
THE COMMUNICATION COMPLEXITY OF ATOMIC COMMITMENT
AND OF GOSSIPING

Ouri Wolfson1•3•4

Adrian Segal12.3

Technical Report CUCS-499-89

ABSTRACT

We consider the problem of atomic commitment of a transaction in a distributed database. This is a variant of the
famous gossiping problem (see [HID..] for a survey). Given a set of communication costs between pairs of partici
pant sites, we establish that the necessary communication cost for any atomic commitment algorithm is twice the
cost of a certain minimwn spanning tree. We also establish ihe necessary communication time for any atomic com
miunent algorithm, given a set of communication delays between pairs of participant sites, and the time at which
each participant completes its subtransaction. Then we determine that both lower bounds are also upper bounds in
the following sense. There is an efficient (i.e. polynomial-time) algorithm that, in the absence of failures, has a
minimum communication cost. There is another efficient algorithm that, in the absence of failures, has a minimum
communication time. However, unless P=NP, there is no efficient algorithm which has a minimum communication
complexity, namely, for which the product of communication cost and communication time is minimwn. Then we
present a simple, linear time, distributed algorithm, called TREE-COMMIT, whose communication complexity is
not worse than p times the minimum complexity, where p is the number of participants. Finally. we demonstrate
that TREE-COMMIT is superior to the existing variants of the two-phase commit protocol.

1. ThiJ research was supported by Ihe Isradi Foundation for ReIean:h in EIecIronicI, Ccmput.en, and Communications, by DARPA
research grant ilF·2960 1·87 -C-0074, and by lhe Cent.er for Advanced Technology at Columbia Univenity NYSSTF-CA T(89)-S.

2. ThiJ n:IClIrch wu supported by Ihe Technion Fund for Ihe Promotion of Research.

3. Department of Ccmput.er Science, Tcclmion· Israd In,tilllt.e of Tedmology, Haifa 32000, brad

4. Department of Comput.er Science, Columbia Univenity New Yorit. NY 10027

1

1. INTRODUCTION

1.1. The problem

In a distributed database, a transaction consists of several subtransactions, each running at a different site that

has a local database. When the subtransaction at a site completes, Le. the corresponding process finishes, the local

database manager knows whether it completed successfully or unsuccessfully!. The atomic commitment problem

(see [GD for the set of local database managers, is to determine the decision of each manager, concerning the

changes made by the transaction to the local database. The manager may either validate these changes (commit the

subtransaction), or invalidate them (abort the subtransaction). The generally accepted solution to the atomic com-

mitment problem is to commit all the subtransactions, yielding a committed transaction, if all the completions are

successful, and abort all of them otherwise, yielding an aborted transaction. To achieve atomic commitment, the

local database managers execute a distributed algorithm, exchanging 'yes' and 'no' votes. A 'yes' vote indicates

the successful completion of a subtransaction, and a 'no' vote indicates an unsuccessful completion2 •

In this paper we first consider the load that atomic commitment algorithms place on the communication net-

work, in the following sense. Each subtransaction of a given transaction runs at some node, called a participant site

for that transaction, and with each pair of participants, i and j, is associated the cost, Cij' of sending a message

between i and j. The costs may differ from one pair of participants to another. For example, the communication

cost for a pair of participants may represent the distance in the communication network between the participants.

The communication load that an execution of an algorithm places on the communication network is quantified in

terms of its commuJ1icalion COSI, i.e., the total cost of messages that the algorithm sends among the participants.

Traditionally, the communication load has been quantified in terms of the number of logical messages among

participant sites, namely intersile messages. (Implicitly, Cij was taken to be one for every pair of participants, i and

j.) However, this may be too coarse a measure for comparing the load that different atomic commitment algorithms

place on the network. To demonstrate this we shall present next three commitment executions, or instances, for a

transaction; they all use the same number of intersite messages, but put different loads on the communication net-

work, since they use different numbers of network messages Le., messages between neighbors in the communication

network (regardless of whether they are participants or nonparticipants).

I. For example, a subtransaction may complete lUlSUccessfuUy as a result of deadlock.

2. Transactiom are used in dirulbuted systems other than databases, such as Argus ([UULSW]) and CvnelO(([SpJ). The atomic ccmmit
ment problem, as descnbed. arises in such systems as well.

2

For example, assume that the transaction executes in the computer-communication network given in Fig. 1.1.

Fig. 1.1

Squares represent participant siteS, circles represent nonparticipant sites, and edges represent two-way communica

tion links. A possible commitment instance, based on the "central site" algorithm of Lampson and Sturgis ([LSD, is

illustrated in Fig. 1.2a: each one of the participants 2,3, and 4 sends its 'yes' vote directly to participant 1, which

also votes 'yes', commits, and sends the commit decision separately to each of participants 2,3, and 4 (each of

which commits when it receives the message). This instance uses six intersite messages. Another possible instance,

based on the "linear" algorithm of Gray ([Gl), is illustrated in Fig. 1.2b: 4 sends its 'yes' vote to I, which then sends

its and 4 's 'yes' voteS to 3, which then sends its and l's and 4 's 'yes' votes to 2; 2 then voteS 'yes', commits, and

sends the commit decision to 2, which sends it to 3, which sends it to 4. This instance also uses six intersite mes

sages. In fact, from the lower bound result of Dwork: and Skeen [OS I] for atomic commitment, we know that any

four-participant atomic commitment execution requires at least six intersite messages. Finally, consider the follow

ing instance that also uses six messages (see Fig. 1.2c): 4 sends a 'yes' vote to 3, which sends its and 4's 'yes' votes

to 2; meanwhile, 1 also sends a 'yes' vote to 2, which, after receiving the two messages, also votes 'yes' and com

mits, after which the commit messages travel from 2 to 3 to 4 and from 2 to I. If we assume that the intersite mes

sages travel through the shortest path in the network:, then the first instance takes 20 network messages, the second

takes 22, and the latter takes only 14. Since the actual communication load on the networlc is reflected by the

number of network messages, the third instance above imposes the least load on the network.

t..' •

3

The other measure that we consider in comparing the performance of commit protocols is the communication

lime. Communication time of an instance is defined as the interval of time starting when the first subtransaction

completes. and ending when the last participant commits its subtransaction. In this respect we also depart from tradi

tional models (e.g .. (DS 11. [RD. which for the purpose of analysis. assume a synchronous communication network.

and simultaneous completion of all subtransactions. The synchronous communication implies. in particular. a unit

time intersite message delay. independent of the networlc location of the sender and receiver.

In our model we allow. more realistically. arbitrary subtransaction completion times as well as different inter

site delays. Particularly. different participants may complete their subtransaction at different times. and intersite

message delays may differ from one sender-receiver pair to another. Therefore, we dispose of unrealistic assump

tions regarding synchronous operation of geographically dispersed processors.

Finally. let us mention a different formulation of the problem addressed. There is a large body of research on

"gossiping", and many variants of this problem were studied. in the literature (see [HID..] for a survey). Our model

and our results apply to the following variant of the gossiping problem: it has not been solved before. and actually,

our necessary and sufficient cost results solve an open problem discussed by Cot ([CD. There is a set, A. of indivi

duals. each of which lcnows a unique piece of a gossip. Additionally. for each pair of individuals i and j. there is a

cost, Cji' and a travel-time (corresponding to the intersite delay in atomic-commitment terminology). Ijj. associated

with a letter (or a message) from i to j. Also. individual i learns its own piece of the gossip at time 'tj (corresponding

(a) (b) (c)

Figure 1.2

4

to the subtransaction completion time). A solution consists of a partially ordered set of pairs of individuals. Each

pair represents a letter sent from the first to the second, and the partial order represents the time at which the letters

are sent. Presumably, each letter contains all the pieces of the gossip known LO the sender when sending the letter.

At the end, each individual must know the whole gossip. In subsection 8.2 we discuss another unsolved variant of

gossiping, and the implications of the results in this paper, to that variant

The atomic-commitment problem is a special case of gossiping, in which the unique pieces of the gossip are

the votes, and after collecting all the votes. each individual computes their conjunction. However, although

throughout the paper we use the atomic commitment terminology. it is clear that the issues addressed are indepen

dent of the function computed by each processor after the vote collection. Therefore. all our results carry over to

the general "gossiping" case. with one exception. In some occasions we briefly discuss the abort case of a distri

buted transaction. In this case a participant does not necessarily have to collect all the votes; when receiving a 'no'

vote it already knows the result of the conjunction. Thus. the abort case of atomic-commitment does not have a gos

siping counterpart.

1.2. Our results

Given a set of participants, and an associated set of communication costs between every pair of participants,

we establish first the necessary communication cost of atomic commitment, namely the lower bound on the com

munication cost of any atomic commitment algorithm. It is twice the weight of a minimum spanning tree in a com

plete graph, called the cost graph. It has the participants as nodes. and the costs as the weights of the edges. For

example. in Fig. 1.3 we show the cost graph of the participant sites and network of Fig. 1.1, assuming that the com

munication cost between every pair of participants is the distance between them in the network. We shall explain at

the beginning of Section 3. that this result is not trivial because. as we shall show, an atomic commitment execution

of minimum communication cost, does not necessarily have a single coordinator (a participant to which all other

participants send their votes). In fact. the most difficult part of the lower bound proof is showing that there always

exists a minimum communication cost instance with one coordinatcr.

Then. we show that the necessary cost is also sufficient for atomic commitment in the absence of failures. by

presenting an algorithm that achieves the lower bound Subsequently, we establish the necessary communication

time for atomic commitment (this is much easier than establishing the communication cost lower bound), and

s

Fig. 1.3

demonstrate that it is also sufficient for atomic commiunent in the absence of failures. by demonstrating that the

decentralized algorithm (introduced previously by Skeen ([Sk]). and explained briefly in the next subsection).

achieves the lower bound. We define the communication-complexity of an instance as the product of its

communication-time and its communication-cost. and we point out that it is NP-complete to find the instance of

minimum communication-complexity. However, we propose the algorithm TREE-COMMIT. in which messages

propagate along the edges of a tree spanning the participants. For a minimum spanning tree of the cost graph.

TREE-COMMIT has minimum communication-cost. and its communication-complexity (communication-time) can

be worse than the minimum communication-complexity (minimum communication-time) by a factor that is bounded

by the number of participants, p. The computation time (as opposed to the communication time) of each one of the

p participants executing TREE-COMMIT is linear in the size of the input. which implies that TREE-COMMIT is a

distributed variant of a polynomial-time, bounded-error approximation algorithm, for the NP-complete problem of

finding the minimum communication complexity instance. Maeover. TREE-COMMIT achieves the bound on the

communication-complexity. that we show is tight. without the participants knowing the subtransaction completion

times, or the communication delays. Then we analyze the decentralized algorithm. that is communication time

optimal. We show that its communication complexity (cost) can be worse than the minimum communication com

plexity (cost) by a factor of order p2.

6

The decentralized algorithm is a variant of the two-phase<ommit paradigm. Two other well known variants

are the ones mentioned above, namely the central-site and the linear algorithms (they are briefly explained in the

next subsection). The algorithm introduced in this paper. TREE-COMMIT, is superior to these two variants in a

very strong sense. It can be adapted, by varying its communication tree, to have exactly the same communication

cost as the central-site algorithm (alternatively. it can be adapted to have the same communication cost as the linear

algorithm). Then, for any set of subtransaction completion times and intersite communication delays, its communi

cation time cannot be higher than that of the central-site algorithm (the linear algorithm). Furthermore. there are

cases, i.e., completion times and delays, for which it is half the communication time of the central-site algorithm

(the linear algorithm).

In this paper we introduce a novel model of an atomic commitment instance. Although other models, such as

finite state automata ([Sic)) and knowledge theoretic ([H2)), exist in the literature, we chose to represent the instance

by a directed acyclic graph, representing the time-order of events and messages. It enables us to establish the com

munication cost and communication time lower bounds, and to analyze the cost and time of algorithms, all in the

same formalism. The communication cost is the toolliength of the arcs, and the communication time is the length of

the longest path.

Our discussion is restricted to the case in which no failures occur while the commitment protocol is executed.

We mainly analyze the case in which each participant votes to commit the transaction (and thus the transaction com

mits), for the following reasons. Successful commitment represents the more likely outcome for transactions in

most database systems, and it also represents a worst-case scenario from the communication cost viewpoint (see

theorem 3).

1.3. Otber related work

Atomic commitment is a variant of a fundamental problem in distributed systems, namely distributed con

sensus. Fischer presents a survey of the subject ([F), and Dwork and Skeen devise an interesting taxonomy of con

sensus problems ([DS2]). Hadzilacos presents an illuminating discussion on the applicability of the consensus prob

lem results to the atom ic comm itment problem ([H 1]), particularly the types of failures that are meaningful for each

problem. In short. almost all existing research concentrates on the effects of failures on achieving consensus in gen

eral, and sometimes atomic commitment in particular.

7

In contrast, in this paper we concentrate on perfonnance issues. Mohan et. al. also discussed performance

issues of commitment protocols ([MLO]), however our work differs from theirs in two respects. First, their atomic

commitment algorithms are more complicated mainly because of a more complicated transaction model, allowing

for the fact that there may not be any participant that knows the identity of all the other participants in the transac

tion. Second, [MID] as the other previous works, has assumed a one-unit cost for each message.

Informal discussions of the performance of atomic commitment algorithms in the absence of failures, also

appear in [BHG] , [CP] , [G]' [Sk], mainly in the context of different two-phase-commit variants. One of the most

popular is the central-site algorithm (see Fig 1.2a); a participant is designated as the "protocol coordinator", and

each other participant sends its vote to the coordinator. The coordinator makes the decision, and sends the 'commit'

or 'abort' message to all the other participants. Another two-phase-commit variant is the decentralized algorithm, in

which each participant sends its vote to all the other participants. Based on the received messages each participant

makes the 'commit' or 'abort' decision. We shall show that this algorithm minimizes the communication time.

Finally, in the linear algorithm (Fig. 1.2b), all the participants are sequentially ordered. Each participant sends its

vote to the next one in the sequence. The last participant is the protocol coordinator. which reverses the flow direc

tion, by sending the decision message to its predecessor in the sequence. The linear and central-site algorithms

require 2(P-1) intersite messages, where p is the number of participants. Dwork and Skeen have formally proven

that the number of intersite messages required by any atomic commitment protocol, in the absence of failures, is

2(P -1) ([DS 1]). By contrast, note again that in the present work we consider the total communication cost of inter

site messages, rather than their number. In the special case in which the communication cost of every intersite mes

sage is one. our cost lower bound result matches the 2(P -1) result.

1.4 Paper organization

The rest of this paper is organized as follows. In section 2 we introduce our model of a commit instance. In

section 3 we establish the necessary communication cost for the atomic commitment problem, and in section 4 we

provide a complete characterization of the minimum communication-cost commit-instances. In section 5 we estab

lish the minimum communication time of an instance. and in section 6 we present the TREE-COMMIT algorithm.

In section 7 we analyze TREE-COMMIT and compare it with the other algorithms discussed in this paper. In sec

tion 8 we conclude, and discuss future work.

Ll .

8

2. COMMIT INSTANCES

In this section we provide some key definitions, particularly, we fonnally introduce our novel model of a

commit instance. Intuitively, the instance executed by an atomic committnent algorithm is represented by the tern·

poral, and thus partial, order of events occurring at the participants. Let P be a set of participants. Fonnally, an

instance on P is a directed acyclic graph, 1= (E,A) (see Fig. 2.1a). E is a set of nodes, called events, and A is a set of

arcs (i.e. directed edges). Every event occurs at some participant, and all the events occurring at a participant are

totally ordered in I. Each event represents zero or more consecutive receives (each of an intersite message) at the

participant, without an intervening send, followed by zero or more consecutive sends, without an intervening

receive. The first event occurring at a participant also represents the completion of the corresponding subtransac

tion. Every pair of consecutive events occurring at a participant are connected by an arc called an order arc (since

it represents the order in which the two events occur at the participant). The other arcs of A are called messages. A

message is an arc from an event called the send of the message, to an event called the receive of the message, which

occurs at a different participant from the send. Only the last event occurring at a participant may send zero mes

sages, and only the first event occurring at a participant may receive zero messages. Thus, into every event, except

possibly the first one occurring at each participant, enters at least one message, and from every event, except possi

bly the last one occurring at each participant, exits at least one message. If there is a path in I between events a and

b, then we say that a happens before b (in the sense of Lamport [L)), and b happens after a. We asswne that a mes

sage sent at an event a contains all votes that happened before a. Three possible instances at a set of three partici

pants, are illustrated in Fig. 2.1.

Next, we comment on the re~tatioo of several message -receives and -sends by one event. For the pur

pose of this paper, the order of consecutive message-sends is irrelevant, as is the order of consecutive message

receives. For example, we do not distinguish between two "instances" in which the only difference is that at some

participant the order of two consecutive receives is reversed. Only the relative order of blocks of receives and sends

is relevant. since we assume that each message sent includes all, and only, the votes received before sending the

message, and also includes the vote of the sender.

We assume that a participant may send messages only after its subtransaction completes. Consequently, the first

event at each participant represents zero or more message-receives, followed by the corresponding subtransaction

completion, followed by zero or more additional message-receives, followed by one or more message-sends.

9

A commit instance. I, is an instance that satisfies the following commit requirement: At each participant

occurs at least one event, e, which happens after the first event occurring at every other participant. Any event such

as e, that happens after some, and particularly the first, event at each other participant, is called a C -event; infor

mally. when it occurs, its participant, say j. already knows the commit decision. The reason for this is that j has

received all the 'yes' votes from the other participants. and it knows that its own vote is 'yes'. The vote of some par

ticipant, say i, propagates to j along the path from the first event at i, to the C-event of j. The first C-event occurring

at a participant, in addition to message sends and receives, also represents the validation of the changes made by the

subtransaction, and the recording in stable storage of the fact that the transaction is committed. A message sent by a

C-event is called a commit message. Each message that is not a commit message is a 'yes' vote message. An event

which is not a C-event is called a V -event.

The motivation for the commit requirement is that each participant must receive the 'yes' vote of every other

participant, and vote 'yes' itself, before knowing that it can commit ([OS I, H2]). For example, the instances illus

trated in Fig.2.1 are commit instances. In our figures the V -events (C-events) are denoted by a subscripted V eC).

The label Vi•j (Ci•j) of a node indicates that this is the j'th V -event (C-event) occurring at participant i.

Notice that the commit requirement ensures that every commit instance is connected. Notice also that any event

which happens after a C-event. must also be a C-event. Another observation is that a C-event may represent the

receive of a 'yes' vote message (foc example C 1,1 in Fig 2.1a).

The variants of the two-phase commit prorocol mentioned in the introduction are illustrated in terms of our

model in Fig. 2.1. In ocder to prevent cluttering the figures we omit the order arcs; however. remember that any two

consecutive events at a participant, are connected by an order arc. An instance executed by the central-site algo

rithm, with participant 1 as the coordinator, is illustrated in Fig.2.1a. Instances of the decentralized and linear algo

rithms are illustrated in Fig.2.1 band Fig.2.lc, respectively.

3. MINIMUM COMMUNICATION COST OF COMMIT INSTANCES

In this section we establish the minimum communication cost of a commit instance. This would have been

quite straight forward, had we mown that in a minimum communication cost commit instance all votes must be sent

V2'\~ /CZ,\

C
/' 1.1~

V3,\ C 3,1

(a)

(c)

10

Figure 2.1:

V\~Cl'\

V2~C2'l
V 3,1 . C 3,\

(b)

to one participant, the coordinator, which then broadcasts the commit decision. This would have meant that the

problem of atomic commitment at minimum communication cost can be decomposed into two problems, collect-at-

minimum-cost and broadcast-at-minimum-cost, and these two problems can be solved independently. However, as

we shall show in theorem 2 (section 4), not every minimum communication cost commit instance consists of a

coliect-lO-one, followed by a broadcast. In lemma 2 (this section) we show that there always exists such an instance

with minimum cost, but we do not know this yet Also, we do not mow that the minimum-cost instance has 2(P-l)

intersite messages. Acrually, in subsection 8,2 we discuss a slightly different variant of the atomic commitment

problem, in which the minimum cost instance does not have a minimum number of messages. At the end of the sec-

tion we will present the FIXED COORDINATOR algorithm, that achieves minimum communication cost, and con-

sists of a collect-to-one, followed by a broadcast

We start with some formal definitions. Let P be a set of participants. We suppose that with P is associated a

set, c. of communication costs, consisting of a positive real number. Cij. for each pair of different participants, i and

j, in P. For each such pair. Cij is the commwtication cost of a message from i to j. and we assume that it is equal to

the cost of a message from j to i, namely. C,j=Cji' Given P and c, in every instance on P the communication cost of a

message arc from (an event occurring at participant) i to (an event occurring at panicipant) j is Cij; the communica

tion cost of an order arc is taken to be zero. The communication cost of an instance I, denoted Cost (/), is the total

communication cost of all the arcs in I.

11

In this section we assume a fixed set of participants, P, and a fixed set of associated communication costs, c,

and we establish the minimum communication cost of a commit instance on P. A commit instance of such cost will

be referred to as a minimum communication cost instance. We denote by '¥ the set of commit instances on P.

Given a commit instance I, its C-subgraph, denoted C/, is defined as the subgraph of I induced by its C-events.

Lemma 1: If I is a minimum communication cost instance of '¥, then I has only one C-event at every participant

Furthermore, its C-subgraph is a forest of rooted trees.

Proof: Assume that there are two or more C-events at some participant. Thcn, there must be at least one incoming

message into the second C-event, by definition of a commit instance (in particular, that only the first event at a parti-

cipant may represent zero receives). By omitting such a message, i.e., removing the arc corresponding to some mes-

sage into the second C-event, a commit instance of strictly lower communication cost can be obtainedl
. The reason

that the message can be omitted, is that the commit requirement is satisfied for the participant, by the first C-event

occurring at the participant Consequently, there is only one C-event at every participant

In order to show that C/ is a forest.. it is now sufficient to show that there is no C-event having two incoming commit

messages. But this fact is obvious; if there were such an event, then all but one of the incoming commit messages

can be omitted, to obtain an instance of lower communication cost 0

The single C-event at every participant, i, will be denOled by C j • Assume that Cj is a root of C/, for some

minimum communication cost instance, I. Infcrmally, this means that, in the execution I, participant j Icnows all the

votes, without receiving a commit message (that is, j knows all the votes without receiving a message from another

participant that knew all the votes). In such a case, we say that participant j is a coordinator of the instance I.

Lemma 2: There exists a minimum communication cost instance in '¥, which has exactly one coordinator.

Proof: Let I be a minimum communication cost instance. We shall show that if I has two or more coordinators, then

we can transform it into another commit instance, 1', of equal communication cost, but with one less coordinator.

The transformation replaces a vote message from some participant, i, to some participant, j, by a commit message

from j to i. Since the costs of the two messages are equal, the costs of I and I' are equal. The effect of the transfor-

mation is to change the way in which one of the coordinators learns the votes of the other participants; that

1. If the <milled message was the caly one exiting ill send event, say e, and e is not the lUI event at its panicipant, then after the omiuion
the instance has to be adjusted. Adjustment il by coUapcing e and its consecutively following event at the panicipanL Two evenu e and f arc col
lapsed by omitting the event f, and substituting e for f in the arcs of the instance (the arc (e,e) is <milled). A similar adjustment hu to occur if the
omitted meJsage is the only one entering its receive CV'CI1L

12

coordinator becomes a noncoordinator. and learns the votes of the others via a chain of messages from one of the

remaining coordinators. We now describe the selection of the vote message which will be replaced.

The C-events at the coordinators of I will be called boundary C-events. Consider a V-event. VO. which satisfies the

following condition. It precedes at least two boundary C-events. say C j and C j • and. if Vo has any V-event succes

sors. then each one of them precedes only one boundary C-event (for example. Vo is Wo in Fig. 3.1. and the V -event

successors are the Wj·s. Ig!0t). Il is easy to see that every commit instance with two or more coordinators has a

V -event that satisfies the condition. Simply start at the first event at some participant, which by the commit require

ment precedes every boundary C-event. Verify whether that event satisfies the above condition. If not, it means that

one of its V-event successors precedes two or more boundary C-events. Repeat the verification at that successor.

until a V-event with the following property is found: either it has no V -event successors, or. each one of its V -event

successors precedes only one boundary C-evenl.

Suppose that VO occurs at participant Po' By Lemma 1 we know the structure of the C-subgraph of I. particularly

that there is only one C-event at Po, Cpo' Assume, without loss of generality. that Cpo is not in the tree of C] rooted

at the event C j • Denote a path from V O to Cj • by vo=wo. Wi •... • W", WII+I=Cj • where n~. Note that all events on

the path. except the last one, are V -events. Let W'. for oY!0t, be the last event on this path for which the following

condition is true: W' occurs at a participant, p" for which Cp, is in a tree different than the one rooted at C j • Since

WO satisfies the condition, there must be such W'. Denote by Pr+1 the participant at which W,+I occurs. By the

definition of W', the event Cp, •• is in the tree rooted at C j • Now to obtain a commit instance of minimum communi

cation cost with one less coordinata. perform the following transfonnation:

i) the arc W' ---+W,+I is replaced by a message from Cp, to Cp, •• ,

ii) the direction of the arcs on the path from Cj to C,., •• is reversed, and

iii) if transformations i) and ii) result in any event that consists of message-receives only, then that event and the

one immediately following it at the same participant, are collapsed into one event.

Figures 3.1 and 3.2 provide two examples of the transformation. Fig. 3.1 illustrates the modifications performed on

I, assuming that WO does have some V -event successors. Figures 3.2a and 3.2b illustrate an instance, I, before and

after the transformation. respectively; WO is V 2. and it has no V -event successors.

It is easy to see that the transfonnation results in a commit instance; denote it 1'. The commit requirement is

13

Figure 3.1:

>

Figure 3.2:

satisfied by J', because, by definition of wo, the removal of the arc W' ~W'+l can only disconnect paths to the C-

events in the C-subgraph tree rooted at C j • However, all those C-events are now preceded by CP •• 1 ' which is in a

different C-subgraph tree. Therefore, [' is a commit instance, and has the same coordinators as I, except participant

14

i. that is a coordinator in I. but is not a coordinator in 1'. Moreover. the transformation performed on 1 does not aller

the commlUlication cost. hence [' has minimum communication cost

To summarize. starting with a minimum communication cost instance, I. with two or more coordinators. we

obtained a minimum communication cost instance. 1'. with one less coordinator. We can continue this procedure

until a minimum commlUlication cost instance with exactly one coordinator is obtained. 0

Next, we will obtain an additional lemma; it will be used in section 4. In a minimum communication cost

instance. I. having two or more coordinators. let Vo. Po, and Ci be as in the proof of Lemma 2. Namely. Vo is a V

event that precedes two or more boundary C-events. but each one of its V-event successors. if any. precedes only

one bolUldary C-event Such a V-event will be called a boundary V -event. We have shown in the proof of Lemma 2

that 1 must have at least one boundary V -event Assume. as in the proof of Lemma 2. that Ci is a boundary C-event

that is a successor of Vo. is not Cp •• and does not precede Cpo' Such a boundary C-event will be called

associated with bolUldary V -evefll Vo.

The fact that 1 is a minimum communication cost instance. implies that the path in I. denoted p. from Vo to Ci •

is unique. and consists of a single message arc. Vo ~ Ci . The reason for this is as follows. If this is not the case.

then there are more messages on P. or there are additional paths from VO to Ci . As established in the proof of lemma

2. one of the messages on p is from Pr to Pr+l' Then, the transformation in the proof of Lemma 2 can be augmented

by the elimination of all messages on p. and on the other paths from Vo to C i . The resulting graph is a commit

instance that has a cost strictly lower than I. This contradicts the fact that 1 has a minimum communication cost.

Therefore. VO ~ Wr• wr+l _ Ci • Po .. Pro i .. Pr+l' and the transformation in the proof of Lemma 2 simply replaces a

message Vp •• 1 ~ Ci by a message Cp. ~ C i . We have therefore proved that:

Lemma 3: In any minimum communication cost instance of'll. with two or more coordinators. there is at least one

boundary V -event. Additionally. there is a unique path from any bolUldary V -event. VO. to any associated C -event,

C i • and it consists only of the message VO ~ C i . 0

Now. let us define the COSt graph. D. as the complete graph having the set of participants P as its nodes. The

weight of each edge (i.j) equals Cij' The cost of a minimum spanning tree in D is denoted by CMST(c,P).

Given T 1 and T 2. two not necessarily different spanning trees of D. we define a commit instance on

T 1 and T 2 coordinaJed at some participant k E P. It is denoted by I (k. T I. T 2). and specified as follows. Denote by

15

1"1 the directed graph obtained from Tl by directing its edges such that from every node there is a path to k (the

graph obtained is called an oriented tree with sink k). Also, denote by 1"2 the directed graph obtained from T 2

directing its edges to form a rooted tree, with root k.

One obtains the instance I (t, T 1 ,T 2) as a result of the following modifications:

(1) relabel the nodes from 1"1; node i is relabeled Vi,

(2) relabel the nodes from 1"2; node i is relabeled Cj ,

(3) node Vk is omitted, and the arcs entering it are modified to enter Ck instead.

(4) add the order arcs Vi ~ Cj for each i, except the coordinator.

Intuitively, I (k, T I, T 2) is a commit instance that has vote messages which correspond to the arcs of 1" 1, and commit

messages which correspond to the arcs of 1"2. The definition of I(k,T 1 ,T2) is illustrated in Fig. 3.3. Given

minimum spanning trees TI (a) and T2 (b), the instance /(4,Tl , T 2) is illustrated in (c). Clearly, if Tl and T2 are

minimum spanning trees, then the communication cost of / (k,T 1,T 2) is 2·CMST(c,P).

