
Inferring Constraints from
Multiple Snapshots

David Kurlander

l\Iicrosoft Research

Steven Feiner

Columbia University

CR Categories: 1.3.6 [Computer Graphics]: Methodology and Techniques-interaction
techniques; 1.2.6 [Artificial Intelligence] Learning-concept learning; 0.2.2 [Software
Engineering]: Tools and Techniques-user interfaces

Additional Key Words and Phrases: constraints, empirical learning, graphical editing

Abstract

Many graphics tasks, such as the manipulation of graphical objects, and the construction of user
interface widgets. can be facilitated by geometric constraints. However, the difficulty of specify
ing constraints by traditional mcthods forms a barrier to their widespread use. In order to make
constraints casier to declare, \\le have developed a method of specifying constraints implicitly.
through multiple examples. Snapshots are taken of an initial scene configuration. and one or more
additional snapshots are taken after the scene has been cditcd into other valid configurations. The
constraints that are satisfied in all the snapshots are then appl ied to the scene objects. We discuss
an efficient algorithm for inferring constraints from multiple snapshots. The algorithm has been
incorporated into the Chimera editor. and several examples of its use are discussed.

1 Introduction

Geometric constraints are used extensively in computer graphics in the specification of relation
ships between graphical objects [Sutheriand63aHBorning79][Myers 88][Olsen90]. They are
useful during object construction to position components relative to one another precisely, as well
as during subsequent manipulation of the components. Several graphical techniques, such as
grids, snap-dragging [Bier861 and automatic beautification [Pavlidis85] were dcvclopcd to make
the initial construction phase easicr. since specifying constraints explicitly can be a complex task.
HowcVL:r, when objects are to bc manipulated frequently. permanent constraints have an advan
tage over these other techniques in that they need not be reapplied. Permanent constraints can be

1 of 28 .4.CM Tmllsacti(l".~ fI" Graphics, October 1993, pp. 227-304.
Columbia University Computer Science Technical Report CUCS-008-91.

particularly useful when subsequent editing of a scene is required, in constructing parameterized
shapes that can be added to a library, in specifying how the components of a window should
change when the window is resized. or in building user-interface widgets by demonstration.

We introduce a technique for inferring geometric constraints from mUltiple examples, replacing
the traditional constraint specitication process with another that is often simpler and more intui
tive. Initially, the designer draws a configuration in which all constraints are satisfied. and presses
a button to take a snapshot. A large number of possible constraints are inferred automatically.
Subsequently, if the scene is modified and other snapshots taken, previously inferred constraints
are generalized or eliminated so that each snapshot is a valid solution of the constraint system. For
example, \ve can define two objects to be squares. constrained to maintain the same proportional
sizes, by taking a snapshot of two squares, scaling them by equal amounts. and taking another
snapshol. Then, if the length of one of the square's sides is changed. the lengths of its other sides
and the sides of the second squ(U'e m'e updated automatically. The designer need not have a mental
model of all the constraints that must hold. and can test the results by manipUlating the scene
objects.

Furthermore, the designer may take snapshots at any time. If after one or more snapshots a set of
graphical objects do not transform as expected or if the constraint solver cannot reconcile all
inferred constraints simultaneously. the graphical primitives can be manipulated into a new
configuration with constraints turned off, and a new snapshot taken. The incorrectly inferred
constraint set is automatically modified so that the new snapshot is a valid constraint solution.

There are a number of problems with traditional constraint specification that this new technique
attempts to address:

• Often many constraints mllst be specUied.

Complex geometric scenes contain many degrees of freedom. and often most of these need to be
constrained. It can be tedious to explicitly express large numbers of constraints.

• Geometric cOJlstraints can be difficult to detel7lline and articlliate.

Using constraints requires specialized geometric skills and the ability to articulate about geomet
ric relationships. For example. people asked to define a square often describe it as a rectangle with
four equal sides. This definition is incomplete, since it neglects the 90 degree angle constraint. Yet
ask them to draw a square and they typically get it right. Traditional constraint-based drawing
systems may not usc the appropriate language or abstractions for expressing geometric relation
ships.

• Debugging, ediTing, and refining constrainlnetworks arc complex tasks.

\Vhen incorrect or contradictory constraints are specified. the designer needs to debug the
constraint network. which can be a cumbersome process. To support the debugging task. a visual
representation is usually provided for constraints. WYSI\VYG editors need a special mode for
displaying constraints. or support for multiple views. When constraints and graphical objects are
presented together, the scene becomes cluttered if more than a few constraints arc displayed
simultaneously.

2 of 28 Inferring Constraints from Multiple Snapshots

~'1any approaches have been taken to solve these limitations. The first problem was addressed by
Lee. who built a system to construct a set of constraint equations automatically for a database of
geometric shapes [Lee83]. In doing so. he worked with a restricted class of mutually orthogonal
constraints. and required that the geometric shapes be aligned with the coordinate axes. Lee's
problem domain and assumptions restricted the set of constraints sllch that there was never any
ambiguity about which to select. In our domain the initial ambiguity is unavoidable. and we rely
on multiple examples to converge to the desired constraint set.

Systems like Sketchpad [Sutherbnd63a] and ThingLab [Borning79] make it easier to add large
numbers of constraints to a scene. by allowing llsers to define new classes of objects that include
the constraints that operate on them as part of the definition. When users create instances of a new
class, the system automatically generates the associated constraints. However, people defining a
new object class must still instantiate all the constraints to include in their class definition or
prototype. Constraints from multiple snapshots can help with this task.

One of the innovations of Myers's Peridot [Myers86][Myers88] is a component that infers
constraints automatically as objects are added to the scene. A rule base determines which relation
ships are sought. and when a match is found the user is asked to confirm or deny the constraint
explicitly. This reduces much of the difficulty inherent in choosing constraints-the designer is
prompted with likely choices. Peridot's geometric inferencing component is limited to objects that
can be represeilted geometrically as boxes aligned with the coordinate axes. The Chimera editor
contains a constraint-based search and replace component. that infers general geometric
constraints from a static scene according to user-defined rules [Kurlander92]. However. a single
example often contains insufficient information to infer all desired constraints. This paper
describes another component of Chimera that uses multiple examples to support the constraint
inferencing process.

Maulsby's Metamouse [Maulsby89] induces graphical procedures by example. and infers
constraints to be solved at every program step. To make the task more tractable. he considers only
touch constraints in the vicinity of an iconic turtle that the user teaches to perform the desired
task. These constraints are treated as post-conditions for learned procedural steps. and not as
permanent scene constraints. Complex relationships between scene objects can be expressed
through procedural constructions, but the relationships between objects in these constructions
tend to be unidirectionaL and procedures for every dependency need to be demonstrated.

The difficulty inherent in understanding interactions among multiple constraints and debugging
large constraint networks has been addressed by the snap-dragging interaction technique [Bier86]
[Bier88] and by an automatic illustration beautitier [Pavlidis85]. In snap-dragging. individual
constraint solutions are isolated temporally from one another, so that their interaction cannot
confuse the artist. The automatic beautifier infers a set of constraints sufficient to neaten a
drawing. but the constraints are solved once and discarded-they are isolated temporally from
subsequent user-interaction. In the approach described here. constraints can interfere with one
another when a new solution is computed. HO\vever. the conflicting constraints can be removed
by taking additional snapshots.

