
A Repository for a CARE Environment

Toni A� B�unter

Technical Report CUCS������	
COLUMBIA UNIVERSITY

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Repositories in CASE hold information about the development process and the structure of develop�
ing software� The migration or reuse of CASE repositories for CARE �Computer Aided Re�Engineering�
is not adequate for the reengineering process� The main reasons for its inadequacy are the emptyness
of such repositories� and the nature of the process itself� In the following report we will de�ne a CARE
architecture� from the reengineering point of view� and derive a structure of a repository appropriate to
the reengineering process�

�



Contents

� Introduction �

� Reengineering �

� A CARE Architecture �

� A CARE Repository �

��� The Repository � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� De�nition of the Repository � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Extensions For Reverse Engineering �

��� Extensions For Meta Data � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
��� Minimal Repository Extensions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


� Discussion and Future Work �

� Appendix A �

	 Appendix B �


� Figures ��

�



� Introduction

Repositories in CASE environment store meta information about the engineering phases of a software
project� This information is not only relevant during the production of a software system� but can also be
used for documentation of the components of the software system� The availability of production informa�
tion enables more e
ective reuse of source code or design documents� especially for further reengineering
activities� Furthermore� CASE tools and environments are often seen as equally useful tools for reengineer�
ing and reuse of released software systems� CASE tools can also provide support for reengineering software
systems produced with CASE� But as the CASE decade has just started� a tremendous amount of source
code without formal design documentation and without machine loadable repository data can not enter any
CASE environment� For the most part� reengineering has to be done with source code �les which are in
a poorly structered language� and without the presence of meta data� This lack of meta data is a major
shortcoming of using CASE systems� Additionally� the di
erence between the engineering and reengineering
processes necessitates a di
erent overall achitecture of CARE systems than CASE systems�

In this paper we will give an architecture for a CARE environment charged with the task of reengineering
a source code given in a poorly structered language� e�g� COBOL� According to the reengineering process�
we draw a CARE system architecture with the repository as the central feature� The repository is de�ned
in terms of the relational database technology� It turned out that using the entity relationship approach for
representing source code worked comfortably� and rendered the repository easy to extend�

For the purpuse of simplicity and independence we will de�ne an intermediate language �COBAPA� com�
prising elements from COBOL� Basic and Pascal� COBAPA is strong enough to cover the main paradigms
of these languages� with the exception of pointer�like structures� �Pointer�like structures cause no concep�
tual obstacles and will be dealt with in further discussions�� Appendix A contains a shortened de�nition of
COBAPA� Appendix B shows a program example in COBAPA� with its entries in the stated repository�

The main di
erence between CARE systems� including those currently in development �as ������ and our
approach is the complete mapping of the source code to the repository�s relational structure� As far as
we know there is no other comparable publication with the same paradigms and assumptions as to the
repository structure�

� Reengineering

Reengineering is a growing discipline within software engineering� It is commonly de�ned as two successive
activities� reverse engineering and forward engineering� Reverse engineering is the recreation of the design
and speci�cations of given source code� It comprises analysis� restructuring� decomposition and modular�
isation� Its products are �ow diagrams� a module hierarchy� module descriptions� speci�cations� glossaries
and data dictionaries� depending on the methods used� Forward engineering executes the desirable changes
and enhancements on recovered speci�cations� Reusing the generated design and the renewed speci�cations
yield a new design� Finally� new source code is produced with the reuse and�or enhancement of the given
components�

�



� A CARE Architecture

When reengineering source code� CASE tools can only be applied if the given source code was produced
by CASE tools� and if the relevant production documents are available� However� these conditions are not
usually present� Therefore thinking about the CARE process for reengineering source code given in a poorly
structured language leads to a di
erent architecture than the one used for a CASE environment�

Our proposed CARE architecture consists of three units� the source code con�guration management� the
repository� and di
erent program views� Figure � illustrates the components of the architecture and the data
�ows�

The con�guration management is responsible for the management and storage of di
erent versions of source
code and meta information in the form of �les� These �les will be read as the repository is being �lled� After
a working session the generator produces source code and meta information �les� which are then stored and
managed by the con�guration management�

The central part of this CARE architecture is the repository� It contains all information about the source
code components� the design� the speci�cations and the reengineering process� The central part of the repos�
itory is the mimimal repository� a representation of the source code in which semantics are emphasized� The
minimal repository is comprehensive enough to be functionally equivalent to the original source code� More
exactly spoken� We proved that a computationally equivalent source code can be generated using the repos�
itory entries� The derived source code di�ers only in syntactically equivalent structures �e�g� repeat�for�
if�case� and in the sequence of the instructions of the sequencial program blocks�

The program views represent the user interfaces built for the reengineering programmer� They provide
tailored views of the software system� in order to full�ll a given task in a prede�ned way� They vary over
di
erent representations �e�g�� textual� graphic� and di
erent abstraction levels �e�g�� source code� data and
control �ow� speci�cation languages�� The basic structure of a program view consists of three parts �Figure
���

�� Activity Menu� The commands enabling the user to navigate� analyze� edit� or change parts of the
software system�

�� Visualisation� The visual representation of the focus initiated by the action menu�

�� Change Constraints� Controlling the activities and preserving change policies�

It is the responsibility of the management to provide tailored program views for the reengineering program�
mer� The change constraints allow the management to restrict the activities provided by the activity menu
in order to conserve the software�s quality�

The program views interact permanently with the repository� Their relation to the repository is one of
client�server� The program views send two kinds of information to the repository server�

� Information requests

�



� Update information

The repository provides the information which a program view is requesting� During a working session with
a program view� two types of information will be produced by the reengineering activities�

� repository entry information �adding comments� manual modularisation� extracting and de�ning de�
sign items��

� change information �design changes� structuring� replacement of modules� change of source code in�
struction��

The repository has to be given this information immediately� and retain it permanently� It has to manage
update problems which occur due to the activation of more than one program view�

� A CARE Repository

In this section we will look more closely at our de�nition of a CARE repository� We will compare it to
common de�nitions� and argue for our extention of it�

��� The Repository

Systems that handle meta data about objects and their relations have been in use for more than two decades�
With the advent of data dictionaries� which provided information about the logical and�or physical structure
of data� the term repository came into use� A repository not only holds information about the data of an
application� it also provides information about the application itself and information about the software
production process� IBM de�nes a repository as an overall information storage that concerns management
and the control of an enterprise�

� � �a repository is a place for storing information about items and activities of importance to
your enterprise� it is an organized� shared collection of information that supports business and
data processing activities� �page
� in ����

Our approach adds a condition of completness to the former de�nition�
The Repository accumulates enough information about the structure of the modules� the data and 	ow
dependences and the expressions that the whole functionality can be derived from the repository entries�
The important consequence of this de�nition is the independence of the source code itself� it can be generated
from the repository entries� This changes the engineering and reengineering processes� Instead of analysing
and changing the ASCII �les of the source code� the reengineering programmer executes well de�ned�
supervised queries and transactions on the repository� This makes it possible to control and determine
changes without causing unexpected side e
ects�

��� De�nition of the Repository

The structures we support in the repository de�nition are choosen from well known structures� each repre�
senting one aspect of source code� Below we give a list of useful references and literature�

�



� Syntaxtree

� Control and Data	ow

� Cross Reference List �����

� Program Dependence Graph ����� �	��

� Module Interconnection Language ��
��

We divide the repository database into six levels� and de�ne the primary entities for each level� The number
of entities is extendible� as we will show in section �� All attributes without an asterix ��� belong to the
minimal repository� In ��� we proved that the minimal repository satis�es the additional condition of our
repository de�niton� We built the repository concerning our wide range language COBAPA �cf� Appendix
A�� Appendix B shows a program example in COBAPA� and all repository entries�

�� Module Interconnection Level

The module interconnection level consists of programs� procedurees� functions and their value and
variable parameters� We de�ne a relation with six attributes�

module id sort p list p dependence ref list� call list�

The three possible values of the attribute sort are main� procedure and function� p list is a list
of the input�output parameters� p dependence is a term that shows the data dependences between
the parameters� ref list is the list of all variables that are used in this module� The call list consists of
modules �resp� their identi�cation numbers� which call the module �module id�� For the identi�cation
key module id it is recommended to use the name provided by the source code�

The p dependence� the ref list and the call list provide resource information about the modules and
their interconnections� This information is used for the overall data and control �ow of the software
system�

�� The Control Flow Level

Every program� procedure and function consists of sequential program blocks connected by logical
predicates which control the �ow of the program blocks� We de�ne a relation with four attributes�

module id program block id program block Id� case

The relation represents the control �ow from program block id to the program block id� when the
condition value case holds� There is no additional information about the source code� The entries on

�



this level provide the structure of the well known control �ow charts�

�� The Progam Block Level

The program block level focuses on the instructions �assignments and jump predicates�� which are
part of a sequentional block� We de�ne a relation with �ve attributes�

module id program block id instruction id instruction id� variable id

An entry in this relation is an edge in a labeled ref�def graph� Let a and b be two instructions in
the same sequential block� and let v be a variable� If a de�nes a new value for v with no new de�nition
of v between a and b� then there exists an edge �a� b� v� in the ref�def graph� For every variable there
exists two additional entries marking the beginning and end of the variable usage�

� �in� b� v�� The prior de�niton of v is in a preceding program block�

� �a� out� v�� The next usage of v is in a following program block�

This representation is syntactically independent� If two program blocks consist of the same set of in�
structions and are computationally equivalent� then they have the same entries on the program block
level�

�� The Instruction Level

The instruction level comprises assignments� conditional jumps� and their logical predicates and their
variables and expressions� respectively� We de�ne a relation with six attributes�

module id instruction id sort def list� ref list� expression id list

The attribute sort speci�es the type of the instruction� There are three possibles values�

� assign� a value assignment to one or more variables by one or more expressions� including
function calls�

� call� a procedure call�

� jump� a logical expression for branching the control �ow�

The def list consists of the variable id�s which will be de�ned by new values� The ref list includes the
referenced variables in the assignment� The expression id list is an ordered list of the expression id�s in
the assignment�
The def list and the ref list enable straightforward data �ow analysis and program slicing �as de�ned
in �����

�



�� The Expression Level

The expression level manages the representation of all de�ned expressions� We de�ne a relation
with four attributes�

module id expression id type� syntax tree

The attribute type describes the appropriate type of the expression� Its entries are� integer� float�
string� boolean or structured types� For the representation of the expression we use the syntax tree
which provides easier analysis of the structure� The type attribute is very useful for human under�
standing of the meaning of instructions�

	� Variable and Data Structure Level

The variable and data structure level administrates the variables and data types� We de�ne a re�
lation with four attributes�

module id variable�type id type lex name�

The type attribute is similar to the type attribute of the expression level� The lex name is an important
extension of the minimal repository� It stores the lexical name of a de�ned type which contains� if well
choosen� information about its intended use�

� Extensions For Reverse Engineering

The reverse engineering process includes analysis of the given software system� For representing the extracted
information� it is possible to enhance the repository relations without loosing the semantic connection to
the given repository entries� We distinguish between additional relations for meta data and extensions
concerning the minimal repository�

��� Extensions For Meta Data

The repository de�ned in the last section makes possible the inclusion of meta data� In fact it is possible
to add meta data to every item de�ned in the repository� The generic form of a meta data extension is
conceptually simple� For every item we can add the relation�

item id� document id� document� document structure�

Adding this relation does not harm the former de�niton of the repository� It gives a direct connection
to the items� The attribute document represents possible data about the item� There is no range limit in
the way the data is formulated� The document structure signi�es possible structures among di
erent entries
of the meta data itself�

	



��� Minimal Repository Extensions

When using sophisticated tools for program analysis and for source code manipulation it is sometimes nec�
essary to change and enhance the minimal repository� The repository representation of source code makes
possible the expression of new ideas which could not be expressed with source code in ASCII �le representa�
tion� In ��� we showed a method for restructuring� The result of the restructuring� using doubled sequential
blocks� is a control �ow graph similar to the extended Nassi�Shneiderman diagram� Applying this method
directly on source code yields copy parts of the source code� After restructuring the source code� the location
of the copied program blocks is hidden� and determining their whereabouts becomes an NP�complete string
matching problem� Instead of copying source code� we add a relation to the control �ow level called the
copy relation�

module id program block id copy of block

If it is necessary to dublicate a program block a� to a� and integrate the new block with respect to the
restructuring method� changes in the control �ow relation entries occur� Instead of doubling all the levels
below the control �ow level� we add the entry�

module id a� a�

Whenever there is a need for information about the program block a�� the copy relation at the control
�ow level refers to the program block a��
Adding a copy relation to the control �ow level simpli�es the understanding and maintenance of the changes�
Additionally� from the storage point of view� it is better to manage a new entry in a data base than to manage
an inserted program fragment in the source code �le�

� Discussion and Future Work

Building systems that comply with the necessary conditions of reengineering is one of the harder challenges
in software engineering research� One way is to develop CASE methods that include a later reengineering
process� Another way is building CARE systems for the large amount of non�CASE developed software� As
long as there remains so much source code which is not CASE�developed� the need for CARE environments
will persist� With our stated architecture� we hope to open new possibilities in solving the maintenance
problem�

In contrast to related work� our CARE approach is driven by the belief that semantically appropriate
representations of the source code are necessary� and that they relieve the pain of reading source code in
syntactically �inhuman� programming languages� A further shortcoming of many known CASE and CARE
Systems is the lack of references between documents from di
erent phases of the engineering process� In
our approach to repositories we enable tailoring references between all atomic units� independently of the
process phase�

To date we have written a prototye in Prolog that consists of the parsing of a COBAPA program and






the representation of the database relation as Prolog clauses� Future work includes the extension of the
prototype repository to more abstracted entities� and the development of the query mechanism for the pro�
gram views� A further important requirement for CARE �as well as for CASE� is the concurrent access to
the software system by di
erent reengineering programmers� With this concern in mind� we intend to set
our system on the rule�based development environment MARVEL ����

�



� Appendix A

The following de�nition de�nes the syntax of COBAPA� The de�nitions of logical expression� expression�
list of variables� list of expressions� newline� line number and variable name are considered to be as they are
generally known�
We show the syntax of the control structure using the EBNF�grammar formalism ����

program � f line number instruction line newline g
instruction line � begin loop

j end loop
j conditional jump
j jump
j instruction
j program end
j procedure call
j begin proc
j end proc
j begin func
j end func

begin loop � for assignment do
j while logical expression
j loop
j repeat

end loop � next
j endwhile
j endloop
j exit �line number�
j until logical expression

conditional jump � if logical expression then �exit� �line number�
j else
j endif
j case expression case list

case list � f ���constant� line number��� g
��� default� line number���

jump � goto line number
instruction � assignment

� read �	le name� list of variables
� write �	le name� list of expressions
� end

assignment � variable 
� expression
program end � end
procedure call � call proc name �list of expressions�
begin proc � proc proc name �parameter list�
end proc � endproc proc name
begin func � fun funcion name �parameter list�
end func � endfun function name

j return expression
parameter list � f �var� variable name 
 typ g

The syntax of the data structure and its reference�

declaration � f line number variable name 
 typ newline g
typ � integer

j real
j boolean
j char
j string
j array index range of typ
j record f variable name 
 typ g endrecord
j �le of typ

The dereferencing is done� as it is in Pascal� using a period for record and bracets for array�

�



	 Appendix B

We show here a sample COBAPA program� the computation of the faculty� with full input output compu�
tation� The source code is followed by the complete repository entries�

�� input 
 integer

� answer 
 char

��� write �Computation of the faculty�
��� write �Issue a number
 �
�
� read input
��� write �The faculty of �� input� � is�� faculty�input�
��� write �Do you wanna another computation��
��� read answer
��� if answer � �y� then ���


�� fun faculty n
 integer

�� fac� i
 integer


� fac 
� �

�� i 
� n

�� while i � �

�� fac 
� fac � i

�� i 
� i � �

�� endwhile

�� return fac

�� endfun faculty

The Repository Entries
Module Interconnection Level

module id sort p list p dependence� ref list� call list�

� main � � input an�
swer i�o�	le

faculty

module id sort p list p dependence� ref list� call list�

faculty function ��faculty
��val n

integer

ref�n�
def�faculty�
r�d�n�faculty�

� �

Control Flow Level

module id program block id program block Id� case

� start block � �
� block � block 
 �
� block 
 block 
 true
� block 
 ende false

module id program block id program block Id� case

faculty start block � �
faculty block � block 
 �
faculty block 
 block � true
faculty block � block 
 �
faculty block 
 block � false
faculty block � ende �

��



Program Block Level

module id program block id instruction id instruction id� variable id

� block � in inst � i�o�	le
� block � inst � out i�o�	le
� block 
 in inst 
 i�o�	le
� block 
 inst 
 inst � i�o�	le
� block 
 inst � inst � i�o�	le
� block 
 inst � inst � i�o�	le
� block 
 inst � inst � input
� block 
 inst � inst � i�o�	le
� block 
 inst � inst � input
� block 
 inst � out input
� block 
 inst � inst � i�o�	le
� block 
 inst � inst � i�o�	le
� block 
 inst � inst � i�o�	le
� block 
 inst � inst �� answer
� block 
 inst � out i�o�	le
� block 
 inst � out answer

module id program block id instruction id instruction id� variable id

faculty block � inst 
 in n
faculty block � inst 
 out i
faculty block � inst � out fac
faculty block 
 in inst � i
faculty block � in inst � fac
faculty block � in inst � i
faculty block � inst � out fac
faculty block � inst � out i
faculty block � in inst � i
faculty block � in inst � fac
faculty block � in inst � fac
faculty block � inst � out fac

Instruction Level

module id instruction id sort def list� ref list� expression id list

� inst � assignment i�o�	le i�o�	le expr �
� inst 
 assignment i�o�	le i�o�	le expr 

� inst � assignment input i�o�	le expr �
� inst � assignment i�o�	le i�o�	le expr �
� inst � assignment i�o�	le i�o�	le expr �
� inst � assignment i�o�	le i�o�	le expr �
� inst � assignment faculty input expr �
� inst �� assignment i�o�	le i�o�	le faculty expr �
� inst � assignment i�o�	le i�o�	le expr �
� inst � assignment answer i�o�	le expr �
� inst �� branch answer expr ��

module id instruction id sort def list� ref list� expression id list

faculty inst � assignment fac expr �
faculty inst 
 assignment i n expr 

faculty inst � branch i expr �
faculty inst � assignment fac fac i expr �
faculty inst � assignment i i expr �
faculty inst � assignment faculty fac expr �

��



Expression Level

module id expression id type� syntax tree

� expr � string �Computation of the faculty�
� expr 
 string �Issue a number� �
� expr � num expr �
� expr � string �The faculty of �
� expr � string input
� expr � string � is�
� expr � num expr faculty�input�
� expr � string �Do you wanna another����
� expr � char �
� expr �� log expr ��answer��y��

module id expression id type� syntax tree

faculty expr � num expr �
faculty expr 
 num expr n
faculty expr � log expr ��i���
faculty expr � num expr ��fac�i�
faculty expr � num expr ��i���
faculty expr � num expr fac

Variable and Data Structure Level

module id variable�type id type lex name�

� i�o�	le �le �
� input integer input
� answer char answer

module id variable�type id type lex name�

faculty n integer n
faculty fac integer fac
faculty i integer i

��



References

��� Toni A� B�unter� Eine Architektur eines Software�Wartungssystems� PhD thesis� Universit�at Z�urich�
�����

��� IBM Corp� Repository Manager�MVS� General Information� September �����

��� John R� Foster and MalcolmMunro� A documentationmethod based on cross�referencing� In Conference
on Software Maintenance� pages �������� IEEE� September ���
�

��� Gail E� Kaiser� Naser S� Barghouti� Peter H� Feiler� and Robert W� Schwanke� Database support for
knowledge�based engineering environments� IEEE Expert� ����������� Summer �����

��� D� J� Kuck� R� H� Kuhn� D� A� Padua� B� Leasure� and M� Wolfe� Dependence graphs and compiler
optimizations� In 
th Annual ACM Symposium on Principles of Programming Languages� pages ��
�
���� New York� January ����� ACM�

�	� K� Ottenstein and L� Ottenstein� The program dependence graph in a software development environ�
ment� In Proceedings of the ACM SIGSOFT�SIGPLAN Software Engineering Symposium on Practical
Software Development Environment� pages �

����� ACM� April �����

�
� R� Prieto�Diaz and J� M� Neighbors� Module interconnection languages� The Journal of Systems and
Software� 	���
����� ���	�

��� Mark Weiser� Program slicing� IEEE Transactions on Software Engineering� ������ �����

��� Niklaus Wirth� Programming in Modula��� Springer�Verlag� �����

���� Hongji Yang� The supporting environment for a reverse engineering system � the maintainer�s assistant�
In IEEE Conference on Software Maintenance� pages ������ IEEE� October �����

��




 Figures

Reverse Engineering

Forward Engineering

Source Code Design Specification

Figure �� Reengineering

Source Code 
Configuration Management

Minimal
Repository

Repository

Program View 1 Program View n...

Figure �� The architecture of the CARE system

��



change constraints

visualisation

activity menu

Figure �� The components of a program view

��


