
An Approach for Distributed Query Processing in Marvel�

Concepts and Implementation

Toni A� B�unter

Technical Report CUCS�������
COLUMBIA UNIVERSITY

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

This work displays an approach for the query processing of Marvel rules upon
a distributed Marvel objectbase� Rules and rest rules run simultaneously on dif�
ferent subenvironments� synchronized by a coordinating subenvironment� Instead
of transmitting objects� the showed method transmits images� The concept of lazy
calling is introduced�



Contents

� Introduction �

��� Marvel � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Rest of this Paper � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Concepts �

��� Marvel Rules and the Query Section � � � � � � � � � � � � � � � � � � �
��� History Variables � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Rest Rules � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Image Processing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��	 Communication � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Algorithm �

� An Example �

� Final Words ��

	�� The remaining sections of the rule � � � � � � � � � � � � � � � � � � � �

	�� Performance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


	 Appendix � ��

� Appendix � ��

References ��

Figures ��

�



� Introduction

Distributed query processing in databases is well explored for relational databases�
In this work we elaborate a technique for distributed query processing in a Mar�
vel objectbase� distributed over subenvironments� Results from the research of
distributed relational databases are applied in form of semijoint optimization ����
The entire work is done inside the scope of the Marvel project� In spite of this
restriction� the displayed technique is believed to be applicable for a wide range of
objectbases�

��� Marvel

Marvel is a rule�based development environment ���� An objectbase and rules
can be tailored with the Marvel Strategic Language 
MSL�� The objectbase keeps
track of the process and production data� Marvel rules are the atomic elements
building the development process� Their activation can be triggered o� by a user
or by forward�backward chaining of another rule ����

The most recent release� Marvel ���� runs a single server� administering one
single objectbase� One or more clients can access the objectbase�
The next step in the Marvel project will include the geographical distribution of a
development project� This means� a single development project can be distributed
for di�erent servers running on di�erent computing sites� Further� it has to be
assumed that the communication resources among the di�erent servers are scarce�
Because query and rule processing can not be restricted to one local server� the
redesign the rule�query processing is one consequence�

The scope of this work is the query section of a Marvel rule� The mechanism
we propose� starts the rule on one subenvironment� coordinating subenvironment

cse� called� which synchronizes rest rules on remote subenvironments� Information
exchange among the subenvironments is basically reduced to synchronization sig�
nals and images of objects�
A priori it is not given to involve all subenvironments for a rule processing� There�
fore� we show an mechanism� called lazy calling which involves a subenvironment
from the point on it is necessary�

��� Rest of this Paper

Section � introduces the main concepts of our approach of the distributed query
processing� Section � discusses the algorithm in detail� Section � illustrates the
mechanism with a example� Section � gives an outlook over the remaining parts of
the rule processing�

�



� Concepts

��� Marvel Rules and the Query Section

A Marvel rule consists of �ve sections�

� The parameter list� Actual parameters are bound to the formal parameter
while �ring a rule�

� The characteristic function� Through evaluation of the binding formulae� more
objects are bound to the binding variables� accessed by the remaining parts of
the rule processing�

� The property list� Analysis of the bound objects and possible backward chain�
ing�

� The activity� Activation of tools�

� The assertions� Depending upon the results of the tool execution� assertion
are made to the bound objects� and forward chaining is activated�

The �rst two section of a rule� the parameter list and the characteristic function
make up the query section of a rule� The query section consists of a list of parameter
variables and a list of bindings� A binding is basically a pair of a binding variable
and a binding formula�

The list of bindings is executed sequentially� Each binding binds objects which
are valid against the binding formula and belong to the same class or a subclass of
the binding variable� Immediately before the evaluation of a binding� all variables
except the binding variable which occur in the binding formula� are bound to sets
of objects� We refer to them as bound operands�
A thorough de�nition of its syntax and semantics are given in ����

��� History Variables

Two variables� the history variables called� keep track of the evaluation state during
the formula walkthrough � The universe variable represents at each point of the
formula the actually search space� whereas the bound object variable collects the
valid objects� and assigns them to the binding variable� In case of more than one
subenvironments� the history variables are represented by the totality of instances
bound to the local universe variable or bound object variable� respectively�
The default binding for the universe are the objects of the objectbase belonging to
the class or a subclass of the binding variables�

�



Geographical Distribution

The following project of Marvel ���� the Marvel�Oz project� is committed to
the geographical distribution of the objectbase� It is assumed that more than one
computing site is involved in the same development project�

On each computing site an Marvel�Oz server� called subenvironment �se�� is
active� We call the set of subenvironments belonging to the same development
project� the project�s domain � Each subenvironment maintains its own objectbase
and its own hidden �le system� The di�erent subenvironments are connected by a
low end network 
e�g� a WAN��

The distribution is understood� that the hierarchical closure of a objectbase is
fully placed on the same subenvironment� but linked objects do not have to be lo�
cal� Further� we assume� that a link to a remote object is represented locally by its
image� which is represented as the pair�


subenvironment id� object id��

��� Rest Rules

Our approach for distributed rule processing proposes the �ring of a rule on a
coordinating subenvironment �cse�� which synchronizes rest rules on remote suben�
vironments� A rest rule of level j is a rule which starts �rst at a binding j� More
formally�

� A rest rule of level j is a rule R without the �rst j bindings� The parameter
and the binding variables b����bj�� are initialized with empty sets of objects�

Before each binding� the rule running on the cse checks for additional subenviron�
ments in the project�s domain which have to be addressed for a rest rule activation�

��� Image Processing

A straight forward approach for distributed query processing would request all nec�
essary objects to the cse� check them for validity and send them back� This can
cause an immense load for the network resources�
Instead of convey objects� we propose to notify remote subenvironments� by trans�
mission of images� to bind objects locally�
The only exception is the case of an associative predicate with two variables� This
is equivalent to the computation of a semijoint in distributed relational databases�
Instead of transmitting images� sets of values of involved attributes has to be trans�
mitted 
see �����

�



Throughout this work we mostly use the term �object� for instances as well for
images� If necessary� we use real for objects which are exclusively instances�

Basically� there are two di�erent needs to transmit images� On one hand images
are �sent back� to the subenvironments� where they belong to� for binding their

real� objects to local binding variables� On the other hand we send images to
remote subenvironments to complete the range of a local search space for enabling
local computation�

Lazy Calling and Rest Rule Firing Criteria

Our approach approximates the minimum of subenvironments which have to be
involved in the processing of a rule�
A subenvironment is addressed for a rest rule execution after checking the rest rule
�ring criteria� Due to this mechanism we call the rule processing lazy calling�

The criteria for �ring a rest rule on a not yet involved subenvironment se� de�
pends on the characteristic of the binding formula and the objects bound to the
bound operands� Therefore� we de�ne the property restricted of a binding formula�

� member�� and ancestor�� are restricted�

� �AND f����fn� is restricted if f� is restricted�

� �OR f����fn� is restricted if all f����fn are restricted�

This de�nition designates formulae which require only subenvironments which
have objects or images bound to the bound operands� This means� that the cse has
to address for rest rule activation exactly the subenvironments which are not yet
involved� but have at least one image bound remotly to one bound operand�

In case of a non restricted binding variable� on all not yet involved subenviron�
ment of the domain a rest rule is started�

��� Communication

For every subenvironment and rule or rest rule� a readable and writable port is pro�
vided� Messages are written as triples�


receiver address� message body� sender address�
Arriving messages are bu�ered in a queue and the order in which messages are

written on a port is preserved�

We assume� that all subenvironments can write asynchronously to their port and
messages are delivered savely�

�



In the given algorithm we use the two primitives write port �message� and
read port �filter�� read port waits or overreads messages which do not suit the
�lter until an acceptable message arrives�

Subenvironments are able to send messages to every other subenvironment� The
cse takes care of the synchronization�
In the most used synchronization� the cse waits for write end signals from all
subenvironments and releases afterward a continue signal to all subenvironments
which are waiting to resume the computation�

� Algorithm

This section discusses how the above shown concepts can be implemented� It also
provides a more profound understanding the concepts�

Appendix � displays the binding algorithm for the cse� appendix � for a suben�
vironment running the rest rule� They are written closely to the actual implemen�
tation of the query processing in Marvel ��� and the programming language C�

Each algorithm consists of the twomain functions build characterized binding�
which takes care of the rest rule �ring� and the get all bound objects� which com�
putes the binding�

Before the evaluation of a binding� the build characterized binding CSE func�
tion on the cse site calls the check new subenvironment criteria to check for new
subenvironments to be addressed� In case of a restricted formula all remote suben�
vironments notify the cse about subenvironment candidates� The cse adds them to
the list of new se� along with candidates found on the cse itself� Then� the cse
noti�es the new subenvironments to run the rest rule�
The build characterized binding SE on the called subenvironment initializes the
�rst level bindings with empty sets and noti�es the cse about the end of initializa�
tion� The cse waits for the acknowledgement from each new subenvironments� After
the rest rule initializations� the cse sends a continue signal to all subenvironments�

All subenvironments begin now with the get all bound objects function� As
described in ���� get all bound objects walks through the binding formula� The
history variables� universe and bound objects� keep track of the objects remain�
ing in the search space and the objects already bound�

get all bound objects requires two kinds of synchronization�

�



� During the evaluation� real objects as well as images are bound to the history
variables� But� if e�g�� a NOT or a predicate has to be computed� images have
to be accessed locally and are therefore �sent back� to their subenvironment
where their real objects are retained� Then� the real objects of the arriving
images are bound locally to history variables� Globally seen� this process does
not change the content of the history variables� After this replacement� only
real objects are bound the history variables�

The replacement mechanism enables the predicates and the NOT operator to
run locally� If still images were bound to history variable� incorrect results
would occur� For example� to bind an object to bound objects� we have also
to check if this object is still in the universe� If we allowed� having images
bound to the history variables� it would be possible that the object�s image is
bound to a remote universe variable� and therefore it would be dismissed in
any case as a valid object�

In the implementation� the function replace images sends images to their
subenvironments and binds the objects of incoming images to the correspond�
ing variable� On the subenvironments site replace images sends write end signal

and waits for a continue signal from the cse site� On the cse site replace images

waits for all write end signals and releases the continue signal�

� The linkto��A�att� �X� predicate� in which A is a set of objects and X is
the binding variable� is a special form of a semijoint� Instead of computing the
entire carthesian product between A and the universe over the whole domain�
this predicate can be computed by �nding out for every o in A that there
is at least one linked object l in the attribute o�att� and l is bound to a
universe variable in one of the subenvironment� There are basically two ways
to get this linked objects� 
�� Send images of all object bound to the universe
variables to all subenvironments� or 
�� send all images of objects in the bound
variable A to all subenvironments� Assuming that A is generally smaller than
the universe variable� we chose 
�� for our implementation� Fortunately� the
semijoint is not �pure�� The image of an object o in A has only to be sent to
the subenvironments for which an image exists in o�att�
This mechanism is implemented with the function complete bound operand�

The AND and OR case can be evaluated without remote interference�

In the NOT f case� �rst� the subformula f is computed and objects are bound
to bound objects� Applying the NOT operator to the subformula means to bind all
objects in the universe which are not in bound objects� Therefore images in the
history variables are replaced� Afterwards� the set complement can be computed

�



locally�

A predicate takes two operands� the binding variable and a bound operand or
a constant� Because images only consist of the object id and subenvironment id�
the images in the bound operands are replaced by objects� next to the replacement
of the images in the universe� The predicates member�� and ancestor�� can be
evaluated locally� Local evaluation of associative predicates is only possible if one
operand is a constant� If so� the function get associative predicate acts locally�

If both operands are variables� the computation of the predicate is a semijoint
between the bound operand and the universe� For the computation of vertical dis�
tributed relational databases� optimizing solutions already exists 
e�g� ����� For
completeness� we display a simple� non trivial� but suitable strategy�

Be a the binding variable and b the bound operand� Be a�att� and b�att� the
attributes over which the semijoint is computed� and op the conditional operator�
If op is �� ��� � or �� the optimal solution is straightforward�
Supposing� the operator is �� Each subenvironment computes the maximal value of
all b�att�s� These maximal values are sent to the cse which looks for the maximum
among them� This maximum is a global maximum among all values in all b�att�� It is
sent back to all subenvironments� Then� the b�att� symbol in the formula is replaced
by the global maximum� and get associative predicate can be computed locally�

In case of the �� or the � � operator� we have to compute the carthesian product
between the tuples f
o� o�att��jo � bg and f
o� o�att��jo � universeg� and to extract
the pairs f

o�� o��att��� 
o�� o��att���jatt� � att�g� This can be accomplished by
handling only the occurrences of attribute values in b� We send all attribute values
att� occurring in b�att� to the cse� The cse builds up a list of all values� This list is
sent back to all subenvironments� With help of this value list the valid objects o in
the universe of corresponding class � o�att� is element of the value list � are bound
to the binding variable a�
The get assoc semijoint predicate function implements this mechanism�

� An Example

To illustrate the algorithm and the concepts� we display a non�trivial � even if made
up � example of query�

example��query ��m	
MODULE �m�
MODULE�


�forall CFILE �c suchthat �OR member ��m	 �c� member ��m� �c� ��

�



�forall HFILE �h suchthat �AND ancestor ��m�� �h� linkto ��c
include �h���

�forall MODULE �s suchthat ��h
date �� �s
date��




The classes in the objectbase are�

MODULE 

 superclass 


 �

files 
 set�of FILE�

include 
 set�of HFILE�

end

CFILE 

 superclass FILE 


 �

contents 
 text�

include 
 set�of link HFILE�

end

HFILE 

 superclass FILE 


 �

date 
 integer �

end

The example query will run on a domain with three subenvironment� SE� is
the cse� Figure � displays the actual objectbases on the three sites�

We discuss the execution of the query by watching at the major steps in the
execution trace�

The query is issued on the cse with the following arguments�
example query 
mod�� 
�� mod���

Because the second argument is an image and the �rst binding formula is re�
stricted� the cse addresses the subenvironment SE� to run a rest rule� Before calling
get all bound objects the state is�

SE� SE� SE�

�m� fmod�g fg n�a�
�m� f
�� mod��g fg n�a�

The �rst binding formula begins with an OR of two member predicates� The
second replaces the image 
�� mod�� before calling get member� The state after
get all bound objects is�

	



SE� SE� SE�

�m� fmod�g fg n�a�
�m� fg fmod�g n�a�
�c fc�� c�g fc�� c�g n�a�

The second binding formula is also restricted� The bound operands in the bind�
ing variables �m� and �c are free from images and therefore� SE� is not yet addressed�
After the execution of the �rst predicate in the AND list� the state of the universe
variable is�

SE� SE� SE�

universe fg fh�� h�g n�a�

Before the link predicate can be computed the images of the c��les which have a
link to an remote h��le� are sent to the subenvironments of the corresponding h��le�

This is done by the function complete bound operand�� The image of c� is sent to
SE� and the image of c� to SE�� Just before get linkto is called� the �completed�
operands �c are�

SE� SE� SE�

�c fc�� c�� 
�� c��g f
�� c��� c�� c�g n�a�

After the local execution of the function get linkto the binding variable is�

SE� SE� SE�

�h fg fh�� h�g n�a�

The third binding formula is not restricted and therefore a rest rule is �red on
the third subenvironment� The formula consists of one associative predicate with
two variables� The meaning of the formula is binding all h��les which have the same
date as at least one in �h�
The function get assoc semijoint predicate is called� All subenvironments send
all occurrences of date values of the h��les in �h to the cse� The cse builds a list
of all occurrences� which is in our example f��
���� ��
���g� 
This is a simple
integer codi�cation of ������� and ��������� The list is then sent to all involved
subenvironment for extracting h��les with a date value in the list� We �nally get�

SE� SE� SE�

�s fg fh��h�g fh	g






� Final Words

��� The remaining sections of the rule

The shown approach of the query section ends with locally bound objects� Thor�
ough investigation about distributing the remaining sections in the rule processing
goes beyond this work� Although some suggestion should be added�
The property section is similar or often simpler than the evaluation of binding for�
mulas� a similar mechanism may be applicable� Firing of rules by backward chaining
is possible because our mechanism allows images as arguments� Not yet solved is
the coordination of a distributed backward chain itself�
The activity section has similarity to a semijoint� But in addition to the number
of objects in the objectbase that have to be transmitted� the size of the medium
attribute� the size of the �le in the hidden �le system has to be considered�
After images are replaced� the assertions can be done directly� without additional
interference from remote subenvironments� A coordination mechanism for the for�
ward chaining� probably similar to the backward chaining mechanism� has to be
developed�

��� Performance

Because the proposed approach is not yet implemented� no performance results can
be shown at this time�

� Appendix �

Implementation of the query processing on the coordinating subenvironment site�

�� ���������������������������������������������������������������� ��

�� QUERY PROCESSOR FUNCTION OF THE COORDINATING SUBENVIRONMENT �CSE� ��

�� Global objects


domain � list of the subenvironments belonging to the same development

project

cse�id � id of this �coordinating� subenvironment

se�list � current list of subenvironment involved in the rule processing

local�ob � objectbase of this �the cse� subenvironment

��

�� Signals


write�end�signal

��



continue�signal

end�init�rest�rule

��

build�characterized�binding�CSE �bindings�

BINDING bindings�

�

LIST�OF�SE list�of�new�se� se�

for �binding � bindings� level � ��

binding �� NULL�

binding � binding��next� level���

�

check�new�subenvironment�criteria �list�of�new�se� binding��formula��

while ��se � get�next�se �list�of�new�se�� �� NULL� �

initiate�rest�rule �se� level��

insert�list �se�list� se��

read�port �cse�id� end�init�rest�rule� se��

�

�� Send continue�signal to all subenvironments


��

get�all�bound�objects �binding��formula� local�objectbase� formula��

�

�

�� ��������������������������������������������������������� ��

check�new�subenvironment�criteria �list�of�new�se� formula�

LIST�OF�SE list�of�new�se�

FORMULA formula�

�

BINDING�VARIABLE b�var�

LIST�OF�SE se�

if �is�restricted �formula�� �

�� Read� until write�end�signal is read� from all subenvironments in

se�list� the incoming messages of the subenvironments to be addressed

and add them to �list�of�new�se�


��

�� Add all subenvironment� which have an image bound to a already

bound binding variable in the formula and are not in se�list� to

�list�of�new�se�


��

��



while �b�var � get�next�bound�variable �formula� �� NULL� �

while �obj � get�next�object �b�var��object�list��

if �is�image �obj��

if �� is�element �se�list� obj��se�id��

add�to�list �list�of�new�se� obj��se�id��

�

�

else �

�� Assing all subenvironments which belong to the

project�s domain� but are not yet element of �se�list� to

�list�of�new�se�


��

while ��se � get�next�se �domain�� �� NULL�

if �� is�element �se�list� se��

add�to�list �list�of�new�se� se��

�

�� Notify the subenvironments about new subenvironment
��

�

�� ��������������������������������������������������������� ��

get�all�bound�objects �universe� formula�

OBJECT�LIST universe �

FORMULA formula�

�

OBJECT�LIST obj�list�

OBJECT obj�

FORMULA subformula�

switch �formula��type��

case AND


for �subformula � formula��child� subformula �� NULL�

subformula � subformula��next� �

get�all�bound�objects �universe� subformula��

universe � bound�objects�

bound�objects � EMPTY�

�

bound�objects � universe�

return�

case OR


for �subformula � formula��child� subformula �� NULL�

��



subformula � subformula��next� �

get�all�bound�objects �universe� subformula��

obj�list � union �obj�list� bound�objects��

bound�objects � EMPTY�

�

bound�objects � obj�list�

return�

case NOT


get�all�bound�objects �universe� formula��child��

replace�images�cse �universe��

replace�images�cse �bound�objects��

bound�objects � set�complement �universe� bound�objects��

return�

PREDICATE


replace�images�cse �universe��

if �has�bound�operand �formula��

replace�images�cse �bound�operand �formula���

switch �formula��operator� �

case MEMBER


return �get�member �universe� formula���

case ANCESTOR


return �get�ancestor �universe� formula���

case LINKTO


bound�var � bound�operand �formula��

complete�bound�operand �bound�var� attribute �formula� bound�var���

return �get�linkto �universe� formula���

case ASSOCIATIVE�PREDICATE


if �semi�joint �formula���

return �get�assoc�semijoint�predicate �universe� formula� se�list���

�

else �

return �get�associative�predicate �universe� formula���

�

�

�

�

�� ��������������������������������������������������������� ��

complete�bound�operand�cse �bound�var� att�

OBJ�LIST bound�var�

��



ATTRIBUTE att�

�

LIST�OF�SE se� se�log�list�

int done � FALSE�

OBJECT obj	� obj��

MESSAGE message�

�� �	� Send the images of all objects �obj	� in bound�var to the

subenvironment �se�� if there is an object �obj�� in �obj	��att�

with �obj���se�id �� se�
 The list �se�log�list� keeps track that

an object is not sent more than once to the same se


��

while ��obj	 � get�next�obj �bound�var�� �� NULL� �

se�log�list � NULL�

while ��obj� � get�next�obj �obj��att�� �� NULL�

if �is�image �obj�� �� in�list �se�list� obj���se�id� ��

� in�list �se�log�list� obj���se�id�� �

write�port �obj���se�id� obj	��obj�id� cse�id��

add�to�list �se�log�list� obj���se�id��

�

�

�� ��� Read incoming messages until all subenvironments have sent a

write�end�signal
 If message

body is an image� bind it to �bound�var�


��

while �� done� �

message � read�port�

if �message��body �� write�end�signal� �

add�to�list �se� message��sender��

if �se �� se�list�

done � TRUE�

�

else if �is�image �message��body��

add�to�list �bound�var� message��body��

�

�� ��� Send continue message to all subenvironments


��

�

�� ��������������������������������������������������������� ��

��



replace�images�cse �obj�list�

�

LIST�OF�SE se�

int done � FALSE�

MESSAGE message�

�� �	� Write all images in obj�list to the port and remove them

afterwards
 �see replace�images�se�

��

�� ��� Read incoming messages until from all se a

write�end�signal message is received
 If message

body is an image� bind its local object to

the object list


��

while �� done� �

message � read�port�

if �message��body �� write�end�signal� �

add�to�list �se� message��sender��

if �se �� se�list�

done � TRUE�

�

else if �is�image �message��body��

add�to�list �obj�list� object�of�image �message��body���

�

�� ��� Send continue message to all subenvironments


��

�

�� ��������������������������������������������������������� ��

get�assoc�semijoint�predicate �universe� formula�

�

integer extremal�

LIST�OF�INTEGER integer�list�

�� We only treat the case �a
att	 cond�operator b
att��

where a
att	 is the binding variable and b is already bound


��

obj�list � object�list �formula��right�symb��

switch �cond�operator �formula�� �

case ���


�� �	� Assign the maximum value of the att� values of the objects in b

��



to the integer �extremal�


��� Read incoming messages until write�end�signal from every se

has arrived


Message bodies contain integers
 If the message body�s

integer is smaller than extremal replace it


��

write�port �se� extremal� CSE�� �� for all se in se�list ��

�� ��� Replace formula��right�symb with the extremal value and call the

get�assoc�semijoint�predicate function


��

replace �formula��right�symb� extremal��

return �get�associative�predicate �universe� formula���

break�

case ����


case ���


case ����


break�

�� Case ����� ��� and ���� are equivalently executed as case ���

with regard to the operator semantics


��

case ����


�� �	� Add all occurring values in b
att� to the global�list


��� Read incoming values and add them to the global�list

until an write�end�signal from all se in se�list has been read


��� Send the global�list to all se in se�list


��� Bind all object �o� of the corresponding class and with �o
att	�

in global�list to a


��

break�

case ����


�� �	����� as in the ���� case


��� Bind all object �o� of the corresponding class in the universe

and with �o
att	� not in global�list to a


��

break�

�

�

�� ������������������� ��

��



�� ���������������������������������������������������������������� ��

�� QUERY PROCESSOR FUNCTION OF THE COORDINATING SUBENVIRONMENT �CSE� ��

�� Global objects


domain � list of the subenvironments belonging to the same development

project

cse�id � id of this �coordinating� subenvironment

se�list � current list of subenvironment involved in the rule processing

local�ob � objectbase of this �the cse� subenvironment

��

�� Signals


write�end�signal

continue�signal

end�init�rest�rule

��

build�characterized�binding�CSE �bindings�

BINDING bindings�

�

LIST�OF�SE list�of�new�se� se�

for �binding � bindings� level � ��

binding �� NULL�

binding � binding��next� level���

�

check�new�subenvironment�criteria �list�of�new�se� binding��formula��

while ��se � get�next�se �list�of�new�se�� �� NULL� �

initiate�rest�rule �se� level��

insert�list �se�list� se��

read�port �cse�id� end�init�rest�rule� se��

�

�� Send continue�signal to all subenvironments


��

get�all�bound�objects �binding��formula� local�objectbase� formula��

�

�

�� ��������������������������������������������������������� ��

check�new�subenvironment�criteria �list�of�new�se� formula�

LIST�OF�SE list�of�new�se�

��



FORMULA formula�

�

BINDING�VARIABLE b�var�

LIST�OF�SE se�

if �is�restricted �formula�� �

�� Read� until write�end�signal is read� from all subenvironments in

se�list� the incoming messages of the subenvironments to be addressed

and add them to �list�of�new�se�


��

�� Add all subenvironment� which have an image bound to a already

bound binding variable in the formula and are not in se�list� to

�list�of�new�se�


��

while �b�var � get�next�bound�variable �formula� �� NULL� �

while �obj � get�next�object �b�var��object�list��

if �is�image �obj��

if �� is�element �se�list� obj��se�id��

add�to�list �list�of�new�se� obj��se�id��

�

�

else �

�� Assing all subenvironments which belong to the

project�s domain� but are not yet element of �se�list� to

�list�of�new�se�


��

while ��se � get�next�se �domain�� �� NULL�

if �� is�element �se�list� se��

add�to�list �list�of�new�se� se��

�

�� Notify the subenvironments about new subenvironment
��

�

�� ��������������������������������������������������������� ��

get�all�bound�objects �universe� formula�

OBJECT�LIST universe �

FORMULA formula�

�

OBJECT�LIST obj�list�

OBJECT obj�

FORMULA subformula�

�	



switch �formula��type��

case AND


for �subformula � formula��child� subformula �� NULL�

subformula � subformula��next� �

get�all�bound�objects �universe� subformula��

universe � bound�objects�

bound�objects � EMPTY�

�

bound�objects � universe�

return�

case OR


for �subformula � formula��child� subformula �� NULL�

subformula � subformula��next� �

get�all�bound�objects �universe� subformula��

obj�list � union �obj�list� bound�objects��

bound�objects � EMPTY�

�

bound�objects � obj�list�

return�

case NOT


get�all�bound�objects �universe� formula��child��

replace�images�cse �universe��

replace�images�cse �bound�objects��

bound�objects � set�complement �universe� bound�objects��

return�

PREDICATE


replace�images�cse �universe��

if �has�bound�operand �formula��

replace�images�cse �bound�operand �formula���

switch �formula��operator� �

case MEMBER


return �get�member �universe� formula���

case ANCESTOR


return �get�ancestor �universe� formula���

case LINKTO


bound�var � bound�operand �formula��

complete�bound�operand �bound�var� attribute �formula� bound�var���

return �get�linkto �universe� formula���

�




case ASSOCIATIVE�PREDICATE


if �semi�joint �formula���

return �get�assoc�semijoint�predicate �universe� formula� se�list���

�

else �

return �get�associative�predicate �universe� formula���

�

�

�

�

�� ��������������������������������������������������������� ��

complete�bound�operand�cse �bound�var� att�

OBJ�LIST bound�var�

ATTRIBUTE att�

�

LIST�OF�SE se� se�log�list�

int done � FALSE�

OBJECT obj	� obj��

MESSAGE message�

�� �	� Send the images of all objects �obj	� in bound�var to the

subenvironment �se�� if there is an object �obj�� in �obj	��att�

with �obj���se�id �� se�
 The list �se�log�list� keeps track that

an object is not sent more than once to the same se


��

while ��obj	 � get�next�obj �bound�var�� �� NULL� �

se�log�list � NULL�

while ��obj� � get�next�obj �obj��att�� �� NULL�

if �is�image �obj�� �� in�list �se�list� obj���se�id� ��

� in�list �se�log�list� obj���se�id�� �

write�port �obj���se�id� obj	��obj�id� cse�id��

add�to�list �se�log�list� obj���se�id��

�

�

�� ��� Read incoming messages until all subenvironments have sent a

write�end�signal
 If message

body is an image� bind it to �bound�var�


��

while �� done� �

message � read�port�

��



if �message��body �� write�end�signal� �

add�to�list �se� message��sender��

if �se �� se�list�

done � TRUE�

�

else if �is�image �message��body��

add�to�list �bound�var� message��body��

�

�� ��� Send continue message to all subenvironments


��

�

�� ��������������������������������������������������������� ��

replace�images�cse �obj�list�

�

LIST�OF�SE se�

int done � FALSE�

MESSAGE message�

�� �	� Write all images in obj�list to the port and remove them

afterwards
 �see replace�images�se�

��

�� ��� Read incoming messages until from all se a

write�end�signal message is received
 If message

body is an image� bind its local object to

the object list


��

while �� done� �

message � read�port�

if �message��body �� write�end�signal� �

add�to�list �se� message��sender��

if �se �� se�list�

done � TRUE�

�

else if �is�image �message��body��

add�to�list �obj�list� object�of�image �message��body���

�

�� ��� Send continue message to all subenvironments


��

�

��



�� ��������������������������������������������������������� ��

get�assoc�semijoint�predicate �universe� formula�

�

integer extremal�

LIST�OF�INTEGER integer�list�

�� We only treat the case �a
att	 cond�operator b
att��

where a
att	 is the binding variable and b is already bound


��

obj�list � object�list �formula��right�symb��

switch �cond�operator �formula�� �

case ���


�� �	� Assign the maximum value of the att� values of the objects in b

to the integer �extremal�


��� Read incoming messages until write�end�signal from every se

has arrived


Message bodies contain integers
 If the message body�s

integer is smaller than extremal replace it


��

write�port �se� extremal� CSE�� �� for all se in se�list ��

�� ��� Replace formula��right�symb with the extremal value and call the

get�assoc�semijoint�predicate function


��

replace �formula��right�symb� extremal��

return �get�associative�predicate �universe� formula���

break�

case ����


case ���


case ����


break�

�� Case ����� ��� and ���� are equivalently executed as case ���

with regard to the operator semantics


��

case ����


�� �	� Add all occurring values in b
att� to the global�list


��� Read incoming values and add them to the global�list

until an write�end�signal from all se in se�list has been read


��� Send the global�list to all se in se�list


��



��� Bind all object �o� of the corresponding class and with �o
att	�

in global�list to a


��

break�

case ����


�� �	����� as in the ���� case


��� Bind all object �o� of the corresponding class in the universe

and with �o
att	� not in global�list to a


��

break�

�

�

�� ������������������� ��

� Appendix �

Implementation of the query processing on the subenvironments running a rest rule�

�� ���������������������������������������������������������������� ��

�� QUERY PROCESSOR FUNCTION OF THE SUBENVIRONMENT �SE� ��

�� Global objects


domain � list of the subenvironments belonging to the same development

project

cse�id � coordinating subenvironment id

se�id � id of this subenvironment

local�ob � objectbase of this �se�id� subenvironment

se�list � current list of subenvironment involved in the rule processing

��

�� Signals


write�end�signal

continue�signal

end�init�rest�rule

��

build�characterized�binding�SE �bindings� level�

BINDING bindings�

int level�

�

for �binding � bindings� i � ��

��



binding �� NULL�

binding � binding��next� i���

�

if �i �� level� �

binding��variable � NULL�

if �i �� level� �

�� Next increment of i will be the level of the processing


Therefore� notify the cse about the end of initialization


��

write�port �cse�id� end�init�rest�rule� se�id���

else �

if �i � �level � 	�� �

�� Send subenvironments ids to the cse� which have images

in already bound binding variables in binding��formula

and are not in se�list


Send write�end�signal to cse


Read update for se�list from cse


��

�

read�port �cse�id� continue�signal� se�id��

get�all�bound�objects �binding� local�objectbase� formula��

�

�� ��������������������������������������������������������� ��

get�all�bound�objects �universe� formula�

OBJECT�LIST universe �

FORMULA formula�

�

OBJECT�LIST obj�list�

OBJECT obj�

FORMULA subformula�

switch �formula��type��

case AND


for �subformula � formula��child� subformula �� NULL�

subformula � subformula��next� �

get�all�bound�objects �universe� subformula��

universe � bound�objects�

bound�objects � NULL�

�

bound�objects � universe�

��



return�

case OR


for �subformula � formula��child� subformula �� NULL�

subformula � subformula��next� �

get�all�bound�objects �universe� subformula��

obj�list � union �obj�list� bound�objects��

bound�objects � EMPTY�

�

bound�objects � obj�list�

return�

case NOT


get�all�bound�objects �universe� formula��child��

replace�images�se �universe��

replace�images�se �bound�objects��

bound�objects � set�complement �universe� bound�objects��

return�

PREDICATE


replace�images�se �universe��

replace�images�se �bound�operand �formula���

switch �formula��operator� �

case MEMBER


return �get�member �universe� formula���

case ANCESTOR


return �get�ancestor �universe� formula���

case LINKTO


return �get�linkto �universe� formula���

case ASSOCIATIVE�PREDICATE


if �is�semi�joint �formula���

return �get�assoc�semijoint�predicate �universe� formula���

�

else �

return �get�associative�predicate �universe� formula���

�

�

�

�

�� ��������������������������������������������������������� ��

complete�bound�operand�se �bound�var� att�

��



OBJ�LIST bound�var�

ATTRIBUTE att�

�

LIST�OF�SE se�

int done � FALSE�

OBJECT obj	� obj��

MESSAGE message�

�� �	� Write images in bound�var��att on the port


�not�yet�sent� should prevent that an object is sent twice


It probably need a list who keeps track


��

while ��obj	 � get�next�obj �bound�var�� �� NULL�

while ��obj� � get�next�obj �obj��att�� �� NULL�

if �is�image �obj�� �� not�yet�sent �obj	��

write�port �obj���se�id� obj	��obj�id� cse��

�� ��� Notify cse of end of broadcasting

��

write�port �cse�id� write�end�signal� se�id��

�� ��� Read the incoming message
 If message

body is an image� bind it to bound�var


��� Wait for continue�signal from cse then return


��

while � �message � read�port� �� �se�id� continue�signal� cse��

if �is�image �message��body��

add�to�list �bound�var� �message��sender� message��body���

return�

�

�� ��������������������������������������������������������� ��

replace�images�se �obj�list�

�

�� �	� Write all images in obj�list to the port and remove them

afterwards


��� Notify cse of end of broadcasting

��� Read the incoming message
 If message

body is an image� bind its local object to

the object list


��� Wait for continue�signal from cse then return


image� bind its local object to the object list


�� �	� ��

��



while � �obj � get�next�obj �obj�list�� �� NULL� �

if �is�image �obj�� �

write�port �obj��se�id� obj��obj�id� se�id��

remove�obj�list� obj��

�

�

�� ��� ��

write�port �cse�id� write�end�signal� se�id��

�� ����� ��

while � �message � read�port� �� �se�id� continue�signal� cse��

if �is�image �message��body��

add�to�list �obj�list� object�of�image �message��body���

return�

�

�� ��������������������������������������������������������� ��

complete�bound�operand�se �bound�var� att�

OBJ�LIST bound�var�

ATTRIBUTE att�

�

LIST�OF�SE se� se�log�list�

int done � FALSE�

OBJECT obj	� obj��

MESSAGE message�

�� �	� Send the images of all objects �obj	� in bound�var to the

subenvironment �se�� if there is an object �obj�� in �obj	��att�

with �obj���se�id �� se�
 The list �se�log�list� keeps track that

an object is not sent more than once to the same se


��

while ��obj	 � get�next�obj �bound�var�� �� NULL� �

se�log�list � NULL�

while ��obj� � get�next�obj �obj��att�� �� NULL�

if �is�image �obj�� �� in�list �se�list� obj���se�id� ��

� in�list �se�log�list� obj���se�id�� �

write�port �obj���se�id� obj	��obj�id� se�id��

add�to�list �se�log�list� obj���se�id��

�

�

write�port �cse�id� write�end�signal� se�id��

�� ��� Read incoming messages until continue�signal arrives
 If message

��



body is an image� bind it to �bound�var�


��

message � read�port�

while �message��body �� write�end�signal� �

add�to�list �bound�var� message��body��

message � read�port�

�

�

�� ��������������������������������������������������������� ��

get�assoc�semijoint�predicate �universe� formula�

�

integer extremal�

LIST�OF�INTEGER integer�list�

�� We only treat the case �a
att	 cond�operator b
att��

where a
att	 is the binding variable and b is already bound


��

obj�list � object�list �formula��right�symb��

switch �cond�operator �formula�� �

case ���


�� �	� Assign the maximum value of the att� values of the objects in b

to the integer �extremal�


��� write�port �cse�id� extremal� se�id��

��� extremal � read�port �se�id� integer� cse�id�

��� Replace formula��right�symb with the extremal value and call the

get�assoc�semijoint�predicate function


��

replace �formula��right�symb� extremal��

return �get�associative�predicate �universe� formula���

break�

case ����


case ���


case ����


break�

�� Case ����� ��� and ���� are equivalently executed as case ���

with regard to the operator semantics


��

case ����


�� �	� Send all occurring values in b
att� to cse


�	



��� Wait for global list from the cse


��

list�of�values � read�port �se�id� list of integer� cse��

�� ��� Bind all object �o� of the corresponding class and with �o
att	�

in global�list to a


��

break�

case ����


�� �	��� as in the ���� case


��� Bind all object �o� of the corresponding class in the universe

and with �o
att	� not in global�list to a


��

�

�

�� ��������������������������������������������������������� ��

�




References

��� Toni A� B�unter� Optimisation of the characterisic function in marvel rules�
Technical report� �����

��� Stefano Ceri and Giuseppe Pelagatti� Distributed Databases� MacGraw�Hill
computer science series� MacGraw�Hill� �����

��� George T� Heineman� Gail E� Kaiser� Naser S� Barghouti� and Israel Z� Ben�
Shaul� Rule chaining in marvel� Dynamic binding of parameters� IEEE Expert�
�������� �����

��� Gail E� Kaiser� Peter H� Feiler� and Steven S� Popovich� Intelligent assistance
for software development and maintenance� IEEE Software� pages �
���� May
�����

��



Figures

c1 c2 h1 h2 h3 c3 c4 c5 h4 h5

mod1 mod2 mod3SE1 SE2 SE3

h1.date=93116 h2.date=930829

h3.date=930721

h4.date=930321

h5.date=930721

Figure �� Example objectbase�

��


