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Abstract 

Understanding a scene involves the ability to recover the shape of objects in an environment. Gen­
eralized cylinders are a flexible. loosely defined class of parametric shapes capable of modeling many 
real-world objects. Straight homogeneous generalized cylinders are an important subclass of generalized 
cylinders whose cross sections are scaled versions of a reference curve. In this paper. a general method is 
presented for recovering straight homogeneous generalized cylinders from monocular intensity images. 
The algorithm is much more general in scope than any other developed to date. combining constraints 
derived from both contour and intensity information. We first demonstrate that contour information alone 
is insufficient to recover a straight homogeneous generalized cylinder uniquely. Next. we show that the 
sign and magnitude of the Gaussian curvature at a point varies among members of a contour-equivalent 
class. The image contour fails to constrain two parameters required to recover the shape of a generalized 
cylinder. the 3D axis location and the object tilt. Next. a method for "ruling" straight homogeneous gen­
eralized cylinder images is developed. Once the rulings of the image have been recovered. we show that 
all parameters derivable from contour alone can be recovered. To recover the two remaining parameters 
(modulo scale) not constrained by image contour requires incorporating additional information into the 
recovery process. e.g. intensity information. We derive a method for recovering the tilt of the object 
using the ruled contour image and intensity values along cross-sectional geodesics. In addition. we derive 

a method for recovering the location of the object's 3D axis from intensity values along meridians of the 
surface. Using the different methods outlined in this paper constitutes an algorithm for recovering all the 
shape pardmeters (modulo scale) of a straight homogeneous generalized cylinder. 

1. Introduction 

A generalized cylinder (hereafter GC) is a solid defined by its axis. cross-section. and sweeping rule. 
Generalized cylinders were first proposed by Binford [1] as a class of parametric shape that is very flexi­
ble and capable of modeling many different types of objects. GCs seem general enough to represent 
many real-world objects yet sufficiently well-defined that we are tempted to recover their shape from 
image data. They have been the topic of considerable research in computer vision and robotics ([2. 3. 4. 6. 

7.8.9.11. 13-17]). 

Exactly because GCs are such an expressive representation, recovery of their shape parameters from 
image intensity data has proven to be a difficult problem. As a result. focus has shifted towards important 
subclasses of generalized cylinders. The subclass that has received the most attention is almost certainly 
that of straight homogeneous generalized cylinders, where the axis is straight and cross-section curves are 
scaled versions of a reference curie (defined in section 2), Even the important subclass straight 
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~omo~en~ous generalized cylinders (hereafter SHGCs) has proven difficult to recover from monocular 
Intensity Images. Brooks' ACRONYM system [4) was successful at recovering a very restricted subclass 
of GCs from contour images, and thus cannot be considered a general solution of the generalized cylinder 
recovery problem. The subclass considered by Brooks in the ACRONYM system consisted of GCs with a 
circular or simple polygonal cross section, straight or circular spine, and linear or bilinear sweeping rule. 
~ven with ~is re~tricted subset of GCs, ACRONYM was only successful at such recovery of the underly­
Ing shapes ill the Image because it had an a priori set of models it was attempting to match to. This is due 
to the fact that the contour image alone is insufficient to yield a unique solution, as will be explained later 
in this paper (section 3). 

There have been other attempts at constructing algorithms for the recovery of SHGCs (see [2-
3],[9],[11-12].[17].[19]). Such attempts either consider a very restricted class of SHGCs (e.g., solids of 

revolution), rely on heuristic methods, or have an a priori set of models the recovery system is looking 
for. This is necessarily so. as the general problem of recovering the shape of an SHGC from its contour 
image is inherently underconstrained and all these methods rely solely on contour information (assuming 
they use intensity images, as opposed to range images). 

In this paper. we provide a method for recovering the unique shape of an SHGC (modulo scale) 
from its intensity image. This is accomplished by first determining the parameters of shape readily avail­
able from SHGC contour. Methods are then developed to recover the remaining parameters. 3D axis 
location and object tilt. using the SHGC intensity image. 

The algorithm presented in this paper relies on some results of other generalized cylinder research­
ers. In panicular. work done by Steve Shafer (18) and Jean Ponce (14],[151 have proved extremely helpful 
to the authors in constructing a complete algorithm for SHGC recovery. In panicular, Ponce's algorithm 
for recovering the SHGC image axis has been incorporated into the larger recovery algorithm. 

In adding intensity-based methods (sections 6 and 7) to the recovery algorithm. one has to be con­
cerned that the resulting algorithm will require a detailed a priori knowledge of the imaging model. such 
as the number of light sources, their positions and intensities, and the lambenain albedo of the surface. 
Such a restriction is highly undesirable since. except for highly controlled research environments. such 
information is generally unavailable. We have tried to avoid this by keeping the assumptions as general as 
possible. For example, the intensity-based method for tilt recovery presented in section 6 makes the fol­
lowing assumptions regarding the imaging model: soft orthographic projection, lambenian retlectance. 

and constant albedo. The method, however, does not need to know the number of light sources in the 
imaging model. nor the position and intensity of each light source, nor the lambenain albedo of the 
material surface. The assumptions are similarly general for the intensity-based method presented in sec­

lion 7 for recovering the 3D axis position. 

