View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Columbia University Academic Commons

An Approach for Distributed Query Processing in MARVEL:
Concepts and Implementation

Toni A. Bunter

Technical Report CUCS-030-93
COLUMBIA UNIVERSITY

https://core.ac.uk/display/161439683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This work displays an approach for the query processing of MARVEL rules upon
a distributed MARVEL objectbase. Rules and rest rules run simultaneously on dif-
ferent subenvironments, synchronized by a coordinating subenvironment. Instead
of transmitting objects, the showed method transmits images. The concept of lazy
calling is introduced.

Contents

1 Introduction
1.1 MARVEL . .

1.2 Rest of this Paper oo

2 Concepts

2.1 Marvel Rules and the Query Section
2.2 History Variables L oo L

2.3 Rest Rules .

2.4 TImage Processing e

2.5 Communication e e e e

3 Algorithm
4 An Example

5 Final Words

5.1 The remaining sections of therule

5.2 Performance
6 Appendix 1
7 Appendix 2
References

Figures

—

=W W N NN

10
10
10

10

23

30

31

1 Introduction

Distributed query processing in databases is well explored for relational databases.
In this work we elaborate a technique for distributed query processing in a MAR-
VEL objectbase, distributed over subenvironments. Results from the research of
distributed relational databases are applied in form of semijoint optimization [2].
The entire work is done inside the scope of the MARVEL project. In spite of this
restriction, the displayed technique is believed to be applicable for a wide range of
objectbases.

1.1 MARVEL

MARVEL is a rule-based development environment [4]. An objectbase and rules
can be tailored with the MARVEL Strategic Language (MSL). The objectbase keeps
track of the process and production data. MARVEL rules are the atomic elements
building the development process. Their activation can be triggered off by a user
or by forward/backward chaining of another rule [3].

The most recent release, MARVEL 3.1, runs a single server, administering one
single objectbase. One or more clients can access the objectbase.
The next step in the MARVEL project will include the geographical distribution of a
development project. This means, a single development project can be distributed
for different servers running on different computing sites. Further, it has to be
assumed that the communication resources among the different servers are scarce.
Because query and rule processing can not be restricted to one local server, the
redesign the rule/query processing is one consequence.

The scope of this work is the query section of a MARVEL rule. The mechanism
we propose, starts the rule on one subenvironment, coordinating subenvironment
(cse) called, which synchronizes rest rules on remote subenvironments. Information
exchange among the subenvironments is basically reduced to synchronization sig-
nals and images of objects.

A priori it is not given to involve all subenvironments for a rule processing. There-
fore, we show an mechanism, called lazy calling which involves a subenvironment
from the point on it is necessary.

1.2 Rest of this Paper

Section 1 introduces the main concepts of our approach of the distributed query
processing. Section 2 discusses the algorithm in detail. Section 3 illustrates the
mechanism with a example. Section 4 gives an outlook over the remaining parts of
the rule processing.

2 Concepts

2.1 Marvel Rules and the Query Section

A MARVEL rule consists of five sections:

e The parameter list: Actual parameters are bound to the formal parameter
while firing a rule.

o The characteristic function: Through evaluation of the binding formulae, more
objects are bound to the binding variables, accessed by the remaining parts of
the rule processing.

e The property list: Analysis of the bound objects and possible backward chain-
ing.

e The activity: Activation of tools.

o The assertions: Depending upon the results of the tool execution, assertion
are made to the bound objects, and forward chaining is activated.

The first two section of a rule, the parameter list and the characteristic function
make up the query section of a rule. The query section consists of a list of parameter
variables and a list of bindings. A binding is basically a pair of a binding variable
and a binding formula.

The list of bindings is executed sequentially. Fach binding binds objects which
are valid against the binding formula and belong to the same class or a subclass of
the binding variable. Immediately before the evaluation of a binding, all variables
except the binding variable which occur in the binding formula, are bound to sets
of objects. We refer to them as bound operands.

A thorough definition of its syntax and semantics are given in [1].

2.2 History Variables

Two variables, the history variables called, keep track of the evaluation state during
the formula walkthrough . The universe variable represents at each point of the
formula the actually search space, whereas the bound object variable collects the
valid objects, and assigns them to the binding variable. In case of more than one
subenvironments, the history variables are represented by the totality of instances
bound to the local universe variable or bound object variable, respectively.

The default binding for the universe are the objects of the objectbase belonging to
the class or a subclass of the binding variables.

Geographical Distribution

The following project of MARVEL 3.1, the MARVEL/Oz project, is committed to
the geographical distribution of the objectbase. It is assumed that more than one
computing site is involved in the same development project.

On each computing site an MARVEL/Oz server, called subenvironment (se), is
active. We call the set of subenvironments belonging to the same development
project, the project’s domain . Each subenvironment maintains its own objectbase
and its own hidden file system. The different subenvironments are connected by a

low end network (e.g. a WAN).

The distribution is understood, that the hierarchical closure of a objectbase is
fully placed on the same subenvironment, but linked objects do not have to be lo-
cal. Further, we assume, that a link to a remote object is represented locally by its
image, which is represented as the pair:

(subenvironment_id, object_id).

2.3 Rest Rules

Our approach for distributed rule processing proposes the firing of a rule on a
coordinating subenvironment (cse), which synchronizes rest rules on remote suben-
vironments. A rest rule of level j is a rule which starts first at a binding j. More
formally:

o A rest rule of level j is a rule R without the first j bindings. The parameter
and the binding variables by...0;_; are initialized with empty sets of objects.

Before each binding, the rule running on the cse checks for additional subenviron-
ments in the project’s domain which have to be addressed for a rest rule activation.

2.4 Image Processing

A straight forward approach for distributed query processing would request all nec-
essary objects to the cse, check them for validity and send them back. This can
cause an immense load for the network resources.

Instead of convey objects, we propose to notify remote subenvironments, by trans-
mission of images, to bind objects locally.

The only exception is the case of an associative predicate with two variables. This
is equivalent to the computation of a semijoint in distributed relational databases.
Instead of transmitting images, sets of values of involved attributes has to be trans-
mitted (see [2]).

Throughout this work we mostly use the term ’object’ for instances as well for
images. If necessary, we use real for objects which are exclusively instances.

Basically, there are two different needs to transmit images. On one hand images
are ’sent back’ to the subenvironments, where they belong to, for binding their
(real) objects to local binding variables. On the other hand we send images to
remote subenvironments to complete the range of a local search space for enabling
local computation.

Lazy Calling and Rest Rule Firing Criteria

Our approach approximates the minimum of subenvironments which have to be
involved in the processing of a rule.

A subenvironment is addressed for a rest rule execution after checking the rest rule
firing criteria. Due to this mechanism we call the rule processing lazy calling.

The criteria for firing a rest rule on a not yet involved subenvironment se, de-
pends on the characteristic of the binding formula and the objects bound to the
bound operands. Therefore, we define the property restricted of a binding formula:

e member() and ancestor() are restricted.
e (AND fy...f,) is restricted if f; is restricted.
e (OR fy...f,) is restricted if all fi...f, are restricted.

This definition designates formulae which require only subenvironments which
have objects or images bound to the bound operands. This means, that the cse has
to address for rest rule activation exactly the subenvironments which are not yet
involved, but have at least one image bound remotly to one bound operand.

In case of a non restricted binding variable, on all not yet involved subenviron-
ment of the domain a rest rule is started.

2.5 Communication

For every subenvironment and rule or rest rule, a readable and writable port is pro-
vided. Messages are written as triples:
(receiver address, message body, sender address)
Arriving messages are buffered in a queue and the order in which messages are
written on a port is preserved.

We assume, that all subenvironments can write asynchronously to their port and
messages are delivered savely.

In the given algorithm we use the two primitives write_port (message) and
read port (filter). read port waits or overreads messages which do not suit the
filter until an acceptable message arrives.

Subenvironments are able to send messages to every other subenvironment. The
cse takes care of the synchronization.
In the most used synchronization, the cse waits for write_end_signals from all
subenvironments and releases afterward a continue_signal to all subenvironments
which are waiting to resume the computation.

3 Algorithm

This section discusses how the above shown concepts can be implemented. It also
provides a more profound understanding the concepts.

Appendix 1 displays the binding algorithm for the cse, appendix 2 for a suben-
vironment running the rest rule. They are written closely to the actual implemen-
tation of the query processing in MARVEL 3.1 and the programming language C.

Each algorithm consists of the two main functions build_characterized binding,
which takes care of the rest rule firing, and the get_all bound_objects, which com-
putes the binding.

Before the evaluation of a binding, the build_characterized binding CSE func-
tion on the cse site calls the check new_subenvironment criteria to check for new
subenvironments to be addressed. In case of a restricted formula all remote suben-
vironments notify the cse about subenvironment candidates. The cse adds them to
the 1ist_of new_se, along with candidates found on the cse itself. Then, the cse
notifies the new subenvironments to run the rest rule.

The build_characterized binding SE on the called subenvironment initializes the
first level bindings with empty sets and notifies the cse about the end of initializa-
tion. The cse waits for the acknowledgement from each new subenvironments. After
the rest rule initializations, the cse sends a continue_signal to all subenvironments.

All subenvironments begin now with the get_all bound objects function. As
described in [1], get_all bound objects walks through the binding formula. The
history variables, universe and bound objects, keep track of the objects remain-
ing in the search space and the objects already bound.

get_all bound objects requires two kinds of synchronization.

¢ During the evaluation, real objects as well as images are bound to the history
variables. But, if e.g., a NOT or a predicate has to be computed, images have
to be accessed locally and are therefore ’sent back’ to their subenvironment
where their real objects are retained. Then, the real objects of the arriving
images are bound locally to history variables. Globally seen, this process does
not change the content of the history variables. After this replacement, only
real objects are bound the history variables.

The replacement mechanism enables the predicates and the NOT operator to
run locally. If still images were bound to history variable, incorrect results
would occur. For example, to bind an object to bound objects, we have also
to check if this object is still in the universe. If we allowed, having images
bound to the history variables, it would be possible that the object’s image is
bound to a remote universe variable, and therefore it would be dismissed in
any case as a valid object.

In the implementation, the function replace_images sends images to their
subenvironments and binds the objects of incoming images to the correspond-

ing variable. On the subenvironments site replace_images sends write_end_signal
and waits for a continue_signal from the cse site. On the cse site replace_images
waits for all write_end_signals and releases the continue_signal.

e The linkto(?A.att, 7X) predicate, in which A is a set of objects and X is
the binding variable, is a special form of a semijoint. Instead of computing the
entire carthesian product between A and the universe over the whole domain,
this predicate can be computed by finding out for every o in A that there
is at least one linked object [in the attribute o.att, and [is bound to a
universe variable in one of the subenvironment. There are basically two ways
to get this linked objects: (1) Send images of all object bound to the universe
variables to all subenvironments, or (2) send all images of objects in the bound
variable A to all subenvironments. Assuming that A is generally smaller than
the universe variable, we chose (2) for our implementation. Fortunately, the
semijoint is not ’pure’. The image of an object o in A has only to be sent to
the subenvironments for which an image exists in o.att.

This mechanism is implemented with the function complete bound operand.

The AND and OR case can be evaluated without remote interference.

In the NOT f case, first, the subformula f is computed and objects are bound
to bound_objects. Applying the NOT operator to the subformula means to bind all
objects in the universe which are not in bound objects. Therefore images in the
history variables are replaced. Afterwards, the set_complement can be computed

locally.

A predicate takes two operands: the binding variable and a bound operand or
a constant. Because images only consist of the object id and subenvironment id,
the images in the bound operands are replaced by objects, next to the replacement
of the images in the universe. The predicates member() and ancestor() can be
evaluated locally. Local evaluation of associative predicates is only possible if one
operand is a constant. If so, the function get_associative predicate acts locally.

If both operands are variables, the computation of the predicate is a semijoint
between the bound operand and the universe. For the computation of vertical dis-
tributed relational databases, optimizing solutions already exists (e.g. [2]). For
completeness, we display a simple, non trivial, but suitable strategy.

Be a the binding variable and b the bound operand. Be a.attl and b.att2 the
attributes over which the semijoint is computed, and op the conditional operator.
If op is <, <=, > or >= the optimal solution is straightforward:

Supposing, the operator is <. Each subenvironment computes the maximal value of
all b.att2s. These maximal values are sent to the cse which looks for the maximum
among them. This maximum is a global maximum among all values in all b.att2. It is
sent back to all subenvironments. Then, the b.att2 symbol in the formula is replaced
by the global maximum, and get_associative predicate can be computed locally.

In case of the == or the ! = operator, we have to compute the carthesian product
between the tuples {(o0,0.att2)|o € b} and {(o, 0.attl)|o € universe}, and to extract
the pairs {((o01,01.att2), (02, 0q.attl))|attl = att2}. This can be accomplished by
handling only the occurrences of attribute values in b. We send all attribute values
att2 occurring in b.att2 to the cse. The cse builds up a list of all values. This list is
sent back to all subenvironments. With help of this value list the valid objects o in
the universe of corresponding class — o.attl is element of the value list — are bound
to the binding variable a.

The get_assoc_semijoint_predicate function implements this mechanism.

4 An Example

To illustrate the algorithm and the concepts, we display a non-trivial — even if made
up — example of query:

example_query [?m1:MODULE 7m2:MODULE] :
(forall CFILE 7?c suchthat (OR member [?ml1 7c] member [?m2 7c]))

(forall HFILE 7h suchthat (AND ancestor (?m2, 7h) linkto [?c.include 7h]))
(forall MODULE 7s suchthat (7h.date == 7s.date))

The classes in the objectbase are:

MODULE :: superclass ... ;

files : set_of FILE;

include : set_of HFILE;

end

CFILE :: superclass FILE ... ;

contents : text;
include : set_of link HFILE;
end

HFILE :: superclass FILE ... ;
date : integer ;
end

The example query will run on a domain with three subenvironment. SFE7 is
the cse. Figure 1 displays the actual objectbases on the three sites.

We discuss the execution of the query by watching at the major steps in the
execution trace.

The query is issued on the cse with the following arguments:
example_query (modl, (2, mod2))
Because the second argument is an image and the first binding formula is re-
stricted, the cse addresses the subenvironment SE2 to run a rest rule. Before calling
get_all bound objects the state is:

| SE1 SE2 SE3
?ml | {modl} {} na.
Tm2 | {(2, modl)} {} n.a.

The first binding formula begins with an OR of two member predicates. The
second replaces the image (2, mod2) before calling get member. The state after
get_all bound objects is:

| SE1 SE2 SE3
?ml | {modl} {} n.a.
Tm2 | {} {mod2} n.a.
7c {cl,c2} {c3,cd} n.a.

The second binding formula is also restricted. The bound operands in the bind-
ing variables 7m1 and 7c are free from images and therefore, SE3 is not yet addressed.
After the execution of the first predicate in the AND list, the state of the universe
variable is:

| SE1 SE2 SE3
universe | {} {h2, h3} n.a.

Before the link predicate can be computed the images of the c-files which have a
link to an remote h-file, are sent to the subenvironments of the corresponding h-file.
(This is done by the function complete_bound_operand.) The image of c2 is sent to
SE2 and the image of ¢3 to SE1. Just before get_linkto is called, the ’completed’
operands ?c are:

| SE1 SE2 SE3
7c | {cl,¢2,(2,¢3)} {(1,c2),c3,c4} n.a.

After the local execution of the function get_linkto the binding variable is:

| SE1 SE2 SE3
h | {} {h2,h3} n.a.

The third binding formula is not restricted and therefore a rest rule is fired on

the third subenvironment. The formula consists of one associative predicate with
two variables. The meaning of the formula is binding all h-files which have the same
date as at least one in Th.
The function get_assoc_semijoint_predicateis called. All subenvironments send
all occurrences of date values of the h-files in Th to the cse. The cse builds a list
of all occurrences, which is in our example {930829, 930721}. (This is a simple
integer codification of 8/29/93 and 7/21/93.) The list is then sent to all involved
subenvironment for extracting h-files with a date value in the list. We finally get:

| SE1 SE2 SE3
s | {3 {h2,h3} {h5}

5 Final Words

5.1 The remaining sections of the rule

The shown approach of the query section ends with locally bound objects. Thor-
ough investigation about distributing the remaining sections in the rule processing
goes beyond this work. Although some suggestion should be added.

The property section is similar or often simpler than the evaluation of binding for-
mulas, a similar mechanism may be applicable. Firing of rules by backward chaining
is possible because our mechanism allows images as arguments. Not yet solved is
the coordination of a distributed backward chain itself.

The activity section has similarity to a semijoint. But in addition to the number
of objects in the objectbase that have to be transmitted, the size of the medium
attribute, the size of the file in the hidden file system has to be considered.

After images are replaced, the assertions can be done directly, without additional
interference from remote subenvironments. A coordination mechanism for the for-
ward chaining, probably similar to the backward chaining mechanism, has to be
developed.

5.2 Performance

Because the proposed approach is not yet implemented, no performance results can
be shown at this time.

6 Appendix 1
Implementation of the query processing on the coordinating subenvironment site:

JK mmmm e e - */
/* QUERY PROCESSOR FUNCTION OF THE COORDINATING SUBENVIRONMENT (CSE) */

/* Global objects:

domain - list of the subenvironments belonging to the same development
project
cse_id - id of this (coordinating) subenvironment
se_list - current list of subenvironment involved in the rule processing
local_ob - objectbase of this (the cse) subenvironment
*/
/* Signals:

write_end_signal

10

continue_signal
end_init_rest_rule

*/

build_characterized_binding_CSE (bindings)
BINDING bindings;

{
LIST_OF_SE list_of_new_se, se;

for (binding = bindings, level = 0;
binding != NULL;
binding = binding->next, level++)

{
check_new_subenvironment_criteria (list_of_new_se, binding->formula);
while ((se = get_next_se (list_of_new_se)) '= NULL) {
initiate_rest_rule (se, level);
insert_list (se_list, se);
read_port (cse_id, end_init_rest_rule, se);

}
/* Send continue_signal to all subenvironments.
*/
get_all_bound_objects (binding->formula, local_objectbase, formula) ;
}
}
[k mmmmmm e - */

check_new_subenvironment_criteria (list_of_new_se, formula)
LIST_OF_SE list_of_new_se;
FORMULA formula;
{
BINDING_VARIABLE b_var;
LIST_OF_SE se;
if (is_restricted (formula)) {
/* Read, until write_end_signal is read, from all subenvironments in
se_list, the incoming messages of the subenvironments to be addressed
and add them to ’list_of_new_se’.

*/

/* Add all subenvironment, which have an image bound to a already
bound binding variable in the formula and are not in se_list, to
’list_of_new_se’.

*/

11

while (b_var = get_next_bound_variable (formula) !'= NULL) {
while (obj = get_next_object (b_var->object_list))
if (is_image (obj))
if (! is_element (se_list, obj->se_id))
add_to_list (list_of_new_se, obj->se_id);
+
+
else {
/* Assing all subenvironments which belong to the
project’s domain, but are not yet element of ’se_list’ to

’list_of_new_se’.
*/
while ((se = get_next_se (domain)) !'= NULL)
if (! is_element (se_list, se))
add_to_list (list_of_new_se, se);
}

/* Notify the subenvironments about new subenvironment.*/

get_all_bound_objects (universe, formula)
OBJECT_LIST universe ;
FORMULA formula;

OBJECT_LIST obj_list;
O0BJECT obj;
FORMULA subformula;

switch (formula->type)q{
case AND:
for (subformula = formula->child; subformula '= NULL;
subformula = subformula->next) {
get_all_bound_objects (universe, subformula) ;
universe = bound_objects;
bound_objects = EMPTY;
}
bound_objects = universe;
return;

case OR:
for (subformula = formula->child; subformula '= NULL;

