View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Columbia University Academic Commons

A Repository for a CARE Environment

Toni A. Bunter

Technical Report CUCS-018-93
COLUMBIA UNIVERSITY


https://core.ac.uk/display/161439668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Repositories in CASE hold information about the development process and the structure of develop-
ing software. The migration or reuse of CASE repositories for CARE (Computer Aided Re-Engineering)
is not adequate for the reengineering process. The main reasons for its inadequacy are the emptyness
of such repositories, and the nature of the process itself. In the following report we will define a CARE
architecture, from the reengineering point of view, and derive a structure of a repository appropriate to
the reengineering process.



Contents

1 Introduction

2 Reengineering

3 A CARE Architecture

4 A CARE Repository
4.1 The Repository . . . . . . . . e
4.2 Definition of the Repository . . . . . . . . .. .. L

5 Extensions For Reverse Engineering
5.1 Extensions For Meta Data . . . . . . . . . . .. ...
5.2 Minimal Repository Extensions . . . . . . . . . ...

6 Discussion and Future Work
7 Appendix A
8 Appendix B

9 Figures

10

14



1 Introduction

Repositories in CASE environment store meta information about the engineering phases of a software
project. This information is not only relevant during the production of a software system, but can also be
used for documentation of the components of the software system. The availability of production informa-
tion enables more effective reuse of source code or design documents, especially for further reengineering
activities. Furthermore, CASE tools and environments are often seen as equally useful tools for reengineer-
ing and reuse of released software systems. CASE tools can also provide support for reengineering software
systems produced with CASE. But as the CASE decade has just started, a tremendous amount of source
code without formal design documentation and without machine loadable repository data can not enter any
CASE environment. For the most part, reengineering has to be done with source code files which are in
a poorly structered language, and without the presence of meta data. This lack of meta data is a major
shortcoming of using CASE systems. Additionally, the difference between the engineering and reengineering
processes necessitates a different overall achitecture of CARE systems than CASE systems.

In this paper we will give an architecture for a CARE environment charged with the task of reengineering
a source code given in a poorly structered language, e.g. COBOL. According to the reengineering process,
we draw a CARE system architecture with the repository as the central feature. The repository is defined
in terms of the relational database technology. It turned out that using the entity relationship approach for
representing source code worked comfortably, and rendered the repository easy to extend.

For the purpuse of simplicity and independence we will define an intermediate language (COBAPA) com-
prising elements from COBOL, Basic and Pascal. COBAPA is strong enough to cover the main paradigms
of these languages, with the exception of pointer-like structures. (Pointer-like structures cause no concep-
tual obstacles and will be dealt with in further discussions.) Appendix A contains a shortened definition of
COBAPA. Appendix B shows a program example in COBAPA, with its entries in the stated repository.

The main difference between CARE systems, including those currently in development (as [10]), and our
approach is the complete mapping of the source code to the repository’s relational structure. As far as
we know there is no other comparable publication with the same paradigms and assumptions as to the
repository structure.

2 Reengineering

Reengineering is a growing discipline within software engineering. It is commonly defined as two successive
activities: reverse engineering and forward engineering. Reverse engineering is the recreation of the design
and specifications of given source code. It comprises analysis, restructuring, decomposition and modular-
isation. Its products are flow diagrams, a module hierarchy, module descriptions, specifications, glossaries
and data dictionaries, depending on the methods used. Forward engineering executes the desirable changes
and enhancements on recovered specifications. Reusing the generated design and the renewed specifications
yield a new design. Finally, new source code is produced with the reuse and/or enhancement of the given
components.



3 A CARE Architecture

When reengineering source code, CASE tools can only be applied if the given source code was produced
by CASE tools, and if the relevant production documents are available. However, these conditions are not
usually present. Therefore thinking about the CARE process for reengineering source code given in a poorly
structured language leads to a different architecture than the one used for a CASE environment.

Our proposed CARE architecture consists of three units: the source code configuration management, the
reposttory, and different program views. Figure 9 illustrates the components of the architecture and the data
flows.

The configuration management is responsible for the management and storage of different versions of source
code and meta information in the form of files. These files will be read as the repository is being filled. After
a working session the generator produces source code and meta information files, which are then stored and
managed by the configuration management.

The central part of this CARE architecture is the repository. It contains all information about the source
code components, the design, the specifications and the reengineering process. The central part of the repos-
itory is the mimimal repository, a representation of the source code in which semantics are emphasized. The
minimal repository i1s comprehensive enough to be functionally equivalent to the original source code. More
exactly spoken: We proved that a computationally equivalent source code can be generated using the repos-
itory entries. The derived source code differs only in syntactically equivalent structures (e.g. repeat-for,
if-case) and in the sequence of the instructions of the sequencial program blocks.

The program views represent the user interfaces built for the reengineering programmer. They provide
tailored views of the software system, in order to fullfill a given task in a predefined way. They vary over
different representations (e.g.: textual, graphic) and different abstraction levels (e.g.: source code, data and
control flow, specification languages). The basic structure of a program view consists of three parts (Figure

9):

1. Actwity Menu. The commands enabling the user to navigate, analyze, edit, or change parts of the
software system.

2. Visualisation. The visual representation of the focus initiated by the action menu.

3. Change Constraints. Controlling the activities and preserving change policies.

It is the responsibility of the management to provide tailored program views for the reengineering program-
mer. The change constraints allow the management to restrict the activities provided by the activity menu
in order to conserve the software’s quality.

The program views interact permanently with the repository. Their relation to the repository is one of
client /server. The program views send two kinds of information to the repository server:

e Information requests



e Update information

The repository provides the information which a program view is requesting. During a working session with
a program view, two types of information will be produced by the reengineering activities:

e repository entry information (adding comments, manual modularisation, extracting and defining de-
sign items).

e change information (design changes, structuring, replacement of modules, change of source code in-
struction).

The repository has to be given this information immediately, and retain it permanently. It has to manage
update problems which occur due to the activation of more than one program view.

4 A CARE Repository

In this section we will look more closely at our definition of a CARE repository. We will compare it to
common definitions, and argue for our extention of it.

4.1 The Repository

Systems that handle meta data about objects and their relations have been in use for more than two decades.
With the advent of data dictionaries, which provided information about the logical and/or physical structure
of data, the term repository came into use. A repository not only holds information about the data of an
application, it also provides information about the application itself and information about the software
production process. IBM defines a repository as an overall information storage that concerns management
and the control of an enterprise:

...a repository 1s a place for storing information about items and activities of importance to
your enterprise; it is an organized, shared collection of information that supports business and
data processing activities. (page7, in [2])

Our approach adds a condition of completness to the former definition:

The Repository accumulates enough information about the structure of the modules, the data and flow
dependences and the expressions that the whole functionality can be derived from the repository entries.
The important consequence of this definition is the independence of the source code itself; it can be generated
from the repository entries. This changes the engineering and reengineering processes. Instead of analysing
and changing the ASCII files of the source code, the reengineering programmer executes well defined,
supervised queries and transactions on the repository. This makes it possible to control and determine
changes without causing unexpected side effects.

4.2 Definition of the Repository

The structures we support in the repository definition are choosen from well known structures, each repre-
senting one aspect of source code. Below we give a list of useful references and literature:



Syntaztree

Control and Dataflow

Cross Reference List ([3])
e Program Dependence Graph ([5], [6])

o Module Interconnection Language ([7])

We divide the repository database into six levels, and define the primary entities for each level. The number
of entities is extendible, as we will show in section 5. All attributes without an asterix (*) belong to the
minimal repository. In [1] we proved that the minimal repository satisfies the additional condition of our
repository definiton. We built the repository concerning our wide range language COBAPA (cf. Appendix
A). Appendix B shows a program example in COBAPA, and all repository entries.

1. Module Interconnection Level

The module interconnection level consists of programs, procedurees, functions and their value and
variable parameters. We define a relation with six attributes.

| module_id | sort | p_list | p_dependence | ref_list* | call_list* |

The three possible values of the attribute sort are main, procedure and function. p_list is a list
of the input/output parameters. p_dependence is a term that shows the data dependences between
the parameters. ref_list 1s the list of all variables that are used in this module. The call_list consists of
modules (resp. their identification numbers) which call the module (module_id). For the identification
key module_id it is recommended to use the name provided by the source code.

The p_dependence, the ref_list and the call_list provide resource information about the modules and

their interconnections. This information is used for the overall data and control flow of the software
system.

2. The Control Flow Level

Every program, procedure and function consists of sequential program blocks connected by logical
predicates which control the flow of the program blocks. We define a relation with four attributes.

| module_id | program block_id | program block_Id’ | case |

The relation represents the control flow from program block_id to the program block_id" when the
condition value case holds. There is no additional information about the source code. The entries on



this level provide the structure of the well known control flow charts.

. The Progam Block Level

The program block level focuses on the instructions (assignments and jump predicates), which are
part of a sequentional block. We define a relation with five attributes.

| module_id | program block_id | instruction_id | instruction_id’ | variable_id |

An entry in this relation is an edge in a labeled ref-def graph. Let a and b be two instructions in
the same sequential block, and let v be a variable. If a defines a new value for v with no new definition
of v between a and b, then there exists an edge (a,b,v) in the ref-def graph. For every variable there
exists two additional entries marking the beginning and end of the variable usage:

e (in,b,v): The prior definiton of v is in a preceding program block.

e (a,out,v): The next usage of v is in a following program block.

This representation is syntactically independent. If two program blocks consist of the same set of in-
structions and are computationally equivalent, then they have the same entries on the program block
level.

. The Instruction Level

The instruction level comprises assignments, conditional jumps, and their logical predicates and their
variables and expressions, respectively. We define a relation with six attributes.

| module_id | instruction_id | sort | def_list* | ref_list* | expression_id list |

The attribute sort specifies the type of the instruction. There are three possibles values:

e assign: a value assignment to one or more variables by one or more expressions, including
function calls.

e call: a procedure call.

e jump: a logical expression for branching the control flow.

The def_list consists of the variable 1d’s which will be defined by new values. The ref_list includes the
referenced variables in the assignment. The expression_id_list is an ordered list of the expression id’s in
the assignment.

The def_list and the ref_list enable straightforward data flow analysis and program slicing (as defined
in [8]).



5. The Expression Level

The expression level manages the representation of all defined expressions. We define a relation
with four attributes.

| module_id | expression_id | type* | syntax tree |

The attribute type describes the appropriate type of the expression. Its entries are: integer, float,
string, boolean or structured types. For the representation of the expression we use the syntax tree
which provides easier analysis of the structure. The type attribute 1s very useful for human under-
standing of the meaning of instructions.

6. Variable and Data Structure Level

The variable and data structure level administrates the variables and data types. We define a re-
lation with four attributes.

| module_id | variable/type_id | type | lex_name* |

The type attribute is similar to the type attribute of the expression level. The lex_name is an important
extension of the minimal repository. It stores the lexical name of a defined type which contains, if well
choosen, information about its intended use.

5 Extensions For Reverse Engineering

The reverse engineering process includes analysis of the given software system. For representing the extracted
information, 1t is possible to enhance the repository relations without loosing the semantic connection to
the given repository entries. We distinguish between additional relations for meta data and extensions
concerning the minimal repository.

5.1 Extensions For Meta Data

The repository defined in the last section makes possible the inclusion of meta data. In fact it is possible
to add meta data to every item defined in the repository. The generic form of a meta data extension is
conceptually simple. For every item we can add the relation:

| item_id* | document_id* | document* | document structure* |

Adding this relation does not harm the former definiton of the repository. It gives a direct connection
to the items. The attribute document represents possible data about the item. There is no range limit in
the way the data is formulated. The document structure signifies possible structures among different entries
of the meta data itself.



5.2 Minimal Repository Extensions

When using sophisticated tools for program analysis and for source code manipulation it is sometimes nec-
essary to change and enhance the minimal repository. The repository representation of source code makes
possible the expression of new ideas which could not be expressed with source code in ASCII file representa-
tion. In [1] we showed a method for restructuring. The result of the restructuring, using doubled sequential
blocks, is a control flow graph similar to the extended Nassi-Shneiderman diagram. Applying this method
directly on source code yields copy parts of the source code. After restructuring the source code, the location
of the copied program blocks is hidden, and determining their whereabouts becomes an NP-complete string
matching problem. Instead of copying source code, we add a relation to the control flow level called the
copy relation:

| module_id | program block_id | copy_of_ block |

If it is necessary to dublicate a program block al to a2 and integrate the new block with respect to the
restructuring method, changes in the control flow relation entries occur. Instead of doubling all the levels
below the control flow level, we add the entry:

| modulead | a2 | al |

Whenever there is a need for information about the program block a2, the copy relation at the control
flow level refers to the program block al.

Adding a copy relation to the control flow level simplifies the understanding and maintenance of the changes.
Additionally, from the storage point of view, it is better to manage a new entry in a data base than to manage
an inserted program fragment in the source code file.

6 Discussion and Future Work

Building systems that comply with the necessary conditions of reengineering is one of the harder challenges
in software engineering research. One way is to develop CASE methods that include a later reengineering
process. Another way is building CARE systems for the large amount of non-CASE developed software. As
long as there remains so much source code which is not CASE-developed, the need for CARE environments
will persist. With our stated architecture, we hope to open new possibilities in solving the maintenance
problem.

In contrast to related work, our CARE approach is driven by the belief that semantically appropriate
representations of the source code are necessary, and that they relieve the pain of reading source code in
syntactically ‘inhuman’ programming languages. A further shortcoming of many known CASE and CARE
Systems is the lack of references between documents from different phases of the engineering process. In
our approach to repositories we enable tailoring references between all atomic units, independently of the
process phase.

To date we have written a prototye in Prolog that consists of the parsing of a COBAPA program and



the representation of the database relation as Prolog clauses. Future work includes the extension of the
prototype repository to more abstracted entities, and the development of the query mechanism for the pro-
gram views. A further important requirement for CARE (as well as for CASE) is the concurrent access to
the software system by different reengineering programmers. With this concern in mind, we intend to set
our system on the rule-based development environment MARVEL [4].



7 Appendix A

The following definition defines the syntax of COBAPA. The definitions of logical_expression, expression,
list_of_variables, list_of_expressions, newline, line_number and variable_name are considered to be as they are
generally known.

We show the syntax of the control structure using the EBNF-grammar formalism [9]:

program
instruction_line

begin_loop

end_loop

conditional_jump

case_list

Jump
instruction

assignment
program._end
procedure_call
begin_proc
end_proc
begin_func
end_func

parameter list

{ line_number instruction_line newline }
begin_loop

end_loop

conditional_jump

Jump

instruction

program._end

procedure_call

begin_proc

end_proc

begin_func

end_func

=  for assignment do

while logical_expression

loop

repeat

next

endwhile

endloop

exit [line_number]

until logical_expression

if logical_expression then [exit] [line_number]
else

endif

case expression case list

{ ’(’constant, line_number’)’ }

'(’ default, line_number’)’

goto line_number

assignment

read [file_name] list_of_variables
write [file_name] list_of_expressions
end

variable := expression

end

call proc_name [list_of_expressions]
proc procname [parameter list]
endproc proc_name

fun funcion name [parameter list]
endfun function name

return expression

{ [var] variable_name : typ }

The syntax of the data structure and its reference:

declaration
typ

The dereferencing is done, as it is in Pascal, using a period for record and bracets for array.

{ line_number variable_name : typ newline }
integer

real

boolean

char

string

array index_range of typ

record { variable_name : typ } endrecord
file of typ



8 Appendix B

We show here a sample COBAPA program, the computation of the faculty, with full input output compu-
tation. The source code is followed by the complete repository entries.

10 input : integer
20 answer : char

100 write 'Computation of the faculty’

110 write 'Issue a number:

120 read input

130 write 'The faculty of ’;

)

input; ’

200 fun faculty n: integer

210 fac, 1: inte
220 fac := 1
2301:=n

ger

240 whilei1 > 1
250 fac := fac * 1

2601 :=1-1
270 endwhile
280 return fac

290 endfun faculty

is’; faculty(input)
140 write 'Do you wanna another computation?’

150 read answer
160 if answer = 'y’ then 110

The Repository Entries

Module Interconnection Level

[ moduleid [ sort [ p.list [ p_dependence® [ reflist® [ calllist¥* |
1 main | - - input an- | faculty
swer i-o-file
[ moduleid T sort [ plist [ p_dependence¥® [ reflist® T calldist* |
faculty function | 0.faculty ref(n) - -
1.val n: | def(faculty)
integer r-d(n faculty)

Control Flow Level

[ module.id [ program block_id | program blockId’ [ case
1 start block_1 -
1 block_1 block_2 -
1 block_2 block_2 true
1 block_2 ende false
[ moduleid [ program block_id [ program block Id’ [ case |
faculty start block_1 -
faculty block_1 block_2 -
faculty block_2 block-3 true
faculty block_3 block_2 -
faculty block_2 block_4 false
faculty block_4 ende -

10




Program Block Level

module_id |

program block.id

instruction._id |

instruction._id’ |

variable._id |

1 block_1 in inst_1 1-o-file
1 block_1 inst_1 out 1-o-file
1 block_2 in inst_2 1-o-file
1 block_2 inst_2 inst_3 1-o-file
1 block_2 inst_3 inst_4 i-o-file
1 block_2 inst_4 inst_5 i-o-file
1 block_2 inst_3 inst_5 input

1 block_2 inst_5 inst_6 1-o-file
1 block_2 inst_3 inst_7 input

1 block_2 inst_3 out input

1 block_2 inst_6 inst_7 1-o-file
1 block_2 inst_7 inst_8 1-o-file
1 block_2 inst_8 inst_9 i-o-file
1 block_2 inst_9 inst_10 answer
1 block_2 inst_9 out i-o-file
1 block_2 inst_9 out answer

module_id |

program block.id

instruction_id |

instruction_id’ |

variable._id

faculty block_1 inst_2 in n
faculty block_1 inst_2 out 1
faculty block_1 inst_1 out fac
faculty block_2 in inst_3 1
faculty block_3 in inst_4 fac
faculty block_3 in inst_4 1
faculty block_3 inst_4 out fac
faculty block_3 inst_5 out 1
faculty block_3 in inst_5 1
faculty block_4 in inst_6 fac
faculty block_4 in inst_6 fac
faculty block_4 inst_6 out fac
Instruction Level
[ module.id T instruction.id [ sort [ defldist® | reflist¥® [ expression_id list |
1 inst_1 assignment | i-o-file 1-o-file expr_1
1 inst_2 assignment | i-o-file 1-o-file expr_2
1 inst_3 assignment | input 1-o-file expr-3
1 inst_4 assignment | i-o-file 1-o-file expr_4
1 inst_5 assignment | i-o-file 1-o-file expr_b
1 inst_6 assignment | i-o-file 1-o-file expr_6
1 inst_7 assignment | faculty input expr-7
1 inst_7’ assignment | i-o-file i-o-file faculty | expr_7
1 inst_8 assignment | i-o-file 1-o-file expr_8
1 inst_9 assignment | answer 1-o-file expr_9
1 inst_10 branch answer expr-10
[ module.id T instruction.id [ sort [ deflist¥ | reflist¥ | expression_id list |
faculty inst_1 assignment | fac expr_1
faculty inst_2 assignment | 1 n expr_2
faculty inst_3 branch 1 expr-3
faculty inst_4 assignment | fac fac 1 expr-4
faculty inst_5 assignment | 1 1 expr-5
faculty inst_6 assignment | faculty fac expr-6

11



Expression Level

[ module.id [ expression.id | type* [ syntax tree |
1 expr-1 string "Computation of the faculty’
1 expr-2 string ‘Issue a number; ’
1 expr-3 num-expr -
1 expr-4 string "The faculty of’
1 expr_b string input
1 expr_6 string ) is’
1 expr_7 num-_expr | faculty(input)
1 expr-8 string 'Do you wanna another...
1 expr-9 char -
1 expr_10 log_expr =(answer,’y’)
[ moduleid [ expression.id | type¥ [ syntax tree |
faculty expr-1 nume-expr 1
faculty expr-2 num-expr | n
faculty expr_3 log_expr 5 (1,1)
faculty expr_4 num_expr | *(fac,i)
faculty expr_b num_expr | -(i,1)
faculty expr-6 num-_expr | fac

Variable and Data Structure Level

[ moduleid [ variable/typedid | type [ lex_name¥
1 1-o-file file -
1 input integer | input
1 answer char answer

[ moduleid [ variable/typedid | type [ lex_name¥
faculty n integer | n
faculty fac integer | fac
faculty 1 integer | 1

12



References

[1] Toni A. Biinter. Eine Architektur eines Software- Wartungssystems. PhD thesis, Universitat Ziirich,
1992.

[2] IBM Corp. Repository Manager/MVS, General Information, September 1990.

[3] John R. Foster and Malcolm Munro. A documentation method based on cross-referencing. In Conference
on Software Maintenance, pages 181-185. IEEE, September 1987.

[4] Gail E. Kaiser, Naser S. Barghouti, Peter H. Feiler, and Robert W. Schwanke. Database support for
knowledge-based engineering environments. IEEE Ezxpert, 3(2):18-32, Summer 1988.

[5] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence graphs and compiler
optimizations. In 8th Annual ACM Symposium on Principles of Programming Languages, pages 207—
218, New York, January 1981. ACM.

[6] K. Ottenstein and L. Ottenstein. The program dependence graph in a software development environ-
ment. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environment, pages 177-184. ACM, April 1984.

[7] R. Prieto-Diaz and J. M. Neighbors. Module interconnection languages. The Journal of Systems and
Software, 6:307-334, 1986.

[8] Mark Weiser. Program slicing. TEEE Transactions on Software Engineering, 10(4), 1984.
[9] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 1982.

[10] Hongji Yang. The supporting environment for a reverse engineering system — the maintainer’s assistant.
In IEEE Conference on Software Maintenance, pages 13-22. IEEE, October 1991.

13



9 Figures

Reverse Engineering

Source Code

Design

Specification

A

Forward Engineering

Figure 1: Reengineering

Source Code
Configuration Management

7

Repository

Minimal H
Repository !

Program View 1

Program View n

Figure 2: The architecture of the CARE system

14



/’ visualisation

- e
activity menu

change constraints

Figure 3: The components of a program view

15




