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Abstract

The history of programming is filled with works about the properties of program flow graphs. There
are many approaches to defining the quality of such graphs, and to improving a given flow graph by
restructuring the underlying source code. We present here a new, twofold approach to restructuring the
control flow of arbitrary source code. The first part of the method is a classical deterministic algorithm;
the second part is non-deterministic and involves user interaction. The method is based on node splitting,
enabling it to satisfy the definition of the extended Nassi-Shneiderman diagrams.
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1 Introduction

The quality of the control flow graphs of procedural programming languages has concerned programmers and
theorists for a long time. Investigation into flow graph structures has led to new programming paradigms.
The structured programming appoach [7], dealing with D-structures which are well known to Pascal program-
mers, is considered to be of high quality. Therefore, countless attempts have been made to find theorems and
algorithms for updating the flow graphs of given source code to structures similar to D-structures. It turned
out, however, that most of these algorithms involve a trade-off between the readability of the restructured
source code and its closeness to the desired D-stucture.

We present here a new compromised method that is concerned with both the readability and the qual-
ity of the produced structure. The method is twofold. A deterministic, preliminary transformation prepares
the flow graph for the second stage of the method. The second stage entails presenting some basic opera-
tions which allow the programmer to decide how far he wants to unfold a nested structure. Such subjective
unfolding is quite useful and may even be necessary, especially for software enhancement.

The method employs a process called node splitting [17]. Node splitting consists of copying and insert-
ing single sequential blocks. There is no change of predicates and no addition of boolean variables. The
continuity of the method preserves the context of the original program blocks. This process both decreases
unnecessery complexity, and improves maintainability and readability.

As a contribution to graphic illustrations of source code, we present an extension of the NS diagram,
the extended NS diagram. By applying the first stage of our restructuring method, the source code meets
the requirements for the eNS diagram. Examples are shown in section four, five and six.

2 Related Work and History

The first results about flow graphs, and particulary about control flow graphs, go back to the 1970’s.
Numerous works were published, which can be roughly classified into three cathegories, according to topic:

e classification of flow graph structures,
e complexity and metrics definitions about flow graphs,
e transformations of flow graphs.

The results of these earlier works were often controversial. A broad discussion arose about the harmfulness
of the goto statement [8], [14]. One group supports a liberal, but responsible programmer, who produces
understandable code, while the opposing view advocates the use of structures that also cover design and
specification areas (as in the structured programming approach). One of the most popular outcomes of this
debate is the programming language, Pascal [12]. Pascal integrates the so called block structure as its basic
component of control flow [12].

For better or for worse, huge amounts of source code have already been and still are being written with
goto statements. In spite of the proclaimed attitude of disciplined programmers, much of the source code



produced is hardly understandable because of the complex control structure. This has encouraged research
about transformation of source code. The results of various approaches show the trade-off between the
quality of the achieved structures, and the often harmful variety of the changes which have to be made.
The two extreme postitions of control flow graphs concerned transformations are (1) the detection of block
structure-like patterns and their replacement through loop structures such as while, and braching structures
such as if-then-else [10], and (2) the transformation of arbitrary source code into block structures [4].
The latter approach introduces additional boolean variables that are necessary to uphold the semantics.

Despite the large quantity of varied results, relatively few software maintenance tools are currently in
use. One of the main reasons for this is the aforementioned trade-off. Strong restructuring often makes the
semantic structure as data-flow or local meaning of variables more confusing than before, while ”soft” re-
structuring, such as [10], is often merely cosmetic. Our approach circumvents this disadvantage by defining
two stages of transformation: (1) a deterministic transformation and (2) a user-driven, non-deterministic
transformation, which involves the programmer’s responsibility.

3 Structure and Transformation of Flow Graphs

The structure of a flow graph can be expressed by a directed, labeled graph where the nodes represent se-
quential program blocks, ending, in the event of branching, with a conditional predicate. The branching
edges are labeled by predicate values which direct the control flow. The graph is fully connected. One node
is the start node. From the start node, every node is accessible along the edges.

Marcotty and Ledgard give an overview of the structure and transformation of control flow graphs [15].
Below are a few definitons which are important for this paper.

The most restricted and probably most maintainable structure is the D-structure (in [15] originally called
D-structure, "D’ in honor of Dijkstra’s work as [9]). Programming that exclusively applies D-structures
is called structured programming. A D-structure consists of a sequence of if-then-else, case, while,
repeat-until and for with a single entry and a single exit point. These can be parsed by a context-free
graph grammer.

Other definitions of control flow graphs only restrict the loop structure. The repeat-exit-cycle structure
defines the loop as a single-entry/single-exit structure, with the freedom of exiting and continuing the loop
at various places (figure 8).

In our own approach the focus will be on the single-entry structure. The single-entry structure allows
exiting loops to different nodes (figure 8).

In a generic flow graph, a loop is a mulliple-entry/multiple-exit structure. This makes it possible to en-
ter a loop at various nodes. According to [2], such a structure is considered harmful.



Transformation of Flow Graphs and Source Code

Our main concerns in flow graph transformation are control flow graphs with underlying source code. The
atomic operation which we apply on the flow graph in our apporach is node splitting [17]. In [5] we developed
a mathematical model for node splitting using the cartesian product and supersets.

The fundamental restriction of program transformation is the functional equivalence, which has to be pre-
served. Applied to the node splitting operations , the following constraint preserves the functionality.

e For each node and each label the successor node must be either the same as it was before the transfor-
mation, or an exact copy.

We call a transformation that fullfills this condition a sequential block preserving transformation.

4 Incomplete D-Structure Transformation

In this section we show the deterministic part of our appoach; we will define the term incomplete D-
structure. Next to the theoretical transformation theorems, we introduce the concept of the extended
Nassi-Shneiderman diagrams, which are adaptable for the incomplete D-structure.

The first basic theorem is about the transformation to single-entry flow graphs. This is the main theo-
rem belonging to the deterministic part of the method. The following proof shows the basic definitions and
operations.

Theorem 1. Given a generic flow graph f, it is possible to achieve a single-entry flow graph by ap-
plying a sequential block preserving transformation.

Instead of giving the full detailed mathematical proof, we explain the proof idea which shows also the
algorithm that can be deduced (details in [5]).

Proof.

(1) Let us partition the set of nodes of a given, generic flow graph into mazimum loops. A maximum
loop is a subset of all nodes which forms a loop. None of these nodes is a member of another loop. If there
is only one maximum loop or all maximum loops are already single-entry loops, we can go to (4).

(2) We focus now on one freely choosen maximum loop. We determine one entry node of the loop as
the main entry h. Because of (1) there is another loop entry e different from h. Let E be the set of nodes
not in L that lead directly to e. Now we make copies of e and of all nodes in L that are on the direct line
back to h. We redirect all edges pointing to e so that they lead now to the copy €', and arrange the other
copies P’ outside of L in the appropriate way. (" Appropriate” in this context means that every node has
the same successors or copies of them. Figure 8 makes this clear.) We repeat this procedure for all other
nodes in L that are additional entry points to A, in order to finally get a single entry loop.



(3) If there are still other multiple-entry maximum loops, we apply (2) to them. The termination of
this process can be shown by complete induction (details in [5]).

(4) If all maximum loops are single-entry loops, we go one mazimum loop level deeper. We look at the
nodes of each maximum loop. We define the flow graph of ¢ mazimum loop as (a) the nodes of the maxi-
mum loop with the kA node as the start node and (b) the edges that connect only members of the maximum
loop, and are not back links to h. We now apply recursively steps one through four to each of these flow
graphs. We proceed until no multiple-entry loop exists. Termination is guaranteed by [5], page 85.

Finally we have to make sure that the sequential block order is preserved. Because every operation of
the transformation preserves the sequential block order; the order of single action inside a block remains
untouched, unless there is a branching address to be changed.

QED.

A further outcome of this transformation is that the flow graph is now reducible [5]. The reducibility
of a flow graph is important for data-flow equations, which enable data-flow scrutiny for optimization or
maintenance purposes [1] [13].

Before we describe the non-deterministic part of our method we take a look at the loop-free part of a
flow graph. By building equivalent sets of the maximum loops we get a super-structure in which nodes are
sets of sequential blocks. Edges of the super-structure represent the existence of an edge between at least
two nodes in the nodes of the super-structure. This flow graph can then be restructured due to the following
theorem.

Theorem 2. If f is a loop-free flow graph, there exists a sequential block preserving transformation trans-
forming f into a D-structure.

Proof idea.

This proof operates much like the proof of theorem 1. Copying sequential blocks disconnects links into
D-structures. Figure 8 shows fragmental flow graph and its transformation. Details of the proof can be

found in [5].

We can summarize the two given theorems; which signify the deterministic part of the method, with the
following corollary.

Corollary 1. Through the application of a sequential block transformation, every generic flow graph
can be transformed into a flow graph with two structural properties:

1. All maximum loops on any level (as defined in Theorem 1 (4)) are single-entry loops.
2. All loop-free structures and super-structures are D-structures.

From now on, we will call a flow graph that fullfills conditions 1 and 2 of corollary 1 an incomplete D-
structure.



Extended Nassi-Shneiderman Diagrams

Nassi-Shneiderman diagrams are well known for structured design of the control flow and standard pro-
gramming [16]. They are closely related to the D-structure and can be used in a pre-coding phase with
programming languages such as Pascal or MODULA-2 [3]. To provide a similar illustration we developed
an extended NS diagram for incomplete D-structures.

An extended NS diagram consists of the following items:

e Sequential program blocks: squares containing source code which, in the event of branching, have a
triangle at the bottom.

e Forward edges: a polygon, usually a square.

e Loop edges: polygons connecting a sequential block with a loop entry, a back link. Loop edges are
different from forward edges by the keywords loop or while.

e Flow semantic: an ENS diagram is entered at the top and ends at the bottom. Each sequential block
is entered at the top and exited through the bottom line or a side of the triangle in case of branching.
The forward edges and loop edges lead from one block to the next, or to one previous, respectivly.

The following example illustrates the ENS diagram definition. The incomplete D-structure flow graph of
figure 8 can be drawn as a ENS diagram, as shown in figure 8. The graph and the ENS diagram still
have unpleasent back links; the node b is part of two loops. In the next section, we will see that with
non-deterministic unlinking (called unfolding) we can simplify this structure.

5 Unfolding : A Non-Deterministic Restructuring

In this section we show the non-deterministic part of our method, called unfolding. In case of an incomplete
D-structure, further restructuring will preserve the D-structure property.

The examplified flow graph of figure 8 still has a tangled structure. The maximum loop {a,b, ¢} con-
sists of two subloops {a, b} and {b, ¢} which share node b. By applying a similar mechanism as displayed in
the proof of theorem 1, we can unfold this nestedness. The resulting flow graph is shown in figure 8.

The algorithmic description of unfolding

The unfolding algorithm consists of three major steps. Step one includes the non-deterministic or user-
dependable part of the method. Steps two and three are deducible from step one.

e (1) Select an edge e that represents an unpleasant entry to a node v of a maximum loop L.
e (2) Make copies of all nodes of L between e and the loop-entry node of L.

e (3) Add the edges and the labels, so that the set of successor nodes and their labels are the original
ones or copies of them.



There are still some crucial points to mention. Our experience has shown that the edge in (1) has to be
chosen carefully. If the set of nodes and their edges are very big, the structure of the unfolded graph can be
very different from the original, in size as well as in shape. This can impair readability and maintainability.
In example 8 there was only one node to copy, so the result is adequate.

The variability compells us to provide a user interface, that supports an undo and a redo functionality
of single operations, enabling the user to estimate his changes.

However, destroying an incomplete D-structure by unfolding would also be undesirable. Fortunately, we
can prove that additional unfolding can not destroy a previously gained D-structures. In [5] we proved the
following theorem.

Theorem 3. Let f be a D-structure flow graph. Let L be a maximum loop with the entry nodes er.
Let a be an element of L, different from ey and with one or more entries. With a sequential block preserv-
ing transformation it is possible to free a from all edges pointing to it except one. The gained graph 1s still
a D-structure.

In case of loop-free D-structures, unfolding produces the same copying mechanisms as used in theorem 2,
and therefore all resulting structures are going to be D-structures (details in [5]).

6 An Application of Unfolding

In this section we illustrate unfolding applied to a source code fragment, and then we show how to enhance
this fragment.

Unfolding can be applied for two different purposes.

e To Fase a flow graph from a tangling structure, for analysis and reading purposes, without physically
restructuring the source code. (For defining data-flow equations, it is only necessary to know about
the restructured graph and the information of the sequential blocks. In an advanced source code
representation, such as we proposed in [6], it is not necessary to make copies of the whole sequential
block. In our relational database approach, a simple entity can represent the copied nodes.)

e To physically unfold the flow graph and the source code in order to maintain and enhance the copied
and the original block independently.

For the second point, we will give here an illustrative example. The following small fragment, part of a
parser, has the control flow graph depicted in 8. The vertix a consists of the line 100, the vertix b consists
of the lines 110 and 120, and the vertix ¢ consists of the lines 130 to 150.

10 count : integer

20 token : enumerate ...

100 write "newline"



110 read token

120 if token = nl then 100
130 count = count + 1

140 if token '= end then 110
150 ...

We unfold the flow graph, choosing the edge (¢,b) and gain the structure shown in figure 8. Figure 8
depicts the unfolded source code fragment represented as an ENS diagram. We emphasize the copied se-
quential block with a dashed square.

The unfolding enables us to change the copy block independently of the original one. This is particu-
larly interesting because the precondition in the copy is different than in the original block. In the original
block the value of the variable token is nl or an initial value. In the copy the state of the variable token
is not end and not nl. This enables changing the behaviour of the program in case of a "regular” token
(neither nl nor end) to insert the token into a token table.

Finally the source code can be printed in a pretty print manner and with changing syntactical keywords (as
shown in [11]).

10 count : integer

20 token : enumerate ...

100 loop

110 ..repeat

120 ....write "newline"

130 ....read token

140 ..until token = nl

150 ..loop

160 ....count = count + 1

170 ....if token != end then exit 250
180 ....set_in_table(token)

190 ....read token

200 ....if not (token = nl) then exit

210 ..endloop
230 endloop
250 ...

7 Conclusion and Future Work

The restructuring method presented in this paper consists of a two-part flow graph transformation. The
first part transforms a flow graph into a so called incomplete D-structure, which is somewhere between a
reducible flow graph and a D-structure. The non-deterministic part unfolds remaining unpleasant nested-
ness in flow graphs. This has to be accomplished through user-interaction. The result of this restructuring



depends on the skill and experience of the user, and his or her intended goal. In this paper we have only
applied this technique to control flow graphs. But the generality of the method enables application with the
same transformation constraints to any kind of directed graphs such as data-flow graphs, semantic networks
or workstation computer network topologies.

The theoretical part of the method has already been completed. This paper can thus be regarded as
providing closure to previous works in this field.

The results and experience it has yielded will doubtless influence the fledgling project developing fine grain
source code database (c.f. [6]). This database is thought to support the development and the maintenance
of large software systems.
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Figure 1: Single-entry/single-exit flow graph.

Figure 3: Display of a maximum loop L with a second entry from the nodes E. The maximal loop consists
of h, the main entrance of the loop e;4in, the second entrances from E ,and the other nodes collected in
the bold verices S and P. The arrows represent zero or more directed edges and only the affected edges are
displayed. After the transformation P and e are doubled and the necessary edges are built.
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Figure 4: Transformation of loop-free flow graphs to D-structures. The ”before” graph show a entrance of
e disturbing the D-structure a, b, ¢, and d. By copying ¢ and redirecting e to ¢’ the D-structure can be
rescued.

Figure 5: Incomplete D-structure with two subloops { a, b } and {b, ¢} and the shared node b.
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loop

loop

Figure 6: Example of a ENS diagram.

Figure 7: Incomplete D-structure after unfolding of the double used node b.
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loop

loop

write "newline"

read token

token = nl

loop

count = count + 1

ken != end

oken =n

Figure 8: Exemple source code fragment depicted as an ENS diagram. The dashed square signifies the
copied sequential block.
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