
crep:
a regular expression-matching

textual corpus tool

U S E R ’ S    M A N U A L

Darrin Duford
Department of Computer Science 

Columbia University
April 16, 1993

Technical Report
CUCS-005-93

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


©1993 Darrin Duford.  All rights reserved.  This manual may be freely copied and
distributed provided that a) this copyright notice is included in every copy, and b)
neither the manual nor the software is used for profit without written consent of
the author.

crep manual page 2



TABLE OF CONTENTS

1. Introduction....................................................................................................7

1.1 Definition and Purpose........................................................................7

1.2 Black Box Input and Output................................................................7

1.3 When to use and not use crep............................................................8

1.3.1 When to use crep..........................................................................8

1.3.2 When not to use crep ..................................................................9

1.4 Philosophy of crep.................................................................................9

1.5 What this manual assumes of the reader........................................9

1.6 Organization of this manual.............................................................10

1.7 Conventions followed in this manual...........................................10

1.8 Acknowledgements.............................................................................11

2. Using crep with the crep expression syntax ...........................................13

2.1 Introductory Example.........................................................................13

2.1.1 The variable definition file ......................................................15

2.2 Expression operators...........................................................................18

2.2.1 Special operators.........................................................................19

2.2.2 Examples of some operator combinations............................19

2.2.3 crep expression operator examples.........................................20

2.2.3.1 ‘#-’ and ‘#=’ ...............................................................................20

2.2.3.2 The ‘;’ operator .........................................................................22

2.2.3.3 The ‘|’, ‘#+’, and ‘( )’ operators ..............................................23

2.2.3.4 The ‘@@@’ operator ...............................................................24

2.2.3.5 ‘@BEG@’ and ‘@END@’.........................................................26

2.2.3.6 The ‘.’ operator .........................................................................28

2.2.3.7 The '?' operator........................................................................29

2.3 Using a variable definition file in crep expression syntax:

the -d option ...................................................................................30

3. More Options of crep ..................................................................................33

3.1 Other options for expression passing..............................................33

3.1.1 -E: straight lex syntax instead of the crep 

expression syntax.......................................................................33

crep manual page 3



3.1.2 -f and -F.........................................................................................34

3.1.3 -m...................................................................................................35

3.1.3.1 Special Searching capabilities of -m...............................36

3.1.3.1.1 Negation Searches....................................................37

3.1.3.1.2 ‘At most’, ‘at least’, and ‘exactly’ semantics.........39

3.1.4 -g: Reading the -m parameter from a file..............................41

3.2 Options for increasing the execution speed of crep......................41

3.2.1 -k and -x ........................................................................................41

3.2.2 -n and -p: tagged input files......................................................43

3.3 Other options........................................................................................44

3.3.1 -c and -P.........................................................................................44

3.3.2 -t: printing tagged output..........................................................45

4. Tools used/chain of execution..................................................................47

4.1 The five modules ................................................................................47

5. Techniques for efficient use of crep .........................................................51

5.1 Getting familiar with what a tagged corpus looks like................51

5.2 Stacking expressions to one’s advantage........................................51

5.2.1 Ignoring parts of speech ............................................................52

5.2.2 Compensating for the tagger’s errors.....................................52

5.3 Searching tricks....................................................................................53

5.3.1 Part-of-speech searching............................................................53

5.3.2 “Trapping”....................................................................................53

6. Custom sentence delimiter authoring tutorial.....................................55

6.1 Examining the output from a delimiter.........................................56

6.2 Adding features to crep’s delimiter .................................................57

6.2.1 Introduction to the delimiter source file...............................58

6.2.2 Creating a delimiter source file with the ‘titles’ 

enhancement...............................................................................60

6.2.3 Building the delimiter with the delimiter source file........62

6.3 Using build_delim_user to create a delimiter containing

no default rules, not-rules, or definitions......................................63

6.4 A note about read-ahead characters.................................................63

6.5 Editing the lex source code file directly...........................................64

6.6 Using delimited output for use other than input to crep...........64

crep manual page 4



6.7 Using custom delimiters with crep .................................................65

6.8 Nonconventional delimiters............................................................66

6.9 Analyzing the created lex file for errors in your original 

delimiter source file............................................................................67

7. Other associated tools of crep ....................................................................69

7.1 crep_clean .............................................................................................69

7.2 crep_prep...............................................................................................70

7.3 rcat...........................................................................................................71

7.4 delim_export........................................................................................72

7.5 diff_clean...............................................................................................72

A. Summary of crep options .........................................................................75

B. Where to find crep......................................................................................79

C. Error messages .............................................................................................81

C.1 crep’s own error messages.................................................................81

C.2 Errors signaled by lex..........................................................................81

C.3 Errors signaled by pos.........................................................................82

D. Listing of pos tags........................................................................................83

crep manual page 5



crep manual page 6



Attempt the end, and never stand to doubt;
Nothing is so hard, but search will find it out.

Robert Herrick, “Seek and Find”

1. INTRODUCTION

1.1 Definition and Purpose

crep1 is a UNIX2 tool which searches either a tagged or free textual corpus file and
outputs each sentence that matches the specified regular expression provided by the
user as a parameter.  The expression consists of user-defined regular expressions of
words and/or part-of-speech tags.  The purpose of crep is to make the searches faster
and easier than by either a) searching through corpora by hand; or b) constructing a
lexical scanner for each specific search.  crep achieves this facilitation by offering the
user a simple expression syntax, from which it automatically constructs an
appropriate scanner.  The user therefore has the ability to execute a whole search in
one command, invoking implicitly and explicitly several tools, including a sentence
delimiter, a part of speech tagger (developed by Ken Church at AT&T Bell
Laboratories), and various output filters.

1.2 Black-box Input and Output

Inputs: 

1)  The regular expression;
2)  The corpus (either tagged or untagged);
3)  a definitions file to alias complex expressions (optional);

crep manual page 7

1 crep requires the UNIX kshell.
2 UNIX is a registered trademark of AT&T Bell Laboratories.



4)  various output formatting options (optional).

Outputs:

1)  the sentence(s) which matched the specified expression;
2)  the phrase(s) which matched in each sentence (optional).

1.3 When to use and not use crep

1.3.1 When to use crep

Anyone who wishes to search free text for regular expressions may find a use for
crep.  crep is especially useful when:

a) searching for certain parts of speech in a random or arbitrary order in a
sentence;

b) mixing parts of speech with other regular expressions in the search (both kinds
of expressions may can be articulated on the fly);

c) discovering sentences which include two or more arbitrary regular expressions
separated by n words (even no words);

d) seeking all “short” or “long” sentences of size n in a given corpus;

e) searching for certain words used as certain parts of speech in certain places in
the sentence, relative to the beginning of a sentence, the end of a sentence, or to
another regular expression.

In general, crep executes searches, domain specific or otherwise, which are based on
a corpus of words and sentences.  The examples in the chapters to follow will paint a
clearer picture as to what crep can do.  The above list is not meant by any means to
be exhaustive; the user is encouraged to discover other applications.

The output from crep may be useful to determine certain elements of domain-
specific writing style, to discover new or unusual constructs of words, or to
determine the prevalence of certain common or uncommon lexical constructs.  This
information can then eventually be utilized as rules for natural language generation
engines.

crep manual page 8



1.3.2 When not to use crep

If one wishes to search for all occurrences of the variable foo in arbitrary C-code,
grep should be used.  Since crep returns whole sentences rather than physical line
numbers of files, the user may see some pretty bizarre ‘sentences’ extracted from the
code.3 Furthermore, crep was designed with more complicated searches in mind;
grep outperforms crep for a small search such as this one.  Using crep for such a
simple search would be like trying to cut down a blade of crabgrass with a chain saw.

1.4 Philosophy of crep

crep aims to be user-friendly in two primary ways:

a) abstracting the user from the nuts-and-bolts drudgery of compiling specific
lexical scanners, whether differences are minor or major with respect to any
existing custom-made scanners.  This abstraction provides an environment
cultivating what-if? questioning;

b) returning meaningful error messages whenever possible.  

crep aims to be flexible in two ways:

a) frequently allowing the user to achieve the same end through two or more
methods, according to user’s preference and for the user’s convenience; 

b) giving the user many customization options, from altering the sentence
delimiter to adjusting input and output formatting.

Throughout this manual the user shall see examples of crep which will hopefully
illustrate to the user the above user-friendliness and flexibility.  

1.5 What this manual assumes of the reader

1) Experience with basic UNIX  commands (such as cat and time) and tools such as
piping ( ‘|’ ) and  redirection ( ‘>’  and ‘<‘ ).  Following are references on the UNIX
operating system:

crep manual page 9

3 crep does, however, let the user redefine what should be deemed the end of a sentence by giving
the user two tools to build one’s own sentence delimiter -- for example, one  which delimits only at semi-
colons.  See Section 6 for a complete description of the tools build_delim and build_delim_user.



• Arthur, Lowell Jay.  UNIX Shell Programming. New York: John Wiley & Sons,
1990.

• Bolsky, Morris I. and Korn, David G. The Kornshell Command and
Programming Language. New Jersey: Prentice Hall, 1989.

• The UNIX man pages for ksh.

2) A strong knowledge of lex syntax for regular expressions.   Examples of lex
syntax are presented throughout this manual.  Following are references on lex:

• Chapter 13  in UNIX Shell Programming (above).

• Lex & Yacc. Sebastopol, CA: O’reilly & Associates, Inc., 1992.

• The UNIX man pages for lex and flex.

1.6 Organization of this manual

Section 2 provides a basic tutorial on the use of crep and its expression syntax;
examples abound.  Section 3 introduces, by example, all other options of crep which
can be given on the command line, with the exception of the custom sentence
delimiter authoring options (Section 6).  Section 4 reveals some information on
crep’s chain of execution which may aid in one’s understanding of how crep
functions.  Several tips and suggestions to maximize usefulness of crep appear in
Section 5; this section is a must-read.  Section 6 provides a tutorial for the custom
sentence-delimiter authoring facility of crep.  Section 7 introduces several other
tools which work with crep.  Appendix A lists a summary of all crep options.
Appendix B lists the physical location (in Columbia University’s CS  file system) of
crep and the sample files used throughout the manual.  Appendix C discusses some
error navigation.  Finally, a listing of the part-of-speech tags given by pos, the tagger
used by crep, appears in Appendix D.

1.7 Conventions followed in this manual

Different typefacing has been used to represent different entities.  Following is a
summary of the conventions.  Exceptions to these conventions are explicitly noted.

crep manual page 10



Sample Signification

$cat sample user-given input at the command line and 
highlighting of selected portions of crep’s
output

Expression output of crep, variable names, file names, 
and names of other UNIX tools

crep how crep and the names of its associated 
tools appear in this manual; the first 
appearance of crep-specific terms

delimiter In examples, clarification added which is not
part neither input nor output; anywhere else,
emphasis 

Why? rhetorical questions

usefulness regular text of the body of the manual.

1.8 Acknowledgements

The author would like to thank Jacques Robin for editing the manual and
extensively testing the software; Ken Church for the use of his tagging tool pos; and
Judith Klavans for valuable information concerning the Brown Corpus tags.

crep manual page 11



crep manual page 12



2. USING crep WITH THE
crep EXPRESSION
SYNTAX 

2.1 Introductory Example

The first example represents crep at its simplest.  It uses a textfile sample , a toy
collection of basketball article lead-ins, as the corpus4 .  Note that crep accepts input
from standard input (by default), and outputs to standard output (by default).  These
defaults may be changed, as the user will see, in Section 3’s examples.

There are several command line switches which can hold an expression as a
parameter.  Each call to crep requires exactly one of them.  The most commonly used
switch is -e, used here:

EXAMPLE 1.                                                  

$cat sample
ATLANTA (UPI) -- Dell Curry scored 20 points
and Kelly Tripucka added 18 as Charlotte
took its third straight win in a 123-111
victory over the Atlanta Hawks.

BOSTON (UPI) -- Kevin McHale's 23 points

crep manual page 13

4 the boldfacing in all examples has been added for clarity. 



led six Boston players in double figures Friday
night as the Celtics defeated the Phoenix
Suns 132-103 for their 15th consecutive home
victory.

CHICAGO (UPI) -- Michael Jordan led a
balanced scoring attack with 24 points Wednesday
night and the Chicago Bulls coasted past the
Washington Bullets 118-94 for their third
straight win.

LANDOVER (UPI) Jeff Hornacek and Cedric
Ceballos scored 20 points each to lead six
Suns in double figures Friday night as
the Suns coasted past the Washington Bullets 117-91
for its fifth straight victory.

MINNEAPOLIS (UPI) -- Tom Chambers scored 28
points Sunday and the Phoenix Suns extended
their winning streak to six games with a 123-109
victory over the Minnesota Timberwolves.

$cat sample | crep -e 'Celtics'
Parsing Your Regular Expression(s)...
crep: Expression Parser Warning:
Expression `Celtics` was not found in your definition file.
It will be inserted LITERALLY into the flex file.

Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: Celtics
Compiling the flex file...
Executing Flex File...

Matching sentences:

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory.

$

In this degenerate example, crep works like grep, except that the output returned is
the whole matching sentence, not just the physical line in the corpus file.  To
expand the usefulness of crep, the variable definition file  shall now be introduced.

crep manual page 14



2.1.1 The variable definition file

What is a variable definition file?

In keeping in line with the idea of simplifying searches, the user may define macros
to represent arbitrarily complex regular expressions, and have access to these macros
from the command line using the simple macro names the user assigns to them.
These macros are edited in a separate file, and are made known to crep as a
parameter of the -d or -D command line options.  Variable definition files are
especially useful for domain-specific expressions.

What does it look like?

A variable definition file specified to crep by the -D option looks like the rules
section of a regular lex source file. Example 2 lists a sample variable definition file
of this form.  A variable definition file specified with -d contains definitions in crep
rather than lex syntax.  This option will be discussed after the crep expression
syntax has been fully introduced (Section 2.3).

What does crep do with it?

By default, crep uses this file as it translates the user’s expression on the command
line into lex code, since crep uses lex code internally.   During the conversion
process, crep checks to see if the expression on the command line matches a name in
the user’s variable definition file.  In example 1, for instance,  crep could not find a
variable definition by the name of ‘Celtics’, since no variable definition file was
specified, so ‘Celtics’ was dropped into the resulting lex expression literally.    In
example 2, we shall use a variable definition file ExpFile, tailor-made for our
corpus of basketball articles. The ‘@’s are markers which separate the actual word
from a capital abbreviation which stands for a certain part of speech (Appendix D
holds a complete listing of the tags).

A   H E L P F U L    T I P

The user will see flex  used in place of lex in various crep messages; flex 
is simply a GNU version of lex, called by crep for efficiency reasons.  The 
input grammar is identical to that of lex grammar.

Example 2 will also introduce the -w option, which outputs the regular expression
and the actual matching phrase below each matching sentence.  A brief
interpretation of one of the definitions appears after the example.  

crep manual page 15



EXAMPLE 2.                                                  

$cat ExpFile
SPACE             [ ]+

TEAM_NAME         ([tT]he@AT[ ][A-Z][a-z][a-zA-Z]+@NNS)|([tT]he@AT[ ][A-
Z][a-z][a-zA-Z]+@NP)|([tT]he@AT[ ][A-Z][a-z][a-zA-Z]+@NPNP[ ][A-Z][a-z][a-
zA-Z]+@NPNP)

SCORE             [0-9]+@CD{SPACE}[0-9]+@CD|[0-9]+@CD{SPACE}(to@[A-
Z]+){SPACE}[0-9]+@CD|[0-9]+-[0-9]+@CD

N_WIN             ((victory|win|triumph|decision|romp)@NN)|(win@VB)

STRAIGHT          (straight|consecutive)@

POSS              (my|your|her|his|its|our|their)@JJ

VBD_WIN           ((defeated|beat|downed|edged|pounded|routed|minced|
troubled|dumped|crushed|stopped|outlasted|upended|blasted)@)|(blew@[A-Z]+[
]out@)|(coasted@VB[A-Z][ ]past@)|(held@[A-Z]+[ ]off@)|(knocked@[A-Z]+off@)

ORD             ((first|second|third|fourth|fifth|sixth|seventh|eighth
|ninth|tenth)@CD)|([1-9][0-9]*((0|[4-9])th)|1st|2nd|3rd)@

VBG_ENABLE        (helping|pacing|guiding|lifting|sparking|igniting
|topping|powering|rallying|propelling|sending|carrying|engineering|spurring
|pushing|fueling|bringing)@VB
$

Take a look at TEAM_NAME, for example.  This expression means (in English): 

match the word ‘the’ (and its tag) and then either one or two proper nouns
(and their respective tags).

Thus, a TEAM_NAME would match, for instance, ‘The Bulls’ and ‘The Boston Celtics’
provided that the corpus is tagged properly.  By properly we mean that the tagging
process, occuring automatically and implicitly in the call to crep, tagged the words
with the tags the user is looking for (for instance, the word ‘my’ in the definition
POSS requires the tag JJ, the tag for an adjective, to match in the tagged corpus.
Section 5.1 discusses the tagger, and Appendix D holds a listing of the tags for each
part of speech).  Now back to our example:

$cat sample | crep -e 'VBD_WIN' -D ExpFile -w
Parsing Your Regular Expression(s)...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: {VBD_WIN}
Compiling the flex file...
Executing Flex File...

crep manual page 16



Matching sentences:

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory.

{VBD_WIN}: defeated@

---------------------------------------------------------------------------

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win.

{VBD_WIN}: coasted@VBD past@

---------------------------------------------------------------------------

LANDOVER (UPI) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117 91 for its fifth straight victory.

{VBD_WIN}: coasted@VBN past@

--------------------------------------------------------------------------

The ‘@’s represent the first character of the tags which are implicitly appended to
every word in the corpus.  These tags are the bread and butter of crep’s ability to
match expressions containing part of speech information.

Notice here that crep found VBD_WIN in the file ExpFile. crep translated VBD_WIN,
an expression in crep sytntax, into lex syntax, which is simply ‘{VBD_WIN}’ for this
example.  The reader will begin to see that the crep syntax will differ  (in the
direction of simplicity) more and more from its lex counterpart as a function of the
operation.  The user is not, however, over a barrel -- lex syntax may be used instead
of crep syntax, or even side by side with crep syntax.  Section 3.1.1 covers the former
option; 2.2.3.4 covers the latter.

A   H E L P F U L    T I P

Only letters, numbers, and the underbar character ( '_' ) may be used 
macro names.

Note that crep echoes the lex expression it translates out of the expression specified

crep manual page 17



by -e in the line ‘Regular Expression: {VBD_WIN}’5 .  This is the crep parser at work --
translating from crep syntax into lex syntax.  A complete specification for crep
expression syntax follows.

2.2 Expression operators

The crep expression syntax supports several ways of searching for subexpressions
which make up a larger expression.  By means of operators, crep can realize varied
corpus-probing functionality.

There are five operators which always appear between two expressions.  These
operators are (in their surrounding context):

exp1 #- exp2 the two adjacent expressions exp1 and exp2 must be 
separated by at most # words and exp1 must appear 
before exp2 in the sentence

exp1 #= exp2 the two adjacent expressions must be separated by 
exactly # words and exp1 must appear before exp2 in 
the sentence

exp1 #+ exp2 the two adjacent expressions must be separated by 
at least # words and exp1 must appear before exp2 in 
the sentence

exp1 . exp2 exp1 must appear before exp2 in the sentence.  The 
number of words in between the expressions is 
limited only to the boundary of the sentence.

exp1 ; exp2 exp1 and exp2 must both appear in the sentence but
in any order

Note: omitting the in-between operators (for instance, searching for ‘exp1 exp2’
with no operator in the middle) will produce incorrect output because crep will not
know how to search for exp1 and exp2.

crep manual page 18

5 and, in turn, this lexmacro definition is shorthand for
‘((defeated|beat|downed|edged|pounded|routed|minced|
troubled|dumped|crushed|stopped|outlasted|upended|blasted)@)|(blew@[A-Z]+[
]out@)|(coasted@VB[A-Z][ ]past@)|(held@[A-Z]+[ ]off@)|(knocked@[A-Z]+
off@)’, as specified in the file ExpFile.



2.2.1 Special Operators

There are five special operators which do not occur between expressions.

These two occur around expressions:

(exp1|exp2) either exp1 or exp2 must appear in the sentence

@@@...@@@ treats everything between the '@@@'s literally;
crep does not parse anything between '@@@'s.
Straight lex syntax must be used here.

These two occur in place of expressions:

@BEG@ Signifies the beginning of a line.  It means nothing by itself;
it is used to find expressions appearing an arbitrary word
distance from the beginning of the sentence.

@END@ Signifies the end of a line.  It is analogous to @BEG@.
It is used to find expressions appearing an arbitrary word
distance from the end of the sentence.

The ‘?’ operator appears after an expression:

(exp)? Signifies that exp is optional.  The optional expression must be 
surrounded by parenthesis.

2.2.2 Examples of some operator combinations

exp1 ; exp2 ; exp3 exp1, exp2, and exp3 must all appear in the 
sentence but in any order 

exp1 2- exp2 ; exp3 the superexpression 'exp1 2- exp2' can appear 
either before or after the expression exp3

@BEG@ 2- exp1 the expression exp1 can have at most two words 
appear before it in the sentence

crep manual page 19



A   H E L P F U L    T I P

All operators must be separated by at least one space from the surrounding 
expressions except (, |, ), ?, and @@@.

Most characters which make up the operators can be typed without holding down
the shift key.  This choice was intentional.

2.2.3 crep expression operator examples

2.2.3.1 ‘#-’ and ‘#=’

The next example makes use of the ‘#-’ and ‘#=’ operators.  ‘#-’ specifies that the
surrounding expressions must be separated by at most ‘#’ words.  ‘#=’ specifies that
exactly ‘#’ words must appear  between the two surrounding dexpressions.
TEAM_NAME, SCORE, POS, ORD, and N_WIN are all defined in ExpFile (Section 2.1.1).

EXAMPLE 3.                                                  

$cat sample | crep -e 'TEAM_NAME 2- TEAM_NAME 0= SCORE 2- POSS
0- ORD 2- N_WIN' -D ExpFile -w
Parsing Your Regular Expression(s)...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression:
{TEAM_NAME}([^@]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){TEAM_NAME}[^@]+{SCORE}([^@
]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){POSS}[^@]+{ORD}([^@]+|[^@]+@[^@]+|[^@]+@[
^@]+@[^@]+){N_WIN}
Compiling the flex file...
Executing Flex File...

Matching sentences:

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns
132-103 for their 15th consecutive home victory.

{TEAM_NAME}([^@]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){TEAM_NAME}[^@]+{SCORE}([^@
]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){POSS}[^@]+{ORD}([^@]+|[^@]+@[^@]+|[^@]+@[
^@]+@[^@]+){N_WIN}: the@AT Celtics@NNS defeated@VBD the@AT Phoenix@NPNP
Suns@NPNP 132-103@CD for@IN their@JJ 15th@CD consecutive@JJ home@NN
victory@NN

crep manual page 20



---------------------------------------------------------------------------

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the
Washington Bullets 118-94 for their third straight win.

{TEAM_NAME}([^@]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){TEAM_NAME}[^@]+{SCORE}([^@
]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){POSS}[^@]+{ORD}([^@]+|[^@]+@[^@]+|[^@]+@[
^@]+@[^@]+){N_WIN}: the@AT Chicago@NPNP Bulls@NPNP coasted@VBD past@IN
the@AT Washington@NPNP Bullets@NPNP 118-94@CD for@IN their@JJ third@CD
straight@RB win@VB

---------------------------------------------------------------------------

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past
the Washington Bullets 117-91 for its fifth straight victory.

{TEAM_NAME}([^@]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){TEAM_NAME}[^@]+{SCORE}([^@   
]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){POSS}[^@]+{ORD}([^@]+|[^@]+@[^@]+|[^@]+@[
^@]+@[^@]+){N_WIN}: the@AT Suns@NPNP coasted@VBD past@IN the@AT
Washington@NPNP Bullets@NPNP 117-91@CD for@IN its@JJ fifth@CD straight@RB
victory@NN

---------------------------------------------------------------------------

In the interest of understanding what is going on here, note in the last matching
sentence that there are two words in between ‘The Suns’ and ‘the Washington
Bullets’ (‘coasted’ and ‘past’), and that a maximum of t w o words were allowed by the
expression (‘TEAM_NAME 2- TEAM_NAME’) due to the ‘2-’ operator.  The reader
should now verify that the rest of the matching phrase indeed matches the given
regular expression.   

The expression in example 3 was translated from the crep syntax

'TEAM_NAME 2- TEAM_NAME 0= SCORE 2- POSS 0- ORD 2- N_WIN'

into the following lex syntax:

{TEAM_NAME}([^@]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){TEAM_NAME}[^@]+{SCORE}([^@   
]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){POSS}[^@]+{ORD}([^@]+|[^@]+@[^@]+|[^@]+@[
^@]+@[^@]+){N_WIN}

One can clearly see the advantage of using crep’s expression syntax for a search such
as this one.  One may, however, override crep syntax and use straight lex syntax to
specify the expression;  this option will be covered in example 13 in Section 3.

crep manual page 21



A   H E L P F U L    T I P

The operator ‘0=’, which means ‘exactly zero words are allowed between’ is 
logically equivalent to and produces the same result as ‘0-’, which means ‘at 
most zero words are allowed between’.

2.2.3.2  The ‘;’ operator

The next example demonstrates the ‘;’ operator.  ‘;’ is used when two expressions
need to appear in the same sentence, but relative order in the sentence does not
matter.

EXAMPLE 4.                                                  

cat sample | crep -e 'TEAM_NAME ; N_WIN' -D ExpFile -w
Parsing Your Regular Expression(s)...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: {TEAM_NAME}
Regular Expression: {N_WIN}
Compiling the flex file...
Executing Flex File...

Matching sentences:

ATLANTA ( UPI ) -- Dell Curry scored 20 points and Kelly Tripucka added 18
as Charlotte took its third straight win in a 123-111 victory over the
Atlanta Hawks.

{N_WIN}: win@VB
{N_WIN}: victory@NN
{TEAM_NAME}: the@AT Atlanta@NPNP Hawks@NPNP

---------------------------------------------------------------------------

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns
132-103 for their 15th consecutive home victory.

{TEAM_NAME}: the@AT Celtics@NNS
{TEAM_NAME}: the@AT Phoenix@NPNP Suns@NPNP
{N_WIN}: victory@NN

---------------------------------------------------------------------------

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24

crep manual page 22



points Wednesday night and the Chicago Bulls coasted past the
Washington Bullets 118-94 for their third straight win.

{TEAM_NAME}: the@AT Chicago@NPNP Bulls@NPNP
{TEAM_NAME}: the@AT Washington@NPNP Bullets@NPNP
{N_WIN}: win@VB

--------------------------------------------------------------------------

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory.

{TEAM_NAME}: the@AT Suns@NP
{TEAM_NAME}: the@AT Washington@NPNP Bullets@NPNP
{N_WIN}: victory@NN

---------------------------------------------------------------------------

MINNEAPOLIS ( UPI ) -- Tom Chambers scored 28 points Sunday and the
Phoenix Suns extended their winning streak to six games with a 123-109
victory over the Minnesota Timberwolves.

{TEAM_NAME}: the@AT Phoenix@NPNP Suns@NPNP
{N_WIN}: victory@NN
{TEAM_NAME}: the@AT Minnesota@NPNP Timberwolves@NPNP

---------------------------------------------------------------------------

The two separate expressions (TEAM_NAME and N_WIN) match when they are found
in any order in the sentence relative to one another.

2.2.3.3  ‘#+’, ‘|’,  and parenthesis operators

The next example introduces the ‘|’ , ‘#+’ and parenthesis operators.  The ‘|’
operators is always used with parenthesis; together, they specify ‘exclusive or’
semantics.  The ‘#+’ operator specifies that at least ‘#’ number of words must appear
between the two surrounding expressions.

EXAMPLE 5.                                                  

$cat sample | crep -e 'TEAM_NAME 5+ (STRAIGHT|SCORE) 0- N_WIN' -
D ExpFile -w
Parsing Your Regular Expression(s)...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression:
{TEAM_NAME}[^@]+(@[^@]+){5,}({STRAIGHT}|{SCORE})[^@]+{N_WIN}

crep manual page 23



Compiling the flex file...
Executing Flex File...

Matching sentences:

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win.

{TEAM_NAME}[^@]+(@[^@]+){5,}({STRAIGHT}|{SCORE})[^@]+{N_WIN}: the@AT
Chicago@NPNP Bulls@NPNP coasted@VBD past@IN the@AT Washington@NPNP
Bullets@NPNP 118-94@CD for@IN their@JJ third@CD straight@RB win@VB

---------------------------------------------------------------------------

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory.

{TEAM_NAME}[^@]+(@[^@]+){5,}({STRAIGHT}|{SCORE})[^@]+{N_WIN}: the@AT
Suns@NPNP coasted@VBD past@IN the@AT Washington@NPNP Bullets@NPNP 117-91@CD
for@IN its@JJ fifth@CD straight@RB victory@NN

---------------------------------------------------------------------------

MINNEAPOLIS ( UPI ) -- Tom Chambers scored 28 points Sunday and the
Phoenix Suns extended their winning streak to six games with a 123-109
victory over the Minnesota Timberwolves.

{TEAM_NAME}[^@]+(@[^@]+){5,}({STRAIGHT}|{SCORE})[^@]+{N_WIN}: the@AT
Phoenix@ NPNP Suns@NPNP extended@VBD their@JJ winning@JJ streak@NN to@IN
six@CD games@NNS with@IN a@AT 123-109@CD victory@NN

---------------------------------------------------------------------------

Keep in mind that lex always matches the longest string possible.   The sentence
beginning with ‘CHICAGO’ matched, even though ‘The Washington Bullets’
appeared only four words in front of ‘straight’, one less than the required threshold
by the operator ‘5+’, because earlier in the sentence, another team name  (‘The
Chicago Bulls’) appeared, which is more than 5 words in front of ‘straight’.

2.2.3.4 The ‘@@@’ operator

The next example uses the ‘@@@’ operator.  ‘@@@’ should be used if there is not a
variable definition for the lex expression the user wishes to utilize, or if the user
does not wish to utilize crep expression syntax for a portion of the expression.
Anything appearing between ‘@@@’s gets dropped literally into the resulting lex rule

crep manual page 24



without being touched by the crep expression translator.  

Doing away with crep syntax altogether in favor of only lex syntax can be
accomplished by enclosing the whole parameter of -e in ‘@@@’s.   Section 2.3.1
offers another solution to this preference.

Even though SCORE appears in the variable definition file, we will demonstrate the
‘@@@’ operator by substituting the lex expression ‘([0-9]+-[0-9]+@)’ for SCORE i n
the expression of Example 5:

EXAMPLE 6.                                                  

$cat sample | crep -e 'TEAM_NAME 5+ (STRAIGHT|@@@([0-9]+-[0-
9]+@)@@@) 0- N_WIN' -D ExpFile -w 
Parsing Your Regular Expression(s)...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: {TEAM_NAME}[^@]+(@[^@]+){5,}({STRAIGHT}|([0-9]+-[0-
9]+@))[^@]+{N_WIN}
Compiling the flex file...
Executing Flex File...

Matching sentences:

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win.

{TEAM_NAME}[^@]+(@[^@]+){5,}({STRAIGHT}|([0-9]+-[0-9]+@))[^@]+{N_WIN}:
the@AT Chicago@NPNP Bulls@NPNP coasted@VBD past@IN the@AT Washington@NPNP
Bullets@NPNP 118-94@CD for@IN their@JJ third@CD straight@RB win@VB

---------------------------------------------------------------------------

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory.

{TEAM_NAME}[^@]+(@[^@]+){5,}({STRAIGHT}|([0-9]+-[0-9]+@))[^@]+{N_WIN}:
the@AT Suns@NPNP coasted@VBD past@IN the@AT Washington@NPNP Bullets@NPNP
117-91@CD for@IN its@JJ fifth@CD straight@RB victory@NN

---------------------------------------------------------------------------

MINNEAPOLIS ( UPI ) -- Tom Chambers scored 28 points Sunday and the
Phoenix Suns extended their winning streak to six games with a 123-109
victory over the Minnesota Timberwolves.

{TEAM_NAME}[^@]+(@[^@]+){5,}({STRAIGHT}|([0-9]+-[0-9]+@))[^@]+{N_WIN}:
the@AT Phoenix@NPNP Suns@NPNP extended@VBD their@JJ winning@JJ streak@NN

crep manual page 25



to@IN six@CD games@NNS with@IN a@AT 123-109@CD victory@NN

---------------------------------------------------------------------------

We should notice that the matching sentences of the last two examples is identical,
even though we used a lex variable definition for SCORE in one example, and a
literal lex expression in the other.

A   H E L P F U L    T I P

The ‘@@@’ operator should always be used in pairs; otherwise, it makes no 
sense as an operator.

2.2.3.5 ‘@BEG@’ and ‘@END@’

The next two examples demonstrate the @BEG@ and @END@ operators.   Example 7
will use @BEG@ to search for the string ‘UPI’ when it is the third word of a sentence.

EXAMPLE 7.                                                  

$cat sample | crep -e '@BEG@ 2= UPI' -w -D ExpFile
Parsing Your Regular Expression(s)...
crep: Expression Parser Warning:
Expression `UPI` was not found in your definition file.
It will be inserted LITERALLY into the flex file.

Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: ^[^@]*@[^@]+@[^@]+UPI
Compiling the flex file...
Executing Flex File...

Matching sentences:

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory.

^[^@]*@[^@]+@[^@]+UPI:
BOSTON@NPNP (@( UPI

---------------------------------------------------------------------------

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win.

crep manual page 26



^[^@]*@[^@]+@[^@]+UPI:
CHICAGO@NPNP (@( UPI

---------------------------------------------------------------------------

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each
to lead six Suns in double figures Friday night as the Suns coasted past
the Washington Bullets 117-91 for its fifth straight victory.

^[^@]*@[^@]+@[^@]+UPI:
LANDOVER@NPNP (@( UPI

---------------------------------------------------------------------------

MINNEAPOLIS ( UPI ) -- Tom Chambers scored 28 points Sunday and the
Phoenix Suns extended their winning streak to six games with a 123-109
victory over the Minnesota Timberwolves.

^[^@]*@[^@]+@[^@]+UPI:
MINNEAPOLIS@NPNP (@( UPI

---------------------------------------------------------------------------

Note that the parenthesis count as words; this is a result of the behavior of pos.
Example 8 introduces the use of ‘@END@’.  We will query the corpus for all sentences
which end with an N_WIN.

EXAMPLE 8.                                                  

$cat sample | crep -e 'N_WIN 1= @END@' -w -D ExpFile
Parsing Your Regular Expression(s)...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: {N_WIN}[^@]*@[^@]+@@@$
Compiling the flex file...
Executing Flex File...

Matching sentences:

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory.

{N_WIN}[^@]*@[^@]+@@@$: victory@NN .@. @@@

---------------------------------------------------------------------------

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win.

crep manual page 27



{N_WIN}[^@]*@[^@]+@@@$: win@VB .@. @@@

---------------------------------------------------------------------------

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory.

{N_WIN}[^@]*@[^@]+@@@$: victory@NN .@. @@@

---------------------------------------------------------------------------

Why did we use the expression ‘N_WIN 1= @END@’ to search for the last word of a
sentence, and not  ‘N_WIN 0= @END@’?  Because just as parenthesis count as words,
so does the period which ends the sentence (note that the tagger gave the period a
period tag).  We must allow for it.

Also note that the matches ended with ‘@@@’.  It is simply crep’s way of telling
when an end of sentence exists.  The ‘@@@’ should not be confused with the escape
operators (‘@@@’; Section 2.2).

Note: only one '@BEG@' and one '@END@' operator are allowed in the same
expression.  The following expression is illegal:

(TEAM_NAME 0- SCORE 2= @END@ | ORD 0- STRAIGHT 3= @END@)

It should be rewritten as follows:

(TEAM_NAME 0- SCORE 2=| ORD 0- STRAIGHT 3=) @END@

2.2.3.6 The ‘.’ operator

In the last example in this subsection, we will demonstrate the ‘.’ operator.  The ‘.’
operator is used if we don’t care how many words appear in between the two
adjacent expressions, so long as they appear in that order.

EXAMPLE 9.                                                  

$cat sample | crep -e 'TEAM_NAME . SCORE . TEAM_NAME' -D ExpFile
- w
Parsing Your Regular Expression(s)...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: {TEAM_NAME}.*{SCORE}.*{TEAM_NAME}

crep manual page 28



Compiling the flex file...
Executing Flex File...

Matching sentences:

MINNEAPOLIS ( UPI ) -- Tom Chambers scored 28 points Sunday and the
Phoenix Suns extended their winning streak to six games with a 123-109
victory over the Minnesota Timberwolves.

{TEAM_NAME}.*{SCORE}.*{TEAM_NAME}: the@AT Phoenix@NPNP Suns@NPNP
extended@VBD their@JJ winning@JJ streak@NN to@IN six@CD games@NNS with@IN
a@AT 123-109@CD victory@NN over@IN the@AT Minnesota@NPNP Timberwolves@NPNP

---------------------------------------------------------------------------

Notice that the sentence starting with ‘ATLANTA’ in our corpus sample did not match
because crep did not recognize ‘Charlotte’ as a TEAM_NAME due to TEAM_NAME’s
definition in ExpFile (Section 2.1.1).

2.2.3.7 The ‘?’ operator

The crep operator '?' works analagously to its counterpart in lex; the expression
operated on is optional.

EXAMPLE 10.                                                  

$cat sample | crep -e 'STRAIGHT 0- (home@ 0-)? N_WIN' -w -D
ExpFile
Parsing Your Regular Expression(s)...
crep: Expression Parser Warning:
Expression `home` was not found in your definition file.
It will be inserted LITERALLY into the flex file.

Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: {STRAIGHT}[^@]+(home@[^@]+)?{N_WIN}
Compiling the flex file...
Executing Flex File...

Matching sentences:

ATLANTA ( UPI ) -- Dell Curry scored 20 points and Kelly Tripucka added 18
as Carlotte took its third straight win in a 123-111 victory over the
Atlanta Hawks.

{STRAIGHT}[^@]+(home@[^@]+)?{N_WIN}: straight@RB win@VB

crep manual page 29



---------------------------------------------------------------------------

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory.

{STRAIGHT}[^@]+(home@[^@]+)?{N_WIN}: consecutive@JJ home@NN victory@NN

---------------------------------------------------------------------------

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win.

{STRAIGHT}[^@]+(home@[^@]+)?{N_WIN}: straight@RB win@VB

---------------------------------------------------------------------------

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory.

{STRAIGHT}[^@]+(home@[^@]+)?{N_WIN}: straight@RB victory@NN

---------------------------------------------------------------------------

2.3 Using a variable definition file in crep expression syntax: the -d option

Now that the crep expression syntax has been introduced, we may utilize its
simplicity in the variable definition file.  Following is a variable definition file in
crep expression syntax (ExpFile2).  It contains all the definitions of ExpFile
presented in Section 2.1.1, and a few new definitions.  Essentially, ExpFile2 carries
all the regular-expression matching power as the lex-syntax ExpFile plus the
power of two new definitions: COMBO and SUPERCOMBO.

EXAMPLE 11.                                                  

$cat ExpFile2
SPACE             @@@[ ]+@@@

SUPERCOMBO        COMBO 4- STRAIGHT

COMBO             TEAM_NAME 0- SCORE

TEAM_NAME         @@@([tT]he@AT[ ][A-Z][a-z][a-zA-Z]+@NNS)|([tT]he@AT[ ][A-
Z][a-z][a-zA-Z]+@NP)|([tT]he@AT[ ][A-Z][a-z][a-zA-Z]+@NPNP[ ][A-Z][a-z][a-
zA-Z]+@NPNP)@@@

SCORE             @@@[0-9]+@CD{SPACE}[0-9]+@CD|[0-9]+@CD{SPACE}(to@

crep manual page 30



[A-Z]+){SPACE}[0-9]+@CD|[0-9]+-[0-9]+@CD@@@

N_WIN             ((victory|win|triumph|decision|romp)@NN)|(win@VB)

LOSS              (loss|defeat|upset|setback)@NN

STRAIGHT          (straight|consecutive)@

POSS              (my|your|her|his|its|our|their)@JJ

VBD_WIN @@@((defeated|beat|downed|edged|pounded|routed|minced|
troubled|dumped|crushed|stopped|outlasted|upended|blasted)@)|(blew@[A-Z]+[
]out@)|(coasted@VB[A-Z][ ]past@)|(held@[A-Z]+[ ]off@)|(knocked@[A-Z]+
off@)@@@

ORD              @@@((first|second|third|fourth|fifth|sixth|seventh|eighth|
ninth|tenth)@CD)|([1-9][0-9]*((0|[4-9])th)|1st|2nd|3rd)@@@@

VBG_ENABLE       (helping|pacing|guiding|lifting|sparking|igniting|topping|
powering|rallying|propelling|sending|carrying|engineering|spurring|pushing|
fueling|bringing)@VB

Notice that some definitions, such as POSS and STRAIGHT, are identical to their
counterparts in ExpFile.  Others, such as ORD and SCORE, contain the lex
definitions of ExpFile between the ‘@@@’ operators6 .   Finally, we see two
definitions which utilize other crep operators: COMBO and SUPERCOMBO, which give
the user more macro power.  With ExpFile2 specified to crep using the -d option,
the user may use ‘SUPERCOMBO’ in the -e parameter rather than its expanded
substitution value, which is ‘TEAM_NAME 0- SCORE 4- STRAIGHT’  (The previous
expression is, of course, still in crep syntax, and is translated into lex syntax at
execution time, for another level of abstraction).

Note: every crep expression operator may be used in a variable definition file except
the semicolon ( ‘;’ ) operator.

EXAMPLE 12.                                                  

$cat sample | crep -e 'SUPERCOMBO' -d ExpFile2 -w
Parsing Your Regular Expression(s)...
Parsing your Variable Definition File...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: {SUPERCOMBO}
Compiling the flex file...
Executing Flex File...

crep manual page 31

6 Why do some definitions require the ‘@@@’s and some do not?  Since crep recognizes characters
such as ‘-’ and ‘+’ to hold special meaning, expressions containing them must be surrounded by the
‘@@@’ operator if those characters are not being used as operators. 



Matching sentences:

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns
132-103 for their 15th consecutive home victory.

{SUPERCOMBO}: the@AT Phoenix@NPNP Suns@NPNP 132-103@CD for@IN their@JJ
15th@CD consecutive@

---------------------------------------------------------------------------

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win.

{SUPERCOMBO}: the@AT Washington@NPNP Bullets@NPNP 118-94@CD for@IN
their@JJ third@CD straight@

---------------------------------------------------------------------------

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory.

{SUPERCOMBO}: the@AT Washington@NPNP Bullets@NPNP 117-91@CD for@IN
its@JJ fifth@CD straight@

---------------------------------------------------------------------------

crep manual page 32



3. MORE OPTIONS OF
crep

This section will introduce other available command line options of crep.

3.1 Other options for expression passing

3.1.1 -E: straight lex syntax instead of the crep expression syntax

If one wishes to use lex syntax exclusively, and would prefer not to escape lex
expressions with the ‘@@@’ operators, the -E option may be used in place of the -e
option.  -E passes the entire expression to lex -- no parsing is done by crep.

EXAMPLE 13.                                                  

$cat sample | crep -E '{TEAM_NAME}.*{SCORE}.*{TEAM_NAME}' -D
ExpFile -w
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: {TEAM_NAME}.*{SCORE}.*{TEAM_NAME}
Compiling the flex file...

crep manual page 33



Executing Flex File...

Matching sentences:

MINNEAPOLIS ( UPI ) -- Tom Chambers scored 28 points Sunday and the
Phoenix Suns extended their winning streak to six games with a 123-109
victory over the Minnesota Timberwolves.

{TEAM_NAME}.*{SCORE}.*{TEAM_NAME}: the@AT Phoenix@NPNP Suns@NPNP
extended@VBD their@JJ winning@JJ streak@NN to@IN six@CD games@NNS with@IN
a@AT 123-109@CD victory@NN over@IN the@AT Minnesota@NPNP Timberwolves@NPNP

---------------------------------------------------------------------------

We should notice that the matching output is identical to that of Example 9.  The
only difference in execution of crep is that the expression parsing module was
skipped (i.e. there was no line ‘Parsing Your Regular Expression(s)...’ printed). 

The user may specify ANY lex regular expression with the -E option EXCEPT the
space character.  This limitation can be circumvented by the following method.
Enter the following definition into a variable definition file:

SPACE              [ ]

and then change an arbitrary expression on the command line which uses the above
variable definition file as follows:

from -E '[0-9]+@CD[ ][0-9]+@CD'
^^^
Note the space character

to -E '[0-9]+@CD{SPACE}[0-9]+@CD'
^^^^^^^
Using the SPACE definition.

3.1.2 -f and - F

If one wishes to edit the expression in a file instead of on the command line (useful
if the expression grows lengthy and complex), one may do so with -f and -F (-f
for specifying crep syntax, and -F for lex syntax):

crep manual page 34



EXAMPLE 14.                                                 

$cat myfile
TEAM_NAME 5+ (STRAIGHT|@@@([0-9]+-[0-9]+@)@@@) 0- N_WIN
$cat sample | crep -f myfile -D ExpFile -w

This command will produce output identical to that of  example 5.  Similarly, the
user may read in a lex expression from a file with the -F option:

EXAMPLE 15.                                                  

$cat myfile2
{TEAM_NAME}.*{SCORE}.*{TEAM_NAME}
$cat sample | crep -F myfile -D ExpFile -w

We should note that the matching sentences of the above command are the same as
that of Example 9.  Note that the use of single quotes around the expression when it
appears in a file is not necessary as it is on the command line.

3.1.3 -m

The -m option is used for batch-style expression matching, and, as the reader will
see, for special searches such as negation in Section 3.1.3.1.  With -m, the user can
specify n expressions, n outfile names, and have each expression Ei redirect its
matches from the corpus into the file Fi:

EXAMPLE 16.                                                  

$cat sample  | crep -m 'Celtics file1 VBG_ENABLE file2
@@@{STRAIGHT}.*{N_WIN}@@@ file3' -D ExpFile
Tagging words in your corpus file(s)...
Building the flex file...
crep: Expression Parser Warning:
Expression `Celtics` was not found in your definition file.
It will be inserted LITERALLY into the flex file.

Regular Expression 1: Celtics
Regular Expression 2: {VBG_ENABLE}
Regular Expression 3: {STRAIGHT}.*{N_WIN}
Compiling the flex file...
Executing Flex File...

The output is being sent to the appropriate file(s).
$cat file1
BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-

crep manual page 35



103 for their 15th consecutive home victory.

$cat file2
$cat file3
ATLANTA ( UPI ) -- Dell Curry scored 20 points and Kelly Tripucka added 18
as Charlotte took its third straight win in a 123-111 victory over the
Atlanta Hawks.

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory.

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win.

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory.
$

There are two factors to keep in mind when using -m:

1) All expressions used with the -m option are run through the crep expression
parser (even though no parser message appears), which should not be a problem for
using straight lex expressions: simply escape the whole expression with the ‘@@@’
operators for lex-exclusive searches.

2)  Spaces cannot be used on the command line in the middle of an expression with
-m. Therefore, to execute an ambiguous command like

$cat sample | crep -m 'STRAIGHT 0= N_WIN file1 SCORE 1- POSS

file2' -D ExpFile

substitute a ‘-’ wherever a space should appear in the expression, as follows:

$cat sample | crep -m 'STRAIGHT-0=-N_WIN file1 SCORE-1--POSS

file2' -D ExpFile

3.1.3.1 Special searching capabilities of -m

The -m option makes possible two kinds of special searches: negation and at most/at
least/exactly semantics for whole expressions.  The techniques are described below.

crep manual page 36



3.1.3.1.1 Negation searches

Negation can be achieved by simultaneously searching for the two following
expressions: one that matches every sentence, and one that matches exactly what is
to be discarded.  After the two respective match files have been created, use of the
diff tool will return what is desired.

Say, for example, the user wishes to query the toy corpus sample for all the
sentences which do not contain STRAIGHT:

EXAMPLE 17.                                                  

$cat sample | crep -m '@@@.@@@ everything STRAIGHT junk' -D
ExpFile
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression 1: .
Regular Expression 2: {STRAIGHT}
Compiling the flex file...
Executing Flex File...

The output is being sent to the appropriate file(s).
$cat everything
ATLANTA ( UPI ) -- Dell Curry scored 20 points and Kelly Tripucka added 18
as Charlotte took its third straight win in a 123-111 victory over the
Atlanta Hawks .

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory .

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win .

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory .

MINNEAPOLIS ( UPI ) -- Tom Chambers scored 28 points Sunday and the Phoenix
Suns extended their winning streak to six games with a 123-109 victory over
the Minnesota Timberwolves .

$cat junk
ATLANTA ( UPI ) -- Dell Curry scored 20 points and Kelly Tripucka added 18
as Charlotte took its third straight win in a 123-111 victory over the
Atlanta Hawks .

BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in

crep manual page 37



double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory .

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win .

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory .

Only the sentence starting with ‘’Minneapolis’ does not appear in junk -- that is
the one sentence we want. After everything and junk have been created, we
diff them and pass diff’s output through the crep tool diff_clean to get what
we want without the ‘<’s output by diff:

$diff everything junk | diff_clean
MINNEAPOLIS ( UPI ) -- Tom Chambers scored 28 points Sunday and the
Phoenix Suns extended their winning streak to six games with a 123-109
victory over the Minnesota Timberwolves .
$

Warning:  Use of -w with negation searches may be dangerous, since the expression
‘@@@.@@@’ matches every character that is not part of the expression the user does
not want.  Furthermore, -w does not  make any sense with a negation search of this
type, because the semantics of the search are “return all sentences which do not
contain expression x.”  In other terms, using -w with -m negation is analagous to
querying a database for every field which does not match ‘zucchini’; unless you are
querying some specialized vegetarian corpus, the size of the found set will be a
function of the size of the corpus itself.

Negations in which one wishes to search for all sentences containing ‘foo’ n o t
followed by ‘bar’can also be realized using crep in the following way: search for two
two expressions -- the common part as one expression (foo), and ‘foo’ followed by
‘bar’ as the other epxression.  Here we utilize the lex property that imbedded
matches result in the longest expression matching only.

In example 18, we want all sentences which contain a STRAIGHT (recall that
STRAIGHT stands for either ‘straight’ or ‘consecutive’) which is not directly followed
by the word ‘win’:

EXAMPLE 18.                                                  

$cat sample | crep -m 'STRAIGHT wanted STRAIGHT-0--win@ junk' -D
ExpFile

crep manual page 38



Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression 1: {STRAIGHT}
crep: Expression Parser Warning:
Expression `win` was not found in your definition file.
It will be inserted LITERALLY into the flex file.

Regular Expression 2: {STRAIGHT}[^@]+win@
Compiling the flex file...
Executing Flex File...

The output is being sent to the appropriate file(s).
$cat wanted
BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory .

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory .

$cat junk
ATLANTA ( UPI ) -- Dell Curry scored 20 points and Kelly Tripucka added 18
as Charlotte took its third straight win in a 123-111 victory over the
Atlanta Hawks .

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win .

Note that junk does not represent all sentences that we don’t want; sentences that
did not contain at least a STRAIGHT were omitted from both matching sets. 

3.1.3.1.2 ‘At  most’, ‘at least’, and ‘exactly’ semantics

The default semantics of an expression used in crep is ‘at least one’.  For instance, in
example 4, we searched for N_WIN, and all sentences with at least one N_WIN were
returned.  But what if we would like to extract only the sentences with at most one
N_WIN? The -m option realizes this need.

To do so, we will give two expressions to -m: the overqualified expression 
(N_WIN-.-N_WIN) which returns all sentences containing at least two N_WIN’s; and
the expression we want: simply N_WIN.   We once again utilize the lex property that
imbedded matches result in the longest expression matching only.  Without the first
expression (N_WIN-.-N_WIN) to ‘steal away’ what we don’t want, N_WIN would take
all of the sentences containing at least one N_WIN.  

crep manual page 39



EXAMPLE 19.                                                  

$cat sample | crep -m 'N_WIN-.-N_WIN junk N_WIN wanted' -D
ExpFile -w
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression 1: {N_WIN}.*{N_WIN}
Regular Expression 2: {N_WIN}
Compiling the flex file...
Executing Flex File...

The output is being sent to the appropriate file(s).
$cat junk
ATLANTA ( UPI ) -- Dell Curry scored 20 points and Kelly Tripucka added 18
as Charlotte took its third straight win in a 123-111 victory over the
Atlanta Hawks .

{N_WIN}.*{N_WIN}: win@VB in@IN a@AT 123-111@CD victory@NN

---------------------------------------------------------------------------

$cat wanted
BOSTON ( UPI ) -- Kevin McHale 's 23 points led six Boston players in
double figures Friday night as the Celtics defeated the Phoenix Suns 132-
103 for their 15th consecutive home victory .

{N_WIN}: victory@NN

---------------------------------------------------------------------------

CHICAGO ( UPI ) -- Michael Jordan led a balanced scoring attack with 24
points Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win .

{N_WIN}: win@VB

---------------------------------------------------------------------------

LANDOVER ( UPI ) Jeff Hornacek and Cedric Ceballos scored 20 points each to
lead six Suns in double figures Friday night as the Suns coasted past the
Washington Bullets 117-91 for its fifth straight victory .

{N_WIN}: victory@NN

---------------------------------------------------------------------------

MINNEAPOLIS ( UPI ) -- Tom Chambers scored 28 points Sunday and the Phoenix
Suns extended their winning streak to six games with a 123-109 victory
over the Minnesota Timberwolves .

{N_WIN}: victory@NN

---------------------------------------------------------------------------

crep manual page 40



$

This technique works for longer expressions as well (say, for finding all sentences
with exactly two N_WIN’s).  But in order for this to work, the longer expression
MUST appear before the shorter expression on the command line.  This is due to
the fact that lex will match the same string for ‘foo-.-foo’ as it does for ‘foo-.-
foo-.-foo’.   If ‘foo-.-foo-.-foo’ appears before ‘foo-.-foo’ on the command
line, the search will work, and ‘foo-.-foo’ will get the sentences containing
exactly two foo’s and foo-.-foo-.-foo will get all sentences containing three or
more foo’s.   Sentences with only one foo are not found by either expression.  

To search for at most two foo’s, replace foo-.-foo in the above search by just plain
foo. Here foo will match any sentence containing at least one foo, unless the
sentence is stolen away by foo-.-foo-.-foo.  In other words, foo, when searched
for at the same time as foo-.-foo-.-foo, will return all sentences with at most
two foo’s.

In any case, use of -w when searching with at most/at least/exactly semantics will
provide valuable insight as to what is matching and what is not.

3.1.4 -g:  Reading the -m parameter from a file

Analagous to -f and -F, -g allows the user to edit the parameter of -m in a file. -g
will work properly so long as each Ei is separated by at least one whitespace character
(space, tab, or newline) from each  Fi, and vice versa.

3.2 Options for increasing the execution speed of crep

3.2.1 -k and -x

The compile time for expressions is a function, among other factors, of the
expression complexity.   If the user is searching different corpora with the same
expression AND the same variable definition file repeatedly, -k and -x may  be
used.  When -k is used, crep is instructed to keep all temporary files rather than
perform the default action, which is to destroy them all.  If crep is called directly
after a call to crep was made with the -k option, -x (the express option) may be used
to utilize the already compiled temporary files; therefore, no compilation will take
place.  We shall use -k, and then both -k and -x, on the command from Example 3,
running time on both trials:

crep manual page 41



EXAMPLE  20.                                                  

$ time cat sample | crep -e 'TEAM_NAME 2- TEAM_NAME 0= SCORE 2-
POSS 0- ORD 2- N_WIN' -D ExpFile -w -k 
Parsing Your Regular Expression(s)...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression:
{TEAM_NAME}([^@]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){TEAM_NAME}[^@]+{SCORE}([
^@]+|[^@]+@[^@]+|[^@]+@[^@]+@[^@]+){POSS}[^@]+{ORD}([^@]+|[^@]+@[^@]+|[^@]+
@[^@]+@[^@]+){N_WIN}
Compiling the flex file...
Executing Flex File...

{ matching sentence output is same as from Example 3 }

The temporary files have been saved in your current directory.
You may use the -x option the next time you run crep to
use the precompiled flex file, avoiding compilation time.

To destroy all temp files, type crep_clean.

real    0m30.36s
user    0m20.36s
sys     0m9.45s
$ time cat sample | crep -e 'TEAM_NAME 2- TEAM_NAME 0= SCORE 2-
POSS 0- ORD 2- N_WIN' -D ExpFile -w -k -x 
Tagging words in your corpus file(s)...
Executing Flex File...

{ output is same as from Example 3 }

The temporary files have been saved in your current directory.
You may use the -x option the next time you run crep to
use the precompiled flex file, avoiding compilation time.

To destroy all temp files, type crep_clean.

real    0m5.70s
user    0m0.56s
sys     0m4.85s
$

Note that in the second call to crep (with the -x option) there was no expression
parsing or lex source compiling; the executable from the previous call to crep was
used.

crep_clean, a tool of crep, can be invoked to destroy all temporary files created by
crep without having to run crep again.  See Section 7 for more information about
crep_clean.

crep manual page 42



3.2.2 -n and -p: tagged input files

Tagging large corpora may take a considerable amount of time.   crep supports three
options(-n, -p, and -P) and one tool (crep_prep; discussed in Section 7.2) to give the
user an ability to tag a corpus only once and save the tagged input as a file.  The -n
<filename> option will capture the tagged input and save it to a file which won’t be
destroyed by crep when the rest of the temporary files are deleted by default.  To use
the file created previously with the -n option, use the -p (pretagged) option as
follows:

EXAMPLE 21.                                                  

First, we shall create the tagged file out of an untagged basketball lead-in corpus
big_one (150K) with the -n option:

$time cat big_one | crep -e 'TEAM_NAME 0- SCORE' -D ExpFile -n
big.tagged
Parsing Your Regular Expression(s)...
Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: {TEAM_NAME}[^@]+{SCORE}
Compiling the flex file...
Executing Flex File...

Matching sentences:

{6 pages of output skipped}

Tagged input was saved in a file under the name you specified with
the -n parameter.

real    0m59.95s
user    0m26.48s
sys     0m24.35s

N o w, we can call crep with our newly created big.tagged file.  The -p option tells
crep to skip the tagging module (the modules are explained in Section 4).  We may
freely change the expression, but in the following example, we will use the same
expression for an accurate time comparision.

$time cat big.tagged | crep -p -e 'TEAM_NAME 0- SCORE' -D
ExpFile
Parsing Your Regular Expression(s)...
Building the flex file...
Regular Expression: {TEAM_NAME}[^@]+{SCORE}
Compiling the flex file...
Executing Flex File...

crep manual page 43



Matching sentences:

{6 pages of output skipped}

real    0m28.31s
user    0m15.70s
sys     0m11.23s
$

3.3 Other options

3.3.1 -c  and -P

Alternatively, input to crep can be specified as a parameter of an option rather than
from standard input.  To input an untagged corpus, use -c.  To input a tagged
corpus, use -P.

EXAMPLE 22a.                                                  

For untagged corpora, 

$cat big_one | crep -e 'TEAM_NAME 0- SCORE' -D ExpFile

yields the same results as

$crep -c big_one -e 'TEAM_NAME 0- SCORE' -D ExpFile

EXAMPLE 22b.                                                  

For tagged corpora, 

$cat big.tagged | crep -p -e 'TEAM_NAME 0- SCORE' -D ExpFile

yields the same results as

$crep -P big.tagged -e 'TEAM_NAME 0- SCORE' -D ExpFile

crep manual page 44



3.3.2 -t: printing tagged output

Sometimes it is helpful to view the matching sentences with all tags intact.  By
default, crep strips them off and displays regular text.  To output the sentences with
tagged words, use -t:

EXAMPLE 23.                                                  

$cat sample | crep -e 'Celtics' -t
Parsing Your Regular Expression(s)...
crep: Expression Parser Warning:
Expression `Celtics` was not found in your definition file.
It will be inserted LITERALLY into the flex file.

Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: Celtics
Compiling the flex file...
Executing Flex File...

Matching sentences:

BOSTON@NPNP (@( UPI@NPNP )@) --@: Kevin@NPNP McHale@NPNP 's@$ 23@CD
points@NNS led@VBD six@CD Boston@NP players@NNS in@IN double@JJ figures@NNS
Friday@NP night@NN as@CS the@AT Celtics@NNS defeated@VBD the@AT
Phoenix@NPNP Suns@NPNP 132-103@CD for@IN their@JJ 15th@CD consecutive@JJ
home@NN victory@NN .@.

$

crep manual page 45



crep manual page 46



4. TOOLS USED/CHAIN
OF EXECUTION

This section discusses the interaction between the various tools and modules which
make up crep.  While knowledge of the various parts which comprise crep may not
be directly necessary for the use of crep, the flow of execution may aid in
understanding some of the underlying assumptions of crep.

4.1 The five modules

There are five main modules of crep: the expression parsing module, the tagging
module, the lex compilation module, the lex execution module, and the output
module. Their interaction with one another is illustrated in fig. 4-1.  A description
of each module follows:

The Expression Parsing Module parses an expression from crep expression syntax
(the syntax is fully described in section 2) into lex syntax by means of parser_exp.
If the user specified a lex variable definition file, Name_Extractor will fetch the
variable names and parser_exp will substitute the appropriate lex variable(s) in
the expression.  

The Expression Parsing Module also passes the variable definition file specified by 
-d into the parser.  Variable definition files specified by -D (lex syntax files) do not
enter the Expression Parsing Module.

crep manual page 47



The Tagging Module performs three operations on the corpus input (unless the
input is pre-tagged, in which case this module is skipped):

1) delineates the corpus into sentences (sent or a user-authored delimiter) 
2) tags each part of speech with pos
3) transforms pos output into a format which crep can interpret (pos_to_crep
and eat )

After tagging(2) and transforming(3), the character ‘@’ separates words in the corpus
from their associated pos tag, while the space character is used to separate word@tag
pairs.  The pos tag names are those produced by pos (Appendix D).

The expression from the Expression Parsing Module, along with the variable
definition file specified by the user (if any) is fed into the Lex Compilation Module.
Here the source lex file is built by crepdriver. The variable definition file forms
the definitions section, and the regular expression(s) forms the rule section.  The
action(s) of the rule(s) are added here automatically.

The compiled lex file, main_crep,  is then executed by the Lex Execution Module,
its input being previously tagged, whether it was tagged by the Tagging Module or
pre-tagged.

The output of the Lex Execution Module is then interpreted by the Output Module.
The style of output depends on what options were fed into crep on the command
line.

crep manual page 48



Name_Extractor

-e <expression>
-m <expression> -D <vardef_file>

parser_exp

-c <corpus> <standard-input>

-p option?

-P <corpus>

main_crep

crepdriver

no

sent

pos

pos_to_crep

eat

yes

-m option?

<standard-output>

noyes

Print_Sentsstripper

no

yes

-E expression

Expression 
Parsing  Module

Lex Compilation Module

Lex 
Execution
Module

Tagging Module

Output Module

noyes

-x

noyes

-d <vardef_file>

-t option?

merge

no

yes

Print_Sents_mm_stripper

-t option?

m_merge

-w option? -w option?

Figure 4-1. crep tools, modules, and chain of execution 

crep manual page 49



crep manual page 50



5. TECHNIQUES FOR
EFFICIENT USE OF crep

5.1 Getting familiar with what a tagged corpus looks like

Since most uses of crep require knowledge of part of speech tags, the user should
become familiar with what a tagged corpus file looks like.  That is to say, the user
should be aware of how the input appears to crep after tagging it and converting it to
crep-palatable syntax.  Before the user dives in to crepping, the best piece of advice to
the novice user is to tag a corpus using crep_prep (Section 7.2) and take a look at it.
Notice what crep does with certain words and also with punctuation.  Often users
fail to get crep working properly because they omit the tags in their expression,
because there are no tags in the free text, and the obvious thing to search for is what
they see in the raw text.  Section 5.2 presents an example of what happens when a
tag is omitted in one kind of search.

5.2 Stacking expressions to one’s advantage

In order to properly form the expressions, the user must be aware that the actual
matching of words in the corpus to the expression is done when the words in the
corpus are tagged.  Therefore, when one is forming an expression, whether it be on
the command line or in a definition file, a tag should be appended to each word of
the expression.  For example, one may define ‘color’ in a variable definition file as
follows:

crep manual page 51



COLOR (red|blue|yellow|green|purple|teal|mauve)@JJ

This is an example of a properly-formed crep variable definition in lex syntax.
Every ‘color’ on the right hand side is followed by a ‘@JJ’, which is an example of a
crep tag7 .    If one searched for ‘purple’ and not ‘purple@JJ’, the crep parser operators
will not work properly.   Since the operators search for ‘@’s to count the number of
words, the tag of ‘purple’ will be counted as a separate word,  and the crep expression
‘purple 0- pickle’ would not match the actual phrase ‘purple pickle’ in the corpus,
since the tagged version of the phrase is ‘purple@TAG1 pickle@TAG2’, where TAG1
and TAG2 are chosen by pos depending on what part of speech pos thinks they are.
The string ‘@TAG1’, when encountered by crep, is counted as a separate word, and
since the ‘0-’ operator disallows any words in between the two expressions (Section
2.2), ‘purple 0- pickle’ does not match ‘purple pickle’ in the corpus.   If the expression
‘purple@JJ 0- pickle’ is searched for, then the tagged corpus fragment ‘purple@JJ
pickle@NN’ would match.  

5.2.1 Ignoring parts of speech

If, however, the tagger tags the above corpus fragment as ‘purple@NN pickle@NN’,
then the crep expression ‘purple@JJ 0- pickle@NN’ would not match.  If one does
not care about the part of speech of ‘purple’, and only insists that it is followed
immediately by the word ‘pickle’ in the corpus, then the corresponding crep
expression should be ‘purple@ 0- pickle’.  The tag is incomplete, but since the ‘@’ is
there, the rest of the tag will just be ignored and not treated as a whole word.
Therefore, according to crep, the corpus words ‘purple’ and ‘pickle’ will match the
expression no matter how they are tagged as long as they are adjacent and in that
order.

5.2.2 Compensating for the tagger’s errors 

By examining the tagged version of a corpus, errors by the tagger can be
circumvented by crep by making modifications to the variable definition file and/or
expression.

In the toy corpus sample used in Section 2, the second sentence receives the
following part-of-speech tags from pos:

CHICAGO@NPNP (@( UPI@NPNP )@) --@: Michael@NPNP Jordan@NPNP led@VBD a@AT

crep manual page 52

7 crep tags are derived from pos tags.  The abbreviations of the tags used by crep are the same as
those assigned by pos; only the character separating the word and tag are different ( ‘@’ for crep and
‘/’ for pos).  For a complete list of which abbreviation stands for which part of speech, consult
Appendix D.



balanced@VBN scoring@NN attack@NN with@IN 24@CD points@NNS Wednesday@NP
night@NN and@CC the@AT Chicago@NPNP Bulls@NPNP coasted@VBD past@IN the@AT
Washington@NPNP Nulls@NPNP 118-94@CD for@IN their@JJ third@CD straight@RB
win@VB.

Note that pos incorrectly tagged the word ‘win’ with ‘VB’, which is a pos tag for a
verb.  In section 2, we searched for the word ‘win’ as a noun in the variable
definition

N_WIN             ((victory|win|triumph|decision|romp)@NN)|(win@VB)

and N_WIN matched this particular ‘win’ in examples 3, 4, and 5 of section 2  because
we added the extra ‘(win@VB)’ case on the end of our definition.  Thus by adding
extra cases to our definitions, we can compensate for tagger errors.  This practice,
however, may result in producing spurious output; the user must decide how to
treat errors of this nature and choose whether the output should filter out some
matching sentences, or if crep should let some incorrect sentences pass through to
the output.  In either case, judicious use of the -w and -t options can help the user
decide what should be matching and what shouldn’t.

5.3 Searching tricks

5.3.1 Part-of-speech searching

Since crep scans tagged text, the user can run very general discovery tests without
having a variable definition file by simply specifying the part-of-speech tag in the
expression rather than a specific word or variable definition.  A variable definition
file can then be built from the discovered words.  For instance, to search for an
adjective adjacent to a noun, simply search for the expression 

@JJ 0- @NN 

This expression would return all sentences which contain an adjective adjacent to
and before a noun.

5.3.2 “Trapping”

A common discovery technique of using crep is called trapping.  Trapping is the act
of searching for a family of words by specifying common surrounding words and
‘trapping’ the desired unknown word or words in the middle.  Say, for instance, we
wished to know what kinds of ‘defeating’ verbs are used when an article reports that
one basketball team defeats another.  We can search one possible sentence structure,

crep manual page 53



“trapping” the verbs which appear in between two team names:

EXAMPLE 24.                                                  

$cat big_one.tagged | crep -p -e 'TEAM_NAME 1- @@@[a-zA-Z]@VB
@@@ 1- TEAM_NAME' -w -D ExpFile
Parsing Your Regular Expression(s)...
Building the flex file...
Regular Expression:
{TEAM_NAME}([^@]+|[^@]+@[^@]+)[a-zA-Z]@VB([^@]+|[^@]+@[^@]+){TEAM_NAME}

Compiling the flex file...
Executing Flex File...

Matching sentences:

LOS ANGELES ( UPI ) -- Danny Manning scored 27 points and Ron Harper added
22 Thursday night , helping the Los Angeles Clippers down the Knicks
101-91 , snapping a 12-game losing streak at the hands of New York dating
back to February 23, 1986.

{TEAM_NAME}([^@]+|[^@]+@[^@]+)[a-zA-Z]@VB([^@]+|[^@]+@[^@]+){TEAM_NAME}:
the@AT Los@NPNP Angeles@NPNP Clippers@NPNP down@VB the@AT Knicks@NNS

---------------------------------------------------------------------------

CHICAGO UPI Michael Jordan led a balanced scoring attack with 24 points
Wednesday night and the Chicago Bulls coasted past the Washington
Bullets 118-94 for their third straight win.

{TEAM_NAME}([^@]+|[^@]+@[^@]+)[a-zA-Z]@VB([^@]+|[^@]+@[^@]+){TEAM_NAME}:
the@AT Chicago@NPNP Bulls@NPNP coasted@VBD past@IN the@AT Washington@NPNP
Bullets@NPNP

---------------------------------------------------------------------------

...

Note that since we only searched for the verb tag, the corresponding verbs
themselves were captured in our neatly set trap.  The verbs ‘down’ and ‘coasted past’
were “trapped” in between two TEAM_NAME’s, with a one word allowance between
each TEAM_NAME and the verb.   Since ‘coasted past’ is two words, it would not have
matched if the allowance was ‘0-’ instead of ‘1-’ on both sides.   By changing the word
allowance operators (here we used ‘1-’), crep can yield different matches.  The user
can then add these verbs to the variable definition file.

crep manual page 54



6. CUSTOM SENTENCE
DELIMITER AUTHORING
TUTORIAL

One of the main features of crep is that it returns the entire sentence containing the
matching expression, not just the physical line in the file or just the expression
itself.   By examining figure 4-1, the reader will notice that crep delimits the corpus
into sentences with a sentence delimiter before anything else is done to the corpus.
By default, this delimiting is done by the default delimiter tool which is part of crep
(called sent).   This delimiter, while containing several rules to determine where
the ends of sentences should fall, does not cover all possible cases, especially for
corpora in a specific domain.   For this reason, crep includes two tools which allow
the user to either a) add rules on to the existing delimiter (build_delim), or b)
construct a custom sentence delimiter from scratch (build_delim_user).

If the user is satisfied with the performance of the existing default delimiter, this
section can be skipped.  If, however, the default delimiter is found to be insufficient
for particular needs, whether one wishes to have one’s corpus delimited by regular
grammatical sentences with domain-specific enhancements, or something different
altogether (separated at semicolons only, for instance), then one may find this
section helpful in using crep to achieve one’s searching needs. 

crep manual page 55



6.1 Examining the output from a delimiter

Examining output from a crep delimiter is a logical place to start in tutoring the user
on crep’s delimiting, as it would help the user in at least three ways:

a) in understanding how the crep default delimiter works;
b) in knowing how to test one’s own custom delimiters; and
c) in using the output of the delimiters and the input to other tools besides crep.

The user should become familiar with what the constructed delimiters do to raw
text.  In other words, the user should become familiar with the text that the
delimiters insert in the corpus to signal to pos and crep where the ends of sentences
fall.  Examine example 25 below which uses the default delimiter:

EXAMPLE 25.                                                  

$cat story.txt
Once upon a time, there was an aardvark named Vance.  He owned a

nice flat in the Lower East Side.  Unlike other aardvarks, he didn't
eat any ants.  Indian food was actually his favorite.

One day, Vance put on his best three-piece suit in search of a
tasty lunch. When he was enjoying his Biryani, he noticed across the
dining room a very handsome frog, dressed businesslike, with the Wall
Street Journal under his arm.  Vance walked over to him and asked,
"What would you call behavior such as ours?"

The frog dabbed his mouth daintily with the corner of his napkin
and returned, "When in Rome, do as the Romans do."

$

Now we input story.txt into the default delimiter ( called sent).  We will pass
sent’s output into the crep tool delim_export to make the output more readable
(see Section 7.4 for more information on delim_export).

$sent < story.txt | delim_export "
>   ***END!***
> "

Once upon a time, there was an aardvark named Vance.
***END!***

He owned a nice flat in the Lower East Side.
***END!***

Unlike other aardvarks, he didn't eat any ants.
***END!***

Indian food was actually his favorite.

***END!***
One day, Vance put on his best three-piece suit in search of a tasty lunch.

crep manual page 56



***END!***
When he was enjoying his Biryani, he noticed across the dining room a very
handsome frog, dressed businesslike, with the Wall Street Journal under his
arm.
***END!***

Vance leaned over to him and asked, "What would you call behavior such as
ours?"

***END!***
The frog dabbed his mouth daintily with the corner of his napkin and
returned, "When in Rome, do as the Romans do."
***END!***

We should notice that the delimiter puts each new sentence on a new line. 

6.2  Adding features to crep’s delimiter

The default delimiter does not take into account such exceptions such as Mr., Mrs.,
and Dr.   For example, the consider the corpus doctor.txt:

EXAMPLE 26.                                                  

$cat doctor.txt
Mr. T. went to see Dr. Shoebuckle last week.  Shoebuckle is the only doctor
who can treat malcodosis (bites from software bugs) this side of Silicon
Valley.  In just three hours, Shoebuckle cured Mr. T. The next day, Mr. T.
notified Mrs. McFiggles at the Pentagon about the feat.
$

If we pass doctor.txt into the default delimiter, we will get the following
delimitations (the output format is the same as that of the corpus in Section 6.1):

$sent < doctor.txt | delim_export "
>   ***END!***
> "
Mr.
***END!***

T. went to see Dr.
***END!***

Shoebuckle last week.
***END!***

Shoebuckle is the only doctor  who can treat malcodosis (bites from
software bugs) this side of Silicon  Valley.
***END!***

In just three hours, Shoebuckle cured Mr.
***END!***

T.

crep manual page 57



***END!***
The next day, Mr.
***END!***

T.  notified Mrs.
***END!***

McFiggles at the Pentagon about the feat.
***END!***

$

Notice that the delimiter thought the titles Mr., Mrs., and Dr. signified the end of a
sentence when followed by a proper name.  We would like to add capabilities to the
delimiter to handle these exceptions.  To do so, we will use the build_delim tool.  If
we wished to replace the default delimiter entirely with a new one, we would use
build_delim_user, which will be discussed in Section 6.3.

6.2.1 Introduction to the delimiter source file

The user articulates how to change the delimiter by creating a delimiter source file.
There are three kinds of input one could specify in a delimiter source file to either
build a new delimiter or add on to the existing default delimiter, all in lex syntax:

a) definitions (similar to the rule section of a lex source file);

b) rules for when a sentence should be broken off (called cut-rules);

c) rules for when a sentence should NOT be broken off (called not-rules).

To get an understanding of what these modifiables could be, let’s take a look at items
a), b), and c) in the default delimiter:

EXAMPLE 27.                                                  

Definitions:

Digits           [0-9]+
StuffBeforeDot   ([a-z]|[A-Z]|[\)])+
WON              ([ ]|[\n])+
PunctSep         [\?!;]

Cut-Rules:

{Digits}\.{WON}([A-Z]|\")                           
{StuffBeforeDot}\.\"{WON}([A-Z]|\")                 
{StuffBeforeDot}{PunctSep}(\"|\)\.)?{WON}([A-Z]|\") 

crep manual page 58



{StuffBeforeDot}\.{WON}([A-Z]|\")                   

Not-rules:

{ There are none in the default delimiter }

These modifiables are actually embedded in a lex source file sent.l (the
modifiables are boldfaced for clarity):

EXAMPLE 28.                                                  

/* Default Sentence delimiter         */
/* For use with crep package          */

/* the executable for this lex file will delimit sentences of the */
/* corpus specified as standard input by the line                 */
/* '\n.PP\n.End of Discourse\n' so POS can process it             */

Digits           [0-9]+
StuffBeforeDot   ([a-z]|[A-Z]|\))+
WON              [ \t\n]+
PunctSep         [\?!;]

%%
{Digits}\.{WON}([A-Z]|\")                           |
{StuffBeforeDot}\.\"{WON}([A-Z]|\")                 |
{StuffBeforeDot}{PunctSep}(\"|\)\.)?{WON}([A-Z]|\") |
{StuffBeforeDot}\.{WON}([A-Z]|\")                  {
yyless(yyleng - 1);

ECHO;
printf("\n.End of

sentence
\n.PP\n.End of Discourse\n"); }

/*     Not-rules section is empty.               */
/*     Action for not-rules is            ECHO;  */

\n                              |
\n[ ]                                  printf(" ");

Codes:.*\n                             ;

<<EOF>>                                          {  ECHO; printf("\n\n\n.PP
\n.End of Discourse\n"); printf("eNDeNDeND.\n\n\n.PP\n.End of
Discourse\n"); yyterminate(); }

Since this file contains much more than the user needs to know about sentence

crep manual page 59



delimiting, crep abstracts the the user’s input in the creation of a sentence delimiter
to just the three modifiables mentioned above -- the syntax of the delimiter source
file for the above lex source file appears as follows:

EXAMPLE 29.                                                  

Digits           [0-9]+
StuffBeforeDot   ([a-z]|[A-Z]|\))+
WON              [ \t\n]+
PunctSep         [\?!;]
%%
{Digits}\.{WON}([A-Z]|\")                           |
{StuffBeforeDot}\.\"{WON}([A-Z]|\")                 |
{StuffBeforeDot}{PunctSep}(\"|\)\.)?{WON}([A-Z]|\") |
{StuffBeforeDot}\.{WON}([A-Z]|\")                   |
%%

%%

There are three sections in the delimiter source file: definitions, rules, and not-rules;
each section is ended by a ‘%%’ on its own line.  The syntax is similar to lex; in fact,
the abbreviations section is exactly as it would appear in a lex file; the rules and not-
rules sections resemble lex rules without actions.  There are no actions in a
delimiter source file because they are inserted by build_delim.  Note that each cut-
rule in the cut-rules section is ended with a ‘|’, even the last one.

For the default delimiter, there are no not-rules; hence, the not-rules section of the
delimiter source file is blank.  The ‘%%’ which ends the section, however, must be
left in.  A not-rule will, however,  be employed in the following example.

6.2.2 Creating a delimiter source file with the  ‘Titles’ enhancement 

As seen from example 26, the default delimiter handles titles such as Mr., Mrs., and
Dr. improperly.  Why is this so?  Let’s look at one of the lex cut-rules in the default
delimiter (from Example 29) to see why:

{StuffBeforeDot}\.{WON}([A-Z]|\")

This cut-rule means in plain language that any string containing one or more
letters, followed by a period, followed by whitespace, followed by a capital letter or
double quote, signifies a sentence break.  In fact, that capital letter or double quote is
the first letter of the new sentence.  In most sentences, this cut-rule works fine (the
boldfacing is the match):

crep manual page 60



Hello there.  My name is Roggle.

Notice how this cut-rule thwarts a sentence with a title:

Hello, Mr. Vindarten.

Now that we know why titles get chopped by the current delimiter, we can write a
not-rule to circumvent this unfortunate match.  First, we shall define our titles:

Title           (Mr\.)|(Mrs\.)|(Dr\.)|(Ms\.)

Next, we want to write a not-rule which will state when the delimiter should n o t
delimit a sentence -- the case of Mr. Vindarten above.  We shall reuse the whitespace
definition WON (found in example 29):

{Title}{WON}[A-Z]  |

This is almost correct.   The very cut-rule we are trying to circumvent is competing
with this not-rule as both rules match the same number of characters.  lex, by
convention, picks the first rule in the file when two rules match exactly the same
text -- not desirable behavior for our purposes; therefore, we must add one more
look-ahead character to make the not-rule longer:

{Title}{WON}[A-Z](\.|{WON}|[a-z])     |

The last lookahead character could be either a whitespace, a lowercase letter, or a
period, in the case of Mr. T.   This lookahead character is sufficient to make this not-
rule’s matching strings longer than those of the thwarting cut-rule’s matching
strings.  This lone not-rule will become the not-rules section of our delimiter source
file.

We are not finished yet, however.  There is at least one not-rule involving titles
which should indeed indicate the end of sentence.  Consider the following sentences
from doctor.txt:

In just three hours, Shoebuckle cured Mr. T. The next day, Mr. T.
notified Mrs. McFiggles at the Pentagon about the feat.

Now we must explicitly tell the delimiter to terminate the sentence if a one-letter
name ends a sentence:

{Title}{WON}[A-Z]\.{WON}([A-Z]|\")      |

We shall now integrate all three modifiables into one file and pass it in to
build_delim.

crep manual page 61



6.2.3 Building the delimiter with the delimiter source file

Once the user has created the delimiter source file, he/she is ready to make a call to
build_delim to construct the new delimiter.  We’ll use the source file we just created
in section 6.2.2 (we named it titles.sent):

EXAMPLE 30.                                                  

Title           (Mr\.)|(Mrs\.)|(Dr\.)|(Ms\.)
%%
{Title}{WON}[A-Z]\.{WON}([A-Z]|\")      |
%%
{Title}{WON}[A-Z](\.|{WON}|[a-z])       |
%%

build_delim takes two required parameters: the name of the target executable, and
the name of the delimiter source file:

EXAMPLE 31.                                                  

$build_delim my_new_delim titles.sent
Building new Sentence Delimiter based on user file titles.sent...
Done. Delimiter is saved in executable file my_new_delim.
Flex code is saved in my_new_delim.flex.
$

To check to see if our rules are correct, we shall input doctor.txt into
my_new_delim:

EXAMPLE 32.                                                  

$my_new_delim < doctor.txt | delim_export "
>   ***END!***
> "
Mr. T. went to see Dr. Shoebuckle last week.
***END!***

Shoebuckle is the only doctor  who can treat malcodosis (bites from
software bugs) this side of Silicon  Valley.
***END!***

In just three hours, Shoebuckle cured Mr. T.
***END!***

The next day, Mr. T.  notified Mrs. McFiggles at the Pentagon about the
feat.
***END!***

$

crep manual page 62



As we can see, we have achieved success with just one cut-rule and one not-rule. 
Compare this output with that from the default delimiter sent in example 26
(Section 6.2).    As a general guideline, try to accomplish as  much as possible in as
few rules as possible.  lex can match at most two rules on the same text fragment
simultaneously8 .

6.3 Using build_delim_user to create a delimiter containing no default
rules, not-rules, or definitions

The user may find a need for having total control over writing all the rules for the
delimiter, borrowing nothing from the default delimiter.  To build such a delimiter,
use build_delim_user instead of build_delim.  It takes the same parameters as
build_delim, but the resulting delimiter contains only the sentence delimiting
information from the user’s delimiter source file.

A    H E L P F U L    T I P

Building a delimiter with build_delim_user is a useful way of isolating the 
behavior of a lone cut-rule if you have only one cut-rule in your delimiter 
source file.  Since the output of the delimiter in this case will reflect only 
delimiting from that one cut-rule, the user can then readily test the 
functionality of cut-rules on a rule-by-rule basis.

6.4 A note about read-ahead characters

All sentence delimiters created with build_delim or build_delim_user expect all
cut-rules to have one read-ahead character (not-rules don’t need them; cut-rules
require them).  If ones enter a cut-rule such as the following

[A-Za-z]\.         |

in the cut-rule section of a delimiter source file, the cut-rule will indeed match what
it is supposed to, but being that the delimiter expects the cut-rule to have a read-
ahead character, this cut-rule applied to a sentence would yield the following results:

crep manual page 63

8 See lex & yacc (O’reilly and Associates 1992) for more information.



EXAMPLE 33.                                                  

Text from corpus:

He saw it coming.  He knew his houseplants would acquire posable thumbs
after reading Darwin aloud to them.

Output from delimiter with lone rule “ [A-Za-z]\.         |”:

He saw it coming
***END!***

.  He knew his houseplants would acquire posable thumbs after reading
Darwin aloud to them
***END!***

.
***END!***

The period, instead of ending a sentence, became the first character of the next
sentence.   To generalize, the last character matching the cut-rule always becomes the
first letter of the next sentence.  Make sure the cut-rules account for this fact.

6.5 Editing the lex source code file directly

For users who would prefer to edit the actual lex source file for the default
delimiter directly without using the build_delim or build_delim_user interface
may do so.  The user must be careful, however, not to corrupt the actions of the cut-
rules and not-rules; otherwise, the delimiter will not work properly.  The path of the
lex source code for the default delimiter, sent.l, appears in Appendix B.

6.6 Using delimited output for uses other than input to crep

The tools build_delim and build_delim_user are built to readily work with crep.
One may, however, delimit sentences with these tools and use the output for other
purposes -- say, as input to other corpus tools.   Other tools will inevitably accept
sentences delimited with different strings (i.e. not the ‘End of sentence’ strings
which crep uses); the crep tool delim_export facilitates porting of crep-delimited text
by allowing the user to easily convert the delimiting strings to something different.
delim_export effectively eliminates the need to construct a file scanner to modify
the delimited corpus. See Section 7.4 for a complete description.   delim_export is
also useful in making the output of a crep delimiter more readable.

crep manual page 64



6.7 Using custom delimiters with crep

crep can either use a pre-built custom delimiter or build a delimiter on the fly.  We
will first demonstrate how to use a pre-built custom delimiter.  The next example
includes the -s switch; the custom delimiter we built in example 31 is the parameter
of -s:

EXAMPLE 34.                                                  

$cat doctor.txt | crep -e 'Mr' -s my_new_delim
crep: Using user-defined sentence delimiter my_new_delim.
Parsing Your Regular Expression(s)...
crep: Expression Parser Warning:
Expression `Mr` was not found in your definition file.
It will be inserted LITERALLY into the flex file.

Tagging words in your corpus file(s)...
Building the flex file...
Regular Expression: Mr
Compiling the flex file...
Executing Flex File...

Matching sentences:
Mr. T. went to see Dr. Shoebuckle last week.

In just three hours , Shoebuckle cured Mr. T.

The next day , Mr. T.  notified Mrs. McFiggles at the Pentagon about the
feat.

$

A delimiter may also be built on the fly in an actual call to crep via -b and -B.  -b is
used to call build_delim; -B sends its parameter to build_delim_user:

EXAMPLE 35.                                                  

$cat doctor.txt | crep -e 'Mr' -b 'my_new_delim titles.sent'
Parsing Your Regular Expression(s)...
crep: Expression Parser Warning:
Expression `Mr` was not found in your definition file.
It will be inserted LITERALLY into the flex file.

Building new Sentence Delimiter based on user file titles.sent...
Done. Delimiter is saved in executable file my_new_delim.
Flex code is saved in this.flex.

Tagging words in your corpus file(s)...

crep manual page 65



Building the flex file...
Regular Expression: Mr
Compiling the flex file...
Executing Flex File...

Matching sentences:
Mr. T. went to see Dr. Shoebuckle last week.

In just three hours , Shoebuckle cured Mr. T.

The next day , Mr. T.  notified Mrs. McFiggles at the Pentagon about the
feat.

$

The output is, of course, the same as that of Example 34; the same delimiter was
used, but in example 35 we built it in a call to crep. -B may be invoked in a similar
fashion to make a call to build_delim_user.

Note that even in a call to crep with -b or -B, the executable delimiter as well as its
corresponding lex source code files are saved just as they are in straight calls to
build_delim and build_delim_user.

6.8 Nonconventional delimiters

build_delim and to a greater degree build_delim_user can be used to construct a
delimiter to break up a corpus in just about any arbitrary way.  Consider the
following corpus:

EXAMPLE 36.                                                  

$cat letter.txt
Dear Sirs stop I have made a decision regarding your offer for employment
stop By this time tomorrow I will be working in a fish processing factory
in Alaska stop I have found my calling stop I would have taken your offer
but it lacked adventure stop Sincerely Garman E. Kak stop

With the delimiter source file  stop.sent appearing as follows:

$cat stop.sent
%%
stop[ ]     |
%%

%%
$build_delim_user stopdel stop.sent

crep manual page 66



Building new Sentence Delimiter based on user file stop.sent.
New executable delimiter will contain NO default rules or definitions...

Done. Delimiter is saved in executable file stopdel.
Flex code is saved in stopdel.flex.

$

We can now break up the corpus accordingly :

$stopdel < letter.txt | delim_export "
>   ***END!***
> "
Dear Sirs stop
***END!***
I have made a decision regarding your offer for employment stop
***END!***
By this time tomorrow I will be working in a fish processing factory in

Alaska stop
***END!***
I have found my calling stop
***END!***
I would have taken your offer but it lacked adventure stop
***END!***
Sincerely Garman E. Kak stop
***END!***

$

To generalize, the user may create a delimiter to break up a corpus in may different
ways -- by paragraph, by semicolon, or by most any arbitrary delimitation, simply by
changing the entries in a delimiter source file and running build_delim or
build_delim_user.

6.9 Analyzing the created lex file for errors in your original delimiter
source file

In every call to build_delim or build_delim_user, the lex file created from the
delimiter source file is saved for the user’s benefit (note the line ‘Flex code is saved
in <filename>.flex’  every time build_delim and build_delim_user are called).  An
analysis of the lex file may reveal errors inherited from the original delimiter
source file.  If, for instance, the lex file contains strange uncompilable code, the user
may then reference the corresponding rule or rules in the delimiter source file to fix
the error.  

crep manual page 67



crep manual page 68



7. OTHER ASSOCIATED
TOOLS OF crep

In addition to build_delim and build_delim_user (Section 6), the following five
tools can be used in conjunction with crep.  The first two, crep_clean and crep_prep,
were designed exclusively for crep.  The last three, rcat, delim_export, and
diff_clean, may be used more universally.

7.1  crep_clean

After using the -k option, the user may wish to delete the temporary files directly,
and not have to run crep again to destroy them.  By running crep_clean, the crep
temporary files in the current directory are removed one by one, asking the user for
verification at each filename.

EXAMPLE 37.                                                  

$crep_clean
rm: remove EmptyExpFilecrep? y
rm: remove EmptyExpFilecrep.make? y
rm: remove EmptyExpFile.lex.crep? y
rm: remove EmptyExpFile? y
rm: remove in.tagged? y
rm: remove match_file? y
rm: remove sent_file? y
rm: remove crephelp.o? y
rm: remove Found_nums.txt? y

crep manual page 69



rm: remove lex.yy.o? y
rm: remove lex.yy.c? y
rm: remove HowManyExps? y
rm: remove TempExpStuff2? y
rm: remove TempExpStuff4? y
rm: remove good_exps? y
rm: remove raw_exps? y
rm: remove ExpNames? y
crep_clean: Cleanup done.
$

Peeking at some of these files may prove interesting to those who are interested in
what makes crep tick.

7.2  crep_prep

If the user would prefer to tag many corpora in one stage rather than having to run
crep each time he or she wants a new corpus tagged, crep_prep can be used.
crep_prep simply tags and preps the input (from standard input) so it may be used
with crep.  crep_prep performs the tasks of the tagging module in figure 4-1.

crep_prep takes one required parameter (the name to give the file that will hold the
tagged input) and one optional parameter (the name of a user-defined sentence
delimiter to use instead of the default).

EXAMPLE 38.                                                  

$cat sample | crep_prep sample.tagged
The output is being sent to sample.tagged.
$

EXAMPLE 39.                                                  

$cat sample | crep_prep sample.tagged my_delim
Using user-defined sentence delimiter my_delim.
The output is being sent to sample.tagged.
$

crep manual page 70



A   H E L P F U L    T I P

When you pre-tag input, and then change the sentence delimiter, the 
pre-tagged input will always reflect the delimitations provided by the old 
delimiter, since delimiting occurs before tagging (checking for delimitation 
after tagging is unrealistic, since tags must also be taken into account).  You 
must re-tag input to reflect the new delimiter.  Section 6 covers building a 
new delimiter.

7.3  rcat

rcat is a general-purpose recursive cat function.  rcat will cat every file in the
directory (specified as its parameter), and then will recursively cat all the files in
any the directory’s subdirectories, and so on.    Here are the shell functions:

function catall {
for i in `/bin/ls`
do
echo ITEM: $i
if [ -d "$i" ]; then

cd $i
catall $i
cd ..

else cat $i
fi

done
}

function real_rcat {
cd $1
catall
cd $2

}

function rcat {
real_rcat $1 $PWD/

}

rcat can be used to input textual corpora into crep, but can also be used with grep, or
any UNIX executable that accepts input from standard input.

crep manual page 71



7.4  delim_export

Corpora delimited by crep may easily be inputted into other corpus tools with
delim_export.  Since tools may not agree on a standard sentence delimitation
marker, crep allows the user to change the marker to any arbitrary string without
needing to construct a file filter.  Simply give delim_export the delimiting string as
its only parameter, and pass in the delimiter corpus as standard input (See example
40).

Thus, the build_delim interface may be used to create a delimiter which is used
with corpus tools other than crep. In example 40, we shall run delim_export on the
corpus introduced in section 6.1.  Keep in mind that below we use sent, the default
delimiter; but the user may use any delimiter created with either build_delim or
build_delim_user in conjunction with delim_export.

As an added advantage, delim_export can be utilized to improve the clarity of
delimited output when intended for human consumption.  

EXAMPLE 40.                                                  

$cat story.txt | sent | delim_export "
>   ***END!***
> "

Once upon a time, there was an aardvark named Vance.
***END!***

He owned a nice flat in the Lower East Side.
***END!***

Unlike other aardvarks, he didn't eat any ants.
***END!***

Indian food was actually his favorite.
***END!***

One day, Vance put on his best three-piece suit in search of a tasty lunch.
***END!***

When he was enjoying his Biryani, he noticed across the dining room a very
handsome frog, dressed businesslike, with the Wall Street Journal under his
arm.
***END!***

Vance leaned over to him and asked, "What would you call behavior such as
ours?"
***END!***

The frog dabbed his mouth daintily with the corner of his napkin and
returned, "When in Rome, do as the Romans do."
***END!***

7.5  diff_clean

diff_clean removes the <, >, and number codes output by diff.  diff_clean may be

crep manual page 72



used in conjunction with crep or outside of crep when the diff formatting
characters do not wish to be seen.  An example using diff_clean appears in Example
17.

crep manual page 73



crep manual page 74



APPENDIX A. SUMMARY
OF crep OPTIONS

-b <'delim source abb_file'> Builds a sentence delimiter to be used in 
place of the default delimiter. User's rules in 
source and abb_file add on to default rules

-B <'delim source abb_file'> Builds a sentence delimiter to be used in 
place of the default delimiter. User's rules in 
source and abb_file replace all rules

-c <infile> uses <infile> as input instead of standard 
input

-d <exp_definition_file> uses a file <exp_definition_file> containing 
crep expression variables

-D <exp_definition_file> uses a file <exp_definition_file> containing 
lex expression variables

-e <regular_expression> specifies a regular expression parameter in crep
syntax on the command line.

-E <regular_expression> specifies a regular expression parameter in lex
syntax on the command line.

-f <crep_reg_exp_file> specifies a file containing a regular expression 
parameter in crep syntax.

crep manual page 75



-F <crep_reg_exp_file> specifies a file containing a regular expression
parameter in lex syntax.

-g <mexp_file> Reads in a -m parameter from file mexp_file.

-k keeps temporary files which are created in the 
current directory.  The temporary files can then 
be used by -x to speed up execution time.

-m '<exp1 file1 exp2 file2 ...>' specifies multiple regular expressions and 
redirects their respective matches to different 
output files. With this option, each expression Ei

must be immediately followed by a filename Fi.
The corpus sentences matching each Ei are 
copied to the file of path Fi.   

-n <tagged_filename> specifies a name in which to save a tagged 
version of free text input.  The file created by -n 
will not be automatically destroyed like all other 
temporary files (unless -k is used, in which case 
ALL temporary files as well as the file created by
-n are saved).  tagged_filename can then be 
inputted into crep using the -p or -P options.

-p tells crep that the standard input is already 
tagged.  crep will skip the tagging and just pass 
the pre-tagged input into the execution of the 
lex file.

-P <infile> is like -c, but specifies a TAGGED corpus.  Like 
-p, crep is instructed to skip the tagging.

-s <delimiter> Use delimiter to delimit sentences rather than
the default delimiter.

-t outputs tagged matching sentences.  By default 
crep strips off the tags.

-w includes what phrases matched what expression
in the sentence. The matching phrase is 
displayed under the matching sentence in the 
form

<expression>: <matching_phrase>

crep manual page 76



By default, crep simply outputs the matching 
sentences without this information.

-x speeds up execution by skipping the compilation 
time normally needed by crep.  NOTE: this 
option can only be used after the -k option has 
been used.  Also, since -x uses the previously
compiled lex file, if the user changes either the 
expression parameter or the -d/-D parameter, a 
new lex file must be compiled.  -x is only useful 
if the user wishes to run the s a m e expression 
with different input files or with different
output formats.

crep manual page 77



crep manual page 78



APPENDIX B. WHERE TO
FIND crep

crep and all of the associated tools (with the exception of pos ) are located in the
Columbia University CS file system in /u/peptic/darrin/crep/bin/.

The test corpora sample, doctor.txt, and story.txt live in
/u/peptic/darrin/corpus/.

sent.l appears in /u/peptic/darrin/crep/src/tag_mod/.

A more detailed version of the variable definition file ExpFile is located in
/u/peptic/darrin/lexp/.

rcat lives in /u/peptic/darrin/crep/bin/ as rcat_code. The user may
include rcat in his/her .profile, or any executable shell script.

The source code for pos lives in /u/rhythmics/smadja/POS/.  A shell script which
calls the tools of pos appears in /u/peptic/darrin/crep/bin/.  For more
information on pos, the user should contact Ken Church at
kwc@research.att.com.

If the user is accessing a copy of crep which lives somewhere besides the Columbia
University CS file system, or if any of the above files seem to be moved, check the
readme file in the crep directory for the most up-to-date information on crep.

crep manual page 79



crep manual page 80



APPENDIX C. ERROR
MESSAGES

There are two kinds of errors the user may see: crep’s own error messages, and those
of the external tools (lex and pos) called by crep.   

C.1 crep’s own error messages

As a convention, any error caught directly by crep, and not one of the other tools,
will be prefaced by ‘crep:’ in the output.  Warnings will be prefaced by 
‘crep: <module> warning:’.  Warnings may not be harmful to the functionality
of crep, and in fact may be the desirable behavior of the user.

C.2 Errors signaled by lex

If there are lex syntax errors a)  in the variable definition file; b)  the regular
expression; or c) the user-authored sentence delimiter file (Section 6), lex will signal
an error when compiling from within crep, and crep will abort execution.  The lex
documentation should be referenced for further information on these errors.

crep manual page 81



C.3 Errors signaled by pos

Any errors trapped while in the tagging module not prefaced by crep: will be pos
errors.  

crep manual page 82



APPENDIX D. LISTING OF
pos TAGS

Following is a listing of the part of speech tags assigned by pos.  The tag set is
identical to the set used to tag the Brown Corpus in Francis and Kucera’s Frequency
Analysis of English Usage: Lexicon & Grammar (Houghton Mifflin, 1982).

.                           end of sentence 
NN                          singular noun 
IN                          preposition 
AT                          article 
NP                          proper noun 
JJ                          adjective 

NNS                         plural noun 
CC                          conjunction 
RB                          adverb 
VB                          un-inflected verb

(infinitive form or present and not 3rd       
person singular)

VBN                         verb +en 
(e.g., taken, looked (passive, perfect)) 

VBD                         verb +ed (e.g., took, looked (past tense)) 
CS                          subordinating conjunction 
PPS                         subject pronoun 
VBG                         verb +ing 
PP$                         possessive pronoun 
CD                          number 
PPSS                        pronoun 
TO                          the word 'to' as an infinitive marker 

crep manual page 83



MD                          modal 
PPO                         object pronoun 
BEZ                         is 
BEDZ                        was 
AP
DT                          demonstrative 
''
``
QL                          qualifier 
VBZ                         verb +s (3rd person singular) 
BE                          un-inflected form of 'to be' 
RP                          particle 
WDT                         wh 
HVD                         had 
$                           's (as a possesive) 
BER                         were 
*                           negation 
WRB                         wh adverb 
HV                          have 
WPS                         who (as a subject) 
BED                         were 
ABN
DTI
PN                          someone 
HVZ                         has 
BEN                         been 
)
DTS
(
EX                          there 
NR                          adverbial noun phrase 
DO                          do 
:
DOD                         did 
PPL
DTX
BEG                         being 
UH                          interjection 
DOZ                         does 
BEM                         am 
ABL
PPLS                        reflexive pronoun 
WPO                         who (as an object) 
HVG                         having 
QLP
WP$                         whose 
HVN                         had (+en) 
WQL
ILLEGAL                     should not be used 

crep manual page 84


