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Abstract 

OPS5 is widely used for expert system development in industry as well as for 

academic research. Its limited expressive power, however, can lead to cumbersome and 

ine:ficiem code. Often a single domain rule must be encoded as a series of OPS5 rules 

requiring extensive performance overhead and resulting in an awkward representation of 

- the knowledge. In the financial expert system ALEXSYS, which performs mortgage p~l 

allocation, the lack of user-defined predicates proved to be a major obstacle, prohibiting 

real time performance. 

Tnis work describes the addition of user-defined predicates in OPS5, supported by 

a patc.'1 to Carnegie-Mellon University's Common lisp OPS5 implementation. Also, the 

necessity of this extension is demonsuated in the context of the ALEXSYS mortgage 

pool allocation expert system, both in terms of increased efficiency and improved 

knowledge representation. 



Introduction 

Since its introduction in 1981, OPS5 has become a popular language for building 

e.."(pe:t syste:ns. OPS5 and its derivatives (such as c5 [Vesonder 19881 and OPS83 [Forgy 

1985]) have been used both in academic produC"Jon system research [Allen 1982, 

Baracllini 1988, bird et ai. 1986, Miranker 1986, Pasik 1989, Scales 1986, Schor et ai. 19861 

and commercial expert system development [Gordin et at. 1988, Millikin et at. 1988, 

Vesonder et at. 1983J. This extensive use can be compared to the proliferation of 

FORTRA.!.'I programs: the language being the first to provide a specific functionality with 

adequate pe~formance, OPS5 bec:une widely used. However, like FORTRA...'I, OPS5 

..:: suffe~ because of its originating scatus; later produc-jon system research revealed the 

need for more powerful language construC"..s [van Biema 1986J. 

As rule-based expert systems are used more frequently in industry, certain domains 

reve3.l the specific needs for additional, more powerful language constructS. While 

building the financial expert system ALEXSYS for mortgage pool allocation, aspec..s 

about financial expert systems in general were revealed to require more complex 

numeric operations than available in OPS5. Particularly, OPS5 does not allow for 

arbitrary, use~-defined tests on values in the left-hand-side of rules. Several derivatives of 

OPS5 have incorporated this language feature [Allen 1982, Forgy 1985, Giarratano 19881, 

attesting to the need of this faolity in building rule-based programs. The work described 

herein serves cwo purposes: 

1. to demonstrate the importance of user-defined . predicates by showing 
the effects of their presence or absence on a commercial, finandal 
expert system. These effects include performance and knowledge 
representational issues. 

2. to provide a portable Common Lisp patch to Carnegie-Mellon 
University's Common IJsp OPS5 interpreter which extends OPS5 to 
include the facility of user-defined predicates. 

The ALEXSYS Problem 

The mortgage pool allocation problem is faced by financial companies which trade 

in rr:ortgage pools. Each monL" a set of transactions must be processed so as to provide 
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a maximum profit poce:ltial for the company. The decision making process derermines 

the alloCltion of available mortgage pools to the comrac:s made in the previous month. 

Tb.e decisions, however, must be made within the constraints imposed by a set of feder.J 

regulations. 

The volume and proficabiliry of a trading floor is limited by the capacity of the 

ailoCltors to adva.mageously fill sell orde:s curing the H .. -ul rush of the settieme:lt days. An. 

alloC3.tor traditionally operates with a calculator in one hand and the telephone in the 

other. As institutions handle ever-increaSing volume, the allocators become hard

pressed to support: the activiry during the contract settlement hours, much in the same 

way as activity comes to a head during the closing minutes in the trading pits. Allocators 

carry the additional responsibilities of ensuring that inventories are delivered into 

contractS in legal amounts subject to complex rules set by a federal agency and ensuring 

-= that profit is mace from the small variance allowed in how contraC"..s are filled. Toward 

the end of a settlement day an allocator's primary concern is to deliver correct 

settlement information by telephoning counter-parties on overloaded telephone lines. 

T:'1ere ofte:l is insuffide::t time ro determine an optimal alloCltion for each contract. 

Much of an alloc:ltors' expertise. can be e:lcoded into an expert system. As an 

interactive allocator's assistant, the expert system ALE..,,(SYS can rapidly recalculate 

allocations as quickly as market conditions and inventory information is updated. 

ALEXSYS can e!1hance an allocators' performance by optirr..a.lly allocating contracts, 

rapidly adjusting the allocations according to dynamic conditions and freeing the 

allocator to hanc!e telephones and stipulated trades. ALEXSYS optimizes allocations for 

maximum profitability, maintains inventory under quality constraints, and reduces fails. 

Fails are the primary source of lost reve:lue in the allocation process. Fails can occur 

because of techPica! or clerical violations of the federal regulations. Fails also occur as a 

result of insufficient inventory due to short positions or as'a domino effect of a fail by a 

counter party. ALEXSYS eliminates technical errors and promptly warns the aUocators 

of uncovered positions. As a hedge against counterparty pool changes, allocators do noc 

always use the entire variance on delivery. The rapidity with which the computer may 

reallocate contnc:s allows the allocarors to exploit the full variance and capture this lost 

source of proHt 

The federal regulations which control mort:g:1ge pool alloc:1tion take the form of 

rules which indicate what sorts of pool combinations are legal. For example, 
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If a 51,000,000 contnct for mortgage pools of a coupon rate of less than 
12% is to be ftlled, the!1 no more than 3 pools on be used to fill che 
conc.rac:. Also, no two of che three pools can account for more man 
5975,000 of the contract. 

During the development of ALEXSYS, the necessity of user-deflned predioces was 

;-eve::ded. For example, the rule mentioned above cannot be expressed in a single 

production in standard OPSS. Rather, the rule should be able to be written encoding the 

information as follows: 

(p f!ll-cont=act-with-three-pools 
(cont=act Avalue 1000000 Acoupon 
(pool Aid <pI> ~amount <xl» 
(pool ~id <p2> ~amount <x2» 
(pool ~id <p3> Aamount <x3» 

SUCH THAT 

< 0.12) 

(and (= (+ <xl> 
« (+ <xl> 

<xl> 
<x2> 

<x2> <x3» 1000000) 
<x2» 975000) 

« (+ <x3» 975000) 
« (+ <x3» 975000)) 

--> 
... ) 

Because arbitrary tests onnat be performed on OPS5 left-hand-sides, the above 

process can only be performed by, in a first se~ of rule firings, computing the four sums 

1:1 temporary working memory elements, one corresponCing to each three pool 

combination in working memory. Then a second set: of rule flrings would select one of 

:"~e combinations, and a third se~ of fIrings would re:nove the remaining combinations 

f:-om memory. This three rule encoding artificially distributes the knowledge that is 

. being encoded. Also, there is a large efficiency cost to this approach. It is hypothesized 

that this scenario is common among financial systems. 

User-Defined Predicates 

Based upon the ALEXSYS experience, the necessity of user-defined predicates in 

OPS5 was demonstrated. The lack of such functionality leaCs to noc only aw\cv.'ard 

k:1owledge representation, but also unacceptable perforrna.nce costs. Referring to the 

sample rule provided in the previous sec-Jon, a valid vanilla OPS5 encoding follows: 



(p :~ll-contrac~-wit~-three-pools-MAKE-SUMS 
(contract Avalue ~OOOOOO Acoupon < 0.12) 
(pool A~d <pI> Aamount <xl» -
(pool A~d <p2> Aamoun~ <x2» 
(pool Aid <p3> Aa~ount <x3» 

- (sums ~~ds <pI> <p2> <p3» 
--> 
(~ake sums Aids <pI> <p2> <p3> ; ids is a vector at~r 

Asum (compute <xl> + <x2> + <x3» 
Asum12 (compute <xl> + <x2» 
Asum13 (ccmpu~e <xl> <x3» 
Asum23 (compute <x2> + <x3»» 

(p fill-contract-with-three-pools-CHCOSE 
(contract Aval ue 1000000 Acouoon < 0.12) 
{ (sums A~ds <pI> <p2> <p3> -

~sum 1000000 
Asum12 < 975000 
Asum13 < 975000 
Asum23 < 975000) <sums> 

(pool Aid <pI> Aamount <xl» 
(pool Aid <p2> Aamount <x2» 
(pool Aid <p3> Aamount <x3» 
--> 
(modi:y <sums> Achosen t) 
... ) 

(p f~ll-contrac~-wit~-three-pools-REMOVE 
( (sums Ac~osen <> ~) <sums> } 
--> 
(=emove <sums») 

The rules are noc complere, but the necessary aspec:s are represented. Whe!1 there 

are a large number of pools (n), the first rule will match successfully against all 

combinations of pools (n3) and generate as many working memory elements in 

successive firings. The second rule will match only against the few combinatior..5 which 

generated valid sums (potentially much less than n3). Finally, the last rule serves to 

remove unwanted working memory elements. 

By allowing user-defined predicates in OPS5, the rule can be written as follows: 
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(p =ill-contract-with-three-pools 
(contrac~ Avalue 1000000 Acoupon < 0.12) 
(pool A~d <pI> Aamount <xl» 
{pool A~d <p2> Aamount { <x2> 

(sum< 975000 <xl» }) 
{pool Aid <p3> ~amount { <x3> 

(sum< 975000 <xl» 

--> 
... ) 

(sum< 975000 <x2» 
(sum= 1000000 <xl> <x2» }) 

In this rule, the user-deflned predicates sum< and sum- are used. They are defIned 

in Common Lisp as follows: 

{defu~ sum< ('KID-value amount &rest args) 
...... (and (number? wm-value) 

(numberp amount) 
(every ,'numberp args) 
« (apply f'+ (cons wm-value args» amount») 

(defun sum= (~~-value amount &rest args) 
(and (numberp 'Nffi-value) 

(numberp amount) 
(eoJe=y .' number? args) 
(= (apply t'+ (cons wm-value args» amount») 

In defming user-deflned predicates, the nrst argument is assumed to come from the 

working me:nory ele:nem being matched. Thus in calling the function from a rule, the:-e 

is an implicit flrst argument coming from working memory. For example, in the 

previous rule, the call (sum< 975000 <x2» in the third pool condition element would 

result in a call to the lisp function sum< with wm-vaiue bound to the data being matched 

(that is, the value of the third pool's amount aruibute), amount bound to 975000, and 

args bound to a list containing the remaining arguments (that is, a list containing the value 

that OPS5 bound to <x2». Similarly, the call (sum- 1000000 <xl> <x2» results in the lisp 

function call: 

(sum- vaiWHJ!-amount-attribute 1000000 OPS5-vr;iue-o!-<xl> OPS5-vaiue-o!-<x...7» 

This rule will fire once for each valid combination, selec-Jng an appropriate ser of 

pools which conform to the federal regulation encoded. The restrlc-Jons imposed by L.~e 

additional predicates limit the amount of matching greatly, and thus result in improved 
~ . e:::c:e::cy. 
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The ability m use user-defined predicates is accomplished via a patch co the 

Common Lisp OPS5 interpreter. Calls m the user-deflned predicates are compiled into 

:.he existing Rete pattern-matc:ung nerwork (Forgy 19821. Thus, user-defined predicates 

fit wiLhin the algorithmic framework of :he Re~e algorithm A similar aooroach. C3.!1 be 

used in other interpreters using alternative algorithms such as TREAT [Miranker 19861. 

Tbese algorithms share a similar mecl1anism for pattern matcbing based on the 

combination of database operations of selects and jOins. The addition of user-defmed 

predicates is accomplished at the level of allowing arbitrary tests for the selects and joins 

without modifying the underlying mechanism 

The performance improvements provided by user-defined predicates can be 

illustrated using the same example. As shown in figures 1, 2, and 3, the vanilla OPS5 

version running with n pools executes inO(n3) number of cycles generating a maximum 

~ of O(n3) working memory elements. The run time of the system grows exponentially. 

However, the ve:sion with user-defined predicates executes in 0(1) cycles, independent 

of the size of working memory. It uses working memory only to represent the aema! 

pools, that is O(n), and executes in O(n) time. 
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rtgUre 1: As the number of pools in working memory increases, 
number of cycles increases 0(n3) in vanilla OPS5, 

but remains constant (1 cycle) with user-defined predicates. 
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Conclusion 
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Figure 2: As the number of pools in working memory increases. 
the maximum working memory size increases O(n3) in vanilla OPS5. 

but remains linear in the number of pools with user-detined predicates. 
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Figure 3: As the number of pools in working memory inc;eases. 
the run time increases exponentially in vanilla OPS5, 

00c remains linear in the number of pools with user-defined predicates. 
(Note: The plot is semilogarichmic-l 

In writing expert systems which encode decision-making processes based on 

complex numerical data, user-deftned predicates are an essential language fearure for 

ProcuLJon sys~e::;s. Finar.c!al expe:-r syste~..s such as Al.EXSYS are such syste~..s, and 
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[.~e necessity of use:-defined predicates in this system is demonstrated both from 

knowledge representational and performance standpoints. 

Cse:-der1ned predicHes have been available in comme:cial expert system (Ools, but 

!!ot ~'1 the freely available Common Lisp OPS5 which is used extensively throughout the 

expert system industry. Also, the effec:s on performance have noc previously been 

demonstrated. 

As a result of this work, a Common Lisp patch to the OPS5 interpre~er, available 

mrough the De?artment of Computer Science at Columbia Unive:sity, extends OPS5 

with user-defined predicates. In addition, the enormous benefit in performance 

demonstrated herein provides incemive for the widespread use of the language 

extension in finandal, real-time expert systems. 
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