
User-Defined Predicates in OPS5:
A Needed Language Extension for

Financial Expert Systems
CGCS-496-89

Alexander]. Pasik
Depanment of Computer and Informatton Science

New jersey Instttute of Technology
Newark, New jeTSey

Daniel P. Miranker
Department of Computer Sc!ence

Universtty of Texas at Austin
Austin, Te:::as

Salvatore]. Stolfo
Department oJ Computer Sc!ence

Columbia Unwerstty
New York. New York

Thomas Kresnicka
School 0/ Business

Columbia University
New York, Ne--.JJ York

Abstract

OPS5 is widely used for expert system development in industry as well as for

academic research. Its limited expressive power, however, can lead to cumbersome and

ine:ficiem code. Often a single domain rule must be encoded as a series of OPS5 rules

requiring extensive performance overhead and resulting in an awkward representation of

- the knowledge. In the financial expert system ALEXSYS, which performs mortgage p~l

allocation, the lack of user-defined predicates proved to be a major obstacle, prohibiting

real time performance.

Tnis work describes the addition of user-defined predicates in OPS5, supported by

a patc.'1 to Carnegie-Mellon University's Common lisp OPS5 implementation. Also, the

necessity of this extension is demonsuated in the context of the ALEXSYS mortgage

pool allocation expert system, both in terms of increased efficiency and improved

knowledge representation.

Introduction

Since its introduction in 1981, OPS5 has become a popular language for building

e.."(pe:t syste:ns. OPS5 and its derivatives (such as c5 [Vesonder 19881 and OPS83 [Forgy

1985]) have been used both in academic produC"Jon system research [Allen 1982,

Baracllini 1988, bird et ai. 1986, Miranker 1986, Pasik 1989, Scales 1986, Schor et ai. 19861

and commercial expert system development [Gordin et at. 1988, Millikin et at. 1988,

Vesonder et at. 1983J. This extensive use can be compared to the proliferation of

FORTRA.!.'I programs: the language being the first to provide a specific functionality with

adequate pe~formance, OPS5 bec:une widely used. However, like FORTRA...'I, OPS5

..:: suffe~ because of its originating scatus; later produc-jon system research revealed the

need for more powerful language construC"..s [van Biema 1986J.

As rule-based expert systems are used more frequently in industry, certain domains

reve3.l the specific needs for additional, more powerful language constructS. While

building the financial expert system ALEXSYS for mortgage pool allocation, aspec..s

about financial expert systems in general were revealed to require more complex

numeric operations than available in OPS5. Particularly, OPS5 does not allow for

arbitrary, use~-defined tests on values in the left-hand-side of rules. Several derivatives of

OPS5 have incorporated this language feature [Allen 1982, Forgy 1985, Giarratano 19881,

attesting to the need of this faolity in building rule-based programs. The work described

herein serves cwo purposes:

1. to demonstrate the importance of user-defined . predicates by showing
the effects of their presence or absence on a commercial, finandal
expert system. These effects include performance and knowledge
representational issues.

2. to provide a portable Common Lisp patch to Carnegie-Mellon
University's Common IJsp OPS5 interpreter which extends OPS5 to
include the facility of user-defined predicates.

The ALEXSYS Problem

The mortgage pool allocation problem is faced by financial companies which trade

in rr:ortgage pools. Each monL" a set of transactions must be processed so as to provide

1

a maximum profit poce:ltial for the company. The decision making process derermines

the alloCltion of available mortgage pools to the comrac:s made in the previous month.

Tb.e decisions, however, must be made within the constraints imposed by a set of feder.J

regulations.

The volume and proficabiliry of a trading floor is limited by the capacity of the

ailoCltors to adva.mageously fill sell orde:s curing the H .. -ul rush of the settieme:lt days. An.

alloC3.tor traditionally operates with a calculator in one hand and the telephone in the

other. As institutions handle ever-increaSing volume, the allocators become hard

pressed to support: the activiry during the contract settlement hours, much in the same

way as activity comes to a head during the closing minutes in the trading pits. Allocators

carry the additional responsibilities of ensuring that inventories are delivered into

contractS in legal amounts subject to complex rules set by a federal agency and ensuring

-= that profit is mace from the small variance allowed in how contraC"..s are filled. Toward

the end of a settlement day an allocator's primary concern is to deliver correct

settlement information by telephoning counter-parties on overloaded telephone lines.

