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Abstract

A coordination language, MELDC, for open systems programming is presented. MeLDC isa C-
based, concurrent, distributed object-oriented language built on a reflective architecture. Unlike
other language research, the focus of MELDC is not only to study what specific language features
should be designed for solving certain open system problems but also to provide programmers a
high-level and efficient way to construct new features without modifying the language internals.
The key to the reflective feature is the metaclass that supports shadow objects to implement
secondary behaviors of objects. Thus, the behavior of an object can be extended by dynamically
composing multiple secondary behaviors with the object’s primary behavior defined in the class.
In this paper, both the MELDC programming model and the reflective architecture are described.
Then, we introduce the mechanism of dynamic composition as well as its application in building
distributed and persistent systems. In particular, a soft real-time network management system,
MELDNET, is built on top of MELDC to monitor the EtherNet performance. Finally, the current
status of MELDC is given.
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1 Introduction

The concept of “coordination language” was introduced by Carriero and Gelernter [CG89] to
designate a class of programming languages suitable for describing the behavior of open systems.
Ciancarini [Cia90] suggests the following definition for open systems:

An open system is a dynamic set of agents both cooperating and conflicting for
the use of a dynamic set of services and resources. The agents, the services and the
resources are heterogeneous; they operate both in parallel and in concurrency; they
communicate; they have some goals (what they would like to do), some duties (what
they should do), some rights (what they may do), and some constraints (what they must
not do).

The development of open systems in distributed computing is a result of using computer
and network technologies in real-world human society. The complexity of open systems mir-
rors the complexity of human society. Coordination languages usually extend the declarations
and statements of some base computation language, such as C and Pascal, with additional fa-
cilities to support distributed and/or parallel computation. Many coordination languages and
models have been proposed for open systems programming. Among these approaches, the most
popular one seems to be the concurrent object-oriented language approach, since it provides a
natural environment for expressing concurrency and encapsulating distribution in objects and
messages. Objects are naturally suited to represent real-world entities with private memory and
predictable behavior, and messages are the communication media among objects. Most object-
oriented coordination languages focus on providing immediate language features for building
open systems and hard-code these features into the language internals. One example would be
supporting atomic actions that guarantee serializability; however, it might then be difficult to
build applications with concurrency-related correctness criteria other than serializability, such as
epsilon-serializability [Pu91]. Other object-oriented languages support persistence, remoteness,
monitoring, authorization, authentication, etc. as immediate language features.

Like other languages, the ultimate goal of the MELDC language is to support a wide range of
high-level features for programmers to cope with the problems of implementing open systems.
Unlike other language research, our focus is not to study what specific language features should
be designed for solving certain open system problems, but to investigate the language architecture
with which programmers are able to construct — without modifying the language internals —
new features in a high-level and efficient way.

MELDC is a C-based, concurrent, distributed object-oriented language built on a reflective ar-
chitecture. The core of the architecture is a micro-kernel (the MELDC kernel), which encapsulates
a minimum set of entities that cannot be modeled as objects. All components outside of the kernel
are implemented as objects in MELDC itself and are modularized in the MELDC libraries.

MELDC is reflective in three dimensions: structural, computational and architectural. The
structural reflection indicates that classes and meta-classes are objects, which are written in
MELDC. The computational reflection means that object behaviors can be computed and extended
at runtime. The architectural reflection indicates that new features/properties (e.g., persistency
and remoteness) can be constructed in MELDC. These properties can be attached to and removed
from objects at runtime. The reflective architecture provides high flexibility to customize or extend
object behaviors in an elegant way. For example, a programmer builds a simple type of persistent



objects that do not survive catastrophic system failures and then builds a comprehensive version
of persistent objects that survive system failures by applying redundancy to the simple ones. In
MELDC, persistency is not a language primitive, but just another property that can be constructed
for objects. The semantics of persistency and policies to implement it are defined in MELDC.

Since micro-kernel facilities cannot be replaced or modified by the MELDC programmer, sev-
eral common choices are supported by the kernel and can be designated by the programmer using
compiler switches. For example, MELDC intends to support a variety of parallel and distributed
applications that have different concurrency characteristics. Some applications require a small
number of long-lived threads while others need a large number of short-lived threads that are
created and destroyed dynamically. Thus MELDC provides three different thread packages (in-
terleaving stack, one-stack-per-thread and heap-based) [HLK92], which can be chosen with a
compiler switch. Other compiler options enable the programmer to choose pre-emptive versus
non-pre-emptive schedulers and either merging or overriding behavior for multiple inheritance.

The MELD project has been one of the major foci of the Programming Systems Laboratory
at Columbia University since 1987. The original design of the MELD language focused on sup-
porting multiple programming paradigms at multiple levels of granularity. MELD integrates
four paradigms: object-oriented, macro dataflow, module interconnection and transaction pro-
cessing [KHPW90, KPHW89]. Starting in 1990, the MELD language was completely redesigned
and reimplemented from scratch to produce MeELDC, which is closer to C, has fewer but more
sophisticated “features”, and a cleaner architecture with many of the facilities implemented in
the MELDC language itself.

2 The MELDC Object-Oriented Programming Model

A MELDC program consists of a collection of active objects, which send and receive messages
to and from other objects (local or remote objects). An object is a runtime entity that has its
own private data and control. The state (instance variables) and the behavior of an object are
defined by a second program element known as its class in object-oriented programming. The
class of an object states how the program behaves in reaction to different messages delivered
to the object. A sequence of actions corresponding to a received message is encapsulated as a
method. In C++, classes are not considered as objects at runtime. They are abstract data types
and are defined statically. The creation of objects is “declared” through C++ statements and the
behaviors of objects are embedded in the code generated by the compiler. In MELDC, we consider
a class to be an object, which is defined by another object known as a metaclass (a class of classes)
in object-oriented programming. Similar to Smalltalk, MELDC metaclasses are exposed to the
programmer and classes are explicitly created as instances of a metaclass.!. A default metaclass
(called Metaclass) is created statically. Objects and classes other than the default metaclass
are created at runtime by sending Create messages to the relvent metaclass. A MELDC program
starts with the metaclass already created and a set of Create messages to be delivered. There
are no senders for these initial messages. A subset of the messages are first delivered to the
metaclass to create classes and then the rest of messages are delivered to these classes to create

!Similar to CLOS [DBM88] and ObjVlisp [Coi87], it is possible to have multiple metaclasses that are instances of
the default metaclass. There are numerous complex issues regarding metaclasses, which are not within the scope of
our discussion.



global objects.

One of the important concepts in MELDC is supporting dynamic extension of an object behav-
ior based on the reflective architecture. The extended behavior of an object is referred to as its
secondary behavior to distinguish it from the primary behavior defined in the class of the object.
Extending object behavior in MELDC is characterized by two properties: (1) composability and (2)
decomposability. Composability states that primary behavior, which implements the interface
of objects, can be modified by composing with multiple secondary behaviors without changing
the objects’ interface. Decomposability describes the reverse property of composability. Primary
behavior encompasses an object’s functionality as defined in the object’s class definition or pro-
vided through an inheritance mechanism. Secondary behavior on the other hand, encompasses
dynamically added functionality which is in most cases orthogonal to primary behavior and to
other secondary behaviors.

Not everything in MELDC is considered as an object — some program entities are not imple-
mented as objects for reasons of efficiency. Most entities inherited from the C language are not
objects: Examples are C statements, C basic types and variables, and C declarations. Some other
program entities cannot be treated as objects under MELDC'’s non-static object-creation scheme,
such as synchronization entities and threads. The kernel of our object-oriented model encapsu-
lates those entities that are not considered as objects. Messages, for example, cannot be objects
in the MELDC architecture, for if they were, the creation of a “message object” would require a
second message Create to be sent to the metaclass. However, this second message can only be
created by sending a third message to the metaclass, leading to an infinite regress.

3 MELDC Reflective Architecture

The key to designing reflective systems is uniformity. A language is considered “reflective” if
it uses uniform structures to represent data as well as control entities (e.g., programs) [1C88].
A reflective language provides the capability of computing control entities in the same way as
computing data. For example, Lisp is a reflective language, because it uses the same structures
(lists) for both data and programs. The meta-description of control entities (the control of con-
trol entities) are usually defined in the form of interpreters, which may use different internal
structures from data and programs. An architecture for reflective languages is shown in Fig-
ure refreflection.arch.ps. Programs and data are represented in the same form. Programs are
data to be processed by the interpreter. In this architecture, program units can be treated as data
and computed by other program units. Some data that have been processed by some program
components can be promoted as programs and processed by the interpreter.

In object-oriented programming, data and control (functions) are encapsulated in objects. Ob-
jects communicate with others through message passing to achieve some computations. Unifor-
mity means that all entities in the system are treated as objects. However, in our programming
model, some control entities such as messages and threads cannot be treated as objects. The
MELDC kernel consists of all such control entities. All entities outside of the kernel are treated
as objects and are implemented in MELDC. For example, the default metaclass code is written in
MELDC and compilable by the MELDC compiler 2. One of our goals is to study the fundamental

2Many object-oriented languages/systems claim full uniformity (treating all entities as objects). However, some
of entities (e.g., messages, threads, metaclasses) can only be considered as objects conceptually, not in the real
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Figure 1: An Architecture for Reflective Languages

limits of what entities cannot be treated as objects and is not implementable in the language
itself.

An object-oriented language is reflective if the behavior (computation) of a program can be
computed, extended or reasoned about itself in the form of objects and messages. The key
to the MELDC reflective feature is that the metaclass (see Figure refmeldcarch.ps) supports
shadow objects (some sort of meta-objects) that implement secondary behaviors (some sort of
meta-behaviors) of objects. The behavior of an object can be extended by dynamically composing
multiple secondary behaviors with the primary behavior of an object that is defined by its class.
This mechanism is referred to as dynamic composition. Shadow objects that implement the
secondary behaviors are said to be attached to the object. The primary behavior of the object
and its state can thus be computed or reasoned about by the attached shadow objects. The
metaclass and the MELDC kernel form the foundation of the MELDC reflective architecture. Most
other objects in our architecture are built on this reflective foundation through the mechanism
of dynamic composition of object behaviors. A few objects such as a the system object (interface
to Unix), shell objects (interface to shell environments) and memory objects, which support
interfaces to the underlying system, do not rely on the reflective feature. Figure refmeldcarch.ps
shows the architecture of the MELDC runtime system.

The MELDC runtime consists of a kernel (the MELDC kernel), a runtime object library (the
metaclass, a system object and memory objects) and a common library. The MeLDC kernel to-
gether with the runtime objects are necessary components for program execution. The MeELDC
kernel supports primitive functionalities for messages, threads, synchronization primitives and
dynamic composition. The metaclass is the origin of a program execution, which interfaces with
the kernel. Memory objects support memory utilization. The system object class which models
the operating system underneath, is the next layer. A MELDC process is currently implemented
as a UNIX process. If the underlying operating system changes, another corresponding system

implementation.
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class can be used. The 10 objects support a high-level 10 interface. Remote objects and persis-
tent objects support distribution and persistency. Objects in the common library (e.g., monitoring
objects, debugging objects or instrumenting objects) are constructed by dynamic composition on
the MELDC reflective foundation. Our design of the architecture clearly reflects a system that
supports uniformity, object uniformity as well as control uniformity, transparency, and orthogo-
nality of a set of building block objects essential and sufficient to support the functionalities the
MELDC language provides.

3.1 Dynamic Composition

Like the inheritance mechanism in object-oriented programming, dynamic composition is a mech-
anism to structure object behavior. Both inheritance and dynamic composition provide a high
degree of reusability as well as extensibility. They allow programmers to design their programs in
a hierarchical way and reuse components. The usefulness of inheritance has been demonstrated
in many existing systems. However, there are a few limitations on the mechanism of inheritance.
In most object-oriented languages, as in C++ and Smalltalk, inheritance is a predefined concept.
By predefined, we mean that once the instantiation of the object has taken place, the behavior of
the object is fixed throughout its life-time. Adding a new behavior to an object can be done only
by destroying the old object and creating a new one with a new definition. This limitation makes
any dynamic enhancement to a system painfully difficult. For example, adding a new protocol
to an existing network object should not require a network shutdown or create any interference
with the rest of the system. In the ideal case, modifying an object’'s behavior dynamically should
not affect any other parts of the system.

Most inheritance mechanisms are implemented with the algebraic form of union: A complex
class is constructed from a set of smaller class as united together, combining their data struc-
tures and methods. However, this type of inheritance mechanism is unable to modify the existing
objects’ behaviors. For example, if a programmer wants to trace an object, a common technique
is to add a print statement to every method. There are many problems with this approach. Re-
moving the modifications will be as difficult as adding them, and also extremely time consuming.
Sometimes the number of modifications is very large; hence the likelihood of introducing new
bugs is very high. MELDC supports both inheritance and dynamic composition.

Our idea of dynamic composition is inspired by mixins and method inheritance in Fla-
vors [Mo086, Boo83, Hen86]. The mixins are ordinary classes, but their sole purpose is to extend
the functionality of other classes. When a Flavors object is invoked, one or multiple methods
can be selected from the set of inherited methods. The programmer can predefine the multiple
methods’ calling sequences. Analogously, our dynamic composition depends on ordinary classes,
but whose sole purpose is to define instances that can be composed with other objects to extend
their behavior. Dynamic composition consists of taking such a behavior object and attaching it
to an ordinary object. The resulting object is effectively a cross-product of the two objects, but
each individual object’s identity is perfectly preserved. As in Flavors, multiple methods will be
called when a message arrives at the object, but the method calling sequences is determined by
the order in which the objects were combined. Unlike Flavors, the object composition is dynamic:
the programmer can dynamically attach a “mixin” object to a regular object at run-time.

Composition thus provides a system with a high degree of reusability. Modifying a behavior
no longer entails the modification of the program. Dynamic composition allows the programmer



to dynamically enhance (add or eliminate any composed behavior at any time) a statically defined
object; this cannot be achieved through any inheritance mechanism. Dynamic composition is a
very powerful tool in implementing distributed applications. In the later sections, we demonstrate
how dynamic composition can be used to reduce the complexity of implementing a large-scale
distributed system.

Let’s look at a simple example of dynamic composition. A class Savings_Account describes
two methods deposit and withdraw. Depositing and withdrawal are the primary behaviors of
every instance of Savings_Account. Yet a bank manager may decide to audit the activities of a
particular savings account. To do so he needn’'t modify the definition of the class, he can simply
attach a secondary behavior “audit” to the account object. The audit behavior does not affect
the primary behaviors, deposit and withdraw, but reports those activities to the manager.
The secondary behavior is simply a modifier to deposit and withdraw, so that the program
behaviors are now auditive deposit and auditive withdraw. Attaching a secondary behavior
simply modifies the primary behaviors in a transient and orthogonal fashion. The manager can
remove the auditing from the object at any time.

The idea of reflection is one of the important concepts that allows a program to dynamically
alter its own behavior [Mae87, Mae88]. Reflection has been implemented in many languages (e.g.,
ACTORS [Fer88], ABCL [Wat88], and ObjVlisp [Fer89]). The dynamic composition provided by
our MELDC language is one of many forms of reflection. However, MELDC limits the power of
reflection in order to improve the efficiency of the language. In most reflective architectures,
method execution is performed by interpretation and objects are allowed to alter other or their
own interpretation mechanisms. The interpretation introduces a performance penalty on all
operations, even though most of the time, objects do not need to be reflective. In MELDC, only
those objects that are composed trigger the reflection mechanism, so the performance of other
objects is not degraded by the facility for dynamic composition.

3.2 Uniformity

In the MELDC programming model, it is impossible to treat every entity as an object. All entities
that cannot be treated as objects are encapsulated in the kernel. MELDC has two types of
uniformity, object uniformity and control uniformity. The entities outside the kernel follow object
uniformity and the entities in the kernel follows control uniformity. Object uniformity means
treating every entity as an object. Control uniformity means that all control entities can be
transformed to other control entities.

In MELDC’s runtime system, there are several entities that can not be modeled as objects.

¢ MELDC does not model a message as an object. A class is itself modeled as an object at
runtime; it is an instance of the metaclass, which defines the method for object creation. To
create an object, a Create message is sent to the class object. If a message is modeled as
an object, then a recursion will lead to the consumption of all system resources. A message
m1 is sent to the class object to invoke the creation of an instance of the class, leading to the
creation of the object that represents message m1, which requires a message m2 to be sent
to the message class object, leading to m2’ s creation ... — this process never terminates.
While it is possible to model messages as objects if the system is a static system, where all
messages are pre-created at compile time, MELDC is designed as a dynamic system, where



the number of concurrent messages and threads cannot be determined at compile time. In
such a system, treating classes as objects (adhering to the notion of metaclass) and treating
messages as objects are mutually exclusive and contradictory.

¢ Resource management for threads can not be conceptualized by objects and message pass-
ing. If our resource manager, whose responsibility includes allocation of activation record
(frames), an invocation of a method will cause a message to be sent to the resource manager
object to trigger the allocation of frames. Again, this is another recursive process which
continues forever.

¢ Low level synchronization primitives, such as the mechanism of locking objects and blocking
threads cannot be implemented at the object level either. There is no language facility which
can be used to lock the objects which performs synchronization.

With the above limitations, since absolute object uniformity is virtually unachievable, we
believe an object-based architecture built on top of a small and efficient kernel is optimal. Thus
our kernel implements only the necessary and fundamental notions of the system which cannot
be modeled as objects is made as small as possible.

Itis just as important to establish control uniformity as to achieve object uniformity. Without
a well defined and uniform way of controlling how objects interact with each other, the system, as
it grows in complexity and scale, will result in chaos. We have established that objects interact
only through message passing, and for the flexibility and ease of programming, the MeLDC
programming language supports different kinds of messages:

¢ external messages for remote objects
¢ internal messages to invoke a method

e an event or a signal detected by the runtime system

The underlying control mechanism of all these seemingly different message passing schemes
is structured and always follows a standard transformation path. Should different messages
have their own unique control mechanisms, as the system grows in complexity, these control
mechanisms may conflict with each other and produces unpredictable results in a heterogeneous
environment. The MELDC kernel implements the transformation of messages and their control
and thus supports control uniformity.

3.3 The MeLDC Kernel

The MELDC kernel is shown in the shadowed area in Figure 2. In our model, internal messages,
serving as the control entities (function calls) in object-oriented languages, external messages,
serving as the medium in interprocess communication, events and signals, the medium for in-
traprocess communication, and threads are isomorphic manifesting themselves differently at the
conceptual level to programmers. At the system level, these messages are ultimately transformed
into internal messages which trigger the invocation of methods. For example, an external mes-
sage from a remote object is transformed into an internal message when it arrives at a machine.
An internal message is transformed into a thread when it arrives at an object.

8



One of the major tasks in the MELDC Kernel is to provide this service. Our system also
distinguishes threads and messages from objects. The MELDC runtime system does not model
a thread as an object. An internal message metamorphoses into a thread, which represents the
execution of the method triggered by the message arriving at an object. A function call on an
object is modeled as a sequence of four steps:

1. The calling thread is transformed into a message

2. When the message arrives at the object, the message is transformed into a thread, which
executes the called function

3. When the function completes, the thread is transformed into a reply message, which carries
the return value

4. When the reply message arrives at the calling object, it is transformed back to a thread,
which continues the code after the call statement

Threads and messages are each identified by a globally unique id. Since the transformation
is handled by the MELDC Kernel transparently, it provides an easy way to implement remote
procedure calls as well as remote light-weight threads.

The integration of internal messages, external messages, events, signals and threads greatly
facilitates building dynamic systems in a distributed environment. A dynamic system is charac-
terized by the dynamic feature of programs, which preserves the compile-time information (e.g.,
function/variables names and addresses) throughout the runtime execution, such that external
objects (e.g., the end-users) can dynamically bind program elements to certain properties. One
notable example of dynamic binding is to allow end-users to dynamically invoke a method. At
runtime, the end-user merely composes a message which carries information about the function
name and the values of input parameters. The system also supports dynamic type checking since
it is often necessary to ensure correct program behavior.

While some programming paradigms provide some sense of dynamic function invocation with
the use of dispatch tables, which are to be filled in by programmers explicitly, MELDC provides
a transparent format of dynamic binding. The programmers are not required to provide the
compile-time information as part of their programs. When an external message, in a pre-defined
format arrives at a process, the system readily transforms it into an internal message which
triggers the execution of a method. Our notion of transparency between external messages and
internal messages creates an illusion that objects live in a network without machine and process
boundaries. An object can communicate with any other object, as long as it can name the remote
object. This is possible since MELDC enforces a globally unique naming convention for objects. An
end-user can pretend to be an object in the network, as long as he/she can simulate and interpret
messages. A dynamic system built in MELDC can treat 1/O devices, the X servers or other network
entities as remote MELDC objects; this feature again illustrates our principle of object uniformity.

Our architecture defines clearly a transformation mechanism between different types of con-
trol entities, which include external messages, function calls, events, signals, and internal mes-
sages. We treat internal messages as the fundamental control entities in our system and all other
forms of interaction between objects will ultimately be transformed into this format. This control
uniformity greatly reduces the complexity needed in the Kernel to handle various types message



passing. Moreover, this design avoids the pitfalls of incompatibility between different control
mechanisms in large scale distributed systems. The behavior of the runtime system in handling
message passing can easily be modified by revising the transformation mechanism component in
the Kernel. Should a new message passing entity be needed, it can be implemented fairly easily;
the Kernel merely needs to define a new transformation mechanism.

3.4 MELDC Thread Packages

Many applications like telecommunications, network management and real-time stock trading
might have different requirements for thread policies. For example, an application who has
few long-term threads might choose a thread policy that is not very efficient in thread creation,
but a very efficient synchronous call mechanism. On the other hand, an application who has
a lot of short lived threads, might want to have a thread allocation mechanism that is efficient
on thread creation and use very little memory. A single implementation of the thread package
might not satisfy the requirement of all the applications. The MELDC compiler provides a switch
which allows programmer to choose from the three different thread implementations to suit their
application. The interleaving thread, should be used by the application which has large number
of short term threads. On the other hand, if the maximum size of the stack is well known, and
applications do not require a large number of threads, the stack base approach is probably the
best approach. Finally, if memory is scared, and the performance of thread creation is not critical,
then the heap-base approach could be used.

3.5 Metaclass

In MELDC, Metaclass is the default class of classes, including itself. It is the first and the only
object that exists when a program execution starts. Metaclass is a first-class object, which is
also implemented in MELDC like any other classes. Metaclass has four functionalities:

¢ object creation and destruction
¢ dynamic composition
¢ class/object knowledge inquiry

¢ a generic interface to access “external” objects.

3.5.1 Object Creation and Destruction

Metaclass defines two methods Create and Destroy for classes to create and destroy objects.
A message Create (Or Destroy) sent to a class activates the object creation (or destruction) code
defined in Metaclass.

obj = Class.Create(opt\_paraml, opt\ parm2, ...);
Class.Destroy(obj, opt\ paraml, opt\ parm2, ...);

10



There are two important issues, object initialization/termination and object management. Like
the constructors and destructors in C++, MELDC allows programmers to specify initialization (in
the init method) and termination (in the term method) for objects. When an object is being
created, Metaclass sends an asynchronous init message to the object. When an object is
being destroyed, Metaclass sends a synchronous term message to the object. The parameters
(i.e., opt_paraml, opt_param2, ...) passed to the Create/Destroy are passed to the init/term
method. In C++, the calls to constructors and destructors are generated at compile time, since
classes in C++ are purely compile-time entities. In MELDC, a class is a runtime object, which can
be constructed at any time during execution®. The MELDC compiler cannot tell that whether a
dynamically created object is a class or not, and does not treat Create and Destroy different from
any other message®. These two reasons prohibit MELDC from short-circuiting message passing to
init/term methods. The Create/Destroy must take the input parameters and pass them to
the init/term code. In order to accept and bypass variable number of parameters, the MELDC
language provides a mechanism called optional parameters. Regarding object management, each
class maintains a list of objects and provides necessary information to other objects. Based on
thr information, for example, a management object is able to send messages to the objects of the
same class.

3.5.2 Class/Object Knowledge Inquiry

Metaclass also provides the mechanism for objects to inquire the definition and the status of
a class. Some useful information includes (1) type descriptions of methods, parameters and in-
stance variables, (2) names of methods, parameters and instance variables, (3) offsets of instance
variables and methods in object structures, and (4) offsets of parameters in message structures.

3.5.3 Generic Interface

Metaclass provides a generic interface to access “external” objects. An object is external if it may
reside outside the process’s address space. Examples includes persistent objects, remote objects
and database objects. When external objects reside outside the process’'s address space, they
may be structured in different forms and identified by different naming schemes. In the MELDC
programming model, a MELDC program consists of a set of internal objects, which interact with
several domains of external objects. Each domain of external objects is identified by an internal
object, called a protocol object, which implements the interface to access the external objects.
Protocol objects serve as communication gateways to external objects and each of them may
have its own naming scheme to identify objects. MELDC do not enforce a global unique naming
space for objects. Instead, it is up to MELDC programmers to define their protocol objects to
identify different domains of external objects. A protocol object must have two required methods
(init_object and register_object).

Metaclass provides two methods,GetObj and PutObj, for programmers to establish and
remove a connection with an external object.

3A simple approach is to dynamically construct new classes through dynamic linking. An object is considered as a
class as long as (1) its class is Metaclass and (2) its instance variables (defined by Metaclass) contains the definition
of some objects.

4C++ treats new and delete as special operators.
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obj = Class.GetObj (obj\ name, protocol\ obj, opt\ param);
Class.PutObj (obj, Obj\ name, protocol\ obj, opt\ param);

GetObj creates a local representation of an external object and setup necessary communica-
tion to the external object. The operation is to “localize” the external object and make it accessible
by other local objects as if it is an internal object. It calls the init_object in the protocol ob-
ject to perform any domain-specific initialization task. PutObj “externizes” a local object and
destroy the local copy of the object. It calls the register_object. Communication protocols,
policies and concurrency control are specified in protocol objects. For example, a programmer
can implement a protocol object for distributed objects. An object created through GetObj with
the protocol object is transparently accessed by other local objects. Its implementation is fully
hidden in the protocol object. For example, to improve the performance of his application, he
may implement three protocol objects. One replicates objects in multiple sites, one moves remote
object to the local site, and one simply use remote procedure calls for each message passing. The
implementation relies on the mechanism of dynamic composition, which use shadow objects as
the access points. See next section for details. Similar to Create method, optional parameters
are passed into the protocol object. The Getobj and PutObj provide a uniform interface to access
external objects.

3.5.4 Dynamic Composition

Metaclass provides two methods for dynamic composition: Attach and Detach. See next
section for details.

4 Dynamic Composition of Object Behavior

MELDC provides the mechanism of shadowing to implement secondary behaviors. The idea
“shadow” implies a dynamic, transient and orthogonal effects upon primary behavior. A secondary
behavior of an object o is implemented by being attached with a second object, called the shadow
object of o (referred to as Sy). We say that object o is shadowed by S, or S, casts shadow upon
0. The primary behavior of S, is the secondary behavior of 0. The shadow object S, alone is a
regular object, whose primary behavior is defined by its own class . It has its own private data
as well as its own threads of control. It can be shadowed by yet another object, which would then
implement a secondary behavior of So. An object cannot be attached directly or indirectly to itself
as a shadow object. From our previous example, an account object can be shadowed by an audit
object, which can be shadowed by a monitoring object (attached by a higher manager). However,
it is impossible for an audit object to be audited by itself.

The attachment used to establish the connection between objects and their shadow objects is
a method (attach) which is defined in metaclass. To attach S, to 0, a message is sent to the
class of o with four parameters:

Classe.attach(o, So, Meptry, Meyit)
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Figure 3: Simple Examples of Shadow Objects

The third parameter, m.,,,, indicates the entry method to the shadow object S, and the forth,
m..;:, indicates the exit method. Any message m sent to object o will be trapped and forwarded
to the method m.,.;,, 0f S before it is delivered to 0. After o completes executing method m, m;;
of Sp is invoked.

An object may have a sequence of shadow objects, S;, S, ...S,, attached to it, where S,, is
the last one attached and S; is the first one being attached. The entry method of S,, is the first
one to be executed and that of S; is the last. After o completes executing its method, the exit
method of S; is executed first and that of S, is the last one to be executed. Any shadow object
So may be detached from object 0 as long as there is no active message traveling through the set
of shadow objects. If there are any active messages, the detachment operation is delayed until
the message is completed. Shadow objects are the basic building blocks to dynamically change
program behaviors. Figure 3 shows the control flow of an object shadowed by a set of objects.

4.1 MELDC Shadow Object Case Studies

The dynamic composition is a useful construct used to reduce the complexity for programming
a large scale object system. Dynamic composition provides a clean separation between object
behavior and runtime policy. By separating runtime policies and encapsulating them within
object boundaries, programmers can design a system that intelligently alters its behavior while
achieving reasonable efficiency. The shadow objects are the mechanisms to clearly and efficiently
implement solutions of the dynamic composition. In our first example, we consider how to
transparently access remote information and object migration. Our other solution to a system
problem deals with the property of persistence. Here, we attach a shadow object to an object as
protection against loss of the object’s data. This shadow object behaves completely transparent
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in terms of primary behavior, but assures a programmer a determined level of safety.

4.1.1 Objects with Persistence

Often in large systems, it is desirable to imbue objects with the quality of persistence for purposes
of fault tolerance or system-related aspects such as transaction and database. This persistence
can have many forms, but the common thread among them is that the data for the objects with
the property of persistence should be safe from deletion upon the object’s (or system’s) demise.
Acquiring persistence, should not in any way alter an object’s original behavior. It should be
transparent to the objects. The persistence by itself makes very little sense, it has to co-exit
with objects. The persistence is acquired dynamically by the objects. The property of persistence
makes it an ideal candidate for dynamic composition. The persistence can be implemented as
a shadow object. Attaching persistent shadow object to an object, transforms the object into a
persistent object. Once the object has acquired the persistence behavior, it will stay persistent
until the object is destroyed or detached from the persistent property. Notice adding and altering
the persistent behavior of an object do not effect the objects , and the object is completely unaware
of this behavior. One of the biggest benefits of implementing persistence qualities with shadow
objects lies in their dynamic nature. Traditionally, the policy of the persistent behaviors are
incorporated as part of the language system. A program has very little control over persistence
policy. Treating the persistence as a secondary behavior will separate the concept of persistence
from the system as well as the objects. Systems can dynamically configure the objects with a
different policy. For example, not every object in a system requires the same degree of persistence
(degree of persistence implying the rate of data flushing). It is wasteful to assign a high degree of
persistence to every object, simply because of the requirements of a few objects in the system. A
policy function can dynamically determine the persistence requirement of an object and designate
a persistent policy to each object. This policy function can also periodically reevaluate the
persistence requirement of each object, and adjust their need accordingly by attaching a different
persistent object.

4.2 Object Migration and Transparent Remote Access

Sometimes it is difficult to convince someone that remoteness can be considered as a secondary
behavior. To a process, any object not located within it is consider a remote object. A remote
object can be viewed as a local object that exhibits a remoteness property. Conversely, a remote
object can also be viewed as a physically distinct object.

What distinguishes these two views is the method needed to access these remote objects. In
the first case, since the object is treated as local, the programmer only need to send a message to
the object to communicate with it. In the second case, the object is physically far away and the
programmer must go through a complex interface and “build a bridge” to the object.

4.2.1 Object Migration

By treating a remote object as a local object with remoteness property, object migration is simply
attaching a remoteness property to a local object. Once the object is given the remoteness property,
the object is automatically migrated to the remote environment. The object’s local representation

14



1) Migrating Obj A from Host 1 Host 2

Host 1 to Host 2.
We will attach a remoteness
property object to Object A

Remoteness :
property obj :
2) After the attachement, the :

remoteness property obj will A i
Create a new object A at :
Host2, and forward Obj A’s OB | Shadow
instance variables to Host 2 b3 o B

Remoteness property Obj will

intercept the message destinate
to Obj A at Host 1,and forwared it
to Obj A at host 2.

3) The programmer can then i
delete Obj A at Host 1; ;
hence complete the process of ;
object migration. i

Figure 4: Simplified Illustration of Object Migration

became a dummy stub, which will be used to forward all the messages to the migrated remote
object.

Object migration has not yet been implemented in MELDC. Its design very closely follows
the model described above, with a few enhancements and limitations. From the users point
of view, migrating an object to the remote machine is accomplished by attaching a remoteness
property object to the migrating object. Once the attachment is complete, the physical entity of
the object will be forwarded to the remote machine and the user can still access the object through
the local stub. Programmers do not have to be concerned with the complex details of network
communication, linearization and name resolution. These are all hidden away by the remote
property object. There is a limitation with the current design, since MELDC class definitions do
not include the actual source/object code. Migrating a class is not possible unless the source/object
code has been built into the executable. The object can not be migrated unless its class exists at
the remote process.

In order to avoid exponential explosion of local representation, after the object is migrated
the programmer has the option of deleting an object’s local representation. Deleting the local
object’s representation has no affect on its remote counterpart. Deleting a local object is different
than detaching the remoteness property. Detaching the remoteness property from a migrating
object will move the object back to the local environment. Deleting the migrated local object will
make the remote machine the permanent home of that object. Figure 4 provides a high level
abstraction of MELDC object migration.
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4.2.2 Transparent Remote Access

Transparent Remote Access is a special case of object migration, which has been implemented
in MELDC. The idea is to access a remote object as if it were a local object. The idea is to treat
the remote object as a migrated local object with its local stub removed. There are many com-
mon classes which are shared between object migration and transparent remote access (i.e. The
network communication, linearization algorithm, etc.). The implementation described in the pre-
vious section is still applicable in this case. The differences between them are in the initialization
process. During the initialization time, instead of forwarding all the object’s information to the
remote machine, the transparent remote access shadow object will create a local stub and attach
a shadow object to it. The resulting configuration will be identical to the configuration of object
migration. Once the attachment is complete, the user can send information from local to the
remote machine transparently. At the current implementation, detachment is different than the
concept in object migration. Detachment will not move the object from the remote back to the
local environment. Detachment will simply destroy the local object stub. This implementation
might change after the completion of the object migration. We might want to use the same model
as object migration.

5 An Application: MELDNET

MELDNET is a performance monitoring system for EtherNet and it is built on top of MELDC.
MELDNET serves as a prototype revealing technical difficulties in implementing an object-oriented
real-time monitoring system [WK93]. Since MELDC is running on several versions of the UNIX
time-sharing operating system, MELDNET is soft real-time® because the timer facility we used is
not precise.

One major advantage of using MELDC is its support for shadow objects and protocol objects
in a distributed environment [LHHK92]. In MELDC, if the real managed object is owned by the
information agent and a remote managed object is owned by the monitoring system, then the
remote object does not contain the actual value. If a management application performs a GET
request on one particular remote object, this request is delegated to the real object under the
agent. The return value from the real managed object is returned to the management application
originating the request. The interaction between the remote and real managed object, as depicted
in Figure 5, is transparent to the application, and it is not hard real-time. As described in [WK93],
it is more efficient if the remote object keeps a copy of the value and the real managed object
periodically sends new values to update the remote replicated copy as in Figure 6. Please note that
the remote object in this case is simply a way of caching and replicating remote management
information with periodic refreshing [LHM*86]. Furthermore, the quality of the information
service (QOIS) is decided by the refreshing rate.

Besides object access transparency, the shadow object in MELDC provides another perfor-
mance advantage in distributed real-time network monitoring. Usually, every request from an
application to an agent needs to go through an application layer protocol (e.g., CMIP or SNMP).

5The major difference between hard and soft real-time: In a hard real-time system, meeting all the time constraints
is guaranteed. But, in soft real-time system, the information about time constraintsis treated as a hint to the scheduler
for how to schedule the tasks.
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The protocol processing, which includes object identifier checking, type checking, and access mode
checking, is time consuming. Thus, it is difficult to achieve hard real-time in CMIP or SNMP. In
MELDC, the interaction between the managed object and its shadow is directly on top of a trans-
port layer protocol. All the checking is done only once at the creation time of that shadow object.
Therefore, using shadow objects in MELDC achieves better performance in accessing information
from the agent.

Since in the current implementation no timer can be attached to the remote managed object
in MELDC, we used two pairs of remote and real objects differently in order to implement the
periodic event reporting as shown in Figure 7. First, we put a real managed object in the real-time
MIB and its remote managed object is left in the agent side (Figure 8). The agent still polls the
information periodically from the network controller. However, it also periodically computes the
average value and performs a SET operation on the shadow. This SET request is delegated to the
real one in the real-time MIB and the value of the real managed object is updated. Thus, if the
cycle time of the SET operation is short and the delay between the remote and the real object is
short, the QOIS is guaranteed.

One question about the MELDNET implementation is: “Will there be too many shadow objects
with this approach, which takes a lot of memory resources?” In [WK93], we argued that in a
hard real-time monitoring system, at one time instant, management applications can only access
a relatively small, bounded, specific set of managed objects with specified QOIS. If the number
of shadow objects is large, the system will not have enough communication and computation
resources to handle all the QOIS. Thus, at any moment, the number of shadow objects is small
and fixed. Furthermore, shadow objects in MELDC are easy to create and destroy dynamically.

6 Summary of MELDC language features

This section will summarize the important features in MELDC to give you a better understanding
of the overall MELDC language. Figure 9 shows the graphical interaction of the MELDC features.

6.1 Message Passing

In MELDC, objects communicate with each other through the message passing mechanism. There
are three different types of messages:
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e Symbolic
¢ String

¢ C like (fast message)

An object can send one of these messages either synchronously or asynchronously. When a
MELDC object receives a message, its default behavior is to match the message with one of its
selector and fire off the method corresponding to that method. This type of message is called
a symbolic message. A symbolic message is similar to a function call. A simple improvement
might be for an object to treat the incoming message as a regular expression. The object can
then match this regular expression against the actual method name. This type of the message is
called a string message. Using the MELDC messages passing schemes can entail much overhead.
Sometimes, it would nice if one can fire off a C function call and by-pass the MeLDC thread
mechanism for the purpose of efficiency. This type of message is called C like message.

Synchronous messages in MELDC are similar to C function calls. The caller will wait for the
completion of the callee before the caller continues execution. For an asynchronous message, on
the other hand, the caller will not wait for the callee. Instead, the callee will be executed on a
separate thread.

MELDC allows any given method to have a variable number of formal parameters. Optional
parameters is a very useful feature in a programming language. It allows the programmer more
flexibility by making modules more generic. One can use this mechanism to implement the
parametric polymorphism, like in C++, which allows different functions to executed depending

on the type of parameters.
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6.2 Concurrency/Synchronization Mechanism

Since MELDC is claimed to be a concurrent OOPL, the concurrency obviously plays a very impor-
tant role in our language. In MELDC, there are two different levels of concurrency:

¢ The concurrency between objects

¢ The concurrency within an object

Many active objects can execute simultaneously and multiple threads can be executed in an
object at the same time. MELDC threads are lightweight threads, during context switching very
little information is saved, hence it is less expensive than heavy-weight threads.

The synchronization mechanism is one of the crucial components in a concurrent language.
In MELDC, two different types of synchronization controls are provide for the programmer:

atomic block: The objective of Atomic Block is to protect instance variables from being accessed
or modified by more than one thread at the time. Once a thread enters the atomic block, any
other threads attempting to send messages to this object will be suspended until the atomic
block is released. An atomic block provides the mechanism to synchronize the threads within
the same object.

counting semaphore: MEeLDC also provides the counting semaphore to synchronize the execu-
tion between threads executing in different objects.

6.3 Inheritance

MELDC provides two different types of inheritance:

override: The override semantic is similar to C++, which during a name conflict the child’s
behavior will override the parent’s behavior.

merge: Unlike override, the merge semantic does not consider multiple declarations of a method
in an inheritance tree a conflict. MeLDC simply executes all of the methods. The merge
semantic is an experimental inheritance semantic. There are few problems that have not
yet been correctly resolved, such as the return value for the merge function. Nonetheless, it
could be a possible alternative to the override semantics.

6.4 Reflection

Two very important ideas in MELDC are derived from the concept of reflection. MELDC’s metaclass
is a form of Structure reflection, and MeLDC’s dynamic composition is a form if Computation
reflection.

MELDC's metaclass is the class of all the classes in MELDC. The metaclass defines the behavior
of all classes and is implemented in the MELDC language. Any object oriented language without
the concept of a metaclass will have to hard code an object’s creation and destruction as a part
of the language system. In the case of MELDC, the Create and Destroy methods are actually
written in MeldC, both of which are methods of the metaclass.

21



Sometimes a programmer needs to change the behavior of a MELDC program “on the fly.”
The power to dynamically change program behavior can be extremely useful in debugging large
programs and auditing large object-bases. It can be used for more advanced uses, as well. All
of MELDC's distributed programming aspects are based on the concept of dynamically modifying
program behavior to form a link to other MELDC processes. In MELDC, however, this power
does not come from self-modifying code. Rather, MELDC offers the dynamic extension of object
behavior through the use of the reflective (Computational reflection) architecture.

6.5 Active Value

Active values are variables that cause side effects (typically assigning a value to another variable)
to occur immediately after their value is changed or they are assigned a value. For example, if
we have an equation which provides the relation between Fahrenheit-Celsius. Using the active-
value, it does not matter whether F or C is changed, the MELDC will ensure the resulting values
will be correct by changing F or C proportionally.

6.6 UNIX I/O Interface

UNIX processes can be executed concurrently inside the UNIX kernel. For example, any two
UNIX processes can concurrently initiate 1/0 to the same device. Unfortunately, this is not the
case for the MELDC light-weight threads. Even though UNIX does provide the asynchronous
1/O facility, the task might be too complex for the regular programmer. MELDC provides a class
which simulates the synchronous UNIX 1/O for each light-weight thread. The use of a UNIX I/O
interface can give the user the appearance of a blocking 1/0 and yet at the same time, allow other
threads to continue their execution.

6.7 Tool Support

There are two important tools that are commonly used by the MELDC programmer:

¢ the debugger

¢ the library archive

The MELDC debugger is built on top of gdb. This gives mcgdb a means to debug MeLDC code
with a standard interface. It also allows the use of gdb’s ability to step through and examine the
C statements which compose the majority of a MELDC program’s methods. The mcgdb will also
allow a programmer to exam the instance variables of an object.

The library archive, mar, allows a MELDC programmer to group a set of related classes together
and form a class library. The library archive also provides many facilities like revision control
and the ability to determine the dependencies of a feature, which automatically places/extracts
them in/from the same archive. The mar command is also a good mechanism to organize the
classes in the MELDC language.
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6.8 Memory Management

The implementation of MELDC in C implies that the global heap space is shared by all objects.
This might not be an acceptable solution. Instead, we believe each individual object should have
its own memory space. That is, each piece of the memory allocated should have an owner object
associated with it. This means that only the owner is allowed to free the object's memory. By
localizing the memory allocation, we reduce the chance of memory leak and yet at the same time,
it is extremely helpful in debugging a program with a memory problem.

7 Conclusion

The goal of any high level language is to provide a comfortable programming environment for
the application programmers. This is one of the important objectives but not the only one behind
the MELDC language design. We would also like to provide a language environment where the
programmers have the option to modify or add those high level features provided by the language
Remote, Persistent .... without changing the core definition of the language. We believe the
concept like remote object and persistent object, should not be consider as part of the language.
Instead these propertes should be encapsulated inside an object and the language should provide
a mechanism (the shadow object) which allows any object to attach the remote and the persistent
behavior dynamically(Dynamic composition).

The MELDC 2.0 implementation consists of about 15,000 lines of C, lex and yacc for the
compiler, 4,300 lines of C and 500 lines of assembly code for the kernel, plus 10,000 lines MELDC
runtime written in MELDC itself. It runs on Sun4s with SunOS 4.1 and DecStations with Ultrix
4.2, although there are several limitations on the DEC version. This is the first external release
of MELDC, but version 1.0 has been used internally as an educational language for undergraduate
courses. The release includes a user manual, compiler and runtime implementation guides, a
MELDC variant of the gdb debugger and a sample program for network monitoring.

References

[Bob88] D.G. Bobrow. Common lisp object system specification x3j13 dcoument 88-002r. SIG-
PLAN Notices, 23, September 1988. Special issue.

[B0o0o83] Grady Booch. Object Oriented Design With Applications. Benjamin/Cummings, 1983.

[CG89] N. Carriero and D. Gelernter. Linda in Context. Comminications of The ACM,
32(4):444-458, April 1989.

[Cia90] Paolo Ciancarini. Coordination Languages for Open System Design. In International
Conference on Computer Languages, pages 252-260, March 1990.

[Coi87] Pierre Cointe. MetaClasses are First Class: the ObjVlisp Model. In OOPSLA87,
volume 22, pages 156-167, 1987.

[Fer88] Jacques Ferber. Conceptual Reflection and Actor Languages. In Pattie Maes, editor,
Meta-Level Architectures and Reflection, pages 177-193. North-Holland, 1988.

23



[Fers9]

[Hen86]

[HLK92]

[1C88]

[KHPW90]

[KPHW89]

[LHHK92]

[LHM™86]

[Mae87]

[Mae88]

[Mo0086]

[Pu9l]

[Wat88]

Jacques Ferber. Computational Reflection in Class based Object Oriented Languages.
In OOPSLA89, volume 24, pages 317-326, 1989.

J. Hendler. Enhancement for fMultiple Inheritance. SIGPLAN Notices, 21(10):100,
1986.

Wenwey Hseush, James C. Lee, and Gail E. Kaiser. MeldC Threads: Supporting
Large-Scale Dynamic Parallelism. Technical Report CUCS-010-92, Department of
Computer Science, Columbia University, July 1992.

Mamdouh H. Ibrahim and Fred A. Cummins. KSL: A Reflective Object-Oriented
Programming Language. In International Conference on Computer Languages, pages
186-193, October 1988.

Gail E. Kaiser, Wenwey Hseush, Steven S. Popovich, and Shyhtsun F. Wu. Multiple
Concurrency Control Policies in an Object-Oriented Programming System. In 2nd
IEEE Symposium on Parallel and Distributed Processing, pages 623-626, Dallas TX,
December 1990.

Gail E. Kaiser, Steven S. Popovich, Wenwey Hseush, and Shyhtsun Felix Wu. MELD-
ing Multiple Granularities of Parallelism. In Stephen Cook, editor, 3rd European
Conference on Object-Oriented Programming, British Computer Society Workshop
Series, pages 147-166, Nottingham, UK, July 1989. Cambridge University Press.

James Lee, Wenwey Hseush, Eric Hilsdale, and Gail E. Kaiser. Dynamic Orthogonal
Composition in MeldC. In Workshop of Objects in Large Distributed Applications,
Vancouver, British Columbia, Canada, October 1992.

Bruce Lindsay, Laura Haas, C. Mohan, Hamid Pirahesh, and Paul Wilms. A Snapshot
Differential Refresh Algorithm. In SIGMOD, pages 53—-60, Washington, D.C., May
1986.

Pattie Maes. Concepts and Experiment in Computational Reflection. In OOPSLA'87,
volume 22, pages 147-155, 1987.

Pattie Maes. Issues in Computational Reflection. In Pattie Maes, editor, Meta-Level
Architectures and Reflection, pages 21-34. North-Holland, 1988.

David A. Moon. Object-oriented programming with Flavors. In OOPSLA, volume 21,
pages 1-8, 1986.

Calton Pu. Generalized Transaction Processing with Epsilon-Serializability. In Pro-
ceedings of Fourth International Workshop on High Performance Transaction Systems,
Asilomar, California, September 1991.

Takuo Watanabe. Reflection in an Object-Oriented Concurrent Languages. In OOP-
SLA88, volume 23, pages 306-315, 1988.

24



[WK93] Shyhtsun F. Wu and Gail E. Kaiser. On Hard Real-Time Management Information.
In IEEE First International Workshop on System Management, page to appear, Los
Angles, California, April 1993.

25