12

subformula = subformula->next) {
get_all_bound_objects (universe, subformula) ;
obj_list = union (obj_list, bound_objects);
bound_objects = EMPTY;
}
bound_objects = obj_list;
return;

case NOT:
get_all_bound_objects (universe, formula->child);
replace_images_cse (universe);
replace_images_cse (bound_objects);
bound_objects = set_complement (universe, bound_objects);
return;

PREDICATE:
replace_images_cse (universe);
if (has_bound_operand (formula))
replace_images_cse (bound_operand (formula));
switch (formula->operator) {
case MEMBER:
return (get_member (universe, formula));
case ANCESTOR:
return (get_ancestor (universe, formula));
case LINKTO:
bound_var = bound_operand (formula);
complete_bound_operand (bound_var, attribute (formula, bound_var));
return (get_linkto (universe, formula));
case ASSOCIATIVE_PREDICATE:
if (semi_joint (formula)){
return (get_assoc_semijoint_predicate (universe, formula, se_list));
}
else {
return (get_associative_predicate (universe, formula));

complete_bound_operand_cse (bound_var, att)
0BJ_LIST bound_var;

13

ATTRIBUTE att;

LIST_OF_SE se, se_log_list;
int done = FALSE;

O0BJECT objl, obj2;

MESSAGE message;

/* (1) Send the images of all objects ’objl’ in bound_var to the
subenvironment ’se’, if there is an object ’o0bj2’ in ’objl->att’
with ’obj2->se_id == se’. The list ’se_log_list’ keeps track that
an object is not sent more than once to the same se.
*/
while ((objl = get_next_obj (bound_var)) != NULL) {
se_log_list = NULL;
while ((obj2 = get_next_obj (obj->att)) != NULL)
if (is_image (obj2) && in_list (se_list, obj2->se_id) &&
! in_list (se_log_list, obj2->se_id)) {
write_port (obj2->se_id, objl->obj_id, cse_id);
add_to_list (se_log_list, obj2->se_id);
+
+

/* (2) Read incoming messages until all subenvironments have sent a
write_end_signal. If message
body is an image, bind it to ’bound_var’.
*/
while (! done) {
message = read_port;

if (message->body == write_end_signal) {
add_to_list (se, message->sender);
if (se == se_list)
done = TRUE;
}

else if (is_image (message->body))
add_to_list (bound_var, message->body) ;

/* (3) Send continue message to all subenvironments.

14

replace_images_cse (obj_list)
{
LIST_OF_SE se;
int done = FALSE;
MESSAGE message;
/* (1) Write all images in obj_list to the port and remove them
afterwards. (see replace_images_se)

*/

/* (2) Read incoming messages until from all se a
write_end_signal message is received. If message
body is an image, bind its local object to
the object list.

*/

while (! done) {

message = read_port;

if (message->body == write_end_signal) {
add_to_list (se, message->sender);
if (se == se_list)
done = TRUE;

+
else if (is_image (message->body))
add_to_list (obj_list, object_of_image (message->body));

/* (3) Send continue message to all subenvironments.

get_assoc_semijoint_predicate (universe, formula)
{

integer extremal;

LIST_OF_INTEGER integer_list;

/* We only treat the case (a.attl cond_operator b.att2)
where a.attl is the binding variable and b is already bound.
*/
obj_list = object_list (formula->right_symb) ;
switch (cond_operator (formula)) {
case '<'":
/* (1) Assign the maximum value of the att2 values of the objects in b

15

to the integer ’extremal’.
(2) Read incoming messages until write_end_signal from every se
has arrived.
Message bodies contain integers. If the message body’s
integer is smaller than extremal replace it.
*/

write_port (se, extremal, CSE); /* for all se in se_list */

/* (3) Replace formula->right_symb with the extremal value and call the
get_assoc_semijoint_predicate function.

*/

replace (formula->right_symb, extremal);

return (get_associative_predicate (universe, formula));

break;

case "«=":

case ">":

case ">=":
break;

/* Case '"<=", ">" and ">=" are equivalently executed as case "<"
with regard to the operator semantics.
*/
case ''=='":
/* (1) Add all occurring values in b.att2 to the global_list.
(2) Read incoming values and add them to the global_list
until an write_end_signal from all se in se_list has been read.
(3) Send the global_list to all se in se_list.
(4) Bind all object ’0’ of the corresponding class and with ’o.attl’
in global_list to a.
*/
break;
case '"!='":
/* (1,2,3) as in the "==" case.
(4) Bind all object ’0’ of the corresponding class in the universe
and with ’o.attl’ not in global_list to a.
*/
break;
b
b

/* */

16

/* QUERY PROCESSOR FUNCTION OF THE COORDINATING SUBENVIRONMENT (CSE) */

/* Global objects:

domain - list of the subenvironments belonging to the same development
project
cse_id - id of this (coordinating) subenvironment
se_list - current list of subenvironment involved in the rule processing
local_ob - objectbase of this (the cse) subenvironment
*/
/* Signals:

write_end_signal
continue_signal
end_init_rest_rule

*/

build_characterized_binding_CSE (bindings)
BINDING bindings;

{
LIST_OF_SE list_of_new_se, se;

for (binding = bindings, level = 0;
binding != NULL;
binding = binding->next, level++)

{
check_new_subenvironment_criteria (list_of_new_se, binding->formula);
while ((se = get_next_se (list_of_new_se)) '= NULL) {
initiate_rest_rule (se, level);
insert_list (se_list, se);
read_port (cse_id, end_init_rest_rule, se);

}
/* Send continue_signal to all subenvironments.
*/
get_all_bound_objects (binding->formula, local_objectbase, formula) ;
}
}
[k mmmmmm e - */

check_new_subenvironment_criteria (list_of_new_se, formula)
LIST_OF_SE list_of_new_se;

17

FORMULA formula;
{
BINDING_VARIABLE b_var;
LIST_OF_SE se;
if (is_restricted (formula)) {
/* Read, until write_end_signal is read, from all subenvironments in
se_list, the incoming messages of the subenvironments to be addressed
and add them to ’list_of_new_se’.

*/

/* Add all subenvironment, which have an image bound to a already
bound binding variable in the formula and are not in se_list, to
’list_of_new_se’.

*/

while (b_var = get_next_bound_variable (formula) !'= NULL) {

while (obj = get_next_object (b_var->object_list))
if (is_image (obj))
if (! is_element (se_list, obj->se_id))
add_to_list (list_of_new_se, obj->se_id);

¥

b
else {

/* Assing all subenvironments which belong to the

project’s domain, but are not yet element of ’se_list’ to
’list_of_new_se’.
*/
while ((se = get_next_se (domain)) !'= NULL)
if (! is_element (se_list, se))
add_to_list (list_of_new_se, se);

b

/* Notify the subenvironments about new subenvironment.*/

get_all_bound_objects (universe, formula)
OBJECT_LIST universe ;
FORMULA formula;

{
OBJECT_LIST obj_list;
O0BJECT obj;
FORMULA subformula;

18

switch (formula->type)q{
case AND:
for (subformula = formula->child; subformula '= NULL;
subformula = subformula->next) {
get_all_bound_objects (universe, subformula) ;
universe = bound_objects;
bound_objects = EMPTY;
}
bound_objects = universe;
return;

case OR:
for (subformula = formula->child; subformula '= NULL;
subformula = subformula->next) {
get_all_bound_objects (universe, subformula) ;
obj_list = union (obj_list, bound_objects);
bound_objects = EMPTY;
}
bound_objects = obj_list;
return;

case NOT:
get_all_bound_objects (universe, formula->child);
replace_images_cse (universe);
replace_images_cse (bound_objects);
bound_objects = set_complement (universe, bound_objects);
return;

PREDICATE:

replace_images_cse (universe);

if (has_bound_operand (formula))
replace_images_cse (bound_operand (formula));

switch (formula->operator) {

case MEMBER:
return (get_member (universe, formula));

case ANCESTOR:
return (get_ancestor (universe, formula));

case LINKTO:
bound_var = bound_operand (formula);
complete_bound_operand (bound_var, attribute (formula, bound_var));
return (get_linkto (universe, formula));

19

case ASSOCIATIVE_PREDICATE:
if (semi_joint (formula)){
return (get_assoc_semijoint_predicate (universe, formula, se_list));
}
else {
return (get_associative_predicate (universe, formula));

complete_bound_operand_cse (bound_var, att)
0BJ_LIST bound_var;
ATTRIBUTE att;

LIST_OF_SE se, se_log_list;
int done = FALSE;

O0BJECT objl, obj2;

MESSAGE message;

/* (1) Send the images of all objects ’objl’ in bound_var to the
subenvironment ’se’, if there is an object ’o0bj2’ in ’objl->att’
with ’obj2->se_id == se’. The list ’se_log_list’ keeps track that
an object is not sent more than once to the same se.
*/
while ((objl = get_next_obj (bound_var)) != NULL) {
se_log_list = NULL;
while ((obj2 = get_next_obj (obj->att)) != NULL)
if (is_image (obj2) && in_list (se_list, obj2->se_id) &&
! in_list (se_log_list, obj2->se_id)) {
write_port (obj2->se_id, objl->obj_id, cse_id);
add_to_list (se_log_list, obj2->se_id);
+
+

/* (2) Read incoming messages until all subenvironments have sent a
write_end_signal. If message
body is an image, bind it to ’bound_var’.
*/
while (! done) {
message = read_port;

20

if (message->body == write_end_signal) {
add_to_list (se, message->sender);
if (se == se_list)
done = TRUE;
}
else if (is_image (message->body))
add_to_list (bound_var, message->body) ;

/* (3) Send continue message to all subenvironments.

replace_images_cse (obj_list)
{
LIST_OF_SE se;
int done = FALSE;
MESSAGE message;
/* (1) Write all images in obj_list to the port and remove them
afterwards. (see replace_images_se)

*/

/* (2) Read incoming messages until from all se a
write_end_signal message is received. If message
body is an image, bind its local object to
the object list.

*/

while (! done) {

message = read_port;

if (message->body == write_end_signal) {
add_to_list (se, message->sender);
if (se == se_list)
done = TRUE;
}

else if (is_image (message->body))
add_to_list (obj_list, object_of_image (message->body));

/* (3) Send continue message to all subenvironments.

*/

21

get_assoc_semijoint_predicate (universe, formula)
{

integer extremal;

LIST_OF_INTEGER integer_list;

/* We only treat the case (a.attl cond_operator b.att2)
where a.attl is the binding variable and b is already bound.
*/
obj_list = object_list (formula->right_symb) ;
switch (cond_operator (formula)) {
case '<'":
/* (1) Assign the maximum value of the att2 values of the objects in b
to the integer ’extremal’.
(2) Read incoming messages until write_end_signal from every se
has arrived.
Message bodies contain integers. If the message body’s
integer is smaller than extremal replace it.
*/

write_port (se, extremal, CSE); /* for all se in se_list */

/* (3) Replace formula->right_symb with the extremal value and call the
get_assoc_semijoint_predicate function.

*/

replace (formula->right_symb, extremal);

return (get_associative_predicate (universe, formula));

break;

case "«=":

case ">":

case ">=":
break;

/* Case '"<=", ">" and ">=" are equivalently executed as case "<"
with regard to the operator semantics.

*/

case "==":

/* (1) Add all occurring values in b.att2 to the global_list.

(2) Read incoming values and add them to the global_list
until an write_end_signal from all se in se_list has been read.

(3) Send the global_list to all se in se_list.

22

(4) Bind all object ’0’ of the corresponding class and with ’o.attl’
in global_list to a.
*/
break;
case '"!='":
/* (1,2,3) as in the "==" case.
(4) Bind all object ’0’ of the corresponding class in the universe
and with ’o.attl’ not in global_list to a.
*/
break;
b
b

/* */

7 Appendix 2

Implementation of the query processing on the subenvironments running a rest rule.

/* QUERY PROCESSOR FUNCTION OF THE SUBENVIRONMENT (SE) */

/* Global objects:

domain - 1list of the subenvironments belonging to the same development
project

cse_id - coordinating subenvironment id

se_id - id of this subenvironment

local_ob - objectbase of this (se_id) subenvironment

se_list - current list of subenvironment involved in the rule processing
*/
/* Signals:

write_end_signal
continue_signal
end_init_rest_rule

*/

build_characterized_binding_SE (bindings, level)
BINDING bindings;
int level;

{
for (binding = bindings, i = 0;

23

binding != NULL;
binding = binding->next, i++)
{
if (i <= level) {
binding->variable = NULL;
if (i == level) {
/* Next increment of i will be the level of the processing.
Therefore, notify the cse about the end of initialization.
*/
write_port (cse_id, end_init_rest_rule, se_id);}
else {
if (1 > (level + 1)) {

/* Send subenvironments ids to the cse, which have images
in already bound binding variables in binding->formula
and are not in se_list.

Send write_end_signal to cse.
Read update for se_list from cse.
*/
b
read_port (cse_id, continue_signal, se_id);
get_all_bound_objects (binding, local_objectbase, formula);

get_all_bound_objects (universe, formula)
OBJECT_LIST universe ;
FORMULA formula;

OBJECT_LIST obj_list;
O0BJECT obj;
FORMULA subformula;

switch (formula->type)q{
case AND:
for (subformula = formula->child; subformula '= NULL;
subformula = subformula->next) {
get_all_bound_objects (universe, subformula) ;
universe = bound_objects;
bound_objects = NULL;
}

bound_objects = universe;

24

return;

case OR:
for (subformula = formula->child; subformula '= NULL;
subformula = subformula->next) {
get_all_bound_objects (universe, subformula) ;
obj_list = union (obj_list, bound_objects);
bound_objects = EMPTY;
}
bound_objects = obj_list;
return;

case NOT:
get_all_bound_objects (universe, formula->child);
replace_images_se (universe);
replace_images_se (bound_objects);
bound_objects = set_complement (universe, bound_objects);
return;

PREDICATE:

replace_images_se (universe);
replace_images_se (bound_operand (formula));
switch (formula->operator) {
case MEMBER:

return (get_member (universe, formula));
case ANCESTOR:

return (get_ancestor (universe, formula));
case LINKTO:

return (get_linkto (universe, formula));
case ASSOCIATIVE_PREDICATE:

if (is_semi_joint (formula)){

return (get_assoc_semijoint_predicate (universe, formula));

}
else {
return (get_associative_predicate (universe, formula));

complete_bound_operand_se (bound_var, att)

25

0BJ_LIST bound_var;
ATTRIBUTE att;

LIST_OF_SE se;
int done = FALSE;
OBJECT obj1, obj2;
MESSAGE message;
/* (1) Write images in bound_var->att on the port.
’not_yet_sent’ should prevent that an object is sent twice.
It probably need a list who keeps track.
*/
while ((obj1l = get_next_obj (bound_var)) != NULL)
while ((obj2 = get_next_obj (obj->att)) != NULL)
if (is_image (obj2) && not_yet_sent (objl))
write_port (obj2->se_id, objl->obj_id, cse);

/* (2) Notify cse of end of broadcasting
*/

write_port (cse_id, write_end_signal, se_id);

/* (3) Read the incoming message. If message
body is an image, bind it to bound_var.
(4) Wait for continue_signal from cse then return.
*/
while ((message = read_port) '= (se_id, continue_signal, cse))
if (is_image (message->body))
add_to_list (bound_var, (message->sender, message->body));
return;

+
[k mmmmmm e - */
replace_images_se (obj_list)
{
/* (1) Write all images in obj_list to the port and remove them

afterwards.
(2) Notify cse of end of broadcasting
(3) Read the incoming message. If message
body is an image, bind its local object to
the object list.
(4) Wait for continue_signal from cse then return.

image, bind its local object to the object list.
/*x (1) */

26

while ((obj = get_next_obj (obj_list)) '= NULL) {
if (is_image (obj)) {
write_port (obj->se_id, obj->obj_id, se_id);
remove(obj_list, obj);

+
+
/x (2) */
write_port (cse_id, write_end_signal, se_id);
/* (3,4) */
while ((message = read_port) '= (se_id, continue_signal, cse))

if (is_image (message->body))
add_to_list (obj_list, object_of_image (message->body));
return;

complete_bound_operand_se (bound_var, att)
0BJ_LIST bound_var;
ATTRIBUTE att;

LIST_OF_SE se, se_log_list;
int done = FALSE;

O0BJECT objl, obj2;

MESSAGE message;

/* (1) Send the images of all objects ’objl’ in bound_var to the
subenvironment ’se’, if there is an object ’o0bj2’ in ’objl->att’
with ’obj2->se_id == se’. The list ’se_log_list’ keeps track that
an object is not sent more than once to the same se.

*/

while ((objl = get_next_obj (bound_var)) != NULL) {
se_log_list = NULL;
while ((obj2 = get_next_obj (obj->att)) != NULL)
if (is_image (obj2) && in_list (se_list, obj2->se_id) &&
! in_list (se_log_list, obj2->se_id)) {
write_port (obj2->se_id, objl->obj_id, se_id);
add_to_list (se_log_list, obj2->se_id);
+
+
write_port (cse_id, write_end_signal, se_id);
/* (2) Read incoming messages until continue_signal arrives. If message

27

body is an image, bind it to ’bound_var’.

*/
message = read_port;
while (message->body !'= write_end_signal) {

add_to_list (bound_var, message->body) ;
message = read_port;

get_assoc_semijoint_predicate (universe, formula)

{

integer extremal;
LIST_OF_INTEGER integer_list;
/* We only treat the case (a.attl cond_operator b.att2)
where a.attl is the binding variable and b is already bound.
*/
obj_list = object_list (formula->right_symb) ;
switch (cond_operator (formula)) {
case '<'":

/* (1) Assign the maximum value of the att2 values of the objects in b
to the integer ’extremal’.
(2) write_port (cse_id, extremal, se_id);
(3) extremal = read_port (se_id, integer, cse_id)
(3) Replace formula->right_symb with the extremal value and call the
get_assoc_semijoint_predicate function.
*/
replace (formula->right_symb, extremal);
return (get_associative_predicate (universe, formula));
break;

case "«=":

case ">":

case ">=":
break;

/* Case '"<=", ">" and ">=" are equivalently executed as case "<"
with regard to the operator semantics.

*/

case "==":
/* (1) Send all occurring values in b.att2 to cse.

28

(2) Wait for global list from the cse.
*/
list_of_values = read_port (se_id, list of integer, cse);
/* (3) Bind all object ’o’ of the corresponding class and with ’o.attl’
in global_list to a.

*/
break;
case "!=":
/% (1,2) as in the "==" case.
(3) Bind all object ’0’ of the corresponding class in the universe
and with ’o.attl’ not in global_list to a.
*/
b
b
[k mmmmmm e - */

29

References

Toni A. Biinter. Optimisation of the characterisic function in MARVEL rules.
Technical report: 1993.

Stefano Ceri and Giuseppe Pelagatti. Distributed Databases. MacGraw-Hill
computer science series. MacGraw-Hill, 1984.

George T. Heineman, Gail E. Kaiser, Naser 5. Barghouti, and Israel 7. Ben-
Shaul. Rule chaining in marvel: Dynamic binding of parameters. IEFE Ezxpert,
7:26-32, 1992.

Gail E. Kaiser, Peter H. Feiler, and Steven S. Popovich. Intelligent assistance
for software development and maintenance. IEFE Software, pages 40-49, May
1988.

30

Figures

hl.date=93116 h2.date=930829 h4.date=930321

h5.date=930721

\ \
SE1 mod1 | SE?2 mod2 | SE3 mod3
\ \
L Y
\ ~
cd ©@ h 2 h3 3 ¢4 | & h4 n5
|
\

‘+ - ~ <
\
\
‘ h3.date=930721

Figure 1: Example objectbase.

31