T:'1ere ofte:l is insuffide::t time ro determine an optimal alloCltion for each contract.

Much of an alloc:ltors' expertise. can be e:lcoded into an expert system. As an

interactive allocator's assistant, the expert system ALE..,,(SYS can rapidly recalculate

allocations as quickly as market conditions and inventory information is updated.

ALEXSYS can e!1hance an allocators' performance by optirr..a.lly allocating contracts,

rapidly adjusting the allocations according to dynamic conditions and freeing the

allocator to hanc!e telephones and stipulated trades. ALEXSYS optimizes allocations for

maximum profitability, maintains inventory under quality constraints, and reduces fails.

Fails are the primary source of lost reve:lue in the allocation process. Fails can occur

because of techPica! or clerical violations of the federal regulations. Fails also occur as a

result of insufficient inventory due to short positions or as'a domino effect of a fail by a

counter party. ALEXSYS eliminates technical errors and promptly warns the aUocators

of uncovered positions. As a hedge against counterparty pool changes, allocators do noc

always use the entire variance on delivery. The rapidity with which the computer may

reallocate contnc:s allows the allocarors to exploit the full variance and capture this lost

source of proHt

The federal regulations which control mort:g:1ge pool alloc:1tion take the form of

rules which indicate what sorts of pool combinations are legal. For example,

2

If a 51,000,000 contnct for mortgage pools of a coupon rate of less than
12% is to be ftlled, the!1 no more than 3 pools on be used to fill che
conc.rac:. Also, no two of che three pools can account for more man
5975,000 of the contract.

During the development of ALEXSYS, the necessity of user-deflned predioces was

;-eve::ded. For example, the rule mentioned above cannot be expressed in a single

production in standard OPSS. Rather, the rule should be able to be written encoding the

information as follows:

(p f!ll-cont=act-with-three-pools
(cont=act Avalue 1000000 Acoupon
(pool Aid <pI> ~amount <xl»
(pool ~id <p2> ~amount <x2»
(pool ~id <p3> Aamount <x3»

SUCH THAT

< 0.12)

(and (= (+ <xl>
« (+ <xl>

<xl>
<x2>

<x2> <x3» 1000000)
<x2» 975000)

« (+ <x3» 975000)
« (+ <x3» 975000))

-->
...)

Because arbitrary tests onnat be performed on OPS5 left-hand-sides, the above

process can only be performed by, in a first se~ of rule firings, computing the four sums

1:1 temporary working memory elements, one corresponCing to each three pool

combination in working memory. Then a second set: of rule flrings would select one of

:"~e combinations, and a third se~ of fIrings would re:nove the remaining combinations

f:-om memory. This three rule encoding artificially distributes the knowledge that is

. being encoded. Also, there is a large efficiency cost to this approach. It is hypothesized

that this scenario is common among financial systems.

User-Defined Predicates

Based upon the ALEXSYS experience, the necessity of user-defined predicates in

OPS5 was demonstrated. The lack of such functionality leaCs to noc only aw\cv.'ard

k:1owledge representation, but also unacceptable perforrna.nce costs. Referring to the

sample rule provided in the previous sec-Jon, a valid vanilla OPS5 encoding follows:

(p :~ll-contrac~-wit~-three-pools-MAKE-SUMS
(contract Avalue ~OOOOOO Acoupon < 0.12)
(pool A~d <pI> Aamount <xl» -
(pool A~d <p2> Aamoun~ <x2»
(pool Aid <p3> Aa~ount <x3»

- (sums ~~ds <pI> <p2> <p3»
-->
(~ake sums Aids <pI> <p2> <p3> ; ids is a vector at~r

Asum (compute <xl> + <x2> + <x3»
Asum12 (compute <xl> + <x2»
Asum13 (ccmpu~e <xl> <x3»
Asum23 (compute <x2> + <x3»»

(p fill-contract-with-three-pools-CHCOSE
(contract Aval ue 1000000 Acouoon < 0.12)
{ (sums A~ds <pI> <p2> <p3> -

~sum 1000000
Asum12 < 975000
Asum13 < 975000
Asum23 < 975000) <sums>

(pool Aid <pI> Aamount <xl»
(pool Aid <p2> Aamount <x2»
(pool Aid <p3> Aamount <x3»
-->
(modi:y <sums> Achosen t)
...)

(p f~ll-contrac~-wit~-three-pools-REMOVE
((sums Ac~osen <> ~) <sums> }
-->
(=emove <sums»)

The rules are noc complere, but the necessary aspec:s are represented. Whe!1 there

are a large number of pools (n), the first rule will match successfully against all

combinations of pools (n3) and generate as many working memory elements in

successive firings. The second rule will match only against the few combinatior..5 which

generated valid sums (potentially much less than n3). Finally, the last rule serves to

remove unwanted working memory elements.

By allowing user-defined predicates in OPS5, the rule can be written as follows:

4

(p =ill-contract-with-three-pools
(contrac~ Avalue 1000000 Acoupon < 0.12)
(pool A~d <pI> Aamount <xl»
{pool A~d <p2> Aamount { <x2>

(sum< 975000 <xl» })
{pool Aid <p3> ~amount { <x3>

(sum< 975000 <xl»

-->
...)

(sum< 975000 <x2»
(sum= 1000000 <xl> <x2» })

In this rule, the user-deflned predicates sum< and sum- are used. They are defIned

in Common Lisp as follows:

{defu~ sum< ('KID-value amount &rest args)
...... (and (number? wm-value)

(numberp amount)
(every ,'numberp args)
« (apply f'+ (cons wm-value args» amount»)

(defun sum= (~~-value amount &rest args)
(and (numberp 'Nffi-value)

(numberp amount)
(eoJe=y .' number? args)
(= (apply t'+ (cons wm-value args» amount»)

In defming user-deflned predicates, the nrst argument is assumed to come from the

working me:nory ele:nem being matched. Thus in calling the function from a rule, the:-e

is an implicit flrst argument coming from working memory. For example, in the

previous rule, the call (sum< 975000 <x2» in the third pool condition element would

result in a call to the lisp function sum< with wm-vaiue bound to the data being matched

(that is, the value of the third pool's amount aruibute), amount bound to 975000, and

args bound to a list containing the remaining arguments (that is, a list containing the value

that OPS5 bound to <x2». Similarly, the call (sum- 1000000 <xl> <x2» results in the lisp

function call:

(sum- vaiWHJ!-amount-attribute 1000000 OPS5-vr;iue-o!-<xl> OPS5-vaiue-o!-<x...7»

This rule will fire once for each valid combination, selec-Jng an appropriate ser of

pools which conform to the federal regulation encoded. The restrlc-Jons imposed by L.~e

additional predicates limit the amount of matching greatly, and thus result in improved
~ . e:::c:e::cy.

5

The ability m use user-defined predicates is accomplished via a patch co the

Common Lisp OPS5 interpreter. Calls m the user-deflned predicates are compiled into

:.he existing Rete pattern-matc:ung nerwork (Forgy 19821. Thus, user-defined predicates

fit wiLhin the algorithmic framework of :he Re~e algorithm A similar aooroach. C3.!1 be

used in other interpreters using alternative algorithms such as TREAT [Miranker 19861.

Tbese algorithms share a similar mecl1anism for pattern matcbing based on the

combination of database operations of selects and jOins. The addition of user-defmed

predicates is accomplished at the level of allowing arbitrary tests for the selects and joins

without modifying the underlying mechanism

The performance improvements provided by user-defined predicates can be

illustrated using the same example. As shown in figures 1, 2, and 3, the vanilla OPS5

version running with n pools executes inO(n3) number of cycles generating a maximum

~ of O(n3) working memory elements. The run time of the system grows exponentially.

However, the ve:sion with user-defined predicates executes in 0(1) cycles, independent

of the size of working memory. It uses working memory only to represent the aema!

pools, that is O(n), and executes in O(n) time.

8000

6000

C;ces 4000

2000

a
a

•

10

Pools

20

.•• Vanilla OPS5

Q. w/Usar Preds

rtgUre 1: As the number of pools in working memory increases,
number of cycles increases 0(n3) in vanilla OPS5,

but remains constant (1 cycle) with user-defined predicates.

5

Conclusion

8000

6000

WM Size 4000

2000

o
o

•

10

Pools

•

20

.•• Vaniila OPSS

C w/User ?reds

Figure 2: As the number of pools in working memory increases.
the maximum working memory size increases O(n3) in vanilla OPS5.

but remains linear in the number of pools with user-detined predicates.

100000

1000

Pun TIme
(seconds)

10

0.1
•

0 10

Pools

···Vanilla OPSS

C w/User Preds

20

Figure 3: As the number of pools in working memory inc;eases.
the run time increases exponentially in vanilla OPS5,

00c remains linear in the number of pools with user-defined predicates.
(Note: The plot is semilogarichmic-l

In writing expert systems which encode decision-making processes based on

complex numerical data, user-deftned predicates are an essential language fearure for

ProcuLJon sys~e::;s. Finar.c!al expe:-r syste~..s such as Al.EXSYS are such syste~..s, and

7

[.~e necessity of use:-defined predicates in this system is demonstrated both from

knowledge representational and performance standpoints.

Cse:-der1ned predicHes have been available in comme:cial expert system (Ools, but

!!ot ~'1 the freely available Common Lisp OPS5 which is used extensively throughout the

expert system industry. Also, the effec:s on performance have noc previously been

demonstrated.

As a result of this work, a Common Lisp patch to the OPS5 interpre~er, available

mrough the De?artment of Computer Science at Columbia Unive:sity, extends OPS5

with user-defined predicates. In addition, the enormous benefit in performance

demonstrated herein provides incemive for the widespread use of the language

extension in finandal, real-time expert systems.

~ References

1. Alle:1 E. (982) YAPS: Yet Another P:oduction System. Tec!1nical Report 1146,

De?ar..ment of Computer Science, University of Maryland

2. Barachini F. (988) P~'4EL4: A Rule-Based Al Langu.age for Process-Control

Applications. The First Imernational Conference on Industrial and Engineering

Applications of ArJIidai Intelligence and Expert Systems, pages 860-867.

3. Forgy c.L. (982) Rete: A Fast . .-\.lgorithm for the Many Pattern/Many Object Parre:n

Match Problem. Artificial Intelligence 19(1): 17-37.

4. Forgy c.L. (985) OPS83 User's Manual and Report. Production Systems

Technologies.

5. Giarratano].c. (988) CLIPS User's Guide. NASA Cosmic Program Documents

MSC-21208, MSC-21467, and MSC-21475.

6. Gordin D., Foxvog D., Rowland)., Surko P., and Vesonder G. (988) OKIES: A

Troublesbooter in tbe Factory. Tne First International Conference on Industrial and

Engineering Applications of Artifidal Intelligence and Expert Systems, pages 24-28.

7. Laird]., Rosenbloom P., and Newell A. (986) Universal Subgoaling and Cbunk:·ng.

Boston, Massachusetts: Kluwer Academic Publishers.

a

8. Millike:l K.R., Finkel A.]., Klein D .. -\., and Waite N.B. (988) Adding Rule-based

Techniques to Procedural Languages. The First International Conference on

Industrial' and Engineering Applications of Artificial Intelligence and Expert

Systems, pages 185-195.

9. Miranker D.P. (1986) TREAT: A New and Efficient .'vIatch Algorithm for AI

Production Systems. Ph.D. Thesis, Department of Computer Science, Columbia

U niversicy.

10. Pasik A.J. (989) A J.'.tfetbodology for Programming Production Systems and its

Implications on Parallelism. Ph.D. Thesis, Department of Computer Science,

Columbia University.

11. Scales D. (986) Efficient Matching Algorithms for the SOARJOPSS Production

System. Tec.hnical Report, Knowledge Systems Laboratory, Computer Science

Depar..menc, Sr.a.nford Cniversity.

12. Schor M.L, Daly T.P., Lee H.S., and Tibbitts B.R. (1986) Advances in Rete Pattern

.'vIatcbing. AAAI-86, pages 226-232.

13. van Bierna M., Miranker D.P., and Stolfo S.]. (986) The Do-loop Consz'dered

Harmful in Product:'on System Programming. First rnternational Conference on

Expert Database Systems, pages 88-97.

14. Vesonder G. (988) Rule-based Programming in the Unix System AT&T Tecbnical

Journal 67(1). 69-80.

15. Vesonder G., Stolfo S.]., Zielinski].E., Miller F.D., and Copp D.H. (1983) ACE: An

Expert System for Telepbone Cable Maintenance. IJCAI-83, pages 116-121.

9

