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Abstract 

This paper describes a method for learning the joint probability distribution of a 
set of variables from a sample of instances from the domain. The method is based 
on a straightforward application of Bayes Law to the problem of estimating 
individual probabilities from a probability distribution. We use a maximum 
entropy distribution as an initial estimate and show how this estimate can be 
easily updated each time an additional example is observed. Although developed 
for the purpose of estimating the conditional probabilities required for Bayesian 
inference networks, this method can be adopted to simplify knowledge acquisition 
in any expert system that uses knowledge in the form of probabilities, 



1. Introduction 
The acquisition of knowledge for e~p~rt systems operati~g in pro~~~ilistic 
domains is especially difficult because It IS necessary to specIfy probabIlmes. f<?r 
most of the information included in the domain model. In the worst case It IS 
necessary to specify and store the full joint probability distribution for the 
predicates that are us~d in a domain model. . FO.r .example if .t~~re are 15 
predicates in the domam model there are 21L 1 mdivIdual probabIhtIes to deal 
with. One of the advantages of Bayesian inference networks is that they reduce 
the number of probabilities required by excluding all those that represented 
independent relationships among the predicates. Nevertheless, the difficulty of 
specifying subsets of the joint probability distribution remains a serious problem. 
Even when an expert is willing to attempt this task they are unlikely be able to do 
so with a high degree of accuracy. 

Research that has addressed the problems of knowledge acquisition and storage of 
probabilities has assumed that knowledge of the distribution is fixed. There are 
two basic approaches in this work. One approach is to use functional forms to 
specify large segments of the joint distribution. As long as the functions are easy 
to compute probabilities need not be stored and can be computed as needed. 
Furthermore knowledge acquisition is simplified because an expert need only 
specify a single functional form to describe a potentially large set of probabilities. 
Along these lines. Cheeseman (Cheeseman, 1983) has shown how functions to 
compute maximum entropy probabilities that take arbitrary constraints on the 
form of a distribution into account can be derived. Cooper (Cooper. 1988) has 
described a class of functions called prototypical probability junctions which 
have been used in systems built on Bayesian inference networks (Pearl, 1986. 
Pearl. 1987, Geffner and Pearl, 1987, Cooper, 1984). The second approach is to 
use decision theory to limit the knowledge that is acquired (Heckerman and 
Jimison, 1987, Horvitz, 1987). In these methods the domain model is only 
specified up to the point to which it is determined to be worth the effort. Large 
segments of the probability distribution may then be ignored. 

In this paper we describe a Bayesian method for learning the joint probability 
distribution from a set of instances. There are two features of our work that set it 
apart from other research into the acquisition of probabilistic knowledge. First. 
we use actual instances from the domain to estimate a probability distribution. 
Secondly, we do not assume that knowledge of the probabilities is fixed. This 
method ~as the advantage that estimates of the probabilities can be easily updated 
as new mstances are observed. Thus, a system using this method will become 
more accurate as its experience solving problems grows. 

2. Derivation of the Updating Formula 
This work is a straightforward application of Bayes Law, 

jC8ly) = h(8)g(y18) 

Jab h(8)g(y18)d8 

wherejC8ly) is the posterior density function of 8 given that y is known and h(8) is 
the prior density function of 8. 

In our application of Bayes formula we take 8 j to be the probability of the i th 

vector. where each vector represents a point in the Cartesian product of a set of 
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nominal valued variables, Vi' i.e. VI x V2 X ..• V". In otherwords. if the 
cardinality of VI x V2 X ... V" is m then there are m possible vector outcomes. 
Denote the ith outcome, (V I ,V2, ..• v,,), by Ai' From an alternative perspective. 
imagine that all the possible instantiations of a frame in a simple frame system l 

have been listed in some order. Then there are m frame instantiations in the list. 
Ai is the i th frame. and 8 i is the probability of Ai' 

Given that we have n=nl+~+' .. 11m observations such that there have been ni 
observations of A j' 

Then the problem is to find an estimate, S', of e = (8 1.82, .•• 8m ) such that 

1:18/=1. 

Restating Bayes Law as it applies to our problem, we have the following formula 

for the posterior density function of 8 given a sample of instances represented by 
(n l ,n2, ... n,,). 

and. because we have the constraint, 1:1 8/=1, we treat the 81'82,' .. 8m-I as 

independent variables with 8m=1-1~lei' 

The equation for 10 above gives us a density function for each 8 j but for most 
applications we need a point estimate of 8i for each i. Therefore. we will use the 
expected value of 8i which is given by, 

In order to solve our instantiation of the equation for Bayes Law, we have two 

subproblems. (1) we need to obtain the prior density function, h(S), and (2) we 

need the conditional density function, g(n l ,n2, •.. nmIS). 

For the prior distribution, h(S), of the probabilities we are estimating we would 
like to assume as little as possible. Therefore, we select the maximum entropy 
distribution and assume the prior density of (8 1.82, ••. 8m ) is uniform on the 
convex polyhedron bounded by the constraints. 8i~O. which lies on the 

hyperplane. 1:18,=1. Thus, 

1 By "slmpk frame system" we mean one that does not include nesting or an object hierarchy. 



since the area of the polyhedron is 

rm 
(m-I)! 
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To compute the conditional distribution, g(n1 ,~, ••• nmIS), we make the standard 
assumption that instances in our sample are independent. Therefore the 
probability of the sample is the product of the probabilities of the instances. The 
probability of an instance Ai is 8 j and we have nj examples of Ai in our sample. 
Taking the product over the sample we get, 

m 

g(n1,n2 • ••• nmle) = 81"1.82"2 .... 8m "m = II 8ti 

i=1 

Integrating and multiplying by 8i to get the expected value we have an equation 
much like that above except that 8 i in the numerator has an exponent of ni+ 1 
rather than ni: 

fO
lfoHll ... foH91+92+' ·9 2)(m-I)' m- '8" 8 8 ,,+1 8" -/8 d8 d8 _ I I, 2"2,··· i / ... m mu m-l m-2'" 1 vm 

8' =---------------------------
/ folfoHll"'fol-<91+92+ .. 92)(m-l)! m-I m- 81"1,82"2 .... (L 8)"md8m-ld8m-2 ... d8 1 

~ i=1 

Solving for the integral in the denominator we get, 

Solve for the integral in the numerator in roughly the same way and you get a 
similar result but with ni replaced by n j+ 1. Then dividing the numerator by the 
denominator we get an updating fonnula for estimating the probabilities: 

n.+ 1 
8·' = / / -m---

L (n j+ 1) 
i=1 



In addition to providing an initial estimate for the joint probability distribution, if 
we store the ni , this formula enables us to easily update that distribution as we 
come across additional problem instances. Notice that we are not required to 
store an ni for every point in the probability space. Instead we only store these 
numbers for the instances which we have seen. If we are attempting to estimate 
the joint probability distribution in the worst case we are required to store one 
number for every unique instance that we come across. If there is a great deal of 
regularity in the domain we can expect that the number of actual instances is 
small relative to the number of points in the space. Furthermore, if we are 
estimating the distribution for a Bayesian inference net we need only store one 
number for each conditional probability in the network for which we have seen at 
least one relevant instance. 

3. Summary 
This paper describes a Bayesian method for estimating the joint probability 
distribution for a domain from a set of instances. The method has the advantage 
that it can be used to easily update the estimated distribution each time an 
additional example is observed. Thus it not only simplifies initial knowledge 
acquisition for a probabilistic expert system but, unlike other approaches designed 
for this problem, it enables systems in which it is adopted to learn from 
experience solving problems. 

We are currently working on determining how fast estimates based on this 
method can be expected to converge to the true distribution. This should enable 
us (0 develop a measure of confidence for how closely the estimated distribution 
can be expected to approximate the true distribution given the number of 
instances in a sample. Another important area of future research is to show how 
arbitrary constraints on the prior probability distribution can be incorporated into 
the method. This would make it possible for an expert to specify ranges for those 
of the probabilities about which they have uncertain prior knowledge. 
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