Theorem 1: Let P be a set of participants, and c a set of associated communication costs. 'Then

min Cost(l) = 2·CMST(c,P).
le'f'

Proof: Since the cost of an instance / (k,T I, T 1) for some minimum spanning tree T 1 is 2·CMST(c.P). then clearly

2'CMST(c,P) ~ min Cost (/). To obtain the inequality in the other direction, observe that, by Lemma 2. there exists
le'f'

3 4 VI V3

\/ //~ \/
2 5 1 2 3 5 V\ IV' \/

4

(a) (b)

C4

/I\~
C I C 2 C 3 Cs

(c)

Figure 3.3:

16

a minimum communication cost instance, 1°, with one coordinator, say k. Based on I' construct an undirected

graph, H, defined as follows. The nodes of 1/ arc the participants in P, and edges of Hare ((i.j) I there is a vote

message from participant i to participant j in 1°). Since in 1° there is a path from the first event at every participant

to Cto H must be connected. Therefore its cost is atlcast CMST(c,P). which in tum implies that the communication

cost of vote messages in I' is at least CMST(c,P). Similarly we can show that the cost of the commit messages of 1°

is at least CMST(c,P). Thus, 2'CMST(c,P) ~ min Cost(l). 0
le'f'

The result of Dworlc and Skeen ([DS 1. Theorem 1]) obtained for synchronous networks is extended to asynchronous

networks by the following corollary of Theorem 1.

Corollary 1: Assume that the number of participants in a transaction is p. If the communication cost of a message

between each pair of participants is one, then it holds true that min Cost (I) = 2(P -1). 0
Ie 'f'

Hadzilacos obtained a similar extension of the result in the context of process failures and/or communication

failures ([H2, Theorem 6]).

Now we shall present an algorithm that achieves minimum communication cost In discussing commitment

algorithms we assume, as in other works (e.g. [DS2]). that each participant knows the identity of all the participants.

and we also assume that it knows the associated set of communication costs. The analysis of this section suggests a

very simple minimum communication cost commitment algorithm, which we will call FIXED-COORDINATOR. It

proceeds as follows. Each participant constructs some minimum spanning tree, T. of the cost graph. and selects a

participant, /c, designated as the coordinator. T and /c are assumed to be identical at all the participants. This will be

the case if the procedure which constructs T and selects k. is identical at all the participants. The algorithm executes

an instance with the vote messages corresponding to r (which is the oriented tree with sink /c, obtained by directing

the edges of T towards k); the commit messages correspond to r' (which is the rooted Iree obtained from T by

directing its edges away from k). Specifically, a participant i#C waits until subttansaction completion and until the

receipt of all vote messages represented by the arcs incoming into i in r. Then it will send a 'yes' vote message

corresponding to the arc exiting i. Participant k. after completing its subtransaction, waits until receiving the votes

from all its neighbors in T, and then commits. The propagation of the commit decision is similar. in the opposite

direction.

17

Observe that the linear and central-site algorithms discussed in the introduction, are special cases of the

FIXED-COORDINATOR algorithm, in which the requirement that T is a minimum spanning tree is relaxed. In the

central-site case, the tree consists of the coordinator connected by an edge to each other participant In the linear

case, the tree is simply a string, in which the coordinator is one of the leaves.

4. CHARACTERIZATION OF COMMIT INSTANCES WITH MINIMUM COMMUNICATION COST

In this section we provide a complete characterization of all possible commit instances of minimum commun

ication cost (Theorem 2). We detennine that if a commit instance has a minimum communication cost, then each

panicipant sends at most one vote message, and receives at most one commit message (a coordinator does not

receive a commit messages). Also, in a minimum communication cost instance there are either one or two coordi

nators. If there are two coordinators, then each participant sends exactly one vote message. If there is only one coor

dinator, then each panicipant except the coordinator sends one vote message and receives one commit message; the

coordinator does not send a vote message. In either case, the messages of a minimum communication cost instance

propagate "along edges" of minimum spanning trees of the cost graph. Specifically, there are two (not necessarily

different) minimum spanning trees of the cost graph, such that the vote messages are only sent from a participant to

its neighbor in one tree, and commit messages are only sent from a participant to its neighbors in the other. Further

more, if the instance has two coordinators, then they must be neighbors in both trees, each one of them must send its

vote message to the other, and no commit messages are sent between them.

A commit instance on spanning trees T 1 and T 2, coordinated at a participant k, was defined in section 3, and

denoted I (k,T loT 2)' Similarly, we define next a commit instance on two spanning trees, coordinated at two partici

pants. Assume that T 1 and T 2 are two spanning trees of the cost graph, such that participants m and n are neighbors

in both trees. A commit instance 011 T 1 and T 2 coordinated at m and n, denoted I (m,n, T 1, T 2)' is defined as fol

lows. Denote by r 1 the graph obtained from Tl by directing its edges to obtain an oriented tree with sink m, then

omitting from it the arc II--+m. Denote by r 2 the the graph obtained from T 2 by directing its edges to obtain a rooted

tree with m as a root, then omitting from it the arc m--+II.

One obtains the instance I (m,II, T I, T 2) as a result of the following modifications:

(1) relabel the nodes from r I ; node i is relabeled Vi,

18

(2) relabel the nodes from 1'2; node i is relabeled Ci ,

(3) add the message arcs V", ~ C,. and VII ~ C"" and the order arcs Vi ~ Ci for each i.

Intuitively,I(m,n,T I • T2) is a commit instance having vote messages that correspond to the arcs of 1'1, plus the

arcs m~n and n~m, and commit messages that correspond to the arcs of 1'2. In other words. in [(m,n,T I• T2)

each participant, including the coordinators. sends exactly one vote message. The vote of n is received by m. and

vice versa. Each participant. except the coordinators. receives exactly one commit message. Fig.4.1 demonstrates

the definition. It illustrates a minimum communication cost instance on T I and T 2 of Fig. 3.3. coordinated at partici-

pants 2 and 4. Note that [(m.n.T I, T 2) is the same graph as I (n.m.T I. T 2)'

Theorem 2: Let P be a set of participants. and let c be a set of associated communication costs. Any minimum

communication cost instance I E '1'. must be of the form [(k. T 10 T 2) or I (m. n, T I, T 2). for some participants

k. m. n. and minimum spanning trees T I and T 2 of the cost graph.

In order to prove Theorem 2 we shall show that a) any one-coordinator, minimum communication cost instance.

must be of the form I (k.T I. T 2); b) any two-coordinator. minimum communication cost instance, must be of the

form [(i.j.T I, T 2); and c) a commit instance with three or more coordinators cannot have minimum communication

cost Fix the set of participants, p. and its associated set of communication costs, c. for the rest of this section.

Figure 4.1:

19

Lemma 4: A one-roordinator minimum communication cost commit instance must be of the form I (k, T I, T 2) for

some minimum spanning trees TI and T 2 •

Proof: Consider a minimum communication cost instance,I, with one coordinator, k. Following a line of reasoning

similar to one used in the proof of Theorem I, it can be easily seen that the total cost of vote messages is exactly

CMST(c,P), and the total cost of commit messages is exactly CMST(c,P). Consider the undirected graph, H, having

as nodes the participants, and edges (i,j) I there is a vote message from participant i to participant j in l}. H must

be connected, its cost is CMST(c,P), therefore it is a minimum spanning tree of the cost graph, T I' Clearly, the vote

messages of I corresp:md to the oriented tree with sink k, obtained by directing the edges of T I. Similarly we can

show that the commit messages of I correspond to the rooted tree obtained by directing the edges oI a minimum

spanning tree, T 2. 0

In Lemma 2 we presented a procedure to modify any minimum communication cost instance, I, with two or

more coordinators, into another commit instance [' with one less coordinator, such that the communication costs of I

and I' are identical. A similar procedure will be used here to characterize minimum communication cost instances

with two or more coordinators.

Lemma 5: A two-coordinator minimum communication COst commit instance,I, must be of the form IU,j,T1.T2),

for some participants i and j, and some minimum spanning trees, T 1 and T 2, both having the edge (i,j).

Proof: Let Cj and Cj be the boundary C-events in I. By replacing one vote message by a commit message, as in

Lemma 2, we obtain a one-roordinator instance of minimum communication cost. We then use the characteristics

of such an instance given in Lemma 4, to show that I is indeed of the form I (i,j, T I' T 2)'

Let yo denote a boundary Y-event, as defined after the proof of Lemma 2. Since i and j are the only coordina

tors, yo precedes both C j and Cj • Let Cj be the boundary C-event associated with yo, and Po the participant at

which yo occurs. Since there are only two boundary C-events, by definition of an "associated boundary C-event",

Cpo is in the tree of the C-subgraph which is rooted at Cj •

We first show that, in fact. Po is the coordinator j. By Lemma 3 observe that the path from VO to Cj is the

message arc yo -+C j • Consider the commit instance [' obtained from I by replacing yo -+Cj by Cpo -+Cj (as in the

proof of Lemma 2). [' has only one coordinator, j. and has the same cost as I, i.e. minimum communication cost.

Therefore, by Lemma 4, the instance r must be of the form IU,T1,T 2) for some minimum spanning trees T1,T 2. In

20

particular, in the instance 1', the coordinator j does not send a VOle message, whereas in I, participant j must send a

vote message, because there must be a path from the first event at j to Cj. However, the only vote message deleted

in I to obtain l' is Vo ~Cj; hence VO occurs at participant j, or, in other words, Po=.j.

Because of the new arc, Cpo ~Cj, j and i are neighbors in T 2' We shall show thali is a neighbor of j in T I as

well, or, in other words, that i sends its vote to j in I. Denote the single V-event at each participant r in I by \'r. We

have already shown that if Vo has Cj as an associated C-event, then VO is actually Vi' If there is no other boundary

V-event in I, then all V-events must precede Vi' and therefore Vi should be a C- rather than a V-event. Conse

quently Vi cannot be the only boundary V-event in I. Denote by Vi another boundary V-event, i.e. VI .. Wo. The

associated C-event of Vi cannot be Cj , since otherwise as above, we can show that VI=Vj , which in tum implies

that Vi =vo. Thus, the associated C-event of Vi must be Ci , and, as above, Vi occurs at participant i; that is, Vi is

actually Vj, so participant i sends its vote to participant j.

Now, recall that r is obtained from I simply by replacing Vo ~ Cj by Ci -+ C j , and that r has the fonn

I U, T I,T 2)' Therefore, in the instance I, exactly one vote message is sent by each participant, and I is of the form

I (i,j, T 1, T 2) (by definition of such an instance). 0

Lemma 6: There are no minimum communication cost commit instances with three or more coordinators.

Proof: From the proof of Lemma 2, we know that for every minimum communication cost instance with two or

more coordinators, there exists a minimum communication cost instance with one less coordinator. Consequently, it

is sufficient to show that there is no minimum communication cost instance with three coordinators.

Suppose that there exists a minimum communication cost instance, I, with three coordinators i,j,m. Let VO be a

boundary V-event, and Cj an associated boundary C-evenl. Assume that VO occurs at participant Po. By replacing

VO ~Cj with Cpo -+Cj , we obtain, as in Lemma 2, an instance J' of minimum communication cost with two coordi

naLOrs, j and m. By Lemma 5, instance J' must have the fonn 1 U,m, T I' T 2), for some minimum spanning trees T I

and T 2' Event VO occurs at exactly one participant, therefore it cannot occur at both coordinators. Assume without

loss of generality that it does not occur at coordinator j, i.e. Po*j. Then the vote messages exiting V-events occur

ring at participant j are the same in I U,m, T I, T 2) and I. However, by definition, the only such vote message in

IU,m,T 1o T 2) is Vj~C",. Therefore, in I, the only V-event occurring at participant j does not precede boundary C

event C j • Thus 1 docs not satisfy the commit requirement, contradicting the fact that 1 is a commit instance. 0

21

We have completed the proof of Theorem 2; as an immediate corollary we conclude:

Corollary 2: If the communication cost of some commit instance with p participants is minimum, then it has a

minimum number of intersite messages, i.e., 2(P-l). 0

Obviously, as demonstrated in the introduction, the converse of corollary 2 is not true, i.e. minimwn number of

intersite messages does not imply minimwn communication cost

The characterization in Theorem 2 helps us demonstrate that, in general, minimum communication cost can

not be achieved with limited knowledge of participants' identity. For example, consider the network and the partici

pants of Fig. 1.1. Suppose that each one of the participants 2,3 and 4 knows only that 1 is a participant, but does not

know of the existence of other participants. Suppose also that 1 knows that 4 is a participant, and that there are two

other participants, but 4 does not know their identity. A possible commitment scenario is that participant 4 waits for

the votes of all the other participants, and then propagates the commit decision. Another scenario is that 1 only

waits until receiving the votes of the two anonymous participants, and then transmits their vote, along with its own,

to 4; the latter then propagates the commit decision. In the two scenarios above, as well as in any other possible

scenario, a message must be sent between I and 4. Since the edge 4-1 in the cost graph does not belong to any

minimum spanning tree, minimum communication cost cannot be achieved.

S. COMMUNICA nON TIME OF COMMIT INSTANCES

In this section we first define the communication time of an instance, and then we establish the minimum

communication time of a commit instance.

Generally. time comparison of instances in a totally asynchronous network is impossible. because each mes

sage can have an arbitrarily long delay. Therefore some restrictions on the network behavior must be imposed. The

only restriction we impose here is that the delay of a message between every pair of participants is fixed for the

duration of any commitment-algorithm execution. Thus. any message from i to j, sent by any algorithm. takes a

fixed and finite amount of time to arrive. say Iii'

The communication-time of an instance on a set of participants. P, is defined with respect to a set

t = {ti liE P} of sublransac/ion complelion limeS. and with respectlO a set I = {Iij I i,j E P} of inlersile commun

icalion delays (or inlersile delays for short). For i ~j. the intersite delay. Ii). is a positive real number. and each ti is

22

a nonnegative real number. The smallest 'ti is zero, and so is every (ii. The set t satisfies the triangle inequality,

namely. for each i.j.k. tjj~tik+lti' We observe that tij may be different than tjj. lij is the interval of time from the

send of any message at i, until its receive at j, in any instance on P. Let 1 be an instance on P. The sending of each

message exiting an event, say e. happens at the execution time of e, defined as follows.

Let e be an event at participant i. The execution time of e, denoted time(e). is the maximum of:

I. The last (highest) receive of a message entering e.

2. The execution time of the event immediately preceding e at participant i, if there is any, and

3. The subtransaction completion time, 'ti'

Observe that the execution times of events on any directed path in 1 are nondecreasing.

The communiccuion time of the instance I, denoted time(/), is defined as the maximum execution time of an

event in 1 (i.e., the execution time of the last event). Intuitively, the communication time of 1 is the interval from the

time that the first participant completes its subtransaction (taken to be zero), until the execution time of the last

event, assuming the following. A message between every pair of participants, i and j, takes lij time units, a partici-

pant i does not send its first message before time 'tj, and internal processing after subtransaction completion takes

zero time at each participant. Clearly, for given sets of subtransaction completion times and intersite communica-

tion delays, the communication time may differ from one instance to another. For example, assume that all the sub-

transaction completion times are zero, and all the intersite delays are one. Then the communication time of the

instance in Fig.2.I(a) is two, whereas the communication time of the instance in Fig.2.1(b) is one. Given an instance

1 and sets 't and t, time (I) can be computed in linear time by PERT techniques (see [ED.

Proposition 1: Let P be a set of participants, let 't be a set of subtransaction completion times. and let t be a set of

intersite delays. Then the minimum communication time of an instance in 'P (the set of commit instances for P),

with respect to't and I is: max ('ti+tjj I i and j are participants) .

Proof: Consider some participant. i. In any instance.! of \fI, the execution time of the first event, say e, at partici-

pant j cannot be smaller than 'tj. Also, there must be a path from e to some event at every other participant. Since I

satisfies the triangle inequality. ('t,+tij I j is a participant) is a lower bound on time(I). i is an arbitrary participant,

thus max ('tj+(jj I i and j are participants) is a lower bound on time (I). The lower bound is also an upper bound,

since it is the communication time of the commit instance in which every participant, i. has one Vj event, and one C,

event, and there is a message from every Vi to every other C, (e.g. the instance in Fig. 2.1b). (Remark: observe that

23

if some 'tt is bigger than 'ti+ti!, for each iU, then the the execution time of both, Vt and Cb is 'tt.} 0

Consider the decentralized algorithm, in which each participant sends its vote to all the other panicipants

when its subtransaction completes. If all the participants vote 'yes', then clearly this algorithm executes a minimum

communication time commit instance, for any sets 't and t.

6. THE TREE-COMMIT ALGORITHM

TREE-COMMIT is a distributed, minimum communication cost algorithm, adapted from the PIF (Propaga

tion of Information with Feedback) algorithm of [Se]. Each participant constructs the same minimum spanning tree,

T, of the cost graph. In contrast to the fixed-coordinator algorithm, in TREE-COMMIT, a coordinator is nm

selected when the tree is constructed. The procedure performed by each participant, i, in a committing execution is

as follows. After subtransaction completion, it waits until receiving the votes from all its neighbors in T except one,

say j, before voting; then it sends its vote to j. If i receives votes from all neighbors in T before it completes its sub

transaction, then i commits and becomes the single coordinatOr. If i receives a vote message from j after having sent

its vote to j, then it commits becoming one of two coordinators (j is the other one). If i receives a commit message

from j, then it sends commit messages to all its neighbors in T, except j. Therefore, the votes travel from the leaves

of T inwards, where one or two coordinators are established. In the commit stage, the commit message is simply

propagated along the tree edges, away from the coordinator(s).

A possible situation in the voting stage, i.e. before the coordinators are determined, is illustrated in Fig. 5.1a.

In the scenario illustrated, we suppose that participants 1,2, and 5 have completed their subtransactions, and partici

pants 3 and 4 have not Participant 2 has not voted yet because it has not received the votes of two of its neighbors.

Fig. 5.1 b, 5.1c illustrate two possible instances executed by TREE-COMMIT, at the completion of the voting stage

situation described above. In the first case, 3 completed its subuansaction, and its vote had reached 2 before the

vote of 4 did so; furthermore, the votes of 2 and 4 crossed, so they both became coordinators. In the second case, 3

completed its subtransaction after having received the vote of all participants, so 3 became the sole coordinator.

We will denote by TREE-COMMIT(D the algorithm which uses the tree T. The reader should convince

herself/himself that TREE-COMMIT(T) generates an instance of the form I (k, T,T) or I (m,n, T, n, for some coordi-

nators m,n,k.

24

1 3 5
VI V3

~/ /I
Vs Vs

\j 1 1 2 4 VXV, VI Vol

(a) \J
C2 C4 V2

1\ ~ I CI C3 Cs C3

(b)
\.

C2

1\
CI C4

\
Cs

(c)

Figure 5.1

The lransaction-abort case is handled by TREE-COMMIT as follows: Participant i sends 'abort' messages

when the first of the following two cases occurs: i) i unsuccessfully completed its subtransaction, in which case i

sends an 'abort' (or a 'no' vote) message to each neighbor in T; ii) j receives the first 'abort' message from a parti-

cipant, say k, in which case i sends an 'abort' message to each neighbor, except Ie.

The complete TREE-COMMIT algorithm for each participant, i, is given in Fig. 5.2. Note that TREE-

COMMIT uses only 'yes', 'commit', and 'abort' messages, therefore the message length can be restricted to two

bits.

We have not formally defined an 'abort' instance, but the next theorem indicates that the lower bound on its

communication cost is lower than the commit instance lower bound.

Theorem 3: If some participant sends an 'abort' message, then the communication cost of the instance executed by

TREE-COrvfMIT(T) is at least the cost of T, and at most twice the cost of T.

Proof: Clearly, commit messages are sent only if all the subtransactions completed successfully, and therefore, if

2S

1REE-CO:tv1MIT(c,P) /* procedure executed by participant i, given a set of communication costs, c,
between participants in P * /

1. Construct a minimum spanning tree, T, of the cost graph.

2. Wait until subtransaction completion, or receipt of an 'abort' message./* vote-messages received are saved,
but they do not wake-up this process; such messages are being considered in steps 5,6 */

3. if subtransaction completion then do;

4. if successful completion then do;

5. if received 'yes' votes from all neighbors in T, then send
'commit' messages to all neighbors, and quit /* i is a single coordinator */

6. otherwise wait until receiving the first 'abort' message, or until
receiving a 'yes' vote from all neighbors, except one.

7. if 'abort' message from a neighbor, say k, then send 'abort' messages to all
neighbors, except k, and quit

8. if 'yes' votes from all neighbors, except one, say}, then send a 'yes' vote to}.

9. end.

10. otherwise (unsuccessful completion) send 'abort' messages to all neighbors, and quit

11. end.

12. otherwise Cabort' message from a neighbor, say k) send 'abort' messages to all neighbors,
except k, and quit

13. Wait until receiving a message. /* the only way to get here is from step 8,
and the message must have been received from} */

14. if 'abort' message then send 'abort' messages to all neighbors, except}, and quit.

15. otherwise ('commit' or 'yes'-vote) send 'commit' messages to all neighbors, except},
and quit 1* in the 'yes' -vote case, i and} are coordinators */

Figure 5.2

some participant sends an 'abort' message, then no commit messages are sent. Each message in the instance exe-

cU[ed by TREE-COMMIT(T), is sent between two neighbors in T, therefore let us consider the edges of T. For each

edge (i,j) lhere is eilher exactly one abort message from i 1.0 }, or exactly one 'yes' vote message from i to j, but not

bolh. Similarly from} to i. Hence the total cost of messages is at most twice lhe cost of T. Additionally, note that

for each edge (i,i) of T there is an 'abort' message from ito}, or from} to i. Hence lhe total communication cost of

26

the instance is at least the cost of T. 0

It is easy to see that the bounds of Theorem 3 are tight. If all the subtransactions complete unsuccessfully at

exactly the same time, then two 'abort' messages are sent along each edge of T, one in each direction, and the com

munication cost is twice the cost of T. If, on the oilier hand, some participant completes its subtransaction unsuc

cessfully, and after this, the 'abort' messages reach each participant before it completed its subtransaction, then one

'abort' message is sent along each edge of T, and the communication cost is the cost of T.

The algorithm TREE-COMMIT assumes that each participant also knows the identities of all the other partici

pants. It is possible that for some transactions this assumption does not hold true, and then TREE-COMMIT cannot

be used However, let us mention two frequent cases in which the assumption does hold true. First, it holds true in a

fully replicated database, since ilien each participant knows that all the other local database managers are partici

pants. Second, for simple update transactions, that accesses only one data item (e.g. add 10,000 dollars to an account

which is replicated at four participants), the assumption holds true, since each participant usually stores a directory,

indicating where each data-item is replicated.

7. ANALYSIS OF TREE-COMMIT

In this section we first establish the communication Lime of TREE-COMMIT, and then we show that it is at

mostp times the minimum communication time commit instance (subsection 7.1). Then we define the communica

tion complexity of an instance, we discuss the communication complexity of TREE-COMMIT, and we point out

that it constitutes a polynomial-time approximation for an NP-romplete problem (subsection 7.2). Then we con

sider the other atomic commitment algorithms discussed in this paper, and compare their perfonnance with TREE

COMMIT (subsection 7.3).

7.1 The Communication Time

Given a set of participants and a spanning tree, T, namely a tree in which the nodes are the participants, a

commit instance on T is a commit instance in which every message is from a processor to one of its neighbors in T.

A commit instance on T will be called for short a T-instance. TREE-COMMIT obviously can propagate messages

along any spanning tree (simply do not insist on "minimum" in step 1 of Fig. 5.2) and in this section we will speak

in this broader context. We shall show that for a spanning tree, T, TREE-COMMIT(1) executes the instance with

27

the minimum communication time among all T-instances, given any sets of subtransaction completion times and

intersite delays.

In this section, the edge (i,j) of an undirected tree often represents the two arcs i4j and j4i; whether it does

so or not will be clear from the context. Also, whenever we speak of the length of a path from one node to another

in a tree, we assume that the length of each are, i4j, is the intersite communication delay tii' Given a set of inter-

site communication delays, t, a tree T in which the nodes are the participants, and a participant r, denote by dr the

longest simple path in T, from r to another node.

Lemma 7: Let P be a set of p participants, let T be a tree in which the nodes are the participants, let t = {tl' ... , t~

be a set of subtransaction completion times, and let t={tij I i,jE P} be a set of intersite communication delays. Then

the communication time of a T-instance, I, with respect to t and I, is at least max{ti+dJ.
i E P

Proof: Let k be an arbitrary participant There must be a path in I, from V t, 1 (or C t, I, if k is a single coordinator in

I) to every other Ci• I' Since the messages of I are transmitted only between neighbors in T, the communication time

of I cannot be lower than time(Vt, l)+dt (or time(Ct, I}+dt). Additionally, time(Vt.l) and time(Ct, d cannot be

lower than tt. 0

Lemma 8: Let P, T, t and t be as in Lemma 7. Then the communication time of (the instance generated by)

TREE-COMMIT(T) for t and t, is not higher than max{t;+dJ.
i« P

Proof: The instance generated by TREE-COMMIT. denoted I, is of the form I(k,T,n or I(m,n,T,n. and particu-

larly I has onc or two coordinators. If it has one coordinator, k, then the communication time of I is clearly {tt+dJ.

and the theorem follows. Assume now that I has two coordinators, m and n. We shall show that in this case there

also exists some participant, k, such that the communication time of I is (tt+dJ.

First, note that the communication time of I equals the execution time of some C-event, say Cq • The C-

subgraph of I consists of two rooted trees, one at C~, and the other at C,... Suppose that Cq is in the tree rooted at C".

Then, clearly time (Cq) = time(C~) + [distance in T from n to qJ. Suppose now that the edge (m,n) is removed from

T. Denote by T", and T~ the resulting subtrees that contain m and n respectively. Obviously, q is in T". Now comes

the simple, but important observation. that lies at the heart of this proof. It is that, since in TREE-COMMIT panici-

pant n voted before receiving the vote message from m, then lime(C,,) = time(l-' "') + t".....

(Note that time(C,,) may be bigger than lime (V ,..) + I"",,; it is, if lime(V,,) > lime (V ,..) + I"",). This observation is

• 28

crucial because, as we shall point out. there is a participant, k, in T,", such that (ime (V",) = 'tt + [distance in T from k

to m]. Since q and k are in T,. and T"" respectively, and particularly since they are not in the same subtree, then

time (Cq) = 'tt + [distance in Tfrom k to q].

Therefore, left to prove is only that there is a participant, k, in Tift, such that time(V",) = 'tt + [distance in T

from k to m]. For this, consider time(V",). By definition, it is either equal to t" .. in which case the proof is complete.

or, there is a message, say Vr~V"" such that time(Vi)+(im=time(V",). In the latter case, consider Vj' It is either

equal to 'ti' in which case, again, the proof is complete, or, there is a message. say V,,~Vj. such that

time (V,,)+tui=time (Vj)' Proceeding in this fashion. we must eventually encounter an event. Vb such that

time (Vt}=tt. Then, clearly, time(V 1ft) = 'tt + [distance in T from k to mJ. 0

From Lemmas 7 and 8 we immediately obtain:

Theorem 4: Let P, T, t and (be as in Lemma 7. Then the communication time of (the instance generated by)

TREE-COMMJT(1) for t and t, is max{tj+dJ. Furthennore; this communication time is minimum among the corn
ie P

munication times of all the T-instances for the same sets t and t.

Next we shall show that the communication time of TREE-COMMIT is at most p times bigger than the

minimum communication time of an instance in 'P.

Theorem 5: Let P, T, 't and t be as in Lemma 7. Denote by I min the instance in 'P that has minimum communica-

tion time with respect to t and t, and denote by Ire the instance executed by TREE-COMMIT(T) for t and t. Then

time (Ire) I time (I min) <!, p.

Proof: Denote by i the participant for which tj+dj = time(lrd. By Lemmas 7 and 8, we know that there is such a

participant. By Proposition 1 we know that (ime(/ min) = max (tj:+ltj)' Denote by q~r the longest arc in some
t.j Ii P

longest simple path from i, in T (i.e .• some path of length d j). Denote by A the ratio tj+dj I max (tt+t.i:i)'
k.j E P

Remember that there are at most p -1 arcs on a simple path from i. Therefore, if 'tj~tq" then the following holds

true. A <!,p·tj I max (tj:+tj:i): obviously, max (tj:+ltj) ~tj; and consequently, A<!,p. On the other hand. if tj<tqro
k.j E P k.j E P

then the following holds true. A ~ P'lqr I max (t.l:+t.l:j); obviously. max (t.l:+t.l:) ~ tq,: and again, A<!,p. 0
.1:,) e P k.) E P

Next we demonstrate that the bound on the ratio between the communication time of TREE-COMMIT and

the minimum communication time is tight. Assume that all the subtransaction completion times are zero. all the

29

intersite delays arc one. and the Iree. To. along which TREE-COMMIT propagates messages is a string from 1 to P.

namely. 1-2-3-•....• -p. Then the time of TREE-COMMIT is p-l. whereas the minimum communication time

is one.

7.2 The Communication Complexity

Let P be a set of participants. let c be a set of communication costs, let 't be a set of subtransaction completion

Limes. and let t be a set of intersite communication delays. We define the communication complexity of an instance /

on p. denoted com (I). to be the product cost (I)·time (/). Note that it is possible for the minimum-communication-

complexity commit-instance not to be a minimum-communication-cost commit-instance. nor ~ minimum-

communication-time commit-instance.

Since TREE-COMMIT on a minimum spanning tree has a minimum communication cost, we obtain as an

immediate consequence of Theorem 5 that:

Corollary 3:.Let p. 'to and t be as in lemma 7. Let c be a set of costs associated with p. let I TC be the instance gen-

erated by TREE-COMMIT on a minimum spanning Iree of the costs graph. and denote by I min the instance in 'fI that

has a minimum communication complexity with respect to c. 'to and t. Then com(lTc) I com (I min) -s; p.

It is easy to see that 0 (P) is a tight bound on the ratio between the complexity of TREE-COMMIT and the

optimal complexity. Simply consider again the tree To (namely. 1-2-3-...... -p). and assume that all the com-

munication costs and intersite delays are one. and all the subtransaction completion times are zero. Then the com-

plexity of TREE-COMMIT(To) is 2(p_l)2. whereas the following instance has a complexity of 4(P-l). All the

participants send their vote to 1. and I sends the commit message to all the other participants (see Fig 2.la).

Given an integer. K. it is NP-complete to determine whether there exists an instance I in 'fl. for which

com (1)'5.1(. In other words. the problem of finding the minimum complexity instance (MCn is NP-complete.

For proof. observe first that the MCI problem is obviously in NP. A nondeterministic algorithm need guess an

instance. and check whether its communication complexity is -s; K. The MCI problem reduces to the MINIMUM

RADIUS MINIMUM SPANNING TREE (MRMST1) problem defined as follows.

Input: A connected graph 1/ =(V.E). a vertex rEV (the root). a (weight) function. w. that maps each edge of E to an

I. The MRMST problem was shown l't'P-complete by IlAi ([TI).)l;oce thaI the problem closely resembles the BOl,;-';OED DIAMETER
SPM"~T-lG TREE problem (ND4 in [GI]).

30

integer, and that satisfies the triangle inequality, and an integer k.

Question: Does H have a minimum spanning tree, T, such that the distance from r to any node is less than, or equal

to, k.

The reduction is straight-forward. Given an MRMST instance we construct an MCI instance as follows.

Assume that m is the total weight of a minimum spanning tree of H. Let z be a node that is not in H. Define

P = VU{zj. The set of communication costs, c, is defined as follows. For any pair of nodes, i and j that are both in

V, such that (i,j) is in E, Cij=Cji=w(i,j). If i is z and j is r, or vice versa, then CirCji=l. Each one of the remaining

costs, Cij, is simply the length of the shortest path between i and j, in the incomplete graph created thus far. The set

of intersite delays, t, is defined as follows. For any pair of nodes, i and j that are both in V, tij=Cij' Additionally,

tzr=t,..=k. For each one of the remaining intersite delays,

tij=tji=length of the shortest path between i and j, where the length of each edge (r,q) is trq . The set of subtran

saction completion times, 't, is defined as follows. If i:R' then 'ti=O; otherwise, 'tr=(2m)4. Finally,

K =2(m + 1)[(2m)4+kl.

It is straight-forward to see, using Theorem 2, that the MCI instance has a solution if and only if the MRMST

instance has a solution. Actually, the same transformation can be used to show that the following two problems are

also NP-complete. Finding, among all the instances that have minimum communication cost, one that has a

minimum communication time. And, finding among all the instances that have minimum communication time, one

that has a minimum communication cost.

Let us consider now the computation time complexity of TREE-COMMIT, i.e., its time-complexity assuming

that the communication time is zero (in contrast, remember that the communication-time is defined assuming that

the computation- or internal processing- time was zero). The computation time is dominated by the complexity of

finding a minimum spanning tree, and consequently is 0 (p2). Corollary 3 means that the following algorithm is a

polynomial-time, bounded error approximation, for the MCI (minimum complexity instance) problem. Given P, c,

't, and t, first find a minimum spanning tree, T, of the cost graph. Then simulate TREE-COMMIT(T) to find the

coordinator(s), and establish the instance.

7.3 Comparison with Other Algorithms

31

First. consider the communication complexity and the communication cost of the deceniialized algorithm (see

section 5). that has minimum communication time. We shall demonstrate that the complexity (cost) can be 0 (p2)

times the minimum communicmion complexity (cost). Assume that To = 1-2-3-.....• -p is a minimum span

ning tree of the cost graph. and the cost of each edge in To is one. For every pair of participams. i and j. let the

communication cost Cij be the distance in To between i and j. Then it is easy to see that the communication cost of

the instance executed by the decentralized algorithm is 0 (p 3) whereas the minimum communication cost is 2(P -1).

For demonstrating the complexity of the decentralized algorithm. let us continue this example. and suppose

that for every pair of participants. i and j. lij=Cij' and all subtransaction completion times are zero. except for the

completion time of participant p. that is a very large number. say pS. Then the communication complexity of the

decentralized algorithm is 0 (p2) times the minimum communication complexity. An easy way to see this is to

observe that TREE-COMMIT(T 0). in addition to having minimum communication cost, also has a minimum com

munication time.

Actually. it is easy to see that 0 (p2) is a bound on the ratio of the communication complexity (cost) of the

decentralized algorithm. to the minimum communication complexity (cost). assuming that the costs satisfy the tri

angle inequality. The reason for this is that the cost each message is bounded by the cost of a minimum spanning

tree of the cost graph. and the number of messages sent by the algorithm is p (p -\).

Consider now the other two atomic commitment algorithms mentioned in the introduction. namely the

central-sile and the linear algorithms. As explained in section 3. they are both special cases of the FIXED CooR

DINA TOR algorithm. The communication cost of the FIXED-COORDINATOR algorithm. propagating messages

along the edges of some tree. is equal to the communication cost of TREE-COMMIT. propagating messages along

the edges of the same tree. Based on Theorem 4. the communication time of TREE-COMMIT(1) is never higher

than the communication time of an arbitrary algorithm. particularly FIXED COORDINATOR. in which messages

are sent only between neighbors in T. Next, we shall establish the communication time of the FIXED COORDINA

TOR algorithm. For this we need to define. for a given a set of intersite communication delays. I. a lIee T in which

the nodes are the participants. and two participants rand k. the tree-distance from k to r. denoted dkr ; it is the length

of the path along the tree edges. from k to r (remember. the length of i~j is Ii)'

Theorem 6: Let P be a set of participants. let r be a participant. and let T be a tree in which the nodes are the parti-

32

cipants. Denote by I the instance generated by the FIXED-COORDINATOR algorithm that has the coordinator r.

and propagates messages along the edges of the tree T. For any set of subtransaction completion times. t, and any

set of intersite delays. t. time (I) is max{tj+dj,} + d,.
je P

Proof: By definition. time(I) is time(C,) + d,. Additionally. we shall show that time(C,) = f!lax{tj+djr}. The proof
• e P

for this is as follows. Obviously. time(C,) cannot be lower than max{tj+djr}, since the vote of every participant
• e P

must reach r along a path in the tree. and a participant, i. cannot send its vote message before time ti. However.

cime(C,) is not higher than max.{tj+di,} for the following reason. By definition. time(C,) is either equal to tro in
je P

which case the proof is complete, or, there is a message, say Vr~C" such that time(Vj)+tj,=time(C,). In the latter

case, consider Vj' It is either equal to t i , in which case again the proof is complete, or, there is a message, say

V,,-+Vj , such that time(V")+t,,j=lime(Vj). Proceeding in this fashion, we must eventually encounter an event, Vb

such that time(Vl:Ftk' Then, time(C,) = tk + [distance in Tfrom k to r]. 0

Therefore, the communication complexity (time) of FIXED-COORDINATOR on some tree, T. can be twice

the communication complexity (time) of TREE-COMMJT(7). This happens if t,=O. and max.{ti+dJ = d" and there
ie P

is some participant k. such that {tt+dtr} = d,. For example. consider the linear algorithm on some string. T, and

assume that the set t is such that tjj=tji= 1 for each edge (ij) of T, and the subtransaction completion time of each

participant is zero. Then, assuming that there are p participants, the communication time of TREE·COMMIT is

p-l. whereas the communication time of the linear algorithm is 2(p-l). The communication time of the central site

algorithm cannot be exactly twice the communication time of TREE·COMMIT (since the requirement {tt+dtr} = d,

necessitates that the coordinator is a leaf). but it can be arbitrarily close to twice the communication time of TREE-

COMMIT. This happens, for example, if there is some participant, i. such that tj,=tri= I, for each other participant, j,

t,,=t,,=f.. and all subtransaction completion times are zero. Then the communication time of TREE·COMMIT is

1 +E, whereas the communication time of the central-site algorithm is two.

Finally, we shall point out that the communication time of the FIXED-COORDINATOR algorithm cannot be

more than twice the communication time of TREE-COMMIT. To realize that observe that

max{tj+djr} ~ max.{ti+dJ, and also d,~max{tj+dJ.
jeP ieP ieP

8. DISCUSSION

8.1 Conclusion

33

In this paper we discussed the communication cost, the communication time, the communication complexity,

and the computation time complexity of atomic commitment algorithms. We established that the lower bound on

the communication cost for solving the atomic commitment problem is twice Lhe weight of a minimum spanning

tree of the cost graph. Given a set of intersite delays, I, and a set of subtransaction completion times, t, the lower

bound on Lhe communication time is max ('tj+/jj I i and j are participants }. TREE-COMM1T, a new atomic com

mitment algoriLhm introduced in Lhis paper, achieves, in Lhe absence of failures, minimum communication cost The

decentralized algoriLhm, achieves, in the absence of failures, minimum communication time. We also characterized

the minimum communication cost commit instances, and showed Lhat each such instance must propagate messages

along two (not necessarily different) minimum spanning trees of the cost graph, and it that it must have one or two

coordinators.

Then we analyzed TREE-COMMIT, and we compared it wiLh existing variants of the two-phase commit

paradigm, namely the decentralized, the linear, and the central-site algoriLhms. The communication time of TREE

COMMIT is at most p times the minimum communication time, where p is the number of participants. Conse

quently, its communication complexity, the product of its communication cost and its communication time, is also at

most p times the minimum communication complexity (an NP-complete concept). Furthermore, the computation

time of TREE-COMMIT is polynomial in the size of the input. The minimum communication time algorithm, the

decentralized, is also an approximation of the minimum communication complexity, but its error can be of order p2.

When compared with the linear and the central-site algorithms, that are special cases of the FIXED

COORDINATOR algoriLhm, TREE-COMMIT is not only better in the worst case, but it is better in any case, in the

following sense. Its communication cost can be made equal to Lhe communication cost of FIXED

COORDINATOR, by parameterizing TREE-COMMIT to propagate its messages along the same spanning tree as

FIXED-COORDINATOR. Then, the communication-time of TREE-COMMIT cannot be worse than the communi

cation time of FIXED-COORDINATOR, for any sets of Lhe intersite delays and subtransaction completion times.

Funhermore, for some sets of the intersite delays and subtransaction completion times, the communication-time of

TREE-COMMIT is half the communication time of FIXED-COORDINATOR.

34

8.2 Future Work

Society as a whole becomes increasingly dependent communication and infonnation dissemination. Also, in

business, government, and military, transaction processing gains ground, often at the expense of other types of pro

cessing. Therefore, we feel that the issues of gossiping, atomic commiunent, and similar problems, will become

increasingly important, and we intend to continue the study initiated in this paper.

First, it is important to extend our results to handle failures. Some related questions are the following. What

is the necessary communication cost and communication time of atomic commiunent algorithms under different

failure assumptions? Are they sufficient? How do existing algorithms (e.g. three phase commit) approximate the

optimal communication complexity?

Second, it is interesting to detennine the bounds on perfonnance of algorithms having different levels of

knowledge. For example, it is easy to extend our model to define abort instances. Intuitively, it is clear that if there

is exactly one 'no'-voter, then a communication cost of one minimum spanning tree is necessary for abort How

ever, it is also intuitively clear that unless the participants know that there is one 'no' -voter, in which case, obvi

ously executing an atomic commiunent algorithm is superfluous, this necessary cost is not sufficient. We do not

know how to prove this yet. Or, consider the example at the end of section 4. How do we detennine the performance

lower bounds, given limited knowledge of participants identity? We feel that the interesting approach taken by

Hadzilacos in [H2] provides a solid foundation for solving these problems.

Finally, on a more technical note, we will point out that the results in this paper suggest the solution to another

variant of the "gossiping" problem (see subsection 1.3) that is unsolved in the literature (see [HHL)). In this variant,

the pairs of individuals communicate by telephone calls, or two-way sessions, as opposed to messages, Or one-way

sessions; in one call the two individuals exchange the pieces of the gossip known to them, rather than one transmit

ting to the other. The problem is, again, to find a solution that has minimum total cost (now Cjj is the cost of a tele

phone call between i and j). Notice that modelling an instance by a directed acyclic graphs, is inappropriate for

communication by two-way sessions. When the cost of each call is one (or when counting the number of calls),

then the following algorithm achieves the minimum (necessary) cost, i.e. 2p-4 calls (see [BK]).

MINIMUM-NUMBER-OF-CALLS:

I. Partition the individuals imo four groups, A.B,C, and D, and appoint a leader in each group. Denote the leaders

35

by a,b,c, and d, respectively.

2. Each leader calls every member in its group, collecting the information-piece from each one (p-4 calls).

3. a and b exchange information in one phone call, and so do c and d (2 calls).

4. a and c exchange information in one phone call, and so do b and d. At this point a,b,c, and d know the

whole gossip.

5. Each leader calls every member in its group, telling each one the whole gossip (p -4 calls).

When the telephone-ca1l costs differ from one pair to another, we conjecture that determining the minimum cost of a

solution is NP-complete, and the reason will become clear in the discussion below. (Remember, for one-way com

munication the minimum cost can be determined in linear time.) Furthermore, we conjecture that there are two pos

sible structures for the pattern of telephone calls that achieves minimum cost. The first is a pattern that resembles

the one that has a minimum number of calls. Specifically, the individuals are partitioned into four groups as in the

algorithm MINIMUM-NUMBER-OF-CALLS. However, the information-piece (corresponding to the vote) of each

member of a group, rather than being communicated directly to the group leader, flows to it along the edges of a

minimum spanning tree. Then the leaders exchange information as in steps 3 and 4 of MINIMUM-NUMBER-OF

CALLS, and afterwards, the whole gossip flows back to all the individuals along the edges of the same four

minimum spanning trees. We conjecture that finding a partition as above, for which the total cost of the telephone

calls is minimum, is NP-complete.

The second possible structure for the pattern of minimum cost, is one that corresponds to the edges of a span

ning tree, T, of the cost graph. The gossip pieces flow inwards, towards the coordinators, that are the neighbors on

both sides of the costliest edge in T. After a coordinator receives the pieces of the gossip from all its neighbors in

the tree, except from the other coordinator, it calls the other coordinator, and they exchange information. At this

point, the coordinatas, and only them, lcnow the whole gossip, the total cost is equal to the cost of T, and the

number of calls is p -1. Subsequently, the gossip flows to the rest of the participants along the edges of T, requiring

p -2 additional calls, at a cost of:

(the cost of 1) - (the cost of the edge between the coordinators).

Next we will make a few remarks about the second pattern of minimum cost mentioned above. First, note that

the total cost of the pattern above is:

8.2.1 (twice the cost of 1) - (the cost of the edge between the coordinators)

..
36

and this is the reason for choosing the coordinators as the endpoints of the costliest edge in T. Second, observe

intuitively, that there are are cases in which the pattern above indeed achieves minimum communication cost For

example, it does so if there is a unique minimum spanning tree of the cost graph, and any telephone call between

participants that are not neighbors in the tree, is prohibitively expensive. Third, the pattern above achieves minimum

cost with p-3 calls, and this is higher than the minimum number of calls, that is p-4. This corroborates the argu-

mem made in section 3, that the communication pattern having a minimum number of messages (or calls) does not

necessarily have a minimum cost Fourth, we conjecture that in general, finding the spanning tree for which formula

8.2.1 is minimum, is NP-complete.

In conclusion, we feel that much remains to be done in order to prove the conjectures above, and then, to

incorporate communication time considerations into the solutions. We believe that TREE·COMMIT will provide a

handle on an approach for this incorporation.

ACKNOWLEDGEMENT

We wish to thank Alon Itai for very helpful discussions and insightful remarks. We also thank the referees for

detailed and thorough reports, that helped us improve this paper significantly.

REFERENCES

[BHG]

[BK]

[C]

[CP]

[DS1]

[DS2]

[E]

P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database Sys
tems Addison Wesley, 1987.

B. Baker and R. Shostak. "Gossips and Telephones: Discr. Math. 2, pp. 191-193, 1972.

N. Cot, "Extensions of the Telephone Problem," Proc. 7th SE Con/. on Combinatorics, Graph Theory
and CompUJing Utilitas Mathematica, Winnipeg, pp. 239-256. 1976.

S. Ceri and G. Pelagaui, Distributed Database Principles and Systems. McGraw-Hill. 1984.

C. Dwork and D. Slceen. "The Inherent Cost of Nonbloclcing Commitment", Prod. 2nd ACM Symp. on
PODC, pp. 1-11, 1983.

C. Dworlc and D. Skeen, "Pauerns of Communication in Consensus Protocols", Proc. 3rd ACM Symp.
on PODC, pp. 143-153, 1984.

S. Even, Graph Algorithms, Computer Science Press, 1979.

-.

a

It

[F]

[GJ

[GJ]

[HI]

[H2]

[HHL]

[1]

[L]

37

M. Fischer. The Consensus Problem in Unreliable Distributed Systems (a brief survey). Technical
Report Y ALEU/DCS-JRR-273, Yale University, June 1983.

J.N. Gray. "Notes on Database Operating Systems," Operating Systems: An Advanced Course.
Springer-Verlag. 1979.

M.R. Garey and D.S. Johnson. Computers and Intractability, Freeman. 1979.

V. Hadzilacos, "On the Relationship between the Atomic Commitment and Consensus Problems," Proc.
of the Worlcshop on Fault-Toleranl Distributed Computing Springer Verlag, 1986.

V. Hadzilacos. "A Knowledge Theoretic Analysis of Atomic Commitment Protocols." Proc. 6th ACM
Symp. on PODS, pp. 129-134. 1987. A revised version has been submitted for publication.

S. Hadetniemi, S. Hadetniemi, and A. Liestman. " A Survey of Gossiping and Broadcasting in Com
munication Networks," Networlcs Vol. 18 pp. 319-349.1988.

A. Itai, Unpublished result, 1986.

L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System," CACM. 21(7), pp.
558-565. 1978.

[LIDLSW] B. Liskov. M. Herlihy, P. Johnson, G. Leavens, R. Scheifter. and W. Weihl, "Preliminary Argus Refer
ence Manual". Programming Methodology Group Memo 39, 1983.

[LS]

[MLO)

[R]

[Se]

[Sk]

[Sp]

B. Lampson and H. Sturgis. "Crash Recovery in a Distributed Database System." lR, Xerox PARC,
1976.

C. Mohan, B. Lindsay. and R. Obermack. "Transaction Management in the R* Distributed Database
Management System," TODS. 11(4), pp. 378-396,1986.

K.V.S. Ramarao. "On the Complexity of Commit Protocols," Proc. 4th ACM Symp. on PODS. pp.
235-244. 1985.

A. Segall, "Distributed Network Protocols." IEEE Trans. Inform. Theory, Vol. IT-29. No.1, pp. 23-35,
Jan. 1983.

D. Skeen, "Nonblocking Commit Protocols: Proc. ACM SIGMOD. pp. 133-142, 1981.

A. Spector, "Modular Architectures for Distributed and Database Systems," Proc 8th ACM Symp. on
PODS. pp. 217-224.1989.

