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Abstract 

During the Late Triassic, the Newark rift basin of Eastern North America was in the interior of tropical (2.5-9.5°N) 
Pangaea. Strikingly cyclical lacustrine rocks comprise most of the 6770 m of continuous core recovered from this 
basin by the Newark Basin Coring Project. Six of the seven drill cores (each from 800 to 1300 m long) from this 
project are used to construct a composite lake-level curve that provides a much needed record of long term variations 
in continental tropical climate. The correlations on which the composite section is based show complete agreement 
between lake level cycles and independent magnetic polarity boundary isochrons. The main proxy of lake level and 
hence climate used to construct this lake level curve is a classification of water-depth related sedimentary structures 
and fabrics called depth ranks. We then use Fourier frequency analysis (both FFT and multitaper methods) and joint 
time-frequency approaches to resolve the periodic properties of the cyclicity and the secular drift in those properties. 
A consistent hierarchy in frequencies of the lake level cycles is present throughout the Late Triassic (and earliest 
Jurassic) portions of the cores, an interval of about 22 m.y.. Calibration of the sediment accumulation rate by a 
variety of methods shows that these thickness periodicities are consistent with an origin in changes in precipitation 
governed by celestial mechanics. The full range of precession-related periods of lake level change are present, including 
the two peaks of the ~ 20,000 year cycle of climatic precession, the two peaks of the ~ 100,000 year eccentricity cycle, 
the single peak of the 412,900 year eccentricity cycle, and the ~2,000,000 year eccentricity cycle. There is also good 
correspondence in the details of the joint-time frequency properties of lake level cycles and astronomical predictions 
as well. Even in an ice-free world, the tropical climate of Pangaea responded strongly to astronomical forcing, 
suggesting that precession-dominated climatic forcing probably always has been a prominent feature of tropical climate. 

I.  Introduction 

Milankovitch theory predicts that variations in 
continental tropical climate will be dominated by 
insolation variations produced by the cycle of  the 
precession of  the equinoxes (Short et al., 1991; 
Crowley et al., 1992). However,  largely due to 
logistical difficulties, there are no geologically long- 
term continental records f rom the present day 
tropics, for example, the East African rift lakes. 
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Thus, direct geological records for the long term 
behavior of  tropical climate remain restricted to 
marine strata where the regional dynamics tend to 
be blurred by large scale integration of  distant 
phenomena,  such as polar  ice sheets. 

During the Late Triassic, there is no evidence 
of  ice sheets even at the poles (Frakes and Francis, 
1988), and the supercontinent of  Pangaea lay 
astride the equator  (Fig. 1). The initial phases of  
the breakup of  Pangaea produced a series of  
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Fig. 1. Pangaea and the Newark Supergroup, showing the 
position of the Newark basin in Pangaea about midway 
through the NBCP core record. Figure modified from (Olsen 
et al., 1995). 

continental rifts distributed along an almost north- 
south transect across the equator. These basins 
subsided for over 30 m.y. during which many of 
them accumulated thousands of meters of largely 
lacustrine sediments. Today, the eroded remnants 
of these lacustrine rifts are exposed in eastern 
North America and allow relatively easy access to 
extremely long and continuous records of tropical 
climate change. 

The Newark basin (Fig. 1) is one of the largest 
of these continental rifts and one with a very long 
lacustrine record, spanning nearly the entire Late 

Triassic (Olsen, 1986; Cornet and Olsen, 1985; 
Cornet, 1977, 1993). During its depositional his- 
tory, the basin drifted from 2.5 to 9.5°N latitude 
(Witte et al., 1991; Kent et al., 1995). Olsen 
(1986), following Van Houten (1964), showed that 
the relatively well exposed middle Lockatong 
Formation of the central part of the basin consists 
of cyclical lacustrine strata formed by lake level 
fluctuations controlled by astronomically forced 
cycles in precipitation. Although it seemed plausi- 
ble that much of the rest of the basin section was 
characterized by similar cyclicity, poor exposure 
limited the available measured sections to less than 
10% of the total present. It was therefore impos- 
sible to examine the long-term stability of the 
system or the judge the generality of the observed 
pattern. The exposure problem was remedied by 
coring at seven sites during 1990 1993 by the 
National Science Foundation-funded Newark 
Basin Coring Project (NBCP; Olsen and Kent, 
1990), resulting in the recovery of over 6770 m of 
continuous core spanning virtually the entire 
Triassic age part of the Newark basin section. 
Most of this section is lacustrine and strikingly 
cyclical, comprising the longest record of continen- 
tal tropical climate available anywhere (Olsen 
et al., 1996). In this paper, we describe the overall 
cyclostratigraphic, spectral, and joint tim~fre- 
quency properties of the NBCP cores and relate 
them to Milankovitch forcing of continental cli- 
mate in tropical Pangaea. This study forms the 
basis an understanding of the long term behavior 
of continental tropical climate change over a long 
stretch of geological time, and the foundation for 
an astronomically calibrated time scale for the 
Late Triassic (Kent et al., 1995). 

2. Newark basin stratigraphic section 

The Newark basin is an internally faulted half 
graben with the major SE- to S-dipping boundary 

Fig. 2. Composite section and composite depth rank curve of the predominately lacustrine part of the NBCP core record. The ages, 
formations, and members are from Olsen et al. (1995); the 201 _+ 1 age (Dunning and Hodych, 1990; Sutter, 1988) should apply to 
the Preakness Basalt. The filtered McLaughlin cycle was produced by filtering the depth rank curve with a zero-phase bandpass 
filter using minimum and maximum frequencies of 0.000122 and 0.001524 cycles/m, respectively. Key to the lithologies is in 
Fig. 3. NBCP core are: P =  Princeton; N=  Nursery; T=Titusville; R = Rutgers; S= Somerset; W= Weston; and M =  Martinsville. A 
shows lower range of Army Corps of Engineers Cores. 
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fault system on the northwest and with mostly 
northwest-dipping strata. Seven basin-wide forma- 
tions are recognized (Olsen, 1980a,b) ranging in 
age from early Late Triassic (Carnian) to Early 
Jurassic (Hettangian) (Olsen, 1986; Cornet and 
Olsen, 1985; Cornet, 1977, 1993) (Fig. 2). The 
oldest outcropping unit is the mostly fluvial 
Stockton Formation of Carnian age. Throughout 
most of the basin this is followed by highly cyclical, 
predominantly lacustrine strata. The lowest of 
these lacustrine units is the mostly gray and black 
Lockatong Formation of Late Carnian (Tuvalian) 
age, and is overlain by the latest Carnian 
(Tuvalian) to earliest Jurassic (early Hettangian) 
age Passaic Formation, which is mostly red. Three 
Hettangian age tholeiitic lava flow formations 
(Orange Mountain, Preakness, and Hook 
Mountain basalts) and two interbedded, mostly 
red sedimentary units (Feltville and Towaco for- 
mations) conformably overlie the Passaic 
Formation; the youngest unit in the basin is the 
mostly red Boonton Formation also of Hettangian 
age. The lacustrine strata of the Lockatong and 
Passaic formations are further divided into 53 
sequential members reflecting the cyclicity 
(McLaughlin, 1933, 1959; Olsen et al., 1996) 
(Fig. 2). The Newark basin section is described in 
detail from outcrops and core elsewhere (summa- 
rized in Olsen et al., 1995). In this paper we 
concentrate on the cyclical lacustrine Lockatong 
and Passaic formations because they preserve the 
longest unbroken record of orbital forcing. 

An offset drilling method was used by the NBCP 
to obtain a stratigraphically continuous series of 
the Stockton through Feltville formations by 
coring at seven relatively shallow sites (Fig. 2). 
These sites were chosen to: (1) provide about 25% 
stratigraphic overlap between stratigraphically 
adjacent cores; (2) avoid any stratigraphic gaps or 
faults; (3) to remain in a fine-grained, centrally 
located portion of the basin; (4) to avoid large 
plutons or sills that might obscure aspects of 
lithology useful to cyclostratigraphy; and (5) to 
be as geographically close to each other as possible. 
For these reasons the core sites were arranged in 
two overlapping transects in central New Jersey. 
The drill cores averaged about 980 m of core per 
site with a nominal core diameter of 6.3 cm. A 

total of about 6770 m of core was collected, with 
better than 99% recovery. The details of the drilling 
plan, surface geology, core locations, core stratig- 
raphy, and logging results are summarized else- 
where (Olsen and Kent, 1990; Olsen et al., 1996, 
Kent et al., 1995; Goldberg et al., 1994). 

The portions of the cores examined in detail 
here consist of the entire Late Triassic to earliest 
Jurassic age lacustrine section of the basin (Fig. 2). 
This comprises the section above the Stockton 
Formation in the Nursery core (Wilburtha-Walls 
Island members), all of Titusville (Tumble Falls- 
Perkasie members), Rutgers (I-Y members), 
Somerset (T-U-II  members), Weston (EE-OO 
members) cores, and the Martinsville core to the 
base of the Jurassic Orange Mountain Basalt 
(LL-Exeter members). The Princeton core 
(Wilburtha-Byram members) is not used here 
because its consists mostly of fluvial Stockton 
Formation, and the lacustrine portions completely 
overlap with the Nursery core section. The post- 
Passaic portions of the NBCP cores and other 
cores drilled by the Army Corps of Engineers in 
the Jurassic age part of the section (ACE cores) 
are used here only to constrain the age model for 
the underlying lacustrine section. 

3. Typological cycle types 

Newark basin lacustrine strata have been 
described as cyclical for over 60 years 
(McLaughlin, 1933). Van Houten (1962, 1964, 
1969) described the cyclicity of the Lockatong 
Formation in detail and recognized a hierarchy of 
cycles based on changes in sedimentary rock type 
and structures that he ascribed to changes in lake 
levels controlled by astronomical forcing of cli- 
mate. Based largely on the NBCP cores, Olsen 
et al. (1996) use a modified version of Van 
Houten's classification of cycle types, which we 
adopt here. 

In typological terms, the most obvious cycle at 
the outcrop scale is the Van Houten cycle, named 
after its discoverer (Van Houten, 1962, 1964, 1969) 
(Fig. 3). Each Van Houten cycle consists of three 
divisions (Olsen, 1986). Division 1 (lake transgres- 
sion) is a relatively thin unit, generally massive at 
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Fig. 3. Typological classification of  lake level cycles in the 
Newark basin. A. The Van Houten  cycle. B. Modulat ing cycles 
(example from the Rutgers no. 1 core). Figure modified from 
Olsen et al. (1995). 

its base, becoming better bedded upwards as the 
density of desiccation cracks and/or tubes (roots 
or burrows) decreases. Reptile footprints are some- 
times common. Division 2 (lake high stand) has 
the best developed bedding in the cycle and com- 
monly consists of gray or black, often calcareous 
fissile mudstone often with elevated total organic 
contents (1-8%). In some cases the most finely 

laminated of these organic rich units contains 
abundant complete fossil fish and reptiles. Division 
3 (lake regression) becomes more massive upwards 
by an increase in the frequency of desiccation 
cracks and/or tubes. Reptile footprints are some- 
times present. Divisions 1 and 3 may be gray, 
purple or red with lighter colors predominating, 
while division 2 can be red, purple gray or black 
with darker colors being common. Evaporite pseu- 
domorphs are often present in the upper parts of 
division 2 and 3 (El Tabakh, 1994). A Van Houten 
cycle thus records a single cycle of lake deepening 
and then shallowing, presumably in response to a 
similar dry-wet-very dry cycle in climate. In the 
NBCP cores, Van Houten cycles tend to average 
about 4 m in thickness. Variations in the character 
of Van Houten cycles in these cores have been 
described in detail by Smoot and Olsen (1994). 

Van Houten cycles are modified in their expres- 
sion by at least three orders of modulating 
cycles which we term the short, intermediate 
(McLaughlin), and long modulating cycles 
(Fig. 3). This modulation is expressed in the degree 
of development of lamination and black and drab 
colors in Van Houten cycles. In the "peaks" of 
each of these modulating cycles, Van Houten cycles 
tend to be dominated by drab and dark colors 
(relatively deeper lakes and wetter climates); divi- 
sion 2 tends to be thick, black and finely laminated 
indicating deep, perennial lakes. In the "troughs" 
of the modulating cycles, the Van Houten cycles 
tend to be mostly red (shallow lakes and playas 
and drier climates), and division 2 is usually red, 
purple, or gray fissile mudstone, suggesting shallow 
lakes or playas. On average, the short modulating 
cycles contain five Van Houten cycles (range of 
four to six), the McLaughlin cycles contain four 
short modulating cycles, and the long cycles con- 
tain four to five McLaughlin cycles. The expression 
of McLaughlin cycles is the strongest and that of 
the long modulating cycles is the weakest. 

All of the modulating cycles are visible at map 
scale. The basis for subdivision of the Lockatong 
and Passaic formations into the 53 formally and 
informally named members is, in essence, the 
McLaughlin cycle, named for D.B. McLaughlin 
who first recognized them as an integral part of 
Newark basin stratigraphy (McLaughlin, 1933, 
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1959; Olsen et al., 1996). McLaughl in  himself 
(1933, 1946, 1959) mapped  the distribution and 
named  the gray port ions o f  bo th  the short  modu-  
lating cycles and the McLaughl in  cycles in the 
upper  L o c k a t o n g  and lower Passaic format ions  in 
the central Newark  basin. All o f  the formally 
named  members  o f  the Passaic Format ion  occur 
in the "peaks"  o f  the long modula t ing  cycles (e.g. 
Graters,  Perkasie, Metlars members,  etc.; Fig. 2), 
and therefore, McLaughl in  also implicitly recog- 
nized this modula t ing  cycle as well. 

4. Depth ranks as proxies of  cl imate 

The typologically defined cycles are conceptual ly 
useful for unders tanding and describing the 
cyclicity, but  we seek a measure o f  lake depth 
more  suitable for  numerical  analysis o f  the cyclicity 
and quanti tat ive compar i son  to astronomical ly 
based climate predictions. Such a proxy should be 
a numerical  scalar variable that  can be measured 
as a funct ion o f  stratigraphic depth, that  has a 
fairly direct relationship to climate, and that  does 
no t  have the cyclicity imbedded in it. In fact, the 

typological  classification method  itself suppresses 
the real variability caused by the interactions o f  
the m a n y  cycles that  would  be expected to pro-  
duce the climatic forcing in the first place. 

The most  obvious proxy of  climate consistently 
preserved in the N B C P  cores is the variat ion in 
l i thology and sedimentary structures (i.e. facies) 
reflecting change in the level o f  lakes. We use a 
semi-quantitative classification o f  these sediment 
structures and fabrics called "depth  ranks"  (Olsen, 
1986) for most  o f  our  analysis. Depth  ranks are a 
sequence o f  facies related to the inferred relative 
depth o f  the lake during deposit ion (Fig. 4; 
Table 1). The overall direction o f  environmental  
change represented by these facies is fairly obvious 
and they provide the most  direct measure o f  rela- 
tive lake level and hence climate presently available 
for these rocks. At  one extreme is rank 0, which 
consists o f  massive, often red mudstones  with 
intensely mudcracked  or rooted sedimentary fab- 
rics. These fabrics were produced by playas or  
vegetated dry lakes (Smoot ,  1991; Smoot  and 
Olsen, 1994). At  the other  extreme is rank 5 
comprised o f  microlaminated,  usually black and 
organic-rich calcareous mudstones  frequently con- 
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Fig. 4. Photographs of representative sedimentary structures and fabrics comprising of the depth ranking scheme described in the 
text and Table 1. The examples shown have the following locations in the cores. Primary ranks (all from Nursery no. 1): 0= 1522.2 
ft; 1 = 312 ft; 2 = 1537 ft; 3 = 2109 ft; 4 = 1800 ft; 5 = 2376 ft. Secondary ranks (from Martinsville no. 1 ): 0 = 1193 ft; 1 = 2858 ft; 1 = 
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taining completely preserved fossil fish and aquatic 
reptiles. This facies was produced by deep (> 80 
m) perennially stratified lakes (Olsen, 1990; Smoot, 
1991 ). Beds of low depth rank (1-2) often preserve 
reptile footprints, and beds with higher ranks (3-4) 
often contain fish fragments. Low depth rank units 
are often red and contain little or no organic 
carbon and often contain evaporite pseudomorphs. 
High depth rank units are usually gray or black 
with correspondingly elevated total organic carbon 
contents (> 2%). 

A single sequence of mudstone facies (i.e. the 
primary depth ranks, Fig. 4) accounts for most of 
the variability in the cores. However, the upper 
Passaic Formation and the basal Lockatong 
Formation have sandstone and sandy mudstone 
facies that cannot be interpolated into the sequence 
of primary depth ranks. Thus, we use two subsid- 
iary and parallel depth rank scales (secondary and 
tertiary), in addition to the primary sequence, for 
the coarser-grained shallow-water facies (Fig. 4). 
The equivalence of these three depth rank series 
was determined by lateral change of portions of 
individual cycles into different facies (McLaughlin, 
1946; Olsen, 1988), the intimate interbedded rela- 
tionship of equivalent facies in some portions of 
the cores, and the equivalence of position within 
typologically defined cycles. 

The variations in depth rank produce the obvi- 
ous cyclicity already typologically described from 
outcrops and cores (Olsen, 1986; Olsen et al., 1996; 
Van Houten, 1962, 1964, 1969; Smoot and Olsen, 
1988, 1994; Smoot, 1991 ). In terms of the divisions 
of Van Houten cycles, division 1 is characterized 
by low depth ranks (0-2); division 2 always has 
higher depth ranks (1-5) than division 1; and 
division 3 returns to low depth ranks (0-2). 

Intervals (or bands) of common depth rank were 
recorded using the scale in decimal feet marked 
on the cores by the drillers. Numerical analyses 
were conducted in the units of original measure- 
ment to avoid unnecessary rounding error; how- 
ever, we have converted these measurements to 
metric dimensions for this paper. The range of 
thicknesses of intervals characterized by a single 
depth rank is from less than ~30cm (1 ft) to 
more than ~10 m (30 ft). The data series was 
interpolated to a constant increment (~  15 cm; 0.5 

ft) to capture the smallest measured depth rank 
interval. The interpolation results in some frac- 
tional depth ranks as seen in the figures. Depth 
rank curves for individual cores are shown in 
Fig. 2. In general, average depth ranks are highest 
in the oldest part of the section (Lockatong Fm., 
Nursery core) and lowest in the youngest part of 
the section (upper Passaic Fm., Martinsville core). 

Although the determination of depth ranks has 
a subjective element, their climatic significance is 
fairly straight forward. Moreover, more "objec- 
tive", although less direct, descriptors such as 
geophysical logs of the cores and core holes or 
chemical properties do tend to correlate with depth 
rank (Fig. 5). There is an especially good correla- 
tion with the reflection coefficient which is derived 
from the sonic velocity and density logs (Reynolds, 
1993; Baker, 1994). The changes in facies repre- 
sented by the vertical changes in depth ranks were 
produced by lake level changes that also strongly 
influenced cementation of the mudstones, with 
higher levels of cementation (associated with 
deeper lakes) tending to have higher densities and 
sonic velocities (Reynolds, 1993). Organic carbon 
also positively correlates with depth rank and 
because uranium tends to concentrate in organic- 
rich units there is also correlation between depth 
ranks and the gamma logs. All of these properties 
have potential for understanding Newark basin 
cyclically (Reynolds, 1993). Many other potential 
proxies of climate such as 8180 or pollen and 
spores either have not been adequately tested (El 
Tabakh, 1994) or are too sporadically preserved 
(Foweli, 1993) in these diagenetically altered rocks 
to be used to produce a time series. 

Depth ranks have excellent lateral continuity 
showing that their vertical variations reflect basin- 
wide change in lake depths (McLaughlin, 1946; 
Olsen, 1988). This is best seen in the overlap zones 
between stratigraphically adjacent cores where all 
of these correlations have been tested by down- 
hole logging and magnetostratigraphy (Olsen et al., 
1996; Kent et al., 1995) (Fig. 2). There is a one to 
one match between variations in depth ranks in 
the correlative sections, even over distances of 
more than 40 km (the distance between the Rutgers 
and Titusville cores). In addition, outcrop sections 
show very similar depth rank patterns to the 
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Fig. 5. Comparison of different lithological and geophysical 
properties of the Rutgers no. 1 core and associated down-hole 
logs. Note especially the close correspondence between depth 
rank and the clipped reflection coefficient (negative values 
deleted). 

correlative sections. A good example is the long 
classic outcrop sequence along the Delaware River 
near Byram, New Jersey (Fig. 6). This is one of 
the main sections on which Van Houten (1969) 
based his interpretation and which subsequently 
was measured using a depth rank method (Olsen, 
1986). The Byram section correlates very well with 
the equivalent section in the Nursery core, despite 
some difficulties with locally poor exposure. The 
core and outcrop examples cited here are in three 
different fault blocks with markedly different accu- 
mulation rates (as judged from the cycle thick- 
nesses); the strong similarity in depth rank patterns 
in correlative sections shows that the lake level 
changes were synchronous over very large areas-- 
probably basin wide. Hence depth ranks are a 
good proxy of the aspects of the climate system 
that controlled precipitation and evaporation. 

5. Composite record 

Lithological and magnetostratigraphic correla- 
tion between the overlap zones of stratigraphically 
adjacent cores reveal significant changes in accu- 
mulation rate with geographic position in the basin 
ranging from about 5 to 22% in stratigraphically 
adjacent core holes (Olsen et al., 1996). Lateral 
variations in accumulation rate are expected in a 
large half graben (Schlische, 1992), but they need 
to be factored out in the construction of a compos- 
ite depth rank series to isolate the variations of 
frequency properties as a function of stratigraphic 
position or time. Several corrections were also 
needed to transform the drillers' depth scale to 
actual stratigraphic depth, including registering the 
cores to the core holes and correction for hole 
deviation and stratal dip. The procedure for the 
correlations and construction of the composite are 
given in detail by Olsen et al. (1996) and summa- 
rized below. 

First, where more than one core was taken at a 
site, the cores were patched together using shared 
lithologically distinctive beds. Second, we adjusted 
depth marked on the core to stratigraphic thick- 
nesses by correcting core depth to depth-in-hole 
using the natural gamma logs from the core and 
core hole, and then transforming depth-in-hole to 
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Fig. 6. Comparison between depth rank curves of a portion of 
the Nursery core and outcrops of the middle Lockatong 
formation along the Delaware River in Byram, New Jersey. 
The outcrop section was measured in 1983 using a slight 
variant of the depth rank scale used here (7 instead of 6 ranks) 
and published in 1986 (Olsen, 1986) and is in a different fault 
block than the core. Note the difference in scale. Spectra below 
the sections are multitaper spectrum estimates with values of 
periods of cycles in thickness expressed as time as follows: 
Nursery # 1 core, 93.2 m=412.9 k.y., 21.9 m=97.0 k.y., 5.7 
m=25.3 k.y., 4.4 m=19.5 k.y.; outcrop, 120.8 m=412.9 k.y., 
27.6 m=94.3 k.y., 6.2 m=21.2 k.y., 5.5 m= 18.8 k.y. Spectral 
estimates were computed with the same parameters as in Fig. 8. 

stratigraphic thickness using the hole deviation 
and dipmeter surveys. These modifications were 
small, averaging 0.5%. Third, we selected correla- 
tion tie points for the overlap zones of  stratigraph- 
ically adjacent core holes, usually distinctive high- 
depth rank shales within division 2 of Van Houten 
cycles. The slopes of the regression lines for the 
tie points are the scaling factors (i.e. proportional- 
ity constants) between overlap zones. Fourth, we 
scaled the other cores to the Rutgers cores as a 
standard using the scaling factors, beginning at 
the Rutgers overlap zones, and proceeding up and 
down section. Fifth, stratigraphically adjacent core 
records were patched together at distinctive tie 
points, with the down-dip (or higher accumulation 
rate) portions of cores given preference in the 
overlap zones. The composite stratigraphic section 
(Fig. 2) is thus scaled as it might appear if the 
whole section had been cored at the Rutgers 
geographic core site. It should be noted, however, 
that the scaling process used in the construction 
of the composite section accounts only for the 
sedimentation variations between the coring sites, 
not potential changes in depth rank due to differing 
positions of the cores in the basin. A comparison 
of the depth ranks in the overlap portions of the 
cores, however, shows that this effect is small 
(Fig. 2). 

6. Spectral analysis 

The frequency and spectral properties of the 
cores are first examined by stratigraphic length (or 
space) in the core as a proxy of time. We then 
develop an age model, based on correlation to 
published time scales and on the spectral properties 
themselves, and examine the resulting time series. 

A simple power spectrum (using a fast Fourier 
transform) of  the entire composite depth rank 
series shows a number of  well defined peaks 
(Fig. 7, top). However, the large dynamic range 
of the data series, the large-scale changes in vari- 
ability with stratigraphic position, and smearing 
out of  spectral power in the higher frequencies 
suggest that an evolutive method would better 
isolate the true frequency behavior of the data. 

The time-frequency, or more appropriately in 
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Fig. 7. Space-frequency spectrogram for the post-Stockton, 
pre-Orange Mountain Basalt portion of the NBCP cores. 
Frequency bands are: A=the long modulating cycle; B=the 
McLaughlin cycle; C= the short modulating cycle; and D = the 
Van Houten cycle. Spectrogram uses a short-time-Fourier 
transform computed with a 61 ft (200 point) moving Hanning 
window and was produced using Lab View T M  (National 
Instruments). Spectral intervals W-E and I IV are described 
in text. 

this case, space-frequency spectrogram (Cohen, 
1992; Percival and Walden, 1993), is an evolutive 
method designed to show changes in frequency 
and spectral power as a function of another vari- 
able such as time or space. Such a spectrogram of 

the Lockatong and Passaic formations is shown in 
Fig. 7 (bottom). Although the Van Houten cycles 
are the most obvious quasiperiodic cycle at the 
outcrop scale, the lower frequency modulating 
cycles are the most obvious in the space-frequency 
spectrogram of  the entire cyclical sequence. The 
long-modulating cycle (250-430 m period) is 
reflected in the rhythmic pulsations in the spectral 
power of  the other frequencies, the window length 
in the spectrogram being too short to resolve it as 
a distinct band of  spectral power. The most obvi- 
ous vertical dark stripe on the left of the spectro- 
gram shows that there is a cycle with high power 
around 0.017 cycles/m (60 m/cycle space period), 
corresponding to the McLaughlin cycle. Power 
in this frequency band is consistently present 
throughout the composite sequence, although there 
are distinct lateral shifts in its position, correspond- 
ing to shifts in accumulation rates. The spectro- 
gram also shows that the relative power of  the 
McLaughlin and other cycles decreases from the 
lower to the upper parts of the sequence. Likewise, 
there is a pair of  strong bands in spectral power 
consistently present around 0.056 cycles/m (18 
m/cycle) corresponding to the short modulating 
cycle; they follow the same pattern of  shifting 
frequencies as the McLaughlin cycle. Finally, there 
is significant power in the frequency band from 
about 0.143-0.250 cycles/m (7-4  m/cycle), most 
obvious in the lower part of the cyclical sequence. 
These frequencies correspond to the Van Houten 
cycles. 

The space-frequency spectrogram of  the 
Lockatong and Passaic formations can be divided 
into five easily recognizable stratigraphic intervals, 
recognized by lateral shifts of frequency bands 
indicating changes in accumulation rate, and varia- 
tion in amplitude of the bands indicating changes 
in the variance in depths of  the lakes (Fig. 7). 
None of  the transitions between these spectral 
intervals occur at a tie-point between cores. The 
transitions between spectral intervals therefore 
represent changes with stratigraphic depth and not 
geography. 

The basal interval (W-E,  Fig. 7) includes the 5 
McLaughlin cycles from the Wilburtha through 
Ewing Creek members of  the Lockatong 
Formation. This interval is transitional from the 
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underlying mostly fluvial Stockton Formation and 
is characterized by relatively inconsistent spectral 
properties and lithological patterns. The lower 
members  of  interval W - E  (Wilburtha, Scudders 
Falls, and Princeton) are very sandy. Based on 
seismic lines (Reynolds, 1993) and correlation 
between the Nursery and Princeton cores and 
outcrop (Olsen et al., 1995), this interval has a 
significant and quite variable deltaic component.  
The overlying Nursery and Ewing Creek members 
in interval W E  consistently have the thinnest 
cycles ( ~  3 m per Van Houten cycle) of  the entire 
core section even though they are dominated by 
Van Houten cycles with the best developed black 
shales and correspondingly highest depth ranks in 
the cored interval. These Van Houten cycles mostly 
correspond to type I in the classification of  Smoot 
and Olsen (1994), reflecting the expansion and 

contraction of  deep lakes often with perennial 
chemical stratification (Olsen, 1990). Cycles of  
type II  are also present in this interval, and they 
represent shallower lakes with some evaporite 
development. 

The remaining four spectral intervals in the 
Lockatong and Passaic formations (spectral 
intervals I - I V )  have internally consistent but 
mutually distinct spectral properties. We examine 
each of these spectral intervals separately by using 
the multitaper spectrum estimate method of 
Thomson (1990a,b) (Fig. 8) as well as detailed 
joint space-frequency spectrograms (Figs. 9-12).  

Interval I is comprised of the Byram Member  
of  the Lockatong Formation through member  C 
of the Passaic Formation, and thus consists of  8 
McLaughlin cycles. This interval has the most 
consistent spectral properties of the entire cored 
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Fig. 8. Multiple-window spectrum estimate (Thomson, 1990a,b) of spectral intervals I IV (Fig. 7). Shaded zone shows 90% 
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Spectral Interval I 

AI 3 C 

Fig. 9. Joint time-frequency spectrum of  interval I. Note the 
continuity of  most spectral peaks and the consistent presence 
of  two parallel sets of peaks around 0.015 cycles/ft (period of  
67 ft 112 ky). Frequency bands are: A = long modulating cycle; 
B=McLaughl in  cycle; C=sho r t  modulating cycle; D = V a n  
Houten cycle. Same time-frequency parameters as Fig. 7. 

section (Fig. 8). It is therefore not surprising that 
the outcrop correlative of a substantial part of this 
section was the basis for the initial interpretation 
of the Milankovitch origin of the cyclicity (Van 
Houten, 1969; Olsen, 1986) (Fig. 6). Interval I is 
characterized by having strong and significant 
peaks in power at 0.217 and 0.258 cycles/m (4.6 
and 3.9 m periods) with another significant peak 
at 0.182 cycles/m (5.5 m period), all in the fre- 
quency band of the Van Houten cycles. The short 
modulating cycle frequency band is split into two 
significant peaks at 0.044 and 0.057 cycles/m (22.8 
and 17.4 m periods). The frequency band of the 
McLaughlin cycle is at 0.014 cycles/m (73.9 m 
period). A detailed space-frequency spectrogram 
of interval I shows little change in frequency with 
space, although there is considerable amplitude 
variation (Fig. 9). Especially important is the con- 
sistent presence of two major peaks in the short 
modulating cycle and a tendency for there to be 
two major peaks in the Van Houten cycles, because 
these are unique predictions of celestial mechanics 
(Berger, 1977) (see below). 

The passage from the transitional beds of the 

lowermost Lockatong into the beds of spectral 
interval I reflects the appearance of abundant 
massive mudstones with a well developed breccia 
fabric. The Van Houten cycles of interval I reflect 
deep perennial lakes, which had rare periods of 
stable chemical stratification, alternating with 
playas in which limited evaporites often formed 
(El Tabakh, 1994). The division between the 
intervals corresponds to the upward replacement 
of Van Houten cycle types I and II by type III of 
Smoot and Olsen (1994), showing a marked 
increase in the frequency of playas and a corre- 
sponding decrease in the frequency and duration 
of long-lived deep perennial lakes. 

Interval II (2073 2768 m) is composed of the 
Warford through Neshanic members of the Passaic 
Formation (8 McLaughlin cycles). The overall 
spectrum estimate of this interval is not as consis- 
tent as for interval I, although the same compo- 
nents are clearly present but shifted to lower spatial 
frequencies (Fig. 8). In addition to a change in 
amplitude, the patterns of spectral power in 
intervals I and II differ mostly by a constant that 
we interpret as the ratios of the accumulation rates 
of the two intervals (in this case 1.14, see below). 
While Van Houten cycles are obvious on visual 
inspection of the cores and outcrops, their frequen- 
cies in the spectrum are less distinct. The same 
holds to a lesser extent for the short modulating 
cycle, although there are still two significant peaks 
(0.042 and 0.47 cycles/ft--23.7 and 21.2 m/cycle). 
The McLaughlin cycle is fairly consistent at 0.012 
cycles/m (85.1 m/cycle). Closer inspection of the 
detailed space-frequency spectrogram of interval 
II (Fig. 10) reveals that the short modulating cycle 
is still consistently split into two strong frequencies 
and that the smearing in the spectrum is due to 
small frequency shifts with stratigraphic position. 
The same is true for the Van Houten cycles which 
tend to consist of two sets of prominent peaks that 
drift in frequency through the interval. 

The transition from interval I to II is marked 
by a change from predominately gray and black 
units to predominately red beds. It is offset 
upward, however, by one member from the bound- 
ary between the Lockatong and Passaic formations 
(Fig. 7). In terms of the classification of Smoot 
and Olsen (1994), Van Houten cycle type III 
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Fig. 10. Joint t ime-frequency spectrum of  interval II. Same 
abbreviations and parameters as Fig. 9. 
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Fig. 11. Joint t im~frequency  spectrum of interval III. Same 
abbreviations and parameters as Fig. 9. 

becomes more common than type II, indicating a 
further increase in the frequency of playas at the 
expense of perennial lakes. 

Interval III (1064 2073 m) is the thickest in the 
composite core record, consisting of 17 
McLaughlin cycles (member Q through the 
Ukrainian Member of the Passaic Fm.). It is 
characterized by a shift back to slightly higher 
frequencies in all bands and shows an additional 
smearing of the spectral power (Fig. 8). This 
smearing is especially apparent in the short modu- 
lating and Van Houten cycles; however, two sig- 
nificant peaks in the range of the short modulating 
cycle (0.057 and 0.076 cycles/m; 17.5 and 13.2 
m/cycle) are still detectable in the detailed joint 
space-frequency (Fig. 11 ). 

The transition from interval II to III is marked 
by an increase in sand as well as bioturbated 
fabrics, and, consequently, the secondary and terti- 
ary depth rank sequences become more important. 
It also corresponds to the transition from mostly 
type II and III Van Houten cycles to dominantly 
type IV (Smoot and Olsen, 1994), reflecting a 
return to moister conditions on a broadened 
basin floor. 

Interval IV shows a decrease in the expression 
of all cycles, especially Van Houten cycles. This 
interval comprises member II through the Exeter 
Member of the Passaic Formation (14 McLaughlin 

cycles). There are no black shales in the NBCP 
cores through this interval, resulting in a marked 
decline in the range of depth ranks that translates 
into an order of magnitude decline in estimated 
spectral density and a lower signal to noise ratio 
(Figs. 7 and 8). There is almost no consistent 
power at higher frequencies (Van Houten cycles) 
and the statistically significant peaks present are 
spread out over a broad range. This is the poorest 
of the NBCP spectral estimates. Nonetheless, there 
are well-defined concentrations of power in the 
short modulating and McLaughlin cycles, with 
two significant peaks corresponding to those at 
0.050 and 0.077 cycles/m (19.9 and 13.0 m/cycle) 
through most of the spectrogram, and the 
McLaughlin cycle tracing through the entire 
interval at 0.017 cycles/m (58.1 m/cycle) (Fig. 12). 

The transition between intervals III and IV 
corresponds to an almost complete disappearance 
of Van Houten cycle type IV and the dominance 
of type V reflecting a switch to an alternation of 
shallow lakes and vegetated mudflats (Smoot and 
Olsen, 1994). 

7. Age model 

We have used two independent methods over 
very different stratigraphic length scales to develop 
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Fig. 12. Joint time-frequency spectrum of  interval IV. Same 
abbreviations and parameters as Fig. 9. 

an age model for the NBCP cores. These are: (1) 
geologic time scales, with biostratigraphic correla- 
tion to published radiometric dates; and (2) varve 
calibration of sedimentation rates. Both methods 
give very similar results. 

7.1. Geologic time scales 

Both the spectral estimates and the spectrograms 
show a varying expression of basically the same 
hierarchical pattern of cycles, implying a continuity 
of cause under slightly changing accumulation 
rates. The only known causal mechanism that is 
capable of producing such a consistent hierarchical 
pattern of cycles is astronomical forcing of climate. 
It would be desirable to examine the periodicity 
of the cycles in time in the NBCP cores by calibra- 
tion of accumulation rates using direct radiometric 
dates from the cores themselves, or to use the 
magnetic reversal pattern from the cores (e.g. Kent 
et al., 1995) to correlate with a standard marine 
magnetic anomaly time scale. Neither are possible, 
however, because there is only one interval in the 
Newark basin (the basalt formations and coeval 
intrusions) from which radiometric dates have 
been obtained, and there is no intact oceanic crust 
of pre-Jurassic age (Kent and Gradstein, 1986). 
Therefore, although far from satisfactory, biostrat- 
igraphic ties to published radiometrically cal- 
ibrated geological time scales must suffice as the 

main current means of constraining the duration 
of the cycles revealed by spectral analysis. 

There are three biostratigraphically defined 
boundaries in the Newark section which can be 
correlated to existing time scales: the Triassic- 
Jurassic boundary, the Norian-Rhaetian bound- 
ary, and the Carnian-Norian boundary (Fig. 2). 
These boundaries, all in the Passaic Formation, 
are based primarily on pollen and spore assem- 
blages correlated to the European standard 
sequences (Cornet and Olsen, 1985; Cornet, 1977, 
1993) and are supported by vertebrate remains 
(Olsen and Sues, 1986; Lucas and Huber, 1994). 
The Triassic-Jurassic boundary in the Newark 
basin is known to lie within a single Van Houten 
cycle in the lower Exeter Member and the lithologi- 
cal units containing the boundary are correlative 
basin wide (Fowell and Olsen, 1993). The 
Rhaetian-Norian transition occurs within an 
interval of two McLaughlin cycles (member FF 
and Cedar Grove Member), and the Carnian- 
Norian boundary lies within an interval of three 
McLaughlin cycles (member C through Graters 
Member). The Triassic-Jurassic is probably the 
most reliable and the Rhaetian-Norian boundary 
is the least reliable of these paleontologically 
defined boundaries. 

Assuming that all the McLaughlin cycles were 
caused by the same periodic process, we can esti- 
mate their duration and use them to provide a 
basis of assessing the relative amount of time 
between the Newark biostratigraphic boundaries. 
To count the McLaughlin cycles objectively, we 
filtered the composite depth rank curve with a 
zero-phase bandpass filter with the minimum and 
maximum frequencies based on the results of the 
spectral analysis (Fig. 2). This produces a smooth 
curve that is directly comparable to a smoothed 
curve of the original depth rank data and the 
member-level stratigraphy of the section (Fig. 2), 
which is conceptually based on the McLaughlin 
cycles. Thus, there are 53 McLaughlin cycles based 
on the filtered depth rank series and there are 53 
members in the Lockatong and Passaic formations. 
The biostratigraphic boundaries are correlated to 
published time scales using least squares linear 
regression, and the slope of the regression line is 
then in years/cycle (Fig. 13; Tables 2 and 3). 
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Fig. 13. Calibration of the duration of the McLaughlin cycle 
based on paleontological correlations with recently published 
time scales. For references ( 1-10 in figure) see Table 3. 

The most recent detailed time scale is that of 
Gradstein et al. (1995). Correlation of their three 
boundary ages with the Newark basin section 
yields a duration of 397.7_+58.5 k.y. per 
McLaughlin cycle (Table 3). Nine other time scales 
published over the last 14 years (Table 3) produce 
periods for the McLaughlin cycle that range from 
308 ky/cycle to 442 k.y./cycle, with the more recent 
time scales converging on a value close to 400 
k.y./cycle (Fig. 13). As previously proposed (Van 
Houten, 1962, 1964, 1969; Olsen, 1986), these 
values correspond well to the period of the ~400  
ky cycle of astronomical theory (412,885 yr/cycle; 
Berger et al., 1992). The climatic expression of 
this cycle is a modulation of the Earth's precession 
by Venus and Jupiter which should make it the 
most stable of the orbital cycles over geological 
time (Berger et al., 1992; Laskar, 1990). We believe 
the variation in assessments of the duration of the 
McLaughlin cycle in the Newark section based on 
different published time scale reflects uncertainty 
in the geologic time scales, not uncertainty in the 
duration in the cycle itself. 

Accepting that the McLaughlin cycle is the 412.9 
k.y. cycle, a more continuous accumulation rate 
curve can be constructed for the entire Triassic 
age lacustrine (Fig. 14). The accumulation rates 

Table 2 
Significant periods in depth rank from spectral intervals I-IV 

from Fig. 8. Significant periods in depth rank from spectral 
intervals l IV (letters refer to labeled spectral peaks in Fig. 7) 

Spectral interval 

I I I I  
in k.y. m k.y. 

a 73.9 412.9 
b 22.8 127.4 
c 17.4 97.2 

d 5.5 30.7 
e 4.6 25.7 
f 3.9 21.8 

a 258.1 1856.6 
b 57.4 412.92 

c 17.5 125.9 
d 13.2 95.0 l 

e 5.5 39.6 
f 4.0 28.8 
g 3.4 24.51 

h 3.2 23.01 
i 2.9 20.91 

j 2.7 19.4 

1I IV 

a 85.1 412.9 a 304.8 2166.1-" 
b 23.7 115.0 b 58.1 412.9 ~ 
c 21.2 102.9 c 19.9 141.41 
d 8.5 41.21 d 13.0 92.4 
e 6.2 30.1 e 11.1 78.91 
f 5.3 25.71 f 9.4 66.8 
g 4.8 23.3 g 5.2 37.01 

h 4.5 21.8 h 4.5 32.0 

i 4.2 20.4 i 4.1 29.1 
j 3.9 18.9 j 3.0 21.3 

k 2.8 19.9 
1 1.7 12.11 

1 Frequencies that are averages of more than one significant line. 
2 Passes test of significance only at the p=0 .15  level, but is an 

important element of the data 

calculated from the slopes of the straight line 
segments (0.1390-0.2061 mm/yr) correspond 
very closely to the thickness periods revealed 
by the multitaper spectrum estimates (0.1422- 
0.2025 mm/yr) (Fig. 8; Table 4). This comparison 
provides a check on the consistency of the multita- 
per spectrum estimates. 

7.2. Varve calibration 

Van Houten (1962, 1964, 1969) and Olsen 
(1986) estimated the duration of cycles in outcrops 
of the Lockatong Formation by determining accu- 
mulation rate from the average thickness of 
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Table 3 

Durat ion of  the McLaughl in  cycle based on published time scales 

No. from Author  Triassic Norian Carn ian -  k.y./ 
Fig. 13 Jurassic Rhaet ian Norian cycle 1 

1 Webb, 1981 200.0 215.0 
2 Har land et al., 1982 213.0 219.0 225.0 
3 Palmer et al., 1983 208.0 225.0 
4 Haq et al., 1987 210.0 215.0 223.0 
5 Cowie et al., 1989 205.0 210.0 220.0 
6 Harland et al., 1990 208.0 209.5 223.4 
7 Menning,  1991 208.0 222.0 
8 Odin and Odin, 1992 204.0 220.0 
9 Gradstein et al., 1995 205.7 209.6 220.7 

10 Gallet et al., 1995 205.0 210.0 220.7 
Cycle number  1 16.5 39.5 

389.6 
307.8 _+ 108.2 
441.6 + 167.0 
338.4 
393.1 
415.7_+ 117.7 
363.6 
415.6_+77.1 
396.7_+58.5 
412.2 

1 Error estimate compounded using root mean  square method where error estimates were supplied in the original source. 
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cumula t ive  t ime ( m y )  S F 

Fig. 14. Plot of  cumulative time based on McLaughlin cycle 
number  against cumulative depth in the composite core section 
(Fig. 2). 202.0 Ma  is our  age estimate for the Orange Mounta in  
Basalt and 202.4 is taken as the peak of  McLaughl in  cycle 1 
(Exeter Member  of  Passaic Formation).  S is the depth rank 
curve in Fig. 2 smoothed with a 60 ft (18.3 m) triangular 
moving window. F is the filtered depth rank curve from 
Fig. 2. The average accumulat ion rate (0 .1616mm/yr)  is the 
slope of  the least squares regression line through all of  the 
points; the accumulat ion rates for spectral intervals I - IV are 
the slopes of  the least squares regression lines though those 
segments. W E  are points representing the Wilburtha through 
Ewing Creek members  o f  the Lockatong Formation,  which are 
transitional f rom the underlying fluvial Stockton Formation.  

organic-carbonate couplets in the high depth rank 
(4-5) portions of division 2 of Van Houten cycles, 
assuming them to be varves. These accumulation 
rates suggested periods of ~ 20,000 yr for the Van 
Houten cycle. Preliminary analysis of similar 
"varved" intervals in the NBCP cores (e.g., 
Fig. 15) yields accumulation rates in line with 
those estimated by correlation to geological time 
scales (Table 4). This is a completely independent, 
yet direct means of assessing the time scale for the 
NBCP cores and suggests an average sedimenta- 
tion rate (0.1611mm/yr) very similar to that 
derived from assuming a 412.9 k.y. duration of 
the McLaughlin cycle (0.1662-0.1616 mm/yr). It 
is important to recall, however, that units of rank 
5 comprise only a very small fraction of the 
thickness of the total section. The assessments of 
the duration of the sedimentary cycles are never- 
theless consistent from the scale of the entire 
lacustrine section (22 m.y.) correlated to radiomet- 
ric time scales to the scale of the varve (1 yr) 
measured directly. 

8. Comparison of NBCP spectral analysis with 
astronomical theory 

It is not yet possible to produce an insolation 
time series for any portion of the Mesozoic because 
of inherent limitations in the precision of the 
celestial mechanical constants (Berger, 1977), 
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Table 4 
Summary of accumulation rates of spectral intervals assessed by different means (all stratigraphic lengths scaled to Rutgers). 
Estimated accumulation rates of spectral intervals 1-IV 

Spectral Spectrum estimates McLaughlin Cycle Varve Correlation with 
zone calibrated with counted assuming calibration climatic precession 

412.9 k.y. for 412.9 k.y. duration spectrum 1 
McLaughlin Cycle in Fig. 17 
(mm/yr) (mm/yr) (mm/yr) 

I 0.1790 0.t781 0.18082 0.2028 
II 0.2061 0.2025 0.2048 
lII 0.1390 0.1426 0.14043 0.1390 
IV 0.1407 0.1422 0.1497 

Method of calculation is the same as for Fig. 18 (long modulating cycle omitted). 
2n = 78 couplets, from Skunk Hollow Member of Lockatong Formation (1714 ft core depth, Nursery no. 1 ) 
3n = 113 couplets, from Ukrainian Member of Passaic Formation (259.9 ft core depth, Somerset no. 2; see Fig. 15). 

Fig. 15. Photograph of microlaminated mudstone (depth rank 
5) showing organic-rich/carbonate-rich couplets interpreted as 
varves (259.9 ft, Somerset no. 2 core). Scale A is in the original 
dimensions. Scale B has been enlarged by 159% to account for 
the 45.6 ° cut of the face to bedding and a conversion factor of 
0.8812 that puts scale B in the dimensions of the Rutgers core, 
the composite depth rank section, and the spectrum estimates 
(factor from Olsen et al., 1995). Couplets were counted using 
a binocular microscope with a camera lucida drawing tube 
attachment. 

uncer ta in t ies  in long te rm drif t  in the recession 
ra te  o f  the m o o n  ( W a l k e r  and  Zahnle ,  1986; 
Sonnet  et al., 1988), and  small  effects o f  the chaot ic  
behav io r  o f  p l ane t a ry  orbi ts  (Laska r ,  1990; Berger  
et al., 1992), I t  is possible,  however ,  to m a k e  
compar i sons  in the f requency d o m a i n  between the 

spect ra  o f  c l imatic  precess ion for the late Neogene  
with those  o f  the N B C P  cores (e.g., Hays  et al., 
1976). 

C o m p a r i s o n  o f  the pred ic t ions  o f  celestial  
mechanics  for c l imate  spect ra  for  the recent  pas t  
and  with the Triassic reveals  some s t r ik ing similar i-  
ties and  some differences. We p roduce  a summed  
spec t rum es t imate  for the L o c k a t o n g  and  Passaic  
fo rma t ions  by  scal ing the spectral  es t imates  f rom 
each interval ,  using the es t imate  for  spectra l  
in terval  I as the s t andard .  The  spectral  es t imates  
are no rma l i zed  to the same M c L a u g h l i n  cycle 
f requency and  to ta l  spectra l  densi ty  and  averaged  
(Fig .  16, top) .  The  result  looks  very s imilar  to the 
spec t rum es t imate  for  in terval  I (F ig .  16, middle) ,  
and  this s imi lar i ty  is a reflection o f  the s t rong 
consis tency in these spectral  est imates.  

Assuming  tha t  the M c L a u g h l i n  cycle is indeed 
the 412.9 k.y. cycle, all o f  the p red ic ted  precession-  
re la ted  cycles appea r  to be present  in the N B C P  
cores. The  two modes  of  the ~20 ,000  year  cycle 
o f  c l imatic  precession are present  as the Van 
H o u t e n  cycles; the two modes  o f  the ~ 100,000 
year  eccentr ici ty  are represented  by the shor t  m o d -  
u la t ing cycles; the single, and  well defined, peak  
o f  the 412.9 k.y. eccentr ici ty cycle is the 
M c L a u g h l i n  cycle, and  the ~ 2 m.y. year  eccentric- 
i ty cycle is ident if iable  as the long m o d u l a t i n g  
cycle. The  consis tent  presence of  the two peaks  in 
the f requency b a n d  o f  the shor t  modu la t i ng  cycle 
( ~ 1 0 0  k.y.)  is a special  p red ic t ion  o f  celestial  
mechanics  tha t  has long been an t i c ipa ted  (Berger,  
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1977) but rarely seen in geological records. In 
addition, it is interesting to note that where two 
spectral peaks are resolved in the multitaper 
spectral estimates, they are also in the correct (or 
modern) ratios of  relative amplitude with the 
higher frequency peak being higher in amplitude 
than the lower frequency peak (Fig. 8). 

The average spectrum estimate and that from 
spectral interval I also show strong similarities to 
the predictions of  the energy balance model of  
tropical climate of  Crowley et al. (1992) (Fig. 16, 
bottom). This is important  because this model 
produces an index of  maximum heating that is 
closely related to the presumed mechanism of 
precipitation variations in the tropics today as well 
as in Triassic Pangaea. 

A comparison of  the detailed structure of  the 
joint space-frequency spectrograms of the depth 
ranks of  spectral interval I to that of  an equal 
length spectrogram of  a time series of  clipped 
climatic precession also provides strong evidence 
of  astronomical processes (Fig. 17). Positive values 
of  climatic precession were truncated or clipped at 
zero to bring out the effect of  amplitude modula- 
tion in the spectra. Most significant is the cyclical 
variation with time in the expression of  the two 
zones of  high power in the frequency band of  the 
short modulating cycle (C of  Fig. 17). This same 
kind of variation occurs in the spectrogram of 
clipped insolation, where it can be thought of  as 
resulting from the interference of two cycles 
around 19 k.y. This interference produces a beat 
cycle of  about  2 m.y. in the strength of the average 
19 k.y. cycle. Because the ~ 100 k.y. cycles are due 
to interference of two cycles around 23 k.y. with 
those around 19 k.y., the ~ 100 k.y. cycle sees the 
same beat cycle. That  the same kind of variation 
occurs in the depth rank spectrograms suggests 

Fig. 16. Comparison ofmultitaper spectral estimates of NBCP 
core average (scaled to Interval II), spectral interval I, power 
spectrum (FFT) of clipped climatic modern precession (from 
Berger and Loutre, 1991), and energy balance climate model 
for maximum temperature for present and Pangaea during the 
Carnian (Crowley et al., 1992; spectrum truncated at 0.7 
cycles/k.y.). All periods are expressed as years (see text for 
explanation). Identified periods are estimates from the FFT of 
clipped climatic precession with the correct values for those 
periods given in parentheses (from Berger and Loutre, 1990). 
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Fig. 17. Comparison of joint time-frequency spectrograms of 
climatic precession (Berger and Loutre, 1991; positive values 
clipped at 0.005 to bring out the low frequency amplitude 
modulation) and depth ranks from spectral interval I scaled to 
time using the accumulation rate (0.1781mm/yr) from 
Fig. 14. Abbreviations are: 1 =412.9 k.y. cycle; 2 = 123.3 and 
95.0 k.y. cycles; 3=23.1 and 19.1 k.y. cycles; B=McLaughl in  
cycle, C =  short modulating cycles; and D = Van Houten cycles. 
In both spectrograms At is 1.5 ky, a Hamming window with a 
length of 150 k.y. was used, and the spectrograms were 
computed using a short time Fourier transform in Lab View T M  

(National Instruments). Spectra below joint time-frequency 
spectrograms are FFTs. 

that the same kind of interference processes are 
operating. 

Berger et al. (1992) suggest that while the main 
periods of climatic precession presently average 19 
k.y. and 23 k.y., in the Triassic-Early Jurassic 
those periods should be about 18 k.y. and 21.5 
k.y., respectively. Unfortunately, the calculation 
of these periods is dependent on estimates of both 
the recession rate of the moon and length of the 

day, both of which are uncertain over a fairly large 
range over the history of the Earth. It is, in fact, 
plausible that the climatic precession cycles were 
not as different from present day values as often 
assumed based on the day length and recession 
rates in Williams (1991). 

Change in the modulation of climatic precession 
by the "eccentricity" cycles is in any case expected 
to be small in relative magnitude (Berger et al., 
1992), although perhaps just discernible for the 
longest of the periods (i.e. the ~2  m.y. cycle) 
compared to modern values. The most stable of 
all of the planetary fundamental frequencies should 
be that of gs, related to Jupiter. The fundamental 
frequency g5 enters into the calculation of the 
412.9 k.y. "eccentricity" cycle, along with g2 
(Venus) (Berger et al., 1992; Laskar, 1990). The 
412.9 k.y. cycle in the Triassic should thus be 
essentially unchanged from its present value. This 
is why we use this cycle to calibrate the spectra 
rather than the Van Houten cycles. Scaling all of 
the periods to presumed periods of Van Houten 
cycles, for example, would result in a 11% reduc- 
tion in the period of the ~ 400 k.y. cycle which is 
far beyond even a liberal assessment of the needed 
influence of planetary chaos on the eccentricity 
cycle. 

We can nevertheless relax the assumption that 
the McLaughlin cycle has exactly a period of 412.9 
k.y., and simply assume that there is a general 
correspondence between the major peaks in the 
spectral estimates of the NBCP climate record and 
those of a spectral estimate based on Neogene 
climatic precession (Fig. 18). Peaks in the 
McLaughlin frequency band are well defined in all 
the spectra, as are most of those of the short 
modulating cycle. Peaks in the Van Houten cycle 
frequency band correlating with the 30 k.y., 23 
k.y., and 19 k.y. peaks in the astronomical 
spectrum were chosen on the basis of their consis- 
tency through changing stratigraphic position in 
the detailed spectrograms (Figs. 9 12). Based on 
any published time scale the McLaughlin cycle 
must correspond to the ~400 k.y. astronomical 
cycle and the two peaks band representing the 
short modulating cycle should therefore corre- 
spond to the 125 k.y. and 95 k.y. peaks in astro- 
nomical forcing. The geologic time scales would 
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Fig. 18. Examples of cross plots of FFT spectrum of climatic precession (positive values clipped at 0.005 to bring out the low 
frequency amplitude modulation) with the average multiple-window spectrum estimate of all of the spectral intervals and the 
multiple-window spectrum estimate of spectral interval I (see Table 4). Note that the average spectral estimate is scaled to spectral 
interval II. Data for climatic precession from (Berger and Loutre, 1991). 

have to be off by an implausible degree to associate 
the spectral peaks in a different way to known 
orbital forcing periods; for example, the Late 
Triassic would need to have a duration of roughly 
120 m.y. instead 30 m.y. to associate the short 
modulating cycle to the 412.9 k.y. astronomical 
cycle instead of the ,-~ 100 k.y. cycle. Making the 
obvious correlation of spectral peaks, the slope of 
the regression line in these graphs is the mean 
accumulation rate. The rates correspond well to 
those estimated from the filtered depth rank curve, 
but tend to be a bit higher (Table 4). Although, 
as discussed above, the most stable astronomical 
period should be the ~ 400 k.y. cycle, this method 
is not reliant on any specific astronomical fre- 
quency remaining unchanged for 200 million years. 

The most striking differences with the predictions 
of celestial mechanics are the slightly lower frequen- 
cies (longer periods) of the presumed climatic pre- 
cession cycles (Van Houten cycles) and the relatively 
very high power of the low frequency cycles (long 
modulating, McLaughlin, and short modulating 

cycles) in the Late Triassic lacustrine record. 
Assuming that the McLaughlin cycle is 412.9 k.y. 
in period, Van Houten cycles tend to have periods 
averaging around 25 k.y. and 21 k.y. The cycles of 
climatic precession presently average 23 k.y. and 19 
k.y., respectively, and according to theory based on 
the recession of the moon through time (Walker 
and Zahnle, 1986; Berger et al., 1992; Sonnet et al., 
1988), these periods should be shorter in the 
Triassic, not longer. It is hard to see how any 
reasonable change in orbital parameters can 
account for this difference. If we accept the astro- 
nomical origin of the NBCP cycles, then at least 
some of this discrepancy is likely due to frequency 
modulation of accumulation rate in the climatic 
precession range. While random variations or noise 
in the accumulation rate could account for the 
relative increase in power in the low frequency 
range, some of the high power in the low frequencies 
as well as the shift to lower frequency of the Van 
Houten cycles may be explicable by a positive 
dependence of accumulation rate on depth rank 
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amplitude. In other words, the deeper the lakes, the 
higher the accumulation rate would be in the fre- 
quency band of the Van Houten cycles. Crowley 
et al. (1992) suggest that the large amounts of 
power in the low (eccentricity) frequencies in paleo- 
climatic data in equatorial areas (specifically 
Triassic-Jurassic data) are due to a "doubling" and 
"rectification" of the climatic precession cycle by 
the twice per cycle migration of the zone of maxi- 
mum heating across the equator. However, a signa- 
ture of this process is the appearance of significant 
power at twice the climatic precessional frequencies, 
which we do not see in the NBCP cores (Fig. 16). 
However, a pattern matching Crowley's predictions 
may be apparent farther south in coeval Triassic 
lacustrine deposits closer to the paleoequator (Olsen 
and Johansson, 1994). 

A surprising result of the joint-space-frequency 
analysis (Fig. 7) and the spectrum estimates 
(Fig. 8) is the relatively strong appearance of a 
cycle of about 2 m.y.--the long modulating cycle. 
This is a prediction of celestial mechanics (Berger 
and Loutre, 1990) usually omitted from discus- 
sions of Milankovitch climate forcing (with some 
exceptions, e.g., Matthews and Frohlich, 1991). 
This cycle shows up clearly as the rhythmic puls- 
ations of spectral power in the joint-space- 
frequency analysis (Figs. 7 and 9-12) and as a 
peak in the spectrum estimates of the spectral 
intervals (Fig. 8). A more detailed discussion of 
this cycle, as well as the FM modulation, will be 
presented elsewhere (Olsen and Kent, in prep.). 

Despite the clear importance of precession 
related astronomical forcing in the Newark lake 
record, there is little indication of systematic forc- 
ing in the obliquity frequency range (expected 
periods close to 41 or 54 k.y.). Only rarely is there 
any significant power in this frequency band. This 
is consistent with relatively local forcing of climate 
in the equatorial regions. The lack of evidence for 
forcing in the obliquity range also suggests rather 
weak linkages with the climate systems of higher 
latitudes where the obliquity cycles should be more 
important. 

9. Origin of the lake level signal 

The cyclicity seen in the NBCP cores is clearly 
due to the effects of lake-level variation on sedi- 

ment properties. The high frequency lake level 
cycles that produced the Van Houten cycles and 
the hierarchy of modulating cycles are very hard 
to explain by changes in the relationship between 
the sediment surface and the drainage outlet posi- 
tion (Schlische and Olsen, 1990). Precipitation and 
evaporation changes are thus the most effective 
agent for the control of lake depth. 

A number of authors (Crowley et al., 1992; 
Crowley and North, 1991) have argued that 
Newark lake levels were controlled by Milan- 
kovitch modulation of the monsoon systems of 
Pangaea. This involves the type of movement and 
changes in the intensity of the area of maximum 
heating and wind convergence that ultimately 
results in seasonal precipitation variation as in 
central Africa today (Webster, 1985; Hastenrath, 
1985; COHMAP, 1988). The origin of the extreme 
variation of the lake levels documented in the 
NBCP cores is most likely due to the immense 
continentality of Pangaea and concomitantly large 
land-sea contrast (Crowley et al., 1992; Kutzbach, 
1994; Kutzbach and Gallimore, 1988; Hay et al., 
1982; Crowley and North, 1991). According to 
our interpretation of the model of Crowley et al. 
(1992), Newark basin lakes would likely have 
experienced a monsoonal climate with a strong 
late spring rainy period and a very weak late fall 
rainy period. The most intense rainy seasons, and 
the deepest lakes, would occur when the precession 
cycle results in perihelion in northern hemisphere 
summer during times of maximum eccentricity of 
the Earth's orbit. Correspondingly, the weakest 
rainy seasons and lowest lake levels would occur 
when perihelion was in the southern hemisphere 
summer during times of minimum eccentricity. 
This pattern is similar to that seen in the late 
Quaternary of Africa (Yan and Petit-Maire, 1994; 
Street-Perrott et al., 1995); however, there are no 
long term records from Africa to document the 
full range of orbital forcing of continental climate 
in the more recent geologic past. 

Long term drift in the amplitude of depth ranks 
over the entire NBCP core section (Fig. 2) is 
probably due to a combination of tectonic changes 
modifying the area of the depositional surface 
(Schlische and Olsen, 1990; Smoot and Olsen, 
1994), the northward drift of Pangaea across cli- 
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mate belts (Kent et al., 1995), changing orography 
and ocean distribution (Manspeizer, 1994) and 
perhaps non-Milankovitch global climate change. 
The large scale changes in accumulation rates, 
such as those between the main spectral intervals, 
are most likely due to tectonic changes effecting 
the area of the basin (Schlische and Olsen, 1990), 
the rate of subsidence, and the relative relief of 
watersheds. Higher frequency changes in accumu- 
lation rate, such as those within spectral intervals 
II, III, and IV, and the asymmetry of facies seen 
within Van Houten cycles themselves, may be due 
to temporary, but fairly large scale disequilibria 
between the supply of sediments by rivers and its 
storage in deltas, shoreline areas, and pediments 
similar to what is seen in sea level oscillation cycles 
(Einsele and Bayer, 1991). There is also cyclical 
change in accumulation rate at the astronomical 
frequencies that could be to be due to climate- 
related changes in weathering and sediment supply 
rates (Olsen and Kent, in prep.). 

ity cycle and the single mode of the 412,900 year 
eccentricity cycle, which are specific predictions of 
the astronomical theory of climate change. 

The Triassic was a "hot house" world, with no 
evidence of polar ice (Frakes and Francis, 1988), 
with extensive vegetation in polar regions (Cornet 
and Olsen, 1985; Robinson, 1973), and most prob- 
ably with elevated COz relative to today (Berner, 
1991). The large amount of power in the low 
frequency lake level cycles, therefore, probably was 
not due to large scale interactions of tropical 
climate with ice sheets. Absence of obliquity cycles 
in the Newark lake record is further evidence of a 
lack of direct linkages to high latitude climate 
systems. It seems likely to us that the precession- 
related cycles in precipitation (including the power- 
ful effect of the eccentricity cycles on precession) 
are a consistent feature of tropical climate during 
most times in Earth history (e.g., Herbert and 
D'Hondt, 1990). 

10. Conclusions 

The Triassic represents one of the extreme end 
members of Earth's geography and climate. There 
was only one major continent, Pangaea, more or 
less symmetrically disposed about the equator but 
extending from pole to pole, and a complementary 
super-ocean, Panthalassa (Fig. 1 ). During the Late 
Triassic, the Newark basin was accumulating 
lacustrine sediment within about 10°N of the equa- 
tor in the interior of Pangaea. Cores recovered 
from this basin by the Newark Basin Coring 
Project record astronomically controlled changes 
in precipitation and evaporation in this region 
over an interval of more than 22 million years. 
Based on Fourier and joint space-frequency analy- 
ses, the full range of precession-related periods of 
lake level change are present, including the two 
peaks of the ~ 20,000 year cycle of climatic preces- 
sion, the two peaks of the ~ 100,000 year eccentric- 
ity cycle, the single peak of the 412,900 year 
eccentricity cycle, as well as the ~2,000,000 year 
eccentricity cycle. Consistently strong in amplitude 
through the entire core lacustrine sequence are the 
two modal periods of the ~ 100,000 year eccentric- 
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