In this paper. a contour generator is defined as a 3D curve that generates the image contour. There 
are two kinds of contour generators: limbs. where the surface turns away from the viewer. and edges. 
where the surface orientation is discontinuous. The 20 contour consists of image limbs and image edges 
that correspond, respectively, to the 3D limb and edge curves. In this paper, we use the term ruling in a 
less formal sense than it is used, say, in differential geometry. To rule an SHGC surface (SHGC image) 
is to draw onto the surface its parallels and meridians (respectively image paraiiels and image meridians). 

This paper avoids some of the assumptions that have been made by generalized cylinder researchers 
in the past (and have since been shown to be extremely restrictive). In panicular. it can be easily shown 
that the contour generator of an SHGC is not. in general, planar, nor does it lie along a surface meridian, 
nor is it symmetric with respect to its axis (see [7J.[8],(14).[9]). As a result. we make no such assump­

tions. 
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Meridians and parallels. which can be detennined directly from the image contour (see section 5). 
provide a natural parameterization of an SHGC surface and seem to convey considerable infonnation 
about the underlying shape. e.g. see figure 1. Nevertheless. in sections 3 and 4 of this paper we show that. 
without additional assumptions, no algorithm can recover the shape of an SHGC from the contour image 
alone. The underlying ambiguity is shown to have two parameters of freedom. tilt and location of SHGC 
3D axis. The ambiguity is significant and can affect the sign and magnitude of Gaussian curvature at a 
point on the SHGC surface. 

Figure 1. A straight homogeneous generalized cylinder: a. the intensity image: b. the ruled surface. 

In section 2 of this paper. we define generalized cylinders and straight homogeneous generalized 
cylinders. Next. we show that there exist classes of SHGCs each member of which can generate the 
identical contour (section 3). We then show that, among a given class of contour-equivalent SHGCs. the 
Gaussian curvature at a given point on the SHGC surface can vary both quantitatively and qualitatively, 
e.g., the surface region can be elliptic or hyperbolic (section 4). In section 5, we develop a method for rul­
ing the image of an SHGC and show that from the image of a ruled SHGC all parameters of the underly­
ing surface constrained by the contour image can be computed (e.g., the sweeping rule at an image point). 
In section 6. a method is given for disambiguating among members of a contour-equivalent class of 
SHGCs. This method uses the intensity infonnation along an SHGC cross-sectional geodesic to recover 
the tilt angle of the object with respect to the viewer reference frame. Finally. a method is presented for 
recovering the 3D axis position using intensity values at 2 pairs of surface meridian points (section 7). 
Combining the methods described in sections 5, 6. and 7 provides a complete algorithm for recovering 
the unique shape of an SHGC (modulo scale) from a monocular intensity image. 

2_ Generalized Cylinders: Definitions and Assumptions 

First. we present a definition of generalized cylinders as it will be used in this paper. 

Definition: A generalized cylinder is the solid swept by a planar cross-section as it is moved and 
deformed along an axis. 

This definition is very general and includes some ill-defined shapes (e.g .. self-intersecting). Conse­
quently, no system has yet been developed for the recovery of shape parameters for general GCs without 
additional assumptions. For a taxonomy of Generalized Cylinder subclasses see [18]. 

2_1 Straight Homogeneous Generalized C,ylinders 

In this paper. we are interested in the subcla<;s of generalized cylinders known as straight homo­
geneous generalized cylinders. SHGCs have been defined with varying degrees of generality in the litera­
ture. Typically, the more general a definition adopted for the SHGC class, the Jess that can be said about 
its projective invariant properties and consequently, the harder it is to develop a recovery algorithm. We 
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first present intuitive definitions of some subclasses. followed by the corresponding algebraic formulae. 

Definition: An SHGC is a GC with the following properties: the cross-sections are orthogonal to their 
axis: the cross-sections are deformed only by scaling. the amount of scaling can be parameterized as a 
function of the distance along the axis; and the cross-section curve is assumed to be twice continuously 
differe ntiable. 

We define the GC's with respect to the orthonormal coordinate system (0. r. j. f). where 0 is a 
point on the axis, and (r. J) is a vector basis of the reference cross-section plane. We define SHGCs by 
the equation: 

OF ( z. t ) = f (z) p (t) 1'+ f (z) q (t) j + z f (2.1) 

where the function f is the sweeping rule of the SHGC and p and q are the parameterization of the 
cross-section curve in the I' and j directions. respectively. Note that this definition does not require the 
SHGC axis to be contained within the closed cross-section curve, SHGCs with the axis external to the 
cross-section curve do not always "appear to" have a straight axis. e.g .• see figure 2. 

Since everything is up to a scale factor, we set the scale by defining the scaling function of the top 
cross section curve to f 0 = 1. Curves on the SHGC surface of constant t are called meridians while curves 
of constant z drawn on the SHGC surface are called parallels. This terminology is analogous to that used 
for solids of revolutions. We assume that both the sweeping rule function and the cross-section curve 
are twice continuously di fferentiable (C2). 

In this paper. we will show that a class of SHGCs may produce the identical contour while varying 
in Gaussian curvature both quantitatively and qualitatively. Some examples of this are given in figure 2. 
In figure 2a. 2b. and 2c we show three examples of SHGCs that are all capable. if seen from the proper 
viewing position, of producing the contour shown in figure 1. It is clear that these three shapes differ in 
their qualitative Gaussian curvature for certain regions of their respective surfaces, The same section that 
is elliptic for the shape shown in figure 2a can clearly be seen to be respectively parabolic and hyperbolic 
in figures 2b and 2c. 

Figure 2. Example of 3 contour-equivalent SHGCs with different Gaussian curvature: a. elliptic region; 

b. parabolic region; c. hyperbolic region. 

2.2 The Coordinate System 

Consider an SHGC originally aligned with the viewer reference frame. where the viewer reference 
frame is given by the orthonormal basis (U'. v, w). The SHGC is parameterized in its own coordinate sys­
tem. having an object-centered orthonormal basis (I'. T. f). The SHGC is originally in canonical position 
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vis a'vis the viewer reference frame. i.e .. the vectors ft and r. v and r. and w and j are respectively paral­
lel (see figure 3.a). Assume the SHGC Of is then rotated in space; the rotated SHGC can be parameter­
ized by 

(2.2) 

where <1>. \jI. and ware the Euler angles expressing the rotation about the v, w, and u axes respectively, 
and R Q. R l{I and R CJ) are the rotation matrices about the v. w. u axes respectively. Oearly. the initial rota­
tion around the u axis can be ignored as the resulting SHGC can also be considered in canonical align­
ment with the (ft. V. w) viewer-centered reference frame. where the initial cross section functions p and 
q are replaced with the new cross-section functions p' and q'. The last rotation. around the v axis, rotates 
the projected contour in the image plane but does not modify it in any other way. This image plane rota­
tion can be reversed by finding the image axis, which is a projection of the object-centered r axis onto the 
image plane. and undoing the R Q rotation by bringing the image axis into alignment with (parallel to) the 
viewer-centered ft axis. Thus, without loss of generality, we will only study an SHGC rotated towards or 
away from the viewer, i.e .. around the w axis (see figure 3.b). We refer to this rotation around the w axis 
a" the tilt of the SHGC. 

I , 

" , 

v 

Figure 3. The coordinate system used to define a straight homogeneous generalized cylinder: a. in 
canonical position; b. tilted in the viewer direction. 

Suppose the viewing direction v is given by its spherical coordinates (a, P) in (0, T: T, f\ Based 
on the proceeding argument, without loss of generality a can be set equal to zero. The resulting orthonor­
mal basis of the viewer reference frame (ft, v, w) is defined by 

f1 = -cos P r + sin p r, it = sin p r + cos p r, ~ w =) (2.3) 

Consider the image of an SHGC for some viewing angle. 0 < p < 7t/2. as shown in figure 3.b. It can be 
easily seen that each projected cross-section curve is a scaled version of the projected reference curve. 

This will prove useful for ruling the image surface (section 5). 

3. Contour-equh'alent classes 

Considerable research has been devoted to the problem of recovering the shape of an SHGC from its 
contour. However, there has been less focus on the problem of detennining exactly how the contour con­
strains the class of SHGCs that could have produced it. Looking at both the intensity and contour SHGC 
images displayed in figure 1, one gets a strong feeling for the underlying shape. What constraints are 
imposed on the SHGC shape by the contour image and what constraints are imposed on the SHGC by the 
intensity image? With respect to constraint" on the SHGC shape imposed by contour. it can be shown [7] 
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that contour-equivalent classes exist among SHGes, where each member of the class is capable of gen­
erating the same contour. This was illustrated in the previous section (e.g., figures 2a, 2b. 2c). 

One can parameterize the contour equivalence classes with two independent parameters. These 
parameters correspond to the tilt angle with respect to the viewer reference frame, and the image point 
corresponding to the point of intersection between the SHGe axis and the cross-section plane. In the next 
two sections. we formally define these two contour-equivalent SHGe classes. After these two classes are 
defined, the shape properties of members in each class are considered. In particular. the Gaussian curva­
ture of a surface point (corresponding to a given point on the image) is computed to determine both its 
qualitative and quantitative variation. 

3.1 Tilt contour-equivalent SHGCs 

The definition we use for SHGCs is again given by 

Of ( Z , t ) = f (z ) p (t) r + f (z ) q (t ) r + z k (3.1 ) 

Now consider a particular SHGe So. defined as in equation (3.1). We are concerned with the contour 
(both image limbs and edges) produced by SHGe So, having sweeping rule f 0 (z) and cross-sectional r 
and r components of poet) and qo(t) respectively, with tilt angle = p. We will referto this contour as Cs •. ~. 

We are now interested in defining a class of SHGCs, each member of which is capable of producing 
a contour identical to the one generated by So when viewed with tilt angle = p. The intuitive idea here is 
to take the Original cross-section curve for So. where it is aligned canonically with the viewer's line of 
sight (as in figure 3.a), and stretch it along the viewing direction V (which initially is parallel to I). We 
then tilt it towards (or away) from the viewer until a contour identical to Cs •. ~ is generated. This motivates 

our definition for the family of SHOCs that are tilt contour-equivalent to So, where Si is tilt contour­
equivalent to So iffCs •. fj = Cs .. 1 •. We define Si as follows: 

s7 (s (z). t) = r (s) k Po (t) r + r (s) qo (t) r + s (z) k (3.2) 

where k = ~. s (z) = z ~. k 2: I. and r (s (z» = f (z). k can be viewed as the stretching factor, i.e., 
COSYi Sin Yi 

the factor by which the cross-section curve for Si has been stretched in the r direction. 

It can be proven [7J that, for any stretching factor k 2:1. the viewing angle Yi and the SHOe Sj, 

defined in equation (3.2). produce an image contour CS •• 1• such that CS •• 1• = CS,.fj. i.e., the SHGCs So and 5i 

are tilt contour-equivalent. That being true. we cannot ascertain more about the underlying SHOc' given 
a monocular image contour (without heuristics). than that it is a member of the contour-equivalent class 
defined above. 

3.2 Axis-translated contour-equivalent SHGCs 

We now define a second family of SHOCs, generated by varying the second parameter of freedom 
(unconstrained by the image contour). This second parameter is the location of the SHOe axis, i.e .. 
where the axis intersects the cross-section plane. We assume the image axis can be uniquely determined 
from the contour. However. this still leaves latitude for translating the SHGe axis in the object-centered 
i direction. i.e. to change the parameter t x • 

Let us again consider a particular SHOe So, defined as above. Again. we are concerned with the 
contour (both I imbs and edges) produced by SHOe 50. having sweeping rule f 0 (z) and cross-sectional I 
and r components of po (t) and qo (t) respectively, with tilt = P and translation of the reference cross­
section curve with respect to the axis = O. We refer to this contour as Cs •. ~.o .1 

I. The 3rd parameter of the subscript denotes the amount the reference cross-section curve has been 
translated along the cross·section plane in the positive r direction. 
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We are now interested in defining a class of SHGCs, each member of which is capable of producing 
a contour identical to the one produced by So when viewed from the same viewing angle. i.e., ~. but 
where the location of the axis is allowed to vary. The intuitive idea here is to take each cross-section 
curve of the original SHGC (50)' translate it with respect to the axis. and then slide it up or down the axis 
to achieve a contour equivalent to that of Cs .. ll.o. This then motivates our definition for the family of 

SHGCs that are axis-translated contour-equivalent to 50, where 5i is considered axis-translated contour­
equivalent to 50 iff Cs •. ~,o = Cs, .~.h. We define 5i. a member of this contour-equivalent class, as 

s7 (5 (z). I) = r (5) (p (I) + h) i + r (5) q (I) r + s (z) r (3.3) 

where h is the distance the reference cross-section curve has been translated from the origin 0 in the r 
direction. and s (z) = z - h ~n-t) , where / z is the sweeping rule of SHOC 5 o. 

It can be proven [7] that, for any axis translation factor h, the sweeping rule r (s) = / (z), where s is a 

function of z (as above). yields an image contour Cs, .~.h such that Cs, .~.h = Cs •. ~.o, Le .. the SHGCs 50 and 

Si are axis-translated contour-equivalent. 

Thus. without heuristic methods, we are confronted with the fact that the contour of an SHGC 
image still leaves us with classes of contour-equivalent SHGCs. In particular, one class of contour­
equivalent SHGC shapes allows for changing of the viewing direction and stretching the cross-section 
function. The other contour-equivalent class fixes the viewing angle but varies the location of the cross­
section curves with respect to the axis (as well as the corresponding sweeping rule). 

4. Gaussian curvature for equivalent contour classes 

We now consider the Gaussian curvature of a point on an SHGC surface that maps into a given 
point in the image. Since we have defined classes of SHGCs that map into the same contour, one can ask 
how the Gaussian curvature changes at a surface point as the shape of the SHGC is allowed to change 
(restricted to members of a contour-equivalent class). A study of how the curvature of the contour affects 
the Gaussian curvature of points along the contour generator can be found in [10]. Here we are concerned 
with how the Gaussian curvature of surface regions visible in the image are constrained by contour. 

4.1 Tilt equiyalent contour-equivalent class: Gaussian curvature 

Where SHGe 5, is defined as in equation (3.2) (Le .. the SHGC is a member of the tilt contour­
equivalent class), the Gaussian curvature can be shown (see [5] and [7]) to be given by 

ai 2 b, 2/, " (P, q,' - q, P, ') (q,' PI" - P,' q,") 
Ks, (s ,t) = /t (ai2 biZ p,'2 + b j

2q,'! + ai 2 /.'2 (P, q,' _ q, P, j2)2 (4.1) 

wherea. =k = ~ and b =~. 
• I COSYi 'smYi 

It can been seen from this equation that as stretching factor ki changes so does the Gaussian curva­

ture. In fact. the Gaussian curvature at a point on this surface goes to zero as k ~ 00. The Gaussian curva­
ture will tend towards 00 at a point where /, . = O. PI' = 0, and k ~ 00. It can also be determined from equa­
tion (4.1) that the Gaussian curvature of the surface point can be made to vary quantitatively but not qual­
itatively; i.e., the sign of the Gaussian curvature will not vary at a given surface point for any member of 
the till contour-equivalent class of SHGCs. 
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4.2 Axis-translated contour-equivalent class: Gaussian curvature 

Next, we consider the Gaussian curvature of a point on an SHGC surface that is a member of the 
axis-trans~ated_ Contou~-equiv~lent SHGC class and that maps into a given point in the image. Where 
SHGC Sj IS defined as In equatIOn (3.3). the Gaussian curvature can be shown (see [5] and [7]) to be given 
by 

d3/"«P h)' ')('" ''') Ks (s () = j. I + j ql - ql PI ql PI - PI ql 
.' I. (p,'2+ q,'2+di 2/.'2«p,+hi )q,'_q,P,')2)2 (4.2) 

where dj = tan ~ ~i It ' and hi is the translation o[ the reference cross-section curve from the axis for 

SHGCSi . 

It can be readily seen from this equation that as the translation factor hi changes so does the Gaus­
sian curvature. In [act, the Gaussian curvature at a point on the surface goes to zero as dj --too; this occurs 
when tan p = - hi/z '. Also. it can be seen that K --t 0 as h --t 00. Because of the dj 3 term in the numerator 
of the equation. it is clear that by varying h the Gaussian curvature can be made to change not only quan­
titatively but also qualitatively (positive to negative or the reverse). 

The quantitative change in Gaussian curvature as the SHGC surface changes is not necessarily a 
good indicator of how much one SHGC shape differs from another. This is due. among other things, to a 
lack of scale invariance in the measure (see [20]). To get additional information on SHGC surface varia­
tion, the range of possible normal directions at a point on the surface can be computed (see [7]). 

5. Ruling over generalized cylinders 

There are a finite number of ways that an image cross-section can interact with the image contour. 
By studying the possible interactions. we derive a method for ruling the surface of an SHGC, i.e .• for 
being able to detect the image meridians and parallels from the contour image. We refer to the detection 
of image parallels and meridians on the image of an SHGC surface as a ruling over the image of the sur­
face. as described in section 1. 

In general. one does not see an object from a degenerate view. Le., directly from above or directly 
from the side. Assuming this to be true. the SHGC cross-section curve does not project onto a straight line 
in the image plane. but rather onto a closed planar curve (which may include straight line segments). We 
are interested in ruling the SHGC image assuming the image contains both image limbs and image edges. 

There are different ways in which an image cross-section can affect the SHGC bounding contour. It 
is possible for image cross-sections not to intersect the bounding contour at all. It is also possible for an 
image cross-section to intersect this comour at exactly one point. Finally. an image cross-section can 
intersect the bounding contour at two or more points. Examples of each configuration are given in [7]. 

In general. most non-occluded image cross-sections tend to have 2 or more points of intersection 
with the comour. which suggests a method for ruling the SHGC image. This method assumes the image 
axis has been recovered. Algorithms using the SHGC contour to recover the image axis of an SHGC. 
where the cross-section function is assumed polar with respect to the axis. are given in [14] (though the 
robustness of such algorithms is not assured). In [7]. we prove that the 2D axis lemma. on which the 
algorithm for recovering the image axis is based, generalizes to SHGCs with arbitrary cross-section func­
tions. as defined in Equation (3.1). Once the image axis has been recovered, the reference curve is placed 
at a given point along the image axis and scaled so that it touches the bounding contour at 2 or more 
points. without any point extending beyond this contour. Using a non-accidental alignment criterion. we 
assume that if the above scaling exists. it indicates that the image parallel at this point (along the axis) has 
been correctly recovered. The alternative. that the image cross-section at this point does not actually 
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contribute to lhe contour and it is only coincidental that lhe scaled image cross-section intersects lhe con­
tour at two or more points (without extending beyond it). is ruled out as an unlikely occurrence. This 
allows us to draw image parallels at any desired point along the image axis. 

This technique is illustrated in figure 4 which shows the contour and image axis of lhe same SHGC 
shown in figure I. Also shown in the figure are scaled versions of the reference cross-section curve for a 
cenain point along the image axis. It can be seen that for only one scaling the image cross-section curve 
exactly touches the contour in two places: for every olher scaling. the cross-section curve is either con­
tained entirely within or extends beyond the bounding contour. Thus. this osculating image parallel is 
presumed to be the correct scaling of lhe projected reference cross-section curve at this point along the 
image axis.2 

Once the image parallels have been found at various locations along the image axis. the image meri­
dians can be computed by connecting corresponding points of adjacent parallels with smooth interpolat­
ing curves. The possible parameterizations of an SHGC can be grouped into equivalence classes. as 
explained in [15). That being the case. we can decide on a particular parameterization from among this 
equivalence class by. somewhat arbitrarily. setting the scaling function of the top cross section curve to 
f 0 = 1. Having done so. it is clear from equation (2.4) that the scaling factor is also known for all the 
image parallels detected by the method described above. 

Figure 4. A method for ruling thc SHGC imagc: different scalings of the image parallel and the correct 
scaling. 

6. Solving for the tilt angle 

In the precceding section. we derived a method for ruling the SHGC contour. The parametcrs that 
remain unconstrained by ruling lhe SHGC image are the tilt angle and the 3D axis location. This is clear 
since the ruling of the SHGC contour is completely a function of lhe SHGC contour. and lhe SHGC con­
tour alone is insufficient to constrain thcse two parameters. as explained in section 3. We then showed. in 
section 4. how varying these free parameters can affect the qualitative and quantitative Gaussian curva­
ture of the SHGC surfacc. 

2. This method fails to recover the scaled image parallel at a point along the image axis where the image 
parallel intersects the contour at at most one point. In addition we note that it cannot be determined from the 
contour to which point on the image axis this image cross-section curve corresponds. That correspondence 
depends on where the image axis intersects the image parallel which cannot be ascertained from contour in­
formation alone. as demonstrated in section 3 of this paper. 
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The logical question that follows from the previous sections is: "given that these contour-equivalent 
classes exist, how does one recover a unique SHOC from an SHOC image?". The answer is to either rely 
on contour information alone and incorporate heuristics into the recovery process (extremum principle. 
elc.). or to incorporate additional information into the recovery process. The most immediate source of 
additional information (and consequently of additional constraints on the solution space) is from the 
SHGC intensity image. Such additional constraints can be used to solve for the tilt angle (towards viewer) 
and the 3D axis position. 

A method of solving for both of these parameters, tilt and axis translation. is presented in [7] .3 We 
describe both of these methods briefly in this section and the next. Once these parameters are recovered. 
the surface can be completely described (modulo scale).4 

We now describe, in this section. the method for recovering the object tilt by incorporating intensity 
information into the recovery process. Assume we have an SHGC intensity image, as shown in figure S.a. 
First. the image axis is recovered (see [14]). Next. we find contour points that are extrema of distance 
between the SHOC contour and the image of its axis. Due to a lemma by Ponce (see [14]). we know that 
this contour distance extrema corresponds to an extrema of the sweeping rule function f. But this means 
that such points are projections of geodesic curves, where the tangent vector along the meridian is parallel 
to the SHCO axis. Jto d~lc, 

L1:lJ- ~ T 
to."j t,nt 

CJ.) ~ V PI 14 f\l!. 

Figure 5. SHGe tilt recovery method: a. drawing of image cross-section tangents; b. overhead view of 
tangent planes intersecting for points on the cross-section curve. 

Next. using the method described in section 5. we recover the image parallel at one of the contour 
extrema points (lying on a geodesic of the SHOe). As a corollary of the mean value theorem. there exists 
at least one point on this image parallel with an image tangent vector along the image parallel curve that 
is perpendicular to the image axis. We will refer to this image point (as seen by the camera) as Co. Next. 
we find a point on each side of Co. such that the tangents to the image parallel at these points intersect the 
tangent to at Co at opposite angles. e and It - e respectively. We will refer to these points as Cr and C/: see 
figure S.b. Let So. S" and S/ be points on the surface of the SHOe that correspond. respectively. to the 
image points Co. C. and CI • It can be shown [7) that the tangent planes at Sr and SI make equal angles 
with the tangent plane at So (modulo the sign of the angle); sec figure S.b. 

3. The method requires making some general assumptions regarding the imaging model. e.g .. orthograph­
ic projection. lambcrtian reflectance, and constant lam bert ai n albedo. 

4. This recovery method also requires that the SHCG have an extrema of the sweeping rule (e.g., geodesic 
cross-section curve). 
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Consider a single light source at some arbitrary position in space. though distant from the SHGC 
object (Le .. projection is orthographic). We now select a new object-centered coordinate system for the 
SHGC. obtained by rotating the <1. j, k) coordinate frame around the k axis until the r axis is aligned 
wi th the normal vector at So. In this new orthonormal coordinate system ([7. t, E\ the unit normals at So, 

S,. and SI are (0. 1.0). (sin 0, cos o. 0), and (- sin O. cos 0.0). respectively. where 0 is the angle made by the 
intersecting tangent planes at S, (or SI) and So. 

We are interested in the intensity values at S,. SI. and So. assuming diffuse reflectance and constant 
diffuse albedo. Let C = (e \. e 2. e) be the unit point source directional vector. The image intensity values 
at Co. C,. and CI are directly proportional to the cosine of the angle between the normal vector at So. 5" 
and 51. respectively. and r. 

Without loss of generality, assume the intensity of the incident light and the diffuse reflectance 
coefficient of the surface are equal to 1. Thus, the intensity value at a point is equal to the cosine of its 
normal vector with the light source vector. The reflectance equations for 50.5,. and 51 are then simply 

Rc = q • 'J e \2 + e i + e )2 
(6.1) 

Re = el sino+e?cosO 
. 'JeI 2+e22+e)2 

(6.2) 

R -el sino+e2coso 
e, = " e 12 + e 22 + e)2 

(6.3) 

It is easy to show that the same intensity values given for the image points by equations (6.1). (6.2) 
and (6.3) can be obtained by moving the point light source so that it is coplanar with the points So. 5,. and 

I· th' . f h . 'd \. h b f f --.Ie \2 + e2
2 Th' . . 51 and then resca mg e mtenSlty 0 t e mCI ent Ig t ya actor 0 :I 2 2 2' IS new ImagInary 

'1el+e2+ e) 
point source directional vector is given by C' = (e" e2. 0); see [7]. 

As we have already mentioned. the points So. S" and 51 all lie on a geodesic of the surface. Since 
the new point light source is coplanar with the geodesic curve (where meridian tangents are parallel to the 
axis). it is easy to see that the tangent planes at these three points do not tilt towards or away from the L'; 
in gradient space terminology. q = O. 

Without loss of generality (see [7]). we again assume that the intensity of the incident light for this 
new (imaginary) point light source is equal to I and that the point light source directional vector is a unit 
vector. Equations (6.1 )-(6.3) can then be rewritten as 

Reo = cosO{) = e2 

Re. =cosal =elsinO+e2coso 

Re, =cosa2 =-el sino+e2coso 

(6.4) 

(6.5) 

(6.6) 

Using the trigonometric identity cos(x +y)=cosxcosy -sinx siny and equations (6.5) and (6.6) we 
obtain 

(6.7) 

and 

Re, = cos a2 = e 2 cos 0 + e I sin 0 (6.8) 

We can then add the intensity values at the image points C, and CI to obtain 
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Rc,+Rc. = 2 e2 coso (6.9) 

Dividing the right side of equation (6.9) by the right side of equation (6.4) yields simply 2 coso, where 0 
is the angle between the tangent plane at So and Sr (or S/). So the value of 0 can be obtained directly from 
the intensity values at Co, Cr. and Ct. But knowing the angle 0 between the tangent planes, and the angle 
e that the image tangent at Cr (or C/) makes with W (e.g., the image tangent at Co) allows us to compute 

the object tilt p since cos P = :~. 

This method. then, does not need to know the light source position, diffuse reflectance coefficient of 
the surface. or intensity of the incident light. Also. it works equally well for multiple light sources (see 
(7]). Details and examples of the method are given in [7]. 

7. Recovery of the 3D Axis Position 

In this section. we present an intensity-based method for the recovery of the 3D axis position. This 
method presumes, as in the method of the previous section, that the SHGC has an extrema of the sweep­
ing rule. We presume a parameterization of the SHGC as in equation (2.1), and since we assume the 
image axis has already been recovered in section 5 (as a prerequisite to ruling the SHGC image), we are 
trying to solve for the translation parameter of the axis in the r direction, given by the tx parameter of 

Equation (2.1). We assume, since the image axis has been recovered, that ty is known. Recovering the tx 

parameter will allow us to completely describe the shape of the SHGC image (modulo scale) and the 
recovery algorithm will be complete. We also presume that the object being recovered has a planar top. 
Again, all projections are presumed to be orthographic, with the object having constant albedo and 
lambertian reflectance. Without loss of generality (see [7]), we assume the lambertian albedo A = 1 for the 

entire SHGC surface. 

Consider the imaging scenario illustrated in figure 6. The light source is presumed to be above the 

object (with respect to the object-centered coordinate system). The light source vector can be decomposed 
initially into orthogonal clements, one vector in the direction of (parallel to) the SHGC axis k, while the 
other vector is perpendicular to the SHGC axis (parallel to the cross-section plane). We call the light 

intensity vector parallel to the SHGC axis I ... and the light intensity vector parallel to the cross-section 

plane Ip (see ligure 6). 

Figure 6. Imaging model for recovering the SHGC 3D axis position. 

We now consider two points on the SHGC surface, Sa, and SM., which correspond respectively to a 

point on a cross- sectional geodesic of the surface (where points on the geodesic can be found directly 

from image contour, as in the previous section), and a point on the same surface meridian as the selected 
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geodesic point (see figure 7). We know that the tangent plane at a point on the surface geodesic is paral­
lel to the SHGC axis [51. and we would like to determine, as a first step in recovering the 3D axis posi­
tion. the angle that the tangent plane at SM, makes with the tangent plane at SG,. To do this, we want to 

further divide the intensity ray into orthogonal components. Let 1M be the component of Ip (the vector 
parallel to the cross-section plane) in the direction of the surface meridian along which SG and SM lie (see . . 
figure 7). and letIr be the the ponion of Ip orthogonal to 1M. It is intuitively obvious thatIr will have no 
effect on the intensity values at either SG, or SM, since Ir is parallel to the tangent planes at both points 

(see figure 7). In addition. assuming for now a single light source. the intensity at SG, is clearly 

RG,=IM 

while the intensity at SM, is clearly given by 

RM, = cos ~ I;. + sin ~ I.~ 

where 4> is the angle the tangent plane at SM, makes with the tangent plane at SG •. as shown in figure 8. 

~ 
"J-

"S~ ,<. 
iQl,If'c.e, ~...: 

~ •• r /' 
'\ . \ .... "~c.. 

\ ~ ",,(. .. \d.\~ ... 
/ '--~ -:;0 ~ 

,~~~ s~~·\~; -(A~ 
~H.:A(.~\c. ,- - - -' - ... .rr f7. ~ 

. ~\_!.t. 
__ .~ A,.,,~ 

(7.1) 

(7.2) 

Figure 7. 

axis. 

Decomposing the light intensity ray rinto 2 components. parallel and orthogonal to the SHOe 

,~d& -I'hJ ~ 

"'ct. ('\~'I\'t ,\~"t. 
.... Jr Sbo 

Figure 8. A side view of the SHOC meridian containing the points SM, and SG, 

We now consider a third point on the SHOe surface, SlOp. with intensity value given by 

(7.3) 
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As can be seen in figure 8 (see also [7]), the intensity equation at SM, given by Equation (7.2) can be 
rewritten as 

(7.4) 

where Rtop . RG, and RM, arc simply the observed image intensities, respectively. at the points SlOP' SG •• and 
SM,. 

From equation (7.4) and the intensities at the points Stop, SG., and s.~" it is simple to obtain two 
closed form solutions for ell. the angle between the tangent planes at SG, and s.~" given by 

and 

<P - RG. -J RG/+Rtop 2_RM/ +RlOp RM, 

1-- Rtop '" RG,2+RIOP2_RM,2 - RG.RM, 

eIl2 = _ RG• -J RG/+ Rtop 2_ RM/ - Rrop RM, 

Rrop '" RG,2+RlOp2_RM,2 + RG,RM, 

(7.5) 

(7.6) 

So we have two solutions for ell. the angle between the tangent planes at SG, and SM, This [urns out not to 
be a problem. as will soon be explained. and we are able to arrive at a unique solution for ell. 

Assuming without loss of generality (see section 2.2) that the only rotation of the object is towards 
(or away) from the viewer. we obtain the following equation for the normal of a point on the SHGC sur­
face 

N = q 'i - p ']+ + f' (p' q - (p + I. ) q' ))f (7.7) 

From the equation for the normal. we can immediately obtain an equation for ell. the angle the tangent 
plane at a point makes with the tangent plane of a point on a geodesic of the surface lying along the same 
meridian. This angle ell can be computed using the equation 

tan¢)= (f'(p'q-(P+lx)q') 
. '1q'2 + p'2 

(7.8) 

But we can solve for 4> directly from the intensity image using equations (7.5) and (7.6). In addition, we 
assume that the values of p. q. p '. and q' are either known or computable. This is a straightforward pro­
cedure as the tilt of the object has already been recovered (section 6). so that p and q at a point on the 
image are directly available from the image. while p' and q' can be computed using splines (see [7]). 
Thus. the only values in Equation (7.8) whose values are still not computable are f' and I •. 

We are interested in recovering I,. To do so. we first rewrite Equation(7.8) with f' on the left side, 
such that 

(7.9) 

To solve for II' we need to select another set of three points on the surface of the SHGC; we use the 
point Stop again. and additionally select a geodesic point SG, (on the same cross-section curve as SG,) and a 

point s.~, on the same meridian as SG, and on the same cross-section curve as SM,. This is illustrated in 

figure 9. This set of three points, SG., S~" and Stop will yield two solutions for 4>. as given by Equations 

(7.5) and (7.6). Selecting one of the solutions for ell. the tangent plane angle. for the surface points at s.~. 

and s.~. and using Equation (7.9) gives us two equations for f', where the only unknown parameter on the 

right side of the equation is II' Since the points SM, and SM, lie on the same cross·section curve. the value 
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of f' .at both points is the same: .thus. the right sides of the respective equations for f' generated using 
equatlOn (7.9) must be equal. Sellmg them equal. we are able to get a solution for Ix given by 

_ tan ¢II ..Jq ? + p? (Po' q - '- tan ¢Io..Jq '02 + '2 
Ix - ran ¢lop I' qo'2+ Po'2- tan¢lIPO' (7.10) 

where $a is a solution for ¢I from the first set of meridian points (SG, and SM,). ¢II is a solution for ¢I from 

the second set of meridian points (SG, and s.>.I,), and Pi. qi. Pi', and qi' correspond to the cross-section func­

tions (defined in equation (2.1» and their derivatives at the point SM,. Since every term on the right side 

of equation (7.10) has already been computed, the value of Ix can now also be computed. 

'c'o 

\ """~t. 
~tr\6\~~~ 

Figure 9. The SHGC surface points used to recover the 3D axis position. 

To get a unique value for I" since there are two values of ¢I computed for each set of meridian 
points (corresponding to the two solutions for the tilt angle given in equations (7.5) and (7.6», we take 
several sets of meridian points. where each set gives us four solutions for I" since there are four ways to 
select one <I> value from each pair of ¢I values. Only one solution for I, will appear in all sets of solutions 
for Ix. and that is the desired value for Ix. It is easy to see [7] that this method works regardless of the 
number of light sources so Long as a light source seen at point SG, is also seen at point SM,. This does not 

seem unduly restrictive since SM, can be chosen arbitrarily close to the surface geodesic point SG,. 

Thus. we have demonstrated that all shape parameters of the SHGC (modulo scale) can be com­
puted using constraints from both the contour and the intensity of the SHGC image. Examples of the 
method are given in [7J. 

8. Conclusion and Future Work 

In this paper, an algorithm to uniquely recover the shape of an SHGC (modulo scale) was presented. 
It incorporates methods using both contour and intensity information. It is the first such algorithm known 
to the authors to recover SHGCs in a general, non-heuristic way. The methods that are intensity-based do 
not require a knowledge of the number of light sources. their positions. or intensities. 

The problem of recovering the shape of an SHGC from contour images alone is inherently ill-posed. 
This point is formalized in the paper by defining classes of contour-equivalent SHGCs. We then demon­
strated that the contour of an SHGC docs not even determine the qualitative curvature of a surface region 
(such as whether it is elliptic or hyperbolic). let alone the quantitative Gaussian curvature. A method is 
then developed for ruling the image of an SHGC surface. We show that while a ruled SHGC image 

makes certain parameters of the underlying SHGC explicit. such as the value of the sweeping rule at a 
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point on the image. other parameters still need to be recovered. e.g .• axis translation and object tilt. 

This paper shows that additional constraints are required in order to recover SHGC shape from con­
tour. One constraint available is that of intensity information. Next. we presented a method that makes 
use of both contour and intensity information to recover the tilt of an SHGC. The method detects image 
geodesics from extrema of distance contour points. Intensity values of certain points along the image 
geodesic are then used to compute the angle between the tangent planes at their corresponding surface 
points. The angle made by the tangent planes can then be used to recover the tilt of the SHGC vis a vis 
the viewer reference frame. Then. the final shape parameter (modulo scale) was recovered in section 7. 
location of the 3D axis position, using the intensity values at several points (2 sets of meridian points and 
a point from the top cross-section plane). Thus, a complete algorithm for the recovery of the shape of an 
SHGC from its intensity image was presented. 

Further research in this area will take several tracks. First, the algorithm presented in this paper, 
already tested experimentally, needs to be incorporated into a real-world system robust under noisy imag­
ing conditions. A second direction for funher research is to remove some of the restrictions on the current 
method. e.g., lambertian reflection and an extrema of the sweeping rule. Finally. the algorithm to recover 
SHGCs presented in this paper should be extended (if possible) to include a broader class of GCs. such as 
one that allows for different sweeping rules along onhogonal directions of the cross-section curve. 
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