3 of 28 Inferring Constraints from Multiple Snapshots

A number of systems provide visual representations of constraints to facilitate debugging. Suther
land's Sketchpad [Sutherland63a][Sutherland63b J connected constrained vertices together with
lines accompanied by a symbol indicating the constraint. Nelson's Juno. a two-view graphical
editor. provided a program view of constraints [Nelson85]. Peridot communicated constraints as
English language fragments during confirmation. and Metamouse used buttons for confirming and
prioritizing constraints. The OPUS interface editor represented constraints between interface
components as arrows connecting hierarchical frames or drafting lines [Hudson90a]. Our
technique never requires that its users work with individual, low-level constraints. In both the
specification and debugging stages, they can think entirely in terms of acceptable configurations
of the illustration. The inferred constraints can be tested by manipulating scene objects. and the
constraint set refined through additional snapshots. For those that prefer a more direct interface
for verifying the inferred constraint set. we provide a browser that displays constraints in a
Sketchpad-like fashion. Because our technique is particularly useful in heavily constrained
systems, we allow constraints in the browser to be filtered by type or object reference.

One of Borning's ThingLab implementations allowed new types of constraints to be detined and
viewed graphically [Borning861. Several systems permit users to define new classes of constraints
by tilling in cell equations in a spreadsheet [Lewis90] [Hudson90b] [Myers91]. The technique
introduced here infers constraints from a fixed set of classes that have proven useful for graphical
editing. The inference mechanism determines constants in the constraint equations, but it does not
synthesize new classes of equations.

Our technique is an application of learning from multiple examples. also known as empirical
learning. Several empirical learning systems are discussed in [Cohen82]. Tn contrast. generalizing
from a single example is called explanation-based learni11g and is surveyed in [Ellman89]. Expla
nation-based learning requires a potentially large amount of domain knowledge to detemline why
one explanation is particularly likely. As we illustrate in subsequent examples, there are often few
or no contextual clues in a static picture indicating that one set of constraints is more likely than
the next. so we felt the empirical approach was warranted. Empirical learning algorithms have
been extensively studied by the AI community. but we developed our own to take advantage of
certain features of the problem domain and to make learning from multiple examples a feasible
approach to geometric constraint specification.

We have implemented this technique as part of Chimera, a multi-modal editor with support for
editing graphics. interfaces, and text [Kurlander93]. Constraints can be infelTed on both graphical
and interface primitives. Our initial experience suggests that the snapshot approach. like declara
tive constraint specification. has its own set of strengths and weaknesses. These will be discussed
later in the paper.

In Section 2, \ve illustrate the user's view of constraint specification with a number of examples.
We provide a detailed description of our algorithm in Section 3. In Section 4 we discuss imple
mentation details. Finally we mention limitations of the approach, present our conclusions. and
discuss future work in Section 5.

4 of 28 Inferring Constraints from Multiple Snapshots

2 Examples

In this section we show three examples of how constraints are inferred from multiple examples
within the graphics and interface editing modes of Chimera. To facilitate the initial construction
of the scene, Chimera provides both grids and snap-dragging alignment lincs. Chimera has fixed
square grids that can be turned off if they interfere with the drawing proccss. Alignment lines
facilitate establishing geometric relationships that cannot be expressed with these grids. All
figures in this paper were generated directly from Chimera's PostScript output.

2.1 Rhombus and Line

Suppose that we would like to add permanent constraints to the rhombus in Figure 1a. so that
during subsequent graphical editing it will remain a rhombus, its horizontally aligned vertices will
be fixed in space. and the nearby line will remain horizontal. of fixed length. to the right and at the
same Y position as the bottom vertex of the rhombus. After the initial scene is constructed in
Figure 1 a, the user presses the slIapshot button in the editor's control panel. Next. the user trans
lates the top and bottom vertices of the rhombus to make it taller, and translates the horizontal line
to the same Y coordinate as the rhombus's bottom vertex. but to a different X so that its position
will not be absolutely constrained in X with respect to the bottom vertex. The user presses the
snapshot button once more. Figure 1 b shows the second snapshot.

(a)
~----------------~

(b)
~----------------~

FIGURE 1. Two snapshots of a rhombus and line

Initially constraints were turned olT. Now when the user turns them on from the control panel and
edits the scene, the constraints inferred from the snapshot are maintained by the editor. In Figure
2a. the user h,IS selected the horizontal line and moved it upwards. The top and bottom vertices of
the rhombus automatically move so that the demonstrated constraints arc maintained. When, in
Figure 2b, the top joint of the rhombus is selected and translated to a higher grid location, the
bottom rhombus vertex and the horizontal line both move appropriately.

5 of 28 Inferring Constraints from Multiple Snapshots

(a) (b)

FIGURE 2. Two constrained solutions to the snapshots in
Figure 1.

The abovementioned constraints were all specified implicitly, without the user having to express
intent in low-level geometric terms, Inferring this information from a single example would be
problematic, since it is not clear how to distinguish between those parameters that should be fixed
(such as two of the rhombus's vertices, and the length and slope of the horizontal line) and those
that should be allowed to vary (such as the length of the rhombus's sides, and the locations of the
horizontal line's vertices).

One might expect that people need a sophisticated understanding of the inferencing mechanism to
provide the right set of snapshots. but this is untrue. In the second snapshot. the user foresaw the
need to move the horizontal line in X, relative to the bottom vertex of the rhombus. to allow it to
move this way during subsequent interaction. However if the user neglected to think of this, the
constraint solver would disallow such configurations during later manipulations of the scene. The
user could then turn off constraints. and provide as an extra example the configuration he or she
tried to achieve. but could not. This third snapshot would automatically remove constraints that
originally prohibited this configuration. without the user explicitly naming them.

In part because this is a highly constrained illmtration, few editor operations were necessary to
establish the necessary constraints using snapshots. In traditional constraint specification, the L1ser
starts with a clean slate, and adds all of the intended constraints to the illustration. The snapshots
technique takes a very different approach. It initially assumes that all constraints are present in the
initial snapshot. and with additional snapshots the user prunes away undesired constraints. This
approach is subtractive rather than additive, and it works best for heavily constrained scenes in
which few constraints must be removcd. In contrast. traditional declarative specification typically
becomes more difficult as more constraints must be added to a scene. The two techniques comple
ment onc another. When only a few constraints must be instantiated, it is typically easier to lISC

the traditional declarative approach. I-laving both forms or specification available allows each
technique to be used in cases where it works best, so Chimera's interface supports both.

6 of 28 Inferring Constraints from Multiple Snapshots

(a)

2.2 Resizing a Window

Constraints are useful in constructing user-interfaces because they allow the attributes of one
interface object to be defined in terms of the attributes of others. For example, when a window is
resized. the position and size of the contents may change. Figure 3a shows a window that we have

.~:::j Constraints from Multiple Snapshots
.---------------------------~ _J

'"

- ~ Constraints from Multiple Snapshots

~ __________________________ __J~

~siCS ';,) ,Transformations") File @ps '")
'--~_/

(b) , Transformations') ,FileOps -;-)

Constraints from Multiple Snapshots
I·.---~~J

£,

~

.. ..

I

~----------~~----------------------------~--~~

(c)
File Ops ,) Transformations' ')

~------_/

FIGURE 3. Specifying window resizing constraints. (a) and (b) are the two snapshots,
(c) was produced by dragging the upper right corner of the window.

7 of 28 Inferring Constraints from Multiple Snapshots

constructed in Chimera's interface editing facility, containing an application canvas (the darkly
shaded rectangle), a scrollbar. and three buttons that invoke menus. After positioning these
widgets within the parent window. the user presses the snapshot button. The components of the
window arc then shifted into another configuration. shown in Figure3b, and a second snapshot is
taken. Precise positioning in these snapshots was achieved by using a combination of grids and
snap-dragging.

The user intends that the buttons be a fixed distance above the bottom of the window, that the left
side of the Basics button be a constant distance from the window's left. that the right side of the
File Ops button be a constant distance from the window's right. and that the Transformations
button be e\'enly spaced between the inncr sides of the two other buttons. The scrollbar's dimen
sions are intended to be fixed by the top and right sides of the window, the top of the buttons. and
by its constant width. The application canvas should be fixed relative to the left and top of the
window, the top of the buttons, and the left side of the scroJlbar. Now, when we turn on constraints
and select the upper right corner of the window (while the lower left corner is fixed). the window
and its contents reshape as shown in Figure 3c.

2.3 Constraining a Luxo™ Lamp

This final example applies to both graphical editing and user-interface construction. We would
like to constrain a 2D illustration of a Luxo lamp. so that it behaves like a Luxo lamp. In particu
lar. we want the various pieces to remain connecled. the base to be fixed at its initial location. and
the arms of the lamp to remain a constant length. Other constraints are important as well, but
instead of determining which are significant ourselves, we would prefer to edit the lamp into a
number of valid configurations and take snapshots. To control the direction of the lamp's beam.
we have built a simple dial widget out of a circle and line, and we specify the behavior of the dial
relative to the Luxo lamp by demonstration as well. Figures 4a and 4b show the initial two
snapshots of valid configurations of our illustration. Note that the constraints inferred from these
two snapshots are independent of the particular editing operations chosen, as explained in Section
3.

After taking the first two snapshots, we turn on constraints and try to manipulate the Luxo lamp.
but the constraint solver indicates that it cannot solve the system. The source of the problem is an
incidental cOlls/raint, that is, a constraint that was evident in the first two illustrations. yet was not
an intended relationship. When incidental constraints interfere with a desired configuration they
can be removed by manipulating the scene into the new configuration with constraints turned off.
and taking an additional snapshot. \Ve could determine which incidental constraint(s) occur in the
scene by cycling through the visual representation of all constraints, and explicitly deleting the
undesired ones. However this can be time consuming when a scene contains many constraints,
and it requires that the end user understand the constraint composition of the scene. Fortunately.
there is never a need to specifically identify and cull unwanted relationships. While manipulating
the scene. if users find that unwanted constraints prohibit a desired, valid configuration, they can
turn off constraints. set up this contiguration by hand. and take another snapshot. This additional
snapshot removes all constraints prohibiting the new configuration. People need not be clever
about conveying only the desired constraints in the first two snapshots. Refining a constraint set
using snapshots. as with declarative specification, can be an incremental process.

8 of 28 Inferring Constraints from Multiple Snapshots

Beam Din;ction Beam Direction

(a) (b)

Beam Direction

(c)

FIGURE 4. Teaching Luxo constraints. Three snapshots of valid configurations,
provided as input.

9 of 28 Inferring Constraints from Multiple Snapshots

8
Beam Direction Beam Direction

(a) (b)

8
Beam Din:clion

(c)

FIGURE 5. Luxo on his own. Configurations created by manipulating uppermost joint
and Beam Direction dial.

10 of 28 Inferring Constraints from Multiple Snapshots

Without identifying the incidental constraint. we set up a configuration that this constraint forbid.
This additional snapshot appears in Figure 4c. Now the various components of the lamp move as
we had intended. In Figure 5. we manipulate the lamp into three configurations by moving its top
joint and adjusting the beam direction dial. Note that these two controls are not independent
when the dial is rotated. the arms of the lamp can move during the solution of the constraint
equations, since it does not uniquely determine a lamp configuration. We can temporarily place a
declarative constraint on the joint if we want to change only the beam direction while keeping the
arm fixed.

3 Algorithm

In this section we discuss the set of constraints that our system infers. Then we present an efficient
algorithm for inferring these constraints, and demonstrate the algorithm on a simple example.
Next we analyze the algorithm. and discuss how parameters can be inferred.

3.1 The Constraint Set

All objects in the Chimera editor are defined geometrically in terms of vertices. and constraints fix
the relationships between these vertices. Based upon a tlnite set of example scenes. an infinite
number of arhitrary constraints can be inferred. Hence we have chosen to infer a tixed set of
geometric relationships that have proven particularly useful in graphical editors.

Our system infers both absolute and relative geometric constraints. Absolute constraints fix
geometric relations to constant values. Relative constraints associate geometric relations with one
another. For example. an ahsolute constraint might fix a vertex to be at a particular location, or a
distance to be a constant scalar. A relative constraint might fix two distances or slopes to be the
same. Figure 6 lists the constraints supporteci by thc Chimera editor. Chimcra can infer these
constraints from multiple snapshots. or users can specify them directly. Each relative constraint on
the right corresponds to an absolute constraint on the left. The dots represent vertices. and C's in
the equations represent arbitrary constants.

The relative slope constraint tixes one slope to be a constant offset from another (when repre
sented in terms of degrees. not y/x ratio). Each of the relative distance constraints fixes two
distances to be proportional to one another. Two of the above constraints subsume two others: the
absolute distance constraint between vertices subsumes the coincident vertices constraint. and the
relative slope constraint subsumes the absolute angle constraint. Our constraint solver does not
explicitly support the subsumed constraints. since it handles the more general relationships.
Similarly, the inference component has no support for coincident vertex constraints, though it
does track absolute angle relationships since the algorithm lIses these to find equal angle relation
ships. Chimera's declarative constraint interface differentiates between all of the constraints in
Figure 6, since specifying the more general relationships requires additional input parameters.

Parallel and orthogonal vector relationships arc largely captured by the relative slope constraint
(which, for example. in the former case would not only fix the vectors between two pairs of two
vertices as parallel, but would also constrain their relative directions). Similarly. the relative slope
relation captures collinearity. with an additional ordering on the vertices. The algorithm discussed

11 of 28 Inferring Constraints from Multiple Snapshots

Absolute Constraints Relative Constraints

I. Fixed vertex location 6. Coincident vertices

• • a = (x. y) a = b = (x. y)

2. Distance between two vertices 7. Relative distance between two pairs of vertices

• 4 ••
distance, .4 ...

distance distance2 = C • distance 1

.-4 ~.
distance 2

3. Distance between parallel lines X. Relative distance between two pairs of parallel lines

.. r
•

.. I 14 .. I distance 2 distance distance,

distancez = C • distance,

4. Slope between two vertices Y. Relative slope between two pairs of two vertices

~ope, slope 2= slope, + C

5. Angle defined by three vertices 10. Equality between two angles, each defined by three vertices

~ anglez = angle,

~

FIGURE 6. Constraints in Chimera.

in this section finds all af the constraints in Figure 6 that hald over a sequence of snapshots. Many
higher-level constraints can be formed by the composition of these lower-level constraints, and
thus are also inferred by the algorithm. For example. the constraint that one box be centered
within another is captured by two relative distance constraints between parallel lines.

3.2 Algorithm Description

In the rest of this section. we describe the algorithm that infers these constraints. An overview of
its steps is given in Figure 7. It may be helpful ta refer back to this iigure during the subsequent
discussion.

With the first snapshot. the scene is entirely constrained. and each subsequent snapshot acts to
reduce or generalize the constraints on the system. If we were to represent explicitly each

12 of 28 Inferring Constraints from Multiple Snapshots

IF first snapshot THEN

add vertices to initial transformational group
ELSE BEGIN

split transformational groups to form ncw child groups

identify intra-group constraints of child transformational groups

identify inter-group group-to-group constraints due to splitting transformational groups
identify inter-group vertex-to-vertex constraints

break previously instantiated constraints that have been violated

form delta-value groups from broken absolute constraints

make a copy of the constraints with redundancies filtered out for the solver
END:

FIGURE 7. Steps of the inferencing algorithm.

constraint that could hold at anyone time, the space and time costs would be prohibitive. Instead,
we economically represent similar constraints over scts of vertices as groups. For example. after
the initial snapshot. all vertices are constrained to a set location, and the distance and slope
between each pair of vertices is fixed. as is the angle between each set of three vertices. Although
we could instantiate each of these constraints explicitly, it is far more efficient to represent the
vertices as a group with a tag indicating the relationships that hold alllong all of its members. As
\vill be discussed later. groups can also accelerate the process of determining which constraints
hold over a series of snapshots. and can ultimately reduce the number of constraint equations that
are passed to the solver.

3.2.1 Transformational Groups

The most important type of group in our inferencing mechanism is the transformational group. A
transformational group contains II set of vertices that have always been transformed together since
the first snapshot. At the first snapshot, the algorithm places all the vertices into a fixed location
transformational group, since their positions are initially constrained to be Exed. As vertices are
transformed, our undo mechanism keeps track of the sets of vertices selected and the transforma
tion applied. and this information is used by the inferencing mechanism to fragment existing
transformational groups into smaller ones. The lransformations that can be applied in our system
currently include translations. rotations, and isometric scales. although we plan to extend this
algorithm Lo work with any affine transformation.

3.2.2 Intra-Group Constraints

We can very efficiently determine intra-group cOl!straints. that is. constraints that hold within a
given transformational group. Figure 8. shows various affine transformations and the geometric
relationships that they preserve. I The transformation listed in the top half of each box maintains
the relationships listed in the lower half of the box. and those relationships in the boxes above it.
For example, if a transformational group has only been scaled and translated, the slopes, angles,

1. Note that scale in this diagram refers to isotropic scale. and the vector relationship is the combination of slope and distance can·
straims.

13 of 28 tnferring Constraints from Muttiple Snapshots

Affine Transformations

parallelism

Rotation, Translation,
& Scaling

angles, ratios of distances

Scaling & Translation Rotation & Translation

slopes distances

Translation

vectors

Identity

coordinates

FIGURE 8. Transformations and the geometric relationships that
they maintain. Reprinted with permission from [Bier86].

ratios of distances. and parallel relationships are all maintained. By tracking the transformations
that have been applied to a transformational group. we determine which constraints must hold
within the group without examining its individual \'ertices.

We next determine which constraints C{lI/l/ot hold within the transformational group. Again. this is
easily done by examining the transformations lhat have been applied to the group. If a group has
been translated, all of its fixed location constraints are broken. Fixed location constraints are also
broken among vertices during rotations and scales if the vertices are not at the center of the trans
formation. Scales break all tixed distance relationships within a transformational group. and
rotations break all fixed slope relationships within a transformational group.

After determining which relationships I1lllst hold within a group. and which cal/I/ot hold. we must
consider the relationships that might hold. For each of these constraint relationships. we must
examine the vertices in the group, looking for invariant relationships. Fortunately this expensive
task need not be done for the most common transformations. translations. rotations, and isotropic
scales, since all relationships in our constraint set can immediately be classified as either
definitely present or definitely not present. If we were to extend this algorithm to other less
common affine transformations, then the vertices would need to be examined explicitly.

14 of 28 Inferring Constraints from Multiple Snapshots

(a)

·······0 . .

D .
(b)

FIGURE 9. Two snapshots of a simple scene.

For every snapshot after the initial one, the first step fragments existing transformational groups
into new ones. accounting for the transformations that have occurred since the last snapshot. The
new child group has all the constraints of its parent. except those broken by the transformations
perfom1ed since the last snapshot. Since we arc only interested in effective transformations at the
snapshot granularity level, we factor the composition of transformations applied since the last
snapshot into scale. rotation. and translation components. and usc these, as described above. in
determining which intra-group constraints were broken. This allows us to ignore transformations
that have been undone by subsequent operations between the two snapshots. For example, if a set
of vertices is translated away from its original location. and then back again between snapshots.
then those translations are effectively ignored.

To illustrate transformational groups, and several other algorithmic details discllssed later.
consider the two simple snapshots given in Figurc 9. Two boxes were captured in the first
snapshot (Figure 9a). Initially, all venices were in the same transformational group. and
constrained to have fixed locations. After this, but prior to the next snapshot (Figure 9b) the boxes
were both scaled by a factor of 2, and the right box was translated to the left. one large grid unit
from the left box. Taking the second snapshot caused the system to split the original transforma
tional group into two children. each containing the vertices of one of the boxes. The second
snapshot broke the fixed location constraints for all vertices except the bottom left of the lcft
rectangle. since this verteX·S effective transformation had no translational component. and its
location was at the center of the scale. The intra-group absolute distance constraints were broken
for each group because there was a net scale. but isomctric scales maintain proportional distances.
so an implicit relative distance constraint was added to each group. It is important to note that
transformational groups are dependent L1pon the transformations performed. but they have no
impact on the constraint set that will eventually be inferred. They accelerate the search process by
pruning the search space.

3.2.3 Inter-Group Constraints

The next step is to compute inter-grollp constraints-constraints between different transforma
tional groups or their venices. These constraints arc generated in several ways. They can be
formed from a relative intra-group constraint when a transformational groups is split by a trans-

15 of 28 Inferring Constraints from Multiple Snapshots

formation that preserves the relation. Consider a transformational group with a relative slope
constraint among all of its vertices. If the group is split in two by a translation or scale. then we
must add a relative slope constraint between the two groups. relating the slopes contained within
one group to the slopes within the other. Similarly. if a transformational group has a relative
distance constraint among all of its vertices. and the group is split by a translation or rotation. then
we need to add a relative distance constraint between the two groups, specifying that the distances
within one group will remain proportional to the distances in the other.

We have just described grollp-to-grollP inter-group constraints-constraints that make entire
groups rotate or scale with another. There are also vertex-to-l'ertex inter-group constraints. which
express relationships between a small number of vertices. Finding these is the most costly step in
our algorithm. but the cost is reduced by the observation that we only need to compute inter-group
constraints between a child transformational group, its parent. and its siblings (other child groups
of the same parent spawned during the samc snapshot). Tnter-group constraints between the child
and other groups were already formed when their ancestors were split.

For small sets of vertices chosen from the newly created child group and its parent or siblings. we
look for relationships that have not changed and generate absolute constraints for these when
found. For example, we compute the slope and distance between such pairs of vertices at the
current snapshot. and the previous snapshot. If either of these values m'e unchanged, we create an
absolute constraint between the two vertices. Similarly, for each pair of lines constrained to have
the same slope. that were contained in a single transformational group during the last snapshot.
but are now split among groups, we identify absolute parallel distance constraints.

In our rectangle example. an inter-group vertex-to-vertex constraint inferred at the second
snapshot declares that the inner segments be one large grid unit apart. This constraint was implicit
after the first snapshot. when both rectangles were members of the same transformational group.
but must be made explicit after the second snapshot since the relationship still holds after the
transformational group was split.

3.2.4 Delta-Value Groups

Existing constraints between groups or vertices transformed since the last snapshot are now
considered. and those that no longer hold arc broken. Broken relative constraints. constraints
relating geometric measures (such as slope) of more than one object, are split if possible into
constraints that are still satisfied among fewer objects. Absolute constraints that have been broken
during the current snapshot are matched. as is now described, to form new relativc constraints.

We have alrcady described how absolute inter-group constraints arc found by locating relation
ships that do not change. One type of relative inter-group constraint is found by locating relation
ships that change together. If two pairs of vertices are constrained to have constant slopes. then
there is no need for a relative constraint betwecn the two. since the individual values are fixed.
However, if these slopes now change by the same amount, it becomes necessary to create a
relative constraint between thelll. Collections of relations that were absolutely constrained in a
previous snapshot, but have broken by equal amounts in the current snapshot. are bundled
together into delta-vallie groups.

16 of 28 Inferring Constraints from Multiple Snapshots

Delta-value groups, like transformational groups, allow LIS to represent similar constraints among
many objects compactly, but otherwise they are unrelated. Delta-value groups are simply relative
constraints between arbitrary numbers of relations. For example, a delta-value group might
constrain 11 distances to be proportional. However. when passing the delta-value group to the
solver, it need only be expanded to 11-1 binary constraints when solving the system (relating the
first element to each subsequent element) rather than 11

2 constraints relating each pair of elements.

Every absolute constraint broken in the current snapshot must be considered for inclusion in a
delta-value group. There are three steps in our algorithm where broken absolute constraints are
identified:

• During the fragmentation of transformational groups

• During the identification of vertex-to-vertex inter-group constraints

• During the breaking of constraints instantiated during previous snapshots

We place together in delta-value groups distance relations that change by the same proportion,
and angle and slope relations that change by the same number of degrees. Since typically many
absolute constraints break during the same snapshot, it is important to find matches efficiently. We
employ hashing to match constraints that break by similar amounts, so this step is performed in
linear time with respect to the number of broken constraints identified.

Returning to the example of Figure 9, the two rectangles are in separate transformational groups
after the second snapshot. This snapshot broke absolute distance constraints for both of these
groups, since they were scaled differently than their parent. which had an implicit absolute
distance constraint among all of its vertices. Both of these absolute distance constraints broke by a
factor of two. As a result. they were added to the same delta-value group. maintaining that
distances in the two groups be proportional.

3.2.5 Redundant Constraints

\Ve have now computed all of the constraints that arc invariant among snapshots. When objects
are transformed with constraints turned on, the inferred constraints are passed to our solver.
Typically our constraint set contains a large number of redundant constraints-constraints deriv
able from others through geometric tautologies. The algorithm finds all constraints from our set
that occur in the snapshots. not just the minimal set. though some of the constraints are repre
sented implicitly and efficiently in groups. To accelerate the process of finding a solution to the
constraint set. we try to remove redundant constraints. There are two ways that this can be done,
both of which involve looking for simple geometric relationships. The firsl looks for these
relationships as a post-process after the inferencing has been performed, and filters out extra
constraints known to hold in those circumstances. This is the only method cunently implemented
in Chimera for filtering redundant constraints, and it works well for those relationships that gener
ate a constant number of redundant constraints. I !owcver, certain relationships yield a polynomial
number of such constraints, and it would more efficient never to generate them.

These redundancies could be avoided by building additional kinds of groups during the inferenc
ing process. As discussed earlier. transformational groups and delta-value groups allo\\! large

17 of 28 Inferring Constraints from Multiple Snapshots

numbers of graphical relationships to be represented tersely. By identifying relationships that lead
to redundant constraints. and classifying them as special groups, we could pass only the essential
constraints to the solver. Figure 10 illustrates two relationships that would be particularly useful to
express as groups since they arc common and yield many redundant constraints if fully expanded.
In Figure lOa, vertices p and q are constrained to be coincident. If each other vertex rj in the figure
were part of a separate transformational group. our algorithm would instantiate the constraints
dist~lI1ce(p. rj) = distance(q. 1). and slope(p. rj) = slopc(q. rj) for all rio These redundant constraints
could be avoided by building coincidem vertex groups for sets of vertices currently constrained to
be coincident. These groups could be used in lieu of their actual vertices \vhile computing inter
group vertex-to-vertex constraints. If vertices in the group are not coincident in a subsequent
snapshot. the group would be broken. and the formerly redundant constraints that still hold would
then be instantiated.

r 9

r 8

r 6

r :2

• p,q

r 3

r 5

(a)

•.• ~:::.~:.~.':Z:: .=-.~ .~ •
S, S:! S3 S4 S5 S6 S7 Ss S9

(b)

FIGURE 10. Two geometric relationships that lead to redundant constraints.

Another common geometric relationship leading to redundant constraints is shown in Figure lOb.
Here, snapshots have resulted in a set of collinear vertices Sj. such that each vertex is in a separate
transformational group. and the slope between each pair of vertices is fixed. Here. only n-l
constraints are necessary to represent the slope constraints between the n vertices, but the
algorithm identifies constant slope constraints between each pair of vertices, Sj and Sj such that
i < j. By identifying this relationship as a group during the inferencing process. we could avoid
generating these redundant constraints.

Currently we look for only a few classes of redundant constraints. which we tilter as a postpro
cess, and often a large number eludes us. We arc working on improving this component of our
system.

18 of 28 Inferring Constraints from Multiple Snapshots

3.2.6 Solving the Constraint System

When constraints are turned on and constrained objects transformed, we compute the effects on
other objects in the scene. The constraint system can be viewed as a graph, with the nodes being
vertices of scene objects, and the arcs being constraints between the vertices. Changes to one
disconnected subgraph c,mnot affect another, since there are no constraints linking them. We find
the disconnected subgraphs containing the vertices actively being transformed. by performing a
simple graph traversal beginning at these vertices. Constraints which are not a part of any of these
subgraphs cannot affect our solution and can be safely ignored. Also, since the constraints of
different subgraphs arc mutually independent. they are solved independently, thereby reducing the
cost of the solution.

We also reduce the solution cost by usi ng a simple generalization of the technique many
constraint-based systems use to solve for rigid bodies efficiently. If a set of vertices are part of a
transformational group. they are constrained to transform together under a restricted class of
transformations, and often we can use this information to avoid passing certain constraints and
vertices to the solver. A transformational group that has only been translated has absolute slope
and distance constraints between each pair of vertices. and these same constraints insure that all
vertices in the group will translate together. If some vertices in the transfonnational group partici
pate only in these constraints, then instead of passing them to the solver. we can explicitly apply
to these vertices the translation that the solver finds for other vertices in the group. Similar
approaches can be taken for isotropic scales. rotations, and compositions of these transformation
classes.

As an example of this. consider Figure ll. The snapshots in Figure 11 a and 11 b constrain the hand
to scale so that the lower left vertex of the wrist is fixed. and the right-most vertex of the index
tinger aligns with the arrow. All vertices of the hand are part of the same scale transformational
group, and those of the arrow are part of the same translation transformational group. Figure 11 c
shows all the vertices in the system that participate in the constraint solution. However, only a few
of these 134 vertices must be passed to the solver.

In Figure lId, we choose to translate the lower right vertex of the arrow. We begin traversing the
constraint graph at this vertex to determine which constraints and vertices must be passed to the
solver. This vertex will be passed to the solver. since it is being manipulated directly by the user.
The top vertex of the arrow must also be passed to the solver. since it participates in an inter-group
slope constraint. These two vertices are bound together by absolute slope and distance constraints
because the arrow is a single translation transformational group. The displacement of all the other
vertices in this group wi II be determined by calculating the displacement vector that the solver
fi nds for these points.

Similarly, the vertex at the tip of the index finger is passed to the solver, since it participates in an
inter-group slope constraint with the point of the arrow. The lower left vertex of the wrist must
also be passed to the solver. since it has a fixed location constraint. These two vertices of the hand
are connected by an absolute slope constraint. because they me PaIt of the same scale transforma
tional group. The positions of all the other vertices in the hand are easily determined by the scale
transformation that maps these two vertices to their new positions.

19 of 28 Inferring Constraints from Multiple Snapshots

(a)

(c)

+

+ ++
t +'

+

++++

(b)

(d)

+ + hlxed I
~--------------------------------~ ~--------------------------------~

FIGURE 11. Efficient constraint formulations for transformational groups. Snapshots (a)
and (b) constrain the scene. A naive approach solves constraints for all vertices
marked in (c). A more efficient method solves only constraints shown in (d).

3.3 Analyzing the Algorithm

This section summarizes the inferencing algorithm, and presents informal arguments for its
correctness. The technique described in this paper finds all relationships of the classes listed in
Figure 6 that are present in a sequence of snapshots, and instantiates these into constraints. A
brute force algorithm would consider each relationship applied in turn to every collection of verti
ces of the appropriate size. and then determine whether the relationshi p in fact changes over the
course of the snapshots. This would be computationally expensive, so our algorithm takes a
different approach. To show that it works though, it suftices to explain how it finds the same
constraint set as the brute force algorithm.

20 of 28 Inferring Constraints from Multiple Snapshots

The snapshot process partitions all vertices in the scene into transformational groups. The set of
translations. rotations, and isotropic scales applied to a transformational group since the first
snapshot. automatically determines which of the relationships in our constraint set hold among its
vertices. and which do not. This provides the tirst savings over the brute-force algorithm -- it is
not necessary to search through collections of vertices in the same transformational group for
invariant relationships. since these relationships are completely determined by the group's trans
formations. However our algorithm. like the brute-force algorithm. must consider constraints that
span multiple transformational groups (inter-group constraints) as well as these constraints that lie
in a single group (intra-group constraints). Together, inter-group and intra-group constraints
comprise all possible constraints in a scene.

Finding inter-group constraints is more difficult. The constraints of interest to LIS include absolute
constraints and relative constraints. Absolute constraints express a single geometric relationship
to be constant. while relative constraints compare multiple geometric relationships. To find
absolute inter-group constraints. our algorithm does the same thing as the brute-force approach -
it considers all collections of vertices of the appropriate number. spanning multiple groups. and
looks for absolute relationships unchanged over all the snapshots. It does this incrementally. as
transformational groups are split from their parents. but the effect is the same as seeking these
relationships after all the snapshots are given.

Performing an exhaustive search for relative inter-group constraints would be more costly. since
they typically involve larger numbers of verticcs than absolute constraints. Fortunately they can
be found without resorting to the brute-force approach. Relative relationships are merely pairs of
absolute relationships that always change the same way. for example. two distances that always
remain proportional. There is no need to create a relative constraint before its absolute compo
nents change for the first time. since the absolute components already capture the relative relation
ships. For example. if two distances are fixed absolutely. then their proportion is implicitly
defined. All the absolute constraints in Figure 6 capture the relative relationships to their right
until a snapshot breaks the absolute constraints. Then, since relative relationships are pairs of
absolute relationships that always change together and in the same way. the algorithm1inds
relative inter-group constraints merely by identifying absolute constraints that always change
identically. So instead of performing a costly exhaustive search for relative inter-group
constraints. this algorithm monitors all absolute constraints. both absolute inter-group constraints
and absolute constraints on entire groups, ancI matches those that always change by equal factors
(in the case of distances) or degrees (in the case of angles and slopes). In this way. the algorithm
finds all inter and intra-group relationships in the scene, and finds an equivalent set to the brute
force approach with less computation.

The algorithm discussed so far is not heuristic; it finds all constraints of the classes in Figure 6
obeyed by a sequence of snapshots. As will be discussed later. considering all these relationships
often results in a number of incidental constraints -- relationships in a snapshot sequence that the
user did not intend. To combat this problem, we also experimented with a simple modification of
the algorithm that instantiates relative inter-group slope and distance constraints only between
two pairs of connected vertices, and absolute and relative inter-group angle constraints only on
angles formed by three connected vertices. This removes from consideration some relationships
that are usually not significant, yet often yield a large number of incidcntal constraints.

21 of 28 Inferring Constraints from Multiple Snapshots

The complexity of the inferencing algorithm depends on whether we restrict the above constraints
to connected vertices. If not. the most expensive step is tinding inter-group absolute angle
constraints, which is 0(n3) with the number of vertices. Since vertices in our system connect no
more than two lines. the task of searching for these constraints between connected vertices is
0(1/). But then the cost of linding inter-group absolute distance and slope constraints between
(U'bitrary vertices is still 0(1/2), and this becomes the bottleneck of the inferencing component. At
this time our system only removes a few classes of redundant constraints, and we do not know the
cost of implementing a good, general redundancy filter.

3.4 Parameterizing an Illustration

Often it is convenient to be able to parameterize graphical illustrations. A slight modification to
the algorithm described above allows simple relationships between scene objects and numeric
text fields to be inferred during the snapshot process. We provide an Arguments window in which
scalar values can be typed as the illustration is edited into new configurations. These values are
interpreted by the algorithm as though they were distances. slopes, or angles between vertices. If
one of the changing geometric relationships in the scene matches a changing numeric argument. a
relative constraint is created between the two values.

In Figure 12 we have drawn a scrollbar in the Chimera editor, and we would like to equate the
percentage typed in the Argument 1 field of the Arguments window to the height of the scrollbar's
slider. We constrain the scene by providing the two snapshots depicted in Figures 12a and l2b. but
in addition to presenting two valid versions or the scene's geometry, we type corresponding

v
•

Chimera

Arguments

Argument 1:

Argumenl2:

Argument 3:

Argument 4:

. ~ Apply-Arguments)

. Chimera

Arguments·

Argument 1:

Argument 2:

Argument 3:

Argument 4:

Chimera

•
Argumenl1:

{}'
Argument 2:

Argument 3:

Argumen.t4:

(a) .,;..1 !~-'-__ --'--' _____ ~
~pIY-Arguments)

(b)~I,~ ____________ ~~
(~Re!y.Arg~ents .

(C)~l!~ ________ ~ ___ ~

FIGURE 12. Dimensioning the height of a scrollbar. Initially two snapshots, (a) and (b),
are specified. A new value for Argument 1 is entered in (c), and the scrollbar adjusts
automatically.

22 of 28 Inferring Constraints from Multiple Snapshots

values in the Argument 1 text field. As shown in Figure 12c. after turning constraints on, we can
adjust the scrollbar's slider by editing the value in this same text field. and pressing the
Apply-Arguments button. Alternatively, we can adjust the slider, and the value of Argument I
changes accordingly.

Myers presents a similar example of parameterizing scroll bar behavior in [Myers88]. His method
linearly interpolates between two different constrained configurations. which is a more powerful
abstraction, particularly for defining the behavior of widgets. For example. in Peridot the slider
height can be parameterized with respect to the bottom and top of the scrollbar. This cannot
currently be done in our system. In our example, Argument I is interpreted as proportional to the
distance between two parallcllines-the top of the slider box and the bottom of the box contain
ing the upper scroll arrow. So if the scrollbar is resized, the percentage parameter will no longer
range from 0 to 100. Peridot's constraints were chosen for the domain of widget construction. and
are specialized for this type of task. Our system provides a lower-level constraint set for the
construction of general illustrations. The type of parameterization that our system provides is
useful for many basic illustration tasks, such as the dimensioning of distances, slopes, and angles.

Since parameters of the illustration can be mutually dependent, the values of a subset may deter
mine the rest. Sometimes the user may care to set only a few of the available parameters. For
these reasons, we allow parameters to be either specified or unspecified. Specified par:uneters are
constrained to their current value during the constraint solution, but unspecified parameters are
allowed to vary. Figure 13a shows a Chimera editor scene containing a single triangle. Two previ-

Chimera Chimera

Arguments Arguments

Argument 1: . 11L- Argument 1:

. Argumeht 2: 2.4..- Arg'urnent 2;

Argument 3: _? __ Argument 3:

Argument 4: Argument 4:

, Apply-Arguments)

(a) ~It~ ______ ~ _____ ~ (b) ~I,~ __ ~~ ______ .~

FIGURE 13. Specifying a subset of the parameters. Only the first two parameters are
specified in (a). The triangle resizes, and a value is computed for the third parameter
in (b).

23 of 28 Inferring Constraints from Multiple Snapshots

ous snapshots (\vhich arc not shown) have constrained it to be a right triangle. with a fixed lower
left corner. and horizontal base. They also have constrained Argument 1 to be proportional to the
length of the base. Argument 2 to be proportional to the length of the vertical segment. and
Argument 3 to be proportional to the hypotenuse's length. In Figure 13a, we type the desired
lengths of each of the sides but the hypotenuse into the Arguments window. The question mark
entered for Argument 3 requests that it be chosen by the constraint solver. After the
Apply-Arguments button is pressed. the triangle resizes subject to its constraints. and Argument 3
is filled in with a suitable value.

4 Implementation
The Chimera editor is implemcnted mainly in Lucid Common LISP and CLOS (the Common
Lisp Object system). with some C code as well. Our constraint solver is implemented in C, but the
inferencing mechanism is in LISP. The code runs on Sun workstations under OpenWindows.

\Ve lise Levenbcrg-tv1arquadt iteration [Press88J to solve the constraint systcms. This method uses
gradient descent when far from a solution. but switches to the inverse Hessian method to converge
quadratically when a solution is near. Levcnberg-Marquadt is a least-squares method. Each
constraint is implemented as an crror function, and the algorithm finds the best solution to a set of
error functions according to a least-squares evaluation. provided it does not fall into a local
minimum. The functions are not limited to be linear. or even algebraic. If the constraint solver
cannot find an acceptable solution the user is notified of this. and he or she then has the option of
undoing the operation. or trying to coax the system out of a local minimum by further manipulat
ing the graphical objects. We would eventually like to add mUltiple constraint solvers. so that
when one fails to find a solution. another can be invoked. In systems with multiple correct
solutions. which occur occasionally, the iterative solver tends to lind the solution closest to its
inputs. By manipulating objects in the scene, users can cause the solver to choose a particular
solution.

Part of the Levenberg-Marquadt method requires solving a system of equations to determine how
the current solution estimate should change. If the error functions and their partial derivatives arc
not mutually independent (which is the case with redundant constraints). the system cannot be
solved using Gaussian elimination. Instead. we use singular value decomposition [Press88] to find
a solution at this step.

In looking for absolute and relative relations in the scene. it is important to build toleranccs into
the matching process. We use small, fixed. empirically-derived tolcrances. just large enough to
account for noating point inaccuracies during the construction anel editing of the scene. If the
tolerances were large. the number of incidental constraints would increase. Our small tolerances
arc on the order of fractions of degrees and millimeters. These small tolerances require that the
snapshots be drawn accurately. so Chimcra provides both grids and snap-dragging for this
purpose.

Both the inferencing algorithm and constraint solver typically run at interactive speeds. on a 15.8
~vnps. 1.7 IvlFLOPS Sun SparcSlation I +. for systems of the size presented in the paper. The

24 of 28 Inferring Constraints from Multiple Snapshots

slowest snapshot (that of Figure 4b) took about 3 seconds. Constraint solutions were obtained in
under a second in all cases but the window resizing example. This took somewhat longer because
a large number of redundant constraints were passed to the solver by the inferencer. Further work
on the inferencer should reduce the number of redundant constraints, and speed up constraint
solutions.

5 Conclusions and Future Work
Snapshots appear to be a \'ery intuiti\"e way of specifying constraints. and often allow complex
constraint systems to be specitled with relatively few operations. However, we \-vill not know until
performing user-trials whether. and under what conditions. people prefer the technique to tradi
tional declarative specification. Qur personal experience with snapshot constraint specification in
Chimera suggests that it is not a panacea. There arc certain tasks for which it appears to be a
simpler. more natural method of constraint specification. but for others. traditional declarative
specification remains easier. The snapshot approach works well for highly constrained scenes,
particularly those which easily can be manipulated into example configurations. Explicit
constraint declaration is an additive technique rather than a subtractive one. and it often seems
preferable for weakly constrained scenes. and those for which setting up snapshots would be diffi
cult. There arc a number of problems using snapshots that the traditional method does not have:

• Certain pictures can be difficult to edit into new configurations. In some of these cases it may
be easier to specify constraints explicitly.

• Incidental. unintended relationships often occur in large scenes. necessitating extra snapshots.

• Redundant constraints are commonly passed to the solver. increasing solution costs.

When it is easier to specify constraints declaratively than by example, then the declarative
technique should be used. We have built a traditional declarative constraint interface for our editor
that is useful in these cases. and will allow us to better compare the two methods.

Incidental constraints can be reduced by restricting the classes of constraints that can be inferred.
In our initial implementation, we inferrecl inter-group relative distance and slope constraints
between any two pairs of vertices. This resulted in too many incidental constraints. so we
restricted these constraints to pairs of two connected vertices (although there need not be a
connection between the pairs). We still infer absolute distance and slope constraints between any
two vertices. and intra-group relative distance and slope constraints between any two pairs of
vertices. We are looking for additional restrictions that will not significantly impair the utility of
the system.

Another way to reduce incidental constraints is to have the lIser select a set of objects prior to the
beginning of:t snapshot sequence. and have the inferencer look for constraints only among these
objects. Partitioning the scene has the additional benc1it of accelerating snapshots. In traditional
constraint specification, constraints are also often added in partitions. to speed up solution.
Currently we do not allow inferencing to be restricted to a subset of the scene. but this option is
important for large scenes. and we plan to include it in the future.

25 of 28 Inferring Constraints from Multiple Snapshots

One approach to reducing redundant constraints might involve using algorithms similar to those
Chyz developed for maintaining complete and consistent constraint systems [Chyz85]. When a
new constraint is added to the network. his algorithms determine which constraint Illust be elimi
nated to avoid overconstraining the system. These methods may allow us to reduce the set of
constraints passed to the solver. Hmvever, we would not filter out most redundancies from our
master constraint set. since after subsequent snapshots they may no longer be redundant.

There are a number of other interesting topics for future work. We would like to extend our
system to handle constraints between non-geometric quantities. such as color or font. Animating
the constrained systems would provide an intuitive display or the set of constraints inferred. in the
same visual language as the snapshot specification. We would like to provide an audit trail of
snapshots by incorporating them into our graphical edit history representation [Kurlander90].
This \vill allow individual snapshots to be eliminated and the constraint network recalculated.

It would be helpful to infer a few additional geometric relationships. such as the distance between
a vertex and a line. or the angle between two arbitrary lines. These constraints could be easily
added to the inferencing algorithm. Currently we infer constraints only among vertices in the
initial drawing. There are cases when we would also like to infer relationships among implied
objects. such as the center of a rotation. or the bounding box of an object. We also plan to allow
constrained shapes inferred by our technique to be parameterized in more complex ways. and
included as part of macros.

Acknowledgments

We thank Terry Boult for valuable advice on numerical techniques. and Larry Koved and Dan
Ling for several helpful discussions. Eric Bier suggested very good background material. Eric
Bier, Michael Elhadad, Dan Olsen. Ken Perlin. and a crew of anonymous reviewers provided
lIseful comments on earlier drafts. Initial development of Chimera was facilitated by an equip
ment grant i'rom Hewlett-Packard. David Kurlander was funded during this research by a grant
from TB~1.

References

[Bier86] Bier, Eric A .. and Stone. Maureen C. Snap-Dragging. Proceedings of SIGGRAPH '86
(Dallas. Texas, August 18-22, 1986) In COlllpllter Graphics 20, 4 (August 1986). 233-240.

[Bier88] Bier, Eric A. Snap-Dragging: Interactive Geometric Design in Two and Three Dimen
sions. Ph.D. Thesis. D.C. Berkeley. EECS Department. April 1988.

[Borning79] Borning. Alan. ThingLab: A Constraint-Oriented Simulation Laboratory. Xerox
PARC Tech Report, SSL-79-3. Revised version of Stanford PhD thesis. July 1979.

[Borning86] Borning. Alan. Graphically Defining New Building Blocks in ThingLab. Human
Compllter Interaction 2, 4. 1986. 269-295. Reprinted in Visual Programllling Environlllents: Par-

26 of 28 Inferring Constraints from Multiple Snapshots

adigms and Systems. Ephraim Glinert. ed. IEEE Computer Society Press. Los Alamitos. CA.
1990.450-469.

[Chyz85] Chyz. George W. Constraint Management for Constructive Geometry. Master's Thesis.
MIT. lvlechanical Engineering. J line 1985.

rCohen82] Cohen, Paul R .. and Feigenbaum. Edward A. The Halldbook of Art~ficialflltelligence.
vol. 3. Kaufmann. Inc .. Los Altos. CA. 1982.

[Ellman89] Ellman, Thomas. Explanation-Based Learning: A Survey of Programs and Perspec
tives. ACM Computil1g Surveys 2J, 2. June 1989. 163-221.

[Hudson90a] Hudson. Scott E .. and Mohamed. Shamim P. Interactive Specification of Flexible
User Interface Displays. ACM Transactions on h~rormatioll Systems 8. 3 (July 1990). 269-288.

[Hudson90b] Hudson, Scott E. An Enhanced Spreadsheet Model for User Interface Specification.
University of Arizona. Department of Computer Science Technical Report TR 90-33. October
1990.

[Kurlander90] Kurlander. David and Feiner. Steven. A Visual Language for Browsing. Undoing.
and Redoing Graphical Interface Commands. In Visual Languages (lnd VislIal Programming, Shi
Kuo Chang. ed. Plenum Press. New York. 1990.257-275.

[Kurlancler92] Kurlander. David and Feiner. Steven. Interactive Constraint-Based Search and
Replace. CHJ '92 COI(ferellce Proceedings (Monterey. CA. May 3-7. 1992). ACM, New York.
609-618.

[Kurlander93] Kurlander, David. Graphical Editing by Example. Ph.D. Thesis. Columhia Univer
sity. Computer Science. July 1993.

[Lee83] Lee. Kunwoo. Shape Optimization of Assemblies Using Geometric Properties. Ph.D.
Thesis. MIT. Mechanical Engineering. December 1983.

[Lcwis90] Lewis. C. NoPumpG: Creating Interactive Graphics with Spreadsheet Machinery. In E.
Glinert, Visllal Programming Enviro11l1lents: Paradigms (lnd Systems, IEEE Computer Society
Press. Los Alamitos. CA. 1990.526-546.

[Maulsby89] iv1aulsby. David L.. Witten. Ian 1-1 .. and Kittlitz. Kenneth A. Metamouse: Specifying
Graphical Procedures by Example. Proceedings of SIGGRAPl-1 '89 (Boston. MA, July 31-August
4, 1989) In COli/pilfer Graphics 23. 4 (July 1989). 127-136.

[Myers86] Myers, Brad A.. and Buxton. William. Creating Highly Interactive and Graphical User
Interfaces by Demonstration. Proceedings of SIGGRAPII '86 (Dallas, Texas. August 18-22,
1986) In Computer Gmphics 20, 4 (August 1986).249-268.

fMyers88] Myers. Brad A. Creating User fme//aces by Demonstration. Academic Press. Boston,
1988.

27 of 28 Inferring Constraints from Multiple Snapshots

[Myers91] rvlyers, Brad A. Graphical Techniques in a Spreadsheet for Specifying User Interfaces.
CHI '91 Conference Proceedings (New Orleans, LA. April 27- May 2, 1991) 243-249.

[Nelson85) Nelson. Greg. Juno, A Constraint-Based Graphics System. Proceedings of SIG
GRAPH '85 (San Francisco, CA. July 22-26, 1985) In CompLller Graphics 19, 3 (July 1985). 23S-
243.

[Olsen90] Olsen. Dan R .. Jr., and Allan, Kirk. Creating Interactive Techniques by Symbolically
Solving Geometric Constraints. Proceedings of UIST '90 (Snowbird, Utah. October 3-S. 1990)
102- 107.

[Pavlidis8S) Pavlidis. Theo and Van Wyk, Christopher J. An Automatic Beautifier for Drawings
and Illustrations. Proceedings of SIGGRAPH '85 (San Francisco. CA. July 22-26, 1985) In Com
pllter Graphics 19, 3 (July 1985).225-234.

[Press88] Press, William II., Flannery. Brian P .. Teukolsky, Saul A., and Vetterling. William T.
