
On the Cost of Transitive Closures in

Relational Databases

Zhe Li Kenneth A� Ross

Computer Science Department Computer Science Department
Columbia University Columbia University
New York� NY ����� New York� NY �����
li�cs�columbia�edu kar�cs�columbia�edu

Technical Report No� CUCS	��
	��
February ����

Abstract

We consider the question of taking transitive closures on top of pure relational systems
�Sybase and Ingres in this case�� We developed three kinds of transitive closure pro�
grams� one using a stored procedure to simulate a built�in transitive closure operator�
one using the C language embedded with SQL statements to simulate the iterated
execution of the transitive closure operation� and one using Floyd�s matrix algorithm
to compute the transitive closure of an input graph� By comparing and analyzing the
respective performances of their di�erent versions in terms of elapsed time spent on tak�
ing the transitive closure� we identify some of the bottlenecks that arise when de	ning
the transitive closure operator on top of existing relational systems� The main purpose
of the work is to estimate the costs of taking transitive closures on top of relational
systems� isolate the di�erent cost factors �such as logging� network transmission cost�
etc��� and identify some necessary enhancements to existing relational systems in order
to support transitive closure operation e
ciently� We argue that relational databases
should be augmented with e
cient transitive closure operators if such queries are made
frequently�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the Cost of Transitive Closures in Relational

Databases

Zhe Li Kenneth A� Ross

Computer Science Department Computer Science Department

Columbia University Columbia University

New York� NY ����� New York� NY �����

li�cs�columbia�edu kar�cs�columbia�edu

April �		

Abstract

We consider the question of taking transitive closures on top of pure relational systems
�Sybase and Ingres in this case�� We developed three kinds of transitive closure pro�
grams� one using a stored procedure to simulate a built�in transitive closure operator�
one using the C language embedded with SQL statements to simulate the iterated
execution of the transitive closure operation� and one using Floyd�s matrix algorithm
to compute the transitive closure of an input graph� By comparing and analyzing the
respective performances of their di�erent versions in terms of elapsed time spent on tak�
ing the transitive closure� we identify some of the bottlenecks that arise when de	ning
the transitive closure operator on top of existing relational systems� The main purpose
of the work is to estimate the costs of taking transitive closures on top of relational
systems� isolate the di�erent cost factors �such as logging� network transmission cost�
etc��� and identify some necessary enhancements to existing relational systems in order
to support transitive closure operation e
ciently� We argue that relational databases
should be augmented with e
cient transitive closure operators if such queries are made
frequently�

� Introduction

It has been argued in �� �� that declarativeness and stronger expressive power are important
features of deductive database systems� Declarative formulations of queries allow for a clear
expression of exactly what should be the answer to a query instead of how to get the answer
tuples� In �� it was shown that the least �xpoint operation is not expressible by relational
algebra and relational calculus� Typical relational query languages �such as SQL�QUEL�
have the favorable property of declarativeness but lack the expressive power for the least

�

�xpoint operation� In the real world a variety of database applications require some kind
of �xpoint operations� For example� In an airline reservation system� a customer would
like to know the least expensive �ight schedule from one city to another� In a network
analysis system one may wish to determine whether two network nodes are connected� and
the least loaded connection is used for routing decisions� In an object	oriented database� one
may wish to check properties of all subclasses of a parent class� None of these queries can
be couched directly in relational algebra� In order to answer these queries the user has to
write complex application programs �usually by embedding SQL�QUEL statements into a
host programming language� and provide a procedural evaluation algorithm� Aside from the
impedance mismatch problem �incompatible data types and separate compiler optimizations�
and loss of declarativeness �an ad hoc evaluation algorithm has to be chosen and speci�ed
procedurally�� this paradigm also su�ers a severe performance penalty� We quantify this
performance penalty in this paper�

It was noted in �� that attempting to build a deductive database system on top of an
existing relational system is a mistake� In a relational database� the relations are typically
large in size and persistent in nature� In deductive database things are just the opposite�
Most least �xpoint query evaluation algorithms try to simulate sideways information passing
�� to restrict redundant computation� These algorithms usually create some supplementary
relations to pass bindings and these relations are typically small and temporary in nature�
If we use a relational system backend for writing a least �xpoint program� all these supple	
mentary relations would have to be materialized �stored to disk� during each iteration of
the program� Besides su�ering this thrashing disk I�O and temporary storage overhead� the
relational system will also perform concurrency control �such as locking� and logging on these
relations� Again this incurs both CPU� I�O and storage overhead� In summary� a variant
of the mismatch problem also occurs between the front end �application programs consist of
SQL�QUEL statements and host language �ow	of	control facilities� and the backend �SQL
server��

This paper tries to further examine the problem of augmenting a relational database
system to a deductive database system� and to quantify the performance overhead incurred
by this approach� The experiment is done using Sybase and Ingres� We consider the question
of taking transitive closures on top of pure relational systems �Sybase and Ingres in this case��
We developed three kinds of transitive closure programs� one using a stored procedure� to
simulate a built	in transitive closure operator� one using the C language embedded with SQL
statements to simulate the iterated execution of a transitive closure operation� and one using
the version of Floyd�s matrix algorithm presented in �� to compute the transitive closure of
an input graph�

Floyd�s algorithm will serve as an �ideal� algorithm for performing the transitive closure�
By seeing how far from the ideal the results for transitive closures involving Ingres and
Sybase come� we can demonstrate the presence of a signi�cant performance gap�

By comparing and analyzing the di�erent systems� respective performances in terms of
elapsed time spent on taking the transitive closure� we identify some of the bottlenecks that
arise when de�ning the transitive closure operator on top of existing relational systems� The
main purpose of the work is to estimate the costs of taking transitive closures on top of
relational systems� isolate the di�erent cost factors �such as logging� network transmission

�A stored procedure is a precompiled collection of SQL statements� often including control�of��ow
language�

cost� etc�� and identify some necessary enhancements to existing relational systems in order
to support transitive closure operation e�ciently� Furthermore� we try to come up with an
estimated cost model and more e�cient implementation strategies for our future research�

The remainder of the paper is organized as follows� Section � discusses the basic algo	
rithm� the sample database we use� and the environment in which we implement the transitive
closure operation� Section � presents the rationale of our experiment and the problems that
we anticipate� Section
 describes three kinds of a program �Sybase� Ingres and Floyd�s
matrix algorithm� for taking the whole transitive closure� Di�erent processes of executing
these three programs are brie�y described� The respective performances of their di�erent
versions in terms of elapsed time are then compared and analyzed� logging and network costs
are also isolated and contrasted� Section � describes the same three versions of programs
for taking the single source version of transitive closure� Their relative performances of
di�erent versions are analyzed as before� Section � lists some other cost factors involved
when performing transitive closure operations� In section � we brie�y survey some relevant
research done in this �eld� Finally in section � we discuss the conclusions we draw from this
experiment and some practical issues related to taking transitive closure operation�

� Algorithm� Sample Database and Environment

In the context of a deductive database� many techniques have recently been proposed
for optimizing recursive queries �� ��
�� The query evaluation method adopted in our
experiment is �semi	naive� evaluation ���

The �semi	naive� evaluation algorithm can be depicted as follows�

�tc�X�Y � � e�X�Y �
tc�X�Y � � �tc�X�Y �
repeat

�Q�X�Y � � �tc�X�Y �
�tc�X�Y � � �Q�X�Y � � e�X�Y �
�tc�X�Y � � �tc�X�Y �� tc�X�Y �
tc�X�Y � � tc�X�Y � ��tc�X�Y �
until �tc�X�Y � � �

From the algorithm we note that two temporary relations �Q and �tc are introduced
to reduce redundant computation and perform duplicate elimination�

For simplicity � we choose our sample database with only one binary relation �family�
in it� The relation �family� has the �chain� property� i�e� � it is of the form�

�Di�erent graph structures for the base relation will surely a�ect the cost of the evaluation of transitive
closure� However� the overheads that we are trying to measure are incurred independent of the graph
structure�

parent child
� �
� �
�

 �
� �
���

���
n n��
family

Suppose the number of tuples in this chain relation is n� then we can easily calculate the
size of its whole transitive closure as follows�

jTC�family�parent� child��j� n� n� � � � � �� � � n � �n� ���� � �n��

�
The size of the single source version of this transitive closure �i�e�� tell me all nodes

reachable from node i� is�

j�parent�iTC�family�parent� child��j� n� �� i � �n�

�
The relational database management systems we used are Sybase and Ingres� Sybase

provides a comprehensive set of DB�Library routines� that application programs can call
to perform various tasks� Sybase also provides a set of built	in �ow	of	control statements
as part of its �Transact	SQL� language �an extension of SQL�� So the transitive closure
operation can be easily implemented as a stored procedure as well� The same functions are
also provided by Ingres�
The typical way of using DB	Library routines is to embed SQL statements into a host

programming language such as C� The application sets up a connection with the SQL server�
then assembles the necessary SQL commands in the system command bu�er and sends the
command batch to the SQL server for execution� The results are returned in a tuple	at	a	
time fashion� The batch SQL commands are interpreted� e�g�� parsing and optimization are
done for each command batch� So the body of a �while� loop using a DB	library routine
would be parsed and optimized many times�
For a stored procedure� things are quite di�erent� During the creation of the procedure�

the SQL statements are precompiled �parsed and optimized�� When the user invokes the
procedure� the �isql� frontend simply sends the query �execute procedure� to the SQL
backend and waits� The SQL backend then executes the precompiled program code� After
it �nishes� the backend returns a status code to the front end and some result tuples �if
any� for further processing� Stored procedures avoid repetitive parsing and query planning

�A set of C routines and macros that allow applications to interact with the SQL Server� It includes
routines that send Transact�SQL commands to the SQL Server and others that process the results of those
commands�

overhead� save the iterated transmission overhead of sending batch SQL commands� and are
usually much faster than doing the same thing using embedded SQL facilities�
Ingres system ��
 has the additional feature of �set nologging�� so we can use this option

to turn o� system logging and isolate the logging cost factor� By comparing the results
produced by programs running on a local machine �the same site as the server machine� and
on a remote machine connected through an Ethernet� we can also isolate the network cost
factor��
A deductive database system would perform e�cient caching on the intermediate results�

It would also reduce the repetitive parsing and optimization overhead� reduce the useless
logging and locking on these temporary relations and eliminate the iterated cost of sending
SQL command packets across the network �expensive IPC calls� due to its built	in transitive
closure operator� The dominant cost factor would be the join cost� Floyd�s algorithm�s
behavior can be made similar to that of a deductive database system in the sense that join
cost can be made dominant in program�s total elapsed time� Any data reading or writing
done inside Floyd�s algorithm�s main loop can either be eliminated �assuming the allocated
main memory is large enough to accommodate all the data� or cached �the UNIX operating
system provides block I�O bu�ering��
We intend to measure the total elapsed time �including CPU time� I�O time and network

time� spent by these programs� We then use these results to develop the cost formulas and
expose some critical cost factors in performing the transitive closure operation�
The experiment is done using Ingres ��
 and Sybase
��� We use a client	server model

where the client and server machines are both Sun Sparc ���MP machines running SunOS

���� �except for the caching and indexing experiment� with the Sybase server running on
a Sparc station � and SunOS
������ We have endeavored to make sure that the database
server was always lightly loaded during our experiment� The raw Ethernet transmission
speed is ��Mb�s� The machines connected by the Ethernet share NFS �lesystems� The time
in our experiments is measured using the �getrusage��� system call and the granularity is
taken in seconds� �

� Rationale and Problem Envisioned

The Database Systems

There are various cost factors that a�ect the execution of transitive closure programs� For
instance�

� CPU time spent on relational operations such as join�

� CPU time for repetitive locking�

� Query parsing and planning time�

�Note that running remotely won�t necessarily be too di�erent from running locally since the interprocess
communication �IPC	 overhead has a
xed cost �overhead involved in executing the system calls read�write
and the setup time involved in moving any amount of data between the user process and the kernel	� along
with a variable cost that is proportional to the size of data being transmitted�

�Our code for the Sybase and Ingres queries are not written using the same set of SQL statements� In
particular� some system�speci
c enhancements are used �such as the �SELECT INTO statement provided
by Sybase that requires less logging	� So a direct comparison between their relative performance is not fair�

� I�O time for scanning the participating relations to generate new tuples� storing the
temporary relations and system logging� Because frequent updates are performed on
the participating relations� the log size grows quadratically for the whole transitive
closure case�

� Network setup and packet transmission �round	trip� overhead due to the client server
DBMS architecture �� i�e�� to send SQL batch commands during each iteration to the
server and get results back from the server for termination detection� Note that the
network cost is usually not too big unless the load on the network is very high� The
reason why it is sometimes comparable to disk access latency is due to the queuing
delay and data encoding�decoding overhead�

� Data conversion overhead �due to the impedance mismatch between the data types of
SQL and host programming language�� We also have to do data encoding and decoding
when running on heterogeneous machines�

The overhead of using SQL library routines inside a C program involves network setup
and transmission time� i�e� the client sends the batch command packets to the server� then
gets the answer tuples and status code of the query back to the client side� If the program
iterates n times� we end up with n � �network cost per batch� one status code cost� which
is �n� cost� Since during each iteration the queries are optimized separately� it is hard
to achieve global optimization for the whole program� Compared with a built	in transitive
closure operator� we lose global optimization for executing the program� Other overheads
are repeated parsing and query re	planning done by the server for the same set of SQL batch
commands during each iteration of �semi	naive� evaluation�
Using the stored procedure� little network overhead is incurred� Also the query program

is parsed and optimized prior to its execution� However� both Sybase and Ingres have some
inner constraints on creating a stored procedure� For instance� within a stored procedure� one
cannot create an object �including a temporary table�� drop it� and then create a new object
with the same name� Basically all the objects referenced inside a stored procedure have to
exist beforehand due to compilation and optimization requirements� The relevant relations�
names are hard	coded into the procedure� Thus we can�t make our transitive closure program
generic� This constraint also has the implication that we can�t use �SELECT INTO�
statement �Sybase� to reduce some logging overhead� Instead� we have to �TRUNCATE�
the �Q table each time� �SELECT� the newly derived tuples and �INSERT� into �Q� Note
that the relations inside the main loop are tightly coupled� that is� just after one temporary
relation is created� it is immediately used in a join operation� then the tuples in it are deleted�
The drawback of a stored procedure is its non	declarativeness and di�culty to optimize

when loops are present� Because of compiling considerations� the base relation names are
hard	coded inside the program� thus the program is not reusable� The user is responsible
for providing a procedural� e�cient program to evaluate recursion� However� the e�ciency
and appropriateness of an algorithm depends on system maintained statistics �such as size of
base relation� available indexes� bu�er replacement policy� size of bu�er cache etc��� Also the
user has to specify the procedural steps of a particular evaluation algorithm� In contrast� a

�Note that if the server runs on the same machine as the application program� then the network is no
longer an issue� Our experiment is designed such that the client program and the SQL server run on di�erent
machines connected through an Ethernet LAN� In this scenario� network cost is not negligible�

deductive database system can choose dynamically which optimization or rewriting technique
be used on di�erent recursive programs� This �exibility is especially useful for single source
or aggregation recursive queries�

From the �semi	naive� evaluation algorithm� we can see that the size of �Q and �tc
are typically smaller than those of base relations� especially when we are dealing with the
single source case �if the average outgoing degree of the graph is large� then sometimes �s
can be larger than base relations� and tuples in �Q and �tc are very short	lived �refreshed
after each iteration�� But in a relational system �Q and �tc would be treated just the
same as other base relations� System tasks such as concurrency control �expensive locking�
and logging are indiscriminately performed on them as well during each iteration� Basically
the execution patterns of these � relations are� �First they are created and stored� After
the system performs some routine functions on them� they are immediately loaded for the
next	round join operation� After the join these � relations are destroyed��� Each iteration
is characterized by frequent updating on the participating relations� Note that during each
iteration these relations are logged twice� once during insertion� once during deletion� If these
�s are larger than base relation� then the logging overhead on them might be comparable
to the join cost� becoming dominant in the overall cost� Generally these � relations don�t
require concurrency control �such as locking� since they are private and transient to the
transitive closure program that creates them� No other programs will try to access them�
Logging is also unnecessary since these �s are very short	lived and temporary and can be
fully created dynamically� If the system crashes while updating these � relations� they can
be simply discarded since there is no need to recover them� Logging on them not only
requires a large amount of disk storage� but also consumes a lot of I�O bandwidth� It would
be muchmore cost e�ective if these � relations could be cached in main memory� and logging
on them turned o�� One important database tuning technique is to put logs on a separate
disk device to avoid I�O bandwidth contention and minimize some possible incurred seek
overhead� The same technique can also be applied to those temporary relations� If those
temporary relations can�t entirely �t into main memory� it would be better to store them
on a third disk device distinct from those of log and main database� But most existing
relational systems don�t support this speci�c requirement�� Both the C version and the
stored procedure version do not achieve global optimization�

Another observation is that by using index on the join relations� implementing more
e�cient join method such as hybrid	hash join and allocating a larger bu�er cache� we could
reduce the join cost signi�cantly� but the logging overhead and the network overhead would
stay constant� thus forming an overall bottleneck� If the bu�er size is made large enough to
hold all the participating relations� the only I�O operations incurred are by system logging�

Among the di�erent cost factors� the query re	parsing and re	planning and network
overhead are linear terms in the number of iterations� which is n� because during each
iteration the same set of SQL command packets are parsed� optimized and sent across the
network� The logging cost would be proportional to the number of tuples generated� with a
factor greater than � �due to copying� inserting and deleting the generated tuples�� For the
whole transitive closure case� the logging cost would be roughly �n��� For the single source
version� it is roughly �n��

�Sybase allows you to put relations on a segment on a di�erent device� but no special treatment on the
relation otherwise� For taking single source which is considered a more common operation� �s would usually

t in memory� But existing system don�t provide �pinning operations �except DB�	 for relations�

Using Floyd�s Algorithm

For programs computing the whole transitive closure of an input graph using Floyd�s algo	
rithm� we can assume two di�erent models� the �main	memory model� and the �secondary	
storage model�� A program assuming the �main	memory model� would read the input data
once into memory and perform all the join operations �matrix operations in this case� in
main memory� The results are written to disk only once when the program terminates� The
program�s elapsed time would give a referenced estimation of worst	case CPU cost spent on
the join operations� Our estimation is �n�� �n is the dimension of the adjacency matrix of
input graph� since that is the asymptotic complexity of Floyd�s method�

Programs assuming the �secondary	storage model� could roughly simulate the DBMS
execution model �such as logging and bu�ering� by reading the data into memory� performing
one iteration on them� writing the intermediate results back to the disk after each iteration�
and reading the data back immediately at the beginning of the next iteration� We can
simulate this behavior by adding some �extraneous� statements to write out and read back
in the intermediate matrix at each step�

Note that I�O cost taken by programs assuming �secondary	storage model� would be
 �n�� because the matrix size is �n��� and we want to write the matrix back to the disk
after each program iteration� However� because many entries in the matrix will �t in a single
disk block� the contribution of this cubic term is inversely proportional to the blocking factor�
For the single source version of Floyd�s method� we can play the trick of storing only the
a�ected row of the adjacency matrix to the disk during each iteration� In this case� the total
I�O cost is �n���
There are two variants of programs assuming the �secondary	storage model�� The �rst

variant would run on the local machine but the writes are not synced at the end of each
iteration� This way� the UNIX operating system would cache the intermediate data in
memory and save most �possibly all� of the iterated disk I�O operations� This execution
pattern simulates the evaluation behavior of a deductive database system� The actual I�O
cost would be small compared with the join cost �matrix multiplication�� The caching bene�t
�I�O bu�ering� can be measured� The program�s elapsed time would be an estimation of
CPU join cost plus some join incurred disk I�O cost �without logging overhead�� This would
give a referenced estimation of an ideal implementation of transitive closure operation� We
expect its elapsed time would be comparable to that of the �main	memory model� version�
The second variant would also run on the local machine where the data �le resides�

reading�writing data iteratively from�to the data �le� but with writes being synced to disk
after each iteration� This will simulate a pure relational system�s way of taking transitive
closures �thrashing I�O and logging�� We expect it to be the most expensive one�
For the single	source version of the program we use a simpli�ed version of Floyd�s method

with �n�� complexity� �This routine only calculates reachability in one row of the matrix��
The cost estimations for the single source versions of programs using Floyd�s algorithm can
then be deduced similarly� We omit them here for simplicity�

� Results for Taking Whole Transitive Closures

The following is a presentation of the results for taking the whole transitive closure of relation
�family�� They are produced by the C program� stored procedure versions running on

Ingres�Sybase� and by Floyd�s matrix algorithm using plain UNIX �les as direct data storage�
Due to space limitations� the program listings are omitted�
The x	coordinates of the graphs are the number of tuples in the �family� table� the

y	coordinates are the elapsed time measured in seconds spent by di�erent programs�
Figure � is the graph for taking the whole transitive closure on top of Ingres� The

curves correspond to the C program involving network and logging overhead �the dashed
curve with small equal	length segments�� the C program with logging overhead but without
network overhead �the solid curve�� the C program without logging and network overhead
�the dashed curve with large equal	length segments � and stored procedure without network
and logging overhead �the dot	dashed curve� respectively� Note that the stored procedure
performs slightly worse when the size of �family� increases� the reason is that inside the
loop of the stored procedure we have SQL statements that update the relations frequently�
thus it is very di�cult for the system to come up with an optimized plan based on the
initial static statistics� Although using stored procedure saves some parsing and optimization
overhead� a worse global plan would easily compromise this bene�t� Also note that there is
little performance di�erence between di�erent versions of programs� the reason is that the
dominant join cost overshadows the other overheads�

200 400 600 800 1000
Table Size

2000

4000

6000

8000

10000

Seconds

Figure �� The Graph for taking whole transitive closure Ingres versions

Figure � is the graph for taking the whole transitive closure on top of Sybase� The curves
correspond to the C program involving network overhead �the dashed curve with small
equal	length segments�� C program without network overhead �the solid curve�� and stored
procedure without network overhead �the dashed curve with large equal	length segments�
respectively in decreasing slope order� Since Sybase doesn�t allow turning o� system logging�
all these three programs involve logging overhead in their results� We could observe that the

network overhead is not negligible anymore� and there is also obvious performance di�erence
between using a C program vs� using a stored procedure to perform transitive closure
operation�

200 400 600 800
Table Size

500

1000

1500

2000

2500

Seconds

Figure �� The graph for taking whole transitive closure Sybase versions

Figure � is the graph for taking the whole transitive closure using Floyd�s algorithm�
The curves correspond to the C program simulating committed disk writes �writes being
synced to disk during each iteration�� C program with read���write�� system calls inside the
program loop but writes are not synced �i�e�� the program takes advantage of UNIX I�O
bu�ering�� C program without I�O operations done inside the program loop �i�e�� assuming
a main memory join model�� respectively in decreasing slope order� We could observe that
synchronous disk writes is the major bottleneck� increasing the response time by orders of
magnitude�

Figure
 is the graph for cross	comparisons� The dashed curve with small equal	length
segments correspond to the C program taking the full transitive closure on Ingres� The solid
curve corresponds to the C program taking the full transitive closure on Sybase� The dashed
curve with large equal	length segments corresponds to the Floyd�s algorithm with cached I�O
cost �i�e�� reading�writing data is performed but not synced to the disk�� The dot	dashed
curve corresponds to the Floyd�s algorithm with pure CPU cost �i�e�� no reading�writing
data is performed inside the algorithm�� We could observe a signi�cant performance gap
between an ideal implementation �avoiding those unnecessary overheads� and a relational
database implementation of the transitive closure operation�

200 400 600 800 1000
Table Size

500

1000

1500

2000

2500

3000

Seconds

Figure �� The graph for taking whole transitive closure Floyd versions

200 400 600 800 1000
Table Size

500

1000

1500

2000

2500

Seconds

Figure
� The graph for taking whole transitive closure cross versions

��� Observations

From the above Ingres and Sybase graphs� We could observe that when the database size gets
larger� the join cost will dominate the total elapsed time� Note that usually the curves will
still be order	preserving �in the order of absolute elapsed time taken by them� since logging
and network cost always contribute to the elapsed time� The curves for program involving
network and logging overhead will always be higher than the curves of the program without
these overheads�
The observations we got from the whole transitive closure experiment are as follows�

�� From our experiment� we observe that the network overhead is bigger than the logging
overhead when the network load is high �due to space limitations� the data is not
included� but grows slowly� Both costs are only a small portion of the total elapsed
time spent in taking the whole transitive closure� This suggests that join cost is still
dominant in the whole transitive closure operation�

�� The stored procedure is much faster than the C program when the size of �family�
is small� The reason is that the procedure is precompiled� so the �!iterations� �
�parsing � query planning per batch� is avoided� Since there is no need to send
the query command during each iteration� �!iterations� � �network cost per batch�
overhead is also avoided� But for larger size of �family�� the C program runs faster
on Ingres� Although using stored procedure su�ers less parsing and query planning
overhead� it is usually di�cult to give a global cost	e�ective query plan at compile	
time for a complex procedure �note the dynamic nature of those temporary relations��
For the C program� the query optimizer has more accurate pro�le information about
the participating relations during each iteration� thus the cumulative join cost savings
becomes larger when the size of the base relation gets bigger�

�� From our experiment done on Sybase we also observe that the number of disk writes is
always much bigger than the number of disk reads� This is partially due to the caching
facility of Sybase �most reads are satis�ed in the memory cache�� The other reason
is frequent updates performed on those intermediate relations� Since those updates
are always logged� a lot of small disk writes are generated� Since logging has the
blocked semantics� the introduced delay greatly a�ects the overall execution time of
the transitive closure program� Because of frequent logging activity� the system log
size grows quite rapidly� In our experiment� when the database size reaches ��� tuples�
our �
MB disk space is quickly consumed� This not only consumes a lot of disk space�
but also imposes disk bandwidth contention�

� When the database size gets bigger �for Sybase�� the amount of I�O time �including
logging time� exceeds the CPU time� This suggests that the major cost component in
a data	intensive database program is still the I�O cost�

� Results for Single Source Transitive Closure

To simplify the discussion� we choose to compare the time spent by computing

�parent��TC�family�parent� child��

So the query size is n�
Figure � is the graph for taking the single source of whole transitive closure on top of

Ingres� The curves correspond to the C program involving network and logging overhead
�the dashed curve with small equal	length segments�� C program with logging overhead
but without network overhead �the solid curve�� C program without logging and network
overhead �the dashed curve with large equal	length segments� and stored procedure without
network and logging overhead �the dot	dashed curve� respectively in decreasing slope order�

500 1000 1500 2000 2500 3000
Table Size

1000

2000

3000

4000

Seconds

Figure �� The Graph for taking single source of transitive closure Ingres versions

Now the performance di�erence between di�erent versions of programs become more
obvious� The reason why there is a uniform bump in the cost curves when the number of
tuples in �family� reaches ���� is probably because the memory bu�er size is exceeded�
Figure � is the graph for taking the single source of whole transitive closure on top of

Sybase� The curves correspond to the C program involving network and logging overhead
�the dashed curve with small equal	length segments�� C program with logging overhead but
without network overhead �the solid curve�� and stored procedure without network �the
dashed curve with large equal	length segments� respectively in increasing slope order� From
the graph we could see that the e�ect of network cost is signi�cant when the table size gets
larger�
Figure � is the graph for taking the single source of transitive closure using Floyd�s

algorithm� The curves correspond to the C program simulating committed disk writes �writes
are synced to disk during each iteration�� C program with read���write�� system calls inside
the program loop but writes are not synced �i�e�� the program really takes advantage of
UNIX I�O bu�ering�� C program without I�O inside the program loop �i�e�� assuming a
main memory join model�� respectively in decreasing slope order�

500 1000 1500 2000 2500 3000
Table Size

100

200

300

400

500

Seconds

Figure �� The Graph for taking single source of transitive closure Sybase versions

1000 2000 3000 4000 5000
Table Size

20

40

60

80

100

120

Seconds

Figure �� The graph for taking single source of transitive closure Floyd versions

Figure � is the graph for cross	comparisons� The dashed curve with small equal	length
segments correspond to the C program taking the single source transitive closure on Ingres�
The solid curve corresponds to the C program taking the single source transitive closure
on Sybase� The dashed curve with large equal	length segments corresponds to the Floyd�s
algorithm with cached I�O cost �i�e�� reading�writing data is performed but not synced to the
disk�� The dot	dashed curve corresponds to the Floyd�s algorithm with pure CPU cost �i�e��
no reading�writing data is performed inside the algorithm�� Note the signi�cant di�erences
between the slopes corresponding to Ingres�Sybase curves and those corresponding to Floyd�s
curves�

1000 2000 3000 4000 5000
Table Size

100

200

300

400

500

Seconds

Figure �� The graph for taking single source of transitive closure cross versions

The observations from Section
�� also hold in the single	source case� with logging and
network cost being more signi�cant due to the decrease of overall join cost�

� Other cost factors

The e�ect of caching can be seen from �gure � and ��� Both curves are results of C program
running on Sybase� with index built on the join columns of base relation �family�� The
dashed curve is con�gured with cache size
��MB� and the solid curve is con�gured with
��MB cache�

400 600 800
Table Size

500

1000

1500

2000

2500

Seconds

Figure �� Caching e�ect in taking the whole transitive closure

Note that caching helps a lot in the whole transitive closure case� since the dominant join
cost can be reduced dramatically if most of the relations can be cached in memory� However�
caching has little e�ect for the single source case since the size of those � relations are very
small in our example �one tuple in size during each iteration�� a smaller cache is already
enough to hold all the relations in memory�

The e�ect of clustered index on the join attribute of base relation �family� can be see
from �gure �� to ��� The results are C program running on Sybase with a cache size of ��MB�
The dashed curves corresponds to the indexed version� and the solid curve corresponds to
the non	indexed version�

Note that for the whole transitive closure case� both joining relations are large ��family�
and �s�� indexing on the join attributes improves the performance signi�cantly� and the
performance gap goes up when we increase the size of the base relation� Using an index on
the base relation is especially bene�cial since no updates are performed on it� thus we can
avoid the penalty of slower updates and extra logging on the index� For the single source
case� the � relations are very small� thus the saving of join cost achieved by indexing is not
that obvious�

1000 1500 2000 2500 3000
Table Size

100

200

300

400

500

600

Seconds

Figure ��� Caching e�ect in taking the single source

400 600 800
Table Size

500

1000

1500

2000

2500

3000

Seconds

Figure ��� Indexing e�ect in taking the whole transitive closure

1000 1500 2000 2500 3000
Table Size

200

400

600

800

Seconds

Figure ��� Indexing e�ect in taking the single source

� Comparisons with Other Related Work

Some other work has done regarding the performance analysis of taking transitive closures
on relational systems �� �� ��� ����

In ��� both analytical and experimental results are presented to suggest some useful
heuristics for e�cient recursive database processing� Among them� performing selection �rst�
making use of wavefront relations �saving previous processing results to avoid redundant
processing�� and grouping those joins which reduce the size of intermediate results are
demonstrated to be bene�cial on a WISS �Wisconsin Storage System� platform� In ���
an adaptation of Warren�s algorithm ��� is proposed� its performance is compared with that
of an iterative algorithm and an improved version of the iterative algorithm �logarithmic��
They evaluate the performance of the algorithms for di�erent source relation sizes� available
memory sizes� join selectivities� and maximum path length� The general conclusion is that
no algorithm has uniformly superior performance" the adaptation of Warren�s algorithm is
superior when the source and result relations can be held in main memory�

In ��� ���� a new data structure called �join index� is proposed to facilitate the relational
join operation� A join index is a binary relation that captures the semantic links that exist
between tuples� The idea is to apply all complex operations �join� union� on join indices and
to access the data at the very end� Because the length of an index is shorter than that of
a tuple� the size of the data to be iteratively joined will be reduced considerably� In ����
some analytical results are shown for two transitive closure algorithms� �brute	force� and
�logarithmic�� The relative performances between two versions �using join index vs� not
using join index� for each algorithm are contrasted� It is shown that� for various values of

parameters� applying either algorithm to a join index rather than the base data yields better
performance�
Our work di�ers from the above in several aspects� The experiments are done using two

mature commercial relational systems� thus addressing some real aspects of database systems
�such as logging� concurrency control and network overhead�� A much more comprehensive
set of cost factors involved in evaluating transitive closure operations is identi�ed� Previous
work focused primarily on the join cost� we showed that the logging and network overheads
can also be signi�cant� One observation we made is that by using an index on the join
relations� implementing a more e�cient join method such as hybrid	hash join� and allocating
a larger bu�er cache� we could reduce the join cost signi�cantly� but the logging overhead
and the network overhead would stay constant� thus forming an overall bottleneck�

	 Conclusions

Our results indicate that both Sybase and Ingres are signi�cantly worse than the ideal� where
we are using Floyd�s algorithm as a measure of what is ideal� From �gures
 and � it is clear
that there is a large performance gap between the relational databases and the ideal in our
experimental range�
The transitive closure operation is one of the essential services that distinguish a deductive

database system from a relational database system� Our experiment shows the di�culty of
augmenting an existing pure relational system to a deductive database system� The main
issue is performance�
A relational system typically deals with a small number of large relations� Usually the

updates on these relations have to be logged for future recovery if the system crashes� Since
the relations are long	lived� caching them will improve the performance� In contrast� when
evaluating a transitive closure query� especially when using algorithms simulate sideways
information passing ��� many supplementary relations are generated� These relations are
typically small and short	lived �usually their lifetime lasts only one iteration�� The majority
of operations performed on these relations are updates� Logging seems to be overkill since
the disk I�O incurred by logging is exorbitant� An option of turning o� logging at relation	
level would be useful for reducing this overhead� A non	built	in transitive closure operator
also su�ers a severe network cost and inter	process communication overhead� An e�cient
implementation would try to place the temporary relations in main memory or adopt a
caching policy to favor these relations� for example� by providing �pinning� operations on
the frequently accessed relations such as � relations and the base relation �family�� This
way� we could reduce most of the thrashing disk I�O overhead� In our experiment� we observe
the number of disk reads is much less than the number of disk writes� Thus the dominant
factor in I�O cost is the disk writes �caused by an indiscriminate bu�er replacement policy
and logging�� A caching facility for a deductive database should take this characteristic into
account� In order to provide this caching facility we need to modify the existing systems�
One characteristic of the transitive closure operation is that the base relations are used

iteratively in the join operation� � relations are typically small and only equality joins are
performed on them �which means hashing would be a good choice�� So hashing or indexing
on base relation would be cost e�ective to reduce the join cost� For instance� join indices ���
��� would give good overall performance since it only focus on the relevant join attributes
and delay the actual tuple fetching until the time to assemble the �nal result� Since join cost

would usually be a major portion of the cost of taking the whole transitive closure� a globally
e�cient join strategy would pay o� in reducing the total elapsed time of the program� This
is valid even in a distributed environment�
Some interesting issues arise during the experiment� and they are�

�� How will deductive database optimization strategies such as linear evaluation or magic
sets transformation a�ect the performance problem#

�� How does the problem manifest itself in a distributed environment# In a wide area
network con�guration� the network set up time and transmission time will likely be
more dominant in the total cost�

�� In a database system one might typically want to compute a transitive closure as a
transaction� Data private to the transaction does not require privileged system services
such as logging�locking performed on them since they are private to the transaction
itself and temporary in nature� Also a transitive closure operation is typically a
long	duration transaction �locks on the base relations are held for too long since we
need to take a large number of joins� and only after a number of iterations will it
commit� Other transactions accessing the same relation might be blocked for a long
time� reducing transaction throughput dramatically� An interesting question is how
transaction processing strategies interact with query processing strategies�

Also we would like to do the experiment on POSTGRES� in which a transitive closure
operator is directly supported� However� the current version �
��� of POSTGRES does not
correctly compute transitive closures�

References

�� A� V� Aho and J� D� Ullman� Universality of data retrieval languages� In �th ACM

Symp� on Principles of Programming Languages� pages ���$���� �����

�� F� Bancilhon� D� Maier� Y� Sagiv� and J� D� Ullman� Magic sets and other strange
ways to implement logic programs� In Proceedings of the Fifth ACM Symposium on

Principles of Database Systems� �����

�� Francois Bancilhon and Raghu Ramakrishnan� An amateur�s introduction to recursive
query processing strategies� In Proceedings o the ACM SIGMOD ���� International

Conference on Management of Data� pages ��$��� �����

� C� Beeri and R� Ramakrishnan� On the power of magic� Journal of Logic Programming�
������$���� ����� Preliminary version appeared in the �th ACM Symposium on
Principles of Database Systems� �����

�� Jiawei Han and Hongjun Lu� Some performance results on recursive query processing
in relational database systems� In IEEE ���� International Conference on Data

Engineering� pages ���$�
�� �����

�� Ellis Horowitz� Fundamentals of Data Structures in C� Computer Science Press� New
York� �����

�� Hongjun Lu� Krishna Mikkilineni� and James Richardson� Design and evaluation of
algorithms to compute the transitive closure of a database relation� In Proceedings of

the Third International Conference on Data Engineering� pages ���$���� �����

�� G� Phipps� M� Derr� and K� A� Ross� Glue	Nail� A deductive database system� In
Proceedings of the ACM�SIGMOD International Conference on Management of Data�
�����

�� J� D� Ullman� Principles of Database and Knowledge Base Systems� Computer Science
Press� Rockville� MD� ����� �Two volumes��

��� P� Valduriez� Join indices� ACM Transactions on Database Systems� ���������$�
��
�����

��� P� Valduriez and H� Boral� Evaluation of recursive queries using join indices� In
Proceedings of the First International Conference on Expert Database Systems� pages
���$���� �����

��� H�S� Warren� A modi�cation of warshall�s algorithm for the transitive closure of binary
relations� CACM� ���
�����$���� �����

