
A Non�Deterministic Approach to Restructuring Flow Graphs

Toni A� B�unter

Technical Report CUCS�������
COLUMBIA UNIVERSITY

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The history of programming is �lled with works about the properties of program �ow graphs� There

are many approaches to de�ning the quality of such graphs� and to improving a given �ow graph by

restructuring the underlying source code� We present here a new� twofold approach to restructuring the

control �ow of arbitrary source code� The �rst part of the method is a classical deterministic algorithm�

the second part is non�deterministic and involves user interaction� The method is based on node splitting�

enabling it to satisfy the de�nition of the extended Nassi�Shneiderman diagrams�

�



Contents

� Introduction �

� Related Work and History �

� Structure and Transformation of Flow Graphs �

� Incomplete D�Structure Transformation �

� Unfolding � A Non�Deterministic Restructuring �

� An Application of Unfolding �

	 Conclusion and Future Work 	


 Figures ��

�



� Introduction

The quality of the control �ow graphs of procedural programming languages has concerned programmers and
theorists for a long time� Investigation into �ow graph structures has led to new programming paradigms�
The structured programming appoach ���	 dealing with D
structures which are well known to Pascal program

mers	 is considered to be of high quality� Therefore	 countless attempts have been made to �nd theorems and
algorithms for updating the �ow graphs of given source code to structures similar to D
structures� It turned
out	 however	 that most of these algorithms involve a trade
o� between the readability of the restructured
source code and its closeness to the desired D
stucture�

We present here a new compromised method that is concerned with both the readability and the qual

ity of the produced structure� The method is twofold� A deterministic	 preliminary transformation prepares
the �ow graph for the second stage of the method� The second stage entails presenting some basic opera

tions which allow the programmer to decide how far he wants to unfold a nested structure� Such subjective
unfolding is quite useful and may even be necessary	 especially for software enhancement�

The method employs a process called node splitting ����� Node splitting consists of copying and insert

ing single sequential blocks� There is no change of predicates and no addition of boolean variables� The
continuity of the method preserves the context of the original program blocks� This process both decreases
unnecessery complexity	 and improves maintainability and readability�

As a contribution to graphic illustrations of source code	 we present an extension of the NS diagram	
the extended NS diagram� By applying the �rst stage of our restructuring method	 the source code meets
the requirements for the eNS diagram� Examples are shown in section four	 �ve and six�

� Related Work and History

The �rst results about �ow graphs	 and particulary about control �ow graphs	 go back to the ����s�
Numerous works were published	 which can be roughly classi�ed into three cathegories	 according to topic�

� classi�cation of �ow graph structures	

� complexity and metrics de�nitions about �ow graphs	

� transformations of �ow graphs�

The results of these earlier works were often controversial� A broad discussion arose about the harmfulness
of the goto statement ���	 ����� One group supports a liberal	 but responsible programmer	 who produces
understandable code	 while the opposing view advocates the use of structures that also cover design and
speci�cation areas �as in the structured programming approach�� One of the most popular outcomes of this
debate is the programming language	 Pascal ����� Pascal integrates the so called block structure as its basic
component of control �ow �����

For better or for worse	 huge amounts of source code have already been and still are being written with
goto statements� In spite of the proclaimed attitude of disciplined programmers	 much of the source code

�



produced is hardly understandable because of the complex control structure� This has encouraged research
about transformation of source code� The results of various approaches show the trade
o� between the
quality of the achieved structures	 and the often harmful variety of the changes which have to be made�
The two extreme postitions of control �ow graphs concerned transformations are ��� the detection of block
structure
like patterns and their replacement through loop structures such as while	 and braching structures
such as if�then�else ����	 and ��� the transformation of arbitrary source code into block structures ����
The latter approach introduces additional boolean variables that are necessary to uphold the semantics�

Despite the large quantity of varied results	 relatively few software maintenance tools are currently in
use� One of the main reasons for this is the aforementioned trade
o�� Strong restructuring often makes the
semantic structure as data
�ow or local meaning of variables more confusing than before	 while �soft� re

structuring	 such as ����	 is often merely cosmetic� Our approach circumvents this disadvantage by de�ning
two stages of transformation� ��� a deterministic transformation and ��� a user
driven	 non
deterministic
transformation	 which involves the programmer�s responsibility�

� Structure and Transformation of Flow Graphs

The structure of a �ow graph can be expressed by a directed� labeled graph where the nodes represent se

quential program blocks	 ending	 in the event of branching	 with a conditional predicate� The branching
edges are labeled by predicate values which direct the control �ow� The graph is fully connected� One node
is the start node� From the start node	 every node is accessible along the edges�

Marcotty and Ledgard give an overview of the structure and transformation of control �ow graphs �����
Below are a few de�nitons which are important for this paper�
The most restricted and probably most maintainable structure is the D�structure �in ���� originally called
D
structure	 �D� in honor of Dijkstra�s work as ���� Programming that exclusively applies D
structures
is called structured programming� A D
structure consists of a sequence of if�then�else	 case	 while	
repeat�until and for with a single entry and a single exit point� These can be parsed by a context
free
graph grammer�

Other de�nitions of control �ow graphs only restrict the loop structure� The repeat�exit�cycle structure
de�nes the loop as a single
entry�single
exit structure	 with the freedom of exiting and continuing the loop
at various places ��gure ���

In our own approach the focus will be on the single�entry structure� The single
entry structure allows
exiting loops to di�erent nodes ��gure ���

In a generic �ow graph	 a loop is a multiple�entry�multiple�exit structure� This makes it possible to en

ter a loop at various nodes� According to ���	 such a structure is considered harmful�

�



Transformation of Flow Graphs and Source Code

Our main concerns in �ow graph transformation are control �ow graphs with underlying source code� The
atomic operation which we apply on the �ow graph in our apporach is node splitting ����� In ��� we developed
a mathematical model for node splitting using the cartesian product and supersets�

The fundamental restriction of program transformation is the functional equivalence	 which has to be pre

served� Applied to the node splitting operations 	 the following constraint preserves the functionality�

� For each node and each label the successor node must be either the same as it was before the transfor�
mation� or an exact copy�

We call a transformation that full�lls this condition a sequential block preserving transformation�

� Incomplete D�Structure Transformation

In this section we show the deterministic part of our appoach� we will de�ne the term incomplete D�
structure� Next to the theoretical transformation theorems	 we introduce the concept of the extended
Nassi
Shneiderman diagrams	 which are adaptable for the incomplete D
structure�

The �rst basic theorem is about the transformation to single
entry �ow graphs� This is the main theo

rem belonging to the deterministic part of the method� The following proof shows the basic de�nitions and
operations�

Theorem �� Given a generic �ow graph f 	 it is possible to achieve a single
entry �ow graph by ap

plying a sequential block preserving transformation�

Instead of giving the full detailed mathematical proof	 we explain the proof idea which shows also the
algorithm that can be deduced �details in �����

Proof�

��� Let us partition the set of nodes of a given	 generic �ow graph into maximum loops� A maximum
loop is a subset of all nodes which forms a loop� None of these nodes is a member of another loop� If there
is only one maximum loop or all maximum loops are already single
entry loops	 we can go to ����

��� We focus now on one freely choosen maximum loop� We determine one entry node of the loop as
the main entry h� Because of ��� there is another loop entry e di�erent from h� Let E be the set of nodes
not in L that lead directly to e� Now we make copies of e and of all nodes in L that are on the direct line
back to h� We redirect all edges pointing to e so that they lead now to the copy e�	 and arrange the other
copies P � outside of L in the appropriate way� ��Appropriate� in this context means that every node has
the same successors or copies of them� Figure � makes this clear�� We repeat this procedure for all other
nodes in L that are additional entry points to h	 in order to �nally get a single entry loop�

�



��� If there are still other multiple
entry maximum loops	 we apply ��� to them� The termination of
this process can be shown by complete induction �details in �����

��� If all maximum loops are single
entry loops	 we go one maximum loop level deeper� We look at the
nodes of each maximum loop� We de�ne the �ow graph of a maximum loop as �a� the nodes of the maxi

mum loop with the h node as the start node and �b� the edges that connect only members of the maximum
loop	 and are not back links to h� We now apply recursively steps one through four to each of these �ow
graphs� We proceed until no multiple
entry loop exists� Termination is guaranteed by ���	 page ���
Finally we have to make sure that the sequential block order is preserved� Because every operation of
the transformation preserves the sequential block order	 the order of single action inside a block remains
untouched	 unless there is a branching address to be changed�
QED�

A further outcome of this transformation is that the �ow graph is now reducible ���� The reducibility
of a �ow graph is important for data
�ow equations	 which enable data
�ow scrutiny for optimization or
maintenance purposes ��� �����

Before we describe the non
deterministic part of our method we take a look at the loop
free part of a
�ow graph� By building equivalent sets of the maximum loops we get a super�structure in which nodes are
sets of sequential blocks� Edges of the super
structure represent the existence of an edge between at least
two nodes in the nodes of the super
structure� This �ow graph can then be restructured due to the following
theorem�

Theorem �� If f is a loop
free �ow graph	 there exists a sequential block preserving transformation trans

forming f into a D
structure�

Proof idea�

This proof operates much like the proof of theorem �� Copying sequential blocks disconnects links into
D
structures� Figure � shows fragmental �ow graph and its transformation� Details of the proof can be
found in ����

We can summarize the two given theorems	 which signify the deterministic part of the method	 with the
following corollary�

Corollary �� Through the application of a sequential block transformation	 every generic �ow graph
can be transformed into a �ow graph with two structural properties�

�� All maximum loops on any level �as de�ned in Theorem � ���� are single
entry loops�

�� All loop
free structures and super
structures are D
structures�

From now on	 we will call a �ow graph that full�lls conditions � and � of corollary � an incomplete D�
structure�

�



Extended Nassi�Shneiderman Diagrams

Nassi
Shneiderman diagrams are well known for structured design of the control �ow and standard pro

gramming ����� They are closely related to the D
structure and can be used in a pre
coding phase with
programming languages such as Pascal or MODULA
� ���� To provide a similar illustration we developed
an extended NS diagram for incomplete D
structures�
An extended NS diagram consists of the following items�

� Sequential program blocks� squares containing source code which	 in the event of branching	 have a
triangle at the bottom�

� Forward edges� a polygon	 usually a square�

� Loop edges� polygons connecting a sequential block with a loop entry	 a back link� Loop edges are
di�erent from forward edges by the keywords loop or while�

� Flow semantic� an ENS diagram is entered at the top and ends at the bottom� Each sequential block
is entered at the top and exited through the bottom line or a side of the triangle in case of branching�
The forward edges and loop edges lead from one block to the next	 or to one previous	 respectivly�

The following example illustrates the ENS diagram de�nition� The incomplete D
structure �ow graph of
�gure � can be drawn as a ENS diagram	 as shown in �gure �� The graph and the ENS diagram still
have unpleasent back links� the node b is part of two loops� In the next section	 we will see that with
non
deterministic unlinking �called unfolding� we can simplify this structure�

� Unfolding � A Non�Deterministic Restructuring

In this section we show the non
deterministic part of our method	 called unfolding� In case of an incomplete
D
structure	 further restructuring will preserve the D
structure property�

The exampli�ed �ow graph of �gure � still has a tangled structure� The maximum loop fa� b� cg con

sists of two subloops fa� bg and fb� cg which share node b� By applying a similar mechanism as displayed in
the proof of theorem �	 we can unfold this nestedness� The resulting �ow graph is shown in �gure ��

The algorithmic description of unfolding

The unfolding algorithm consists of three major steps� Step one includes the non
deterministic or user

dependable part of the method� Steps two and three are deducible from step one�

� ��� Select an edge e that represents an unpleasant entry to a node v of a maximum loop L�

� ��� Make copies of all nodes of L between e and the loop
entry node of L�

� ��� Add the edges and the labels	 so that the set of successor nodes and their labels are the original
ones or copies of them�

�



There are still some crucial points to mention� Our experience has shown that the edge in ��� has to be
chosen carefully� If the set of nodes and their edges are very big	 the structure of the unfolded graph can be
very di�erent from the original	 in size as well as in shape� This can impair readability and maintainability�
In example � there was only one node to copy	 so the result is adequate�

The variability compells us to provide a user interface	 that supports an undo and a redo functionality
of single operations	 enabling the user to estimate his changes�

However	 destroying an incomplete D
structure by unfolding would also be undesirable� Fortunately	 we
can prove that additional unfolding can not destroy a previously gained D
structures� In ��� we proved the
following theorem�

Theorem �� Let f be a D
structure �ow graph� Let L be a maximum loop with the entry nodes eL�
Let a be an element of L	 di�erent from eL and with one or more entries� With a sequential block preserv

ing transformation it is possible to free a from all edges pointing to it except one� The gained graph is still
a D
structure�

In case of loop
free D
structures	 unfolding produces the same copying mechanisms as used in theorem �	
and therefore all resulting structures are going to be D
structures �details in �����

	 An Application of Unfolding

In this section we illustrate unfolding applied to a source code fragment	 and then we show how to enhance
this fragment�

Unfolding can be applied for two di�erent purposes�

� To Ease a �ow graph from a tangling structure	 for analysis and reading purposes	 without physically
restructuring the source code� �For de�ning data
�ow equations	 it is only necessary to know about
the restructured graph and the information of the sequential blocks� In an advanced source code
representation	 such as we proposed in ���	 it is not necessary to make copies of the whole sequential
block� In our relational database approach	 a simple entity can represent the copied nodes��

� To physically unfold the �ow graph and the source code in order to maintain and enhance the copied
and the original block independently�

For the second point	 we will give here an illustrative example� The following small fragment	 part of a
parser	 has the control �ow graph depicted in �� The vertix a consists of the line ���	 the vertix b consists
of the lines ��� and ���	 and the vertix c consists of the lines ��� to ����

�� count � integer

�� token � enumerate � � �

� � �

��� write �newline�

�



��� read token

��� if token � nl then ���

��� count � count � �

�	� if token 
� end then ���

��� � � �

We unfold the �ow graph	 choosing the edge �c� b� and gain the structure shown in �gure �� Figure �
depicts the unfolded source code fragment represented as an ENS diagram� We emphasize the copied se

quential block with a dashed square�

The unfolding enables us to change the copy block independently of the original one� This is particu

larly interesting because the precondition in the copy is di�erent than in the original block� In the original
block the value of the variable token is nl or an initial value� In the copy the state of the variable token
is not end and not nl� This enables changing the behaviour of the program in case of a �regular� token
�neither nl nor end� to insert the token into a token table�

Finally the source code can be printed in a pretty print manner and with changing syntactical keywords �as
shown in ������
�� count � integer

�� token � enumerate � � �

� � �

��� loop

��� ��repeat

��� ����write �newline�

��� ����read token

�	� ��until token � nl

��� ��loop

�� ����count � count � �

��� ����if token 
� end then exit ���

��� ����set in table�token�

��� ����read token

��� ����if not �token � nl� then exit

��� ��endloop

��� endloop

��� � � �


 Conclusion and Future Work

The restructuring method presented in this paper consists of a two
part �ow graph transformation� The
�rst part transforms a �ow graph into a so called incomplete D�structure	 which is somewhere between a
reducible �ow graph and a D
structure� The non
deterministic part unfolds remaining unpleasant nested

ness in �ow graphs� This has to be accomplished through user
interaction� The result of this restructuring

�



depends on the skill and experience of the user	 and his or her intended goal� In this paper we have only
applied this technique to control �ow graphs� But the generality of the method enables application with the
same transformation constraints to any kind of directed graphs such as data
�ow graphs	 semantic networks
or workstation computer network topologies�

The theoretical part of the method has already been completed� This paper can thus be regarded as
providing closure to previous works in this �eld�

The results and experience it has yielded will doubtless in�uence the �edgling project developing �ne grain
source code database �c�f� ����� This database is thought to support the development and the maintenance
of large software systems�

�



References

��� Alfred A� Aho	 Ravi Sethi	 and Je�rey D� Ullman� Compilers Principles� Techniques and Tools�
Addison
Wesley Publishing Company	 ����

��� E� Ashcroft and Z� Manna� The translation of �goto� programs to �while� programs� Inform� Proc���	
pages �������	 ����

��� G� Blaschek	 G� Pomberger	 and F� Ritzinger� Einf	uhrung in die Programmierung mit Modula�
�
Studienreihe Informatik� Springer
Verlag	 ����

��� C� B�ohm and G� Jacopini� Flow diagrams	 Turing maschines and languages with only two formation
rules� Communications of the ACM	 ���	 ����

��� Toni A� B�unter� Eine Architektur eines Software�Wartungssystems� PhD thesis	 Universit�at Z�urich	
���

��� Toni A� B�unter� A repository for a care environment� CASE�� Sixth International Workshop on
Computer�Aided Software Engineering	 ��� �submitted in January��

��� O� J� Dahl	 E� W� Dijkstra	 and C� A� R� Hoare� Structured Programming� Academic
Press
�London	New
York�	 ����

��� E� W� Dijkstra� Goto statement considered harmful� Communications of the ACM	 �������������	
March ����

�� E� W� Dijkstra� Notes on structured programming� In Academic Press New York	 editor	 Structered
Programming	 ����

���� Paul Eisner� Strukturierte Wartung von Cobol
Software� Output	 ���	 ����

���� Paul Eisner� Strukturierte Software�Wartung� PhD thesis	 Universit�at Z�urich	 ����

���� C� A� R� Hoare and Niklaus Wirth� An axiomatic de�nition of the programming language Pascal� Acta
Informatica	 ���������	 ����

���� Ken Kennedy� A Survey of Data Flow Analysis Techniques� Prentice
Hall software series	 ����

���� D� E� Knuth and R� W� Floyd� Notes on avoiding �go to� statements� Inform� Processing Letters �	
pages �����	 ����

���� Henry F� Ledgard and Michael Marcotty� A genealogy of control structures� Communications of the
ACM	 ������	 ����

���� I� Nassi and B� Shneiderman� Flowchart techniques for standard programming� Sigplan Notices	 ��������
��	 ����

���� W� W� Peterson	 T� Kasami	 and N� Tokura� On the capabilities of while	 repeat	 and exit statements�
Communications of the ACM	 �������������	 April ����





� Figures

Figure �� Single
entry�single
exit �ow graph�

Figure �� Single
entry�multiple
exit �ow graph�

*

*

*

*

*

* E

h

e

S

P

h

e

S

P

P’

E

e’

before after

*

*

*

*

*

*

L L

Figure �� Display of a maximum loop L with a second entry from the nodes E� The maximal loop consists
of h	 the main entrance of the loop emain	 the second entrances from E 	and the other nodes collected in
the bold verices S and P� The arrows represent zero or more directed edges and only the a�ected edges are
displayed� After the transformation P and e are doubled and the necessary edges are built�

��



a

b c

d

e a

b c

d

e

c’

before after

Figure �� Transformation of loop
free �ow graphs to D
structures� The �before� graph show a entrance of
e disturbing the D
structure a	 b	 c	 and d� By copying c and redirecting e to c the D
structure can be
rescued�

a

b

c

Figure �� Incomplete D
structure with two subloops f a	 b g and fb	 cg and the shared node b�

��



a

b

c

loop

loop

Figure �� Example of a ENS diagram�

a

b

c

b

Figure �� Incomplete D
structure after unfolding of the double used node b�

��



token = nl

count = count + 1

token != end

loop

loop

"newline"write

T

T

F

F

token = nl

loop

TF

read token

read token

Figure �� Exemple source code fragment depicted as an ENS diagram� The dashed square signi�es the
copied sequential block�

��


