ¢. Therefore the maximum value of R is reached for
the CFP whose row representation is (0,9 — 1,9 —2...,2,1,0).

From (4) and (8) one gets
g—2g—c—2

FY(g) = Noyo1 = Z Z Ny (9)

c=0 r=0
From (7) and (9) and from the fact that Noog = 1 it follows that the maximum value of R is
FY(g) — 1. The function R is clearly non negative. It is easy to see that it assumes the value 0
for the CF'P whose row representation is (0,0,...,0).
The following lemma shows that different CFPs have different rank.

11



Lemma 6 Let (r9,71,...,75—1) and (sg,s1,...,54-1) be two row representations of CFPs Fy

and Iy, respectively. If Iy # Fy then R(F1) # R(F).

Proof. Let k be the greatest index for which rp # s;. Without loss of generality, we can
assume that r; < sz. We have that R;(Fy) = R;(F;) for j = k+1,k+2,...,9 — 1, and
Ri(Fs) — Ri(F1) > N, k. By Proposition 3 we have that 7. < rp 4+ k —¢, for 0 < ¢ < k.
Hence R.(F1) < Z:’;‘Ek_c_l N, . which implies that Zf;ll R.(F1) < Zf;ll Z:’;‘Ek_c_l N, .. Since
Noo = 1 and N;p = 0 for ¢ > 0, by (8) we have that Zf;ll Ro(F1) < N, p — 1. Since
each term R;(F3) is non negative we have that Zf;ll R;(Fy) — Zf;ll R;(Fy) < Ny g As
Z}q;; R;(Fz) — Z}q;; R;(Fy) > N,, 1 we conclude that R(Fy) — R(Fy) is greater than 0. 0

Theorem 3 R is an isomorphism between the set of row representations of CFPs for a unidi-
rectional linear array with link redundancy g and the set {0,1,..., FY(g) —1}.

Proof. By Lemma 6 we have that R is an injective function between the set of row rep-
resentations of CFPs for a unidirectional linear array with link redundancy ¢ and the set
{0,1,...,FY(g) — 1}. On the other hand these two sets have the same cardinality. Hence
the theorem. 0

Next we describe an algorithm UNRANK which takes in input an integer n, 0 < n < FU(g) — 1,
and gives as output the row representation of the CFP whose rank is n.

UNRANK (1)
v="n
fori=0tog—1r;=0
forc=¢g—2to 1l step —1
=0
while v > N, . do
v="1v—N;.
=1+ 1
Te =21
return (7o, 71,...,75—1)

Next lemmas prove the correctness of the algorithm.
Lemma 7 UNRANK(n) is the row representation of a CFP.

Proof. Let (rg,71,...,74-1) be the list returned by UNRANK. Since we never change the initial
value of r¢g and 7,_1, we have that ro = 7,1 = 0. Fix 5, 0 < s < g — 1. Consider the iteration
of the second for with ¢ = s + 1. Let ¢ be the value assigned to rs4q1 at the end of the while.
Clearly at this point we have that v < N, 1. Consider the iteration of the second for with
¢ = s. By contradiction suppose that at the end of the while the value assigned to r; is greater
than ¢+ 1. During the while v has been decreased by a value greater than Z;H:'} Njs=Ngoq1.
Since before the execution of the while v was less than N, ,4;, then, at the end of the while v
will be less than zero. This is a contradiction because in the algorithm v is always non negative.
Hence UNRANK(n) satisfies the conditions of Proposition 3. 0

12



Lemma 8 Let I’ be the CFP whose row representation is UNRANK (n). Then R(F') = n.

Proof. Let (rg,7r1,...,75—1) be the list returned by UNRANK, which by Lemma 7 is a row
representation of a CFP. Consider the last iteration of the second for, that is the iteration for
which ¢ = 1. Since N;; =1 for 7 > 0, the algorithm decreases v by one until v is 0. Therefore,
at the end of the algorithm v is equal to zero. Since the rank of the CFP represented by this
list, is equal to the sum of the NV, ;’s used to decrease v in the while, the lemma follows. 0

5 Generation of the catastrophic faults

In this section we describe ad analyze an algorithm for the generation of all the catastrophic
fault patterns for a linear array with link redundancy g. The problem of the generation of
the objects of a given set has been widely studied [11]. Our algorithm, as in many algorithms
for the systematic generation of a set of objects, has three components: the initialization, the
transformation from an object of the set to the next one, and the end condition telling when to
stop. In our case, the set of objects is the set of all the catastrophic fault patterns. We want
generate the CFPs according to the order established by the rank, i.e., we want to start with
the CFP whose rank is 0, and then proceed by generating the CFPs in order of increasing rank.
The initialization is the generation of the CFP which has the smallest rank. The transformation
from a catastrophic fault pattern F whose rank is R(F'), yields the CFP G whose rank is
R(G) = R(F)+ 1. Let (rg,r1,...,74—1) be the row representation of a catastrophic fault
pattern F. The CFP with rank R(F')+ 1 is obtained by increasing the row index r., ¢ < g — 2,
such that r. < 7.y and r; > rj4q, for 1 < j < ¢, and by setting to 0 the row indexes
T1,72,...,7.—1. Observe that if such index r. does not exist, then the CFP has row representation
(0,9 —2,9—3,...,2,1,0) and it has the biggest rank. Procedure NEXT uses the dummy row
index r, = 0 to detect this situation which constitute the end condition.

Procedure GENERATE uses procedure INIT to perform the initialization, and calls procedure
NEXT until the end condition is reached, to obtain all the CFPs. The algorithm follows.
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INIT(F, flag)
flag=false
for j=0toyg
r; =0
return

NEXT(F,flag)

J=1

while r; > r;,; do
r; =0
Jj=7+1

if j = g then flag = true
elser; =r; +1
return

GENERATE()

INIT(F, flag)

while flag—false do
NEXT(F,flag)

return

Notice that the procedure NEXT, in order to obtain the next CFP, modifies only a subset of the
row indexes 71, 72,...,74_2, without rewriting those that remain unchanged. The correctness of
procedures INIT and GENERATE is straightforward. Next lemma proves the correctness of NEXT.

Lemma 9 Given as input a catastrophic fault pattern F, with R(F) < FY(g), a call to NEXT
returns the catastrophic fault pattern G whose rank is R(G) = R(F)+ 1.

Proof. Let (0,71,...,7c—1,7¢, Te41,-..,Tg—2,0) be the row representation of F. First, observe
that the procedure yields always a CFP. Indeed, let ¢ be the value of j at the end of the while.
Then cis the smallest index for which r. < r.4q. Procedure NEXT increases the row index r. and,
if ¢ > 1, it sets to zero the row indexes r1,72,...,7._1. Hence the obtained row representation
satisfies Proposition 3.

If ¢ = 11it is easy to see that R(G) = R(F') + 1.

Assume ¢ > 1. Then (0,0,...,0,7.+ 1,7c41,...,74-2,0) is the row representation of . Since
Ro(H) = Ry_1(H) = 0 for any CFP H for a linear array with link redundancy g, from (7) we
have that

R(F) = Ri(F)+...+RAF)+ ...+ Ry—a(F)

r1—1 re—1
= ZNT,1‘|’---‘|‘ZNr,c+Rc+1(F)+---+Rg—2(F)
r=0 r=0

whereas

R(G) Y Neet ..o+ Ry_a(G).
r=0

14



Since Ri(F) = Ry(G), for g —2 > k > ¢, from (8) we have that

r1—1 Te—1—1

R(G)=R(F)=Npeo—= | D Neatooo+ D Neeoa | = Noo =1,
r=0 r=0

Hence the lemma. 0

Now, we analyze the complexity of GENERATE. The execution of GENERATE requires one call to
INIT and exactly FY(g) calls to NEXT. The complexity of INIT is clearly ©(g). Procedure NEXT
yields the next catastrophic fault pattern by increasing an index j from 1 up to the first value
¢ < g — 1 for which . <r.41. Hence, a simple upper bound is O(g). Next lemma, by using an
ammortized analysis, characterizes the complexity of NEXT.

Lemma 10 Let ¢ be an integer, 1 < ¢ < g — 2. During the FU(g) calls, procedure NEXT ends
the computation executing c iterations in the while statement exactly My .y times.

Proof. From Proposition 3, if in a CFP r; > r;4; then r; = 7,414+ 1. Therefore if the algorithm

ends the while with j = ¢, then ry_y =rp,+1for k=2,3,...,¢—1 and r. < r.41. How many
times does this situation occur? This situation occurs whenever the CFP input of NEXT has row
representation (0,7.4+¢,..., 7.4+ 1,7, > T, %, ..., %), where > r. means an index unspecified but

greater than r. and * means an unspecified row index. For fixed values of ¢ and r., there are
exactly My, cq1 + My cr1+ ..+ M,y et1 = M g1 such CFPs. To obtain the number of
times in which NEXT ends the while with 7 = ¢ we have to sum all previous quantities over all
possible values of r. for which M, _,, . is not zero, that is for r. = 0,1,....,g— ¢ — 2. Hence NEXT
exits from the while with j = ¢ exactly

Ml,c + MZ,C +...+ Mg—l—c,c = M2,c—1

times. 0

Lemma 10 enables us to estimate the total running time (i.e., the time needed to generate all
the CFPs) of GENERATE. By using (5) we have that

Mio = Myog+ Mg
= Mg+ Maq+ My

= Mypg+ Mg+ ...+ Moy 34+ M g_o.
Since Ng g1 = Moo = M1 and My 4o = 1 we have that

g—2

Z cMy.1=Ngy_1— 1

c=1
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Therefore the total running of time GENERATE is proportional to

g—2 g—3
Z cMyey = Nogi—1+ Z cMy .y
c=1 c=1
g—4
= Nog1—14+Noggo—1+ Z cMy oy
c=1

= N07g_1 + N07g_2 + ...+ N071 — (g — 1)

From (4), since FU(k) = ©(4%/k%/?), the above expression is clearly ©(49/¢%/?). Therefore, the
algorithm generates all the CFPs in time linear in the number of the CFPs.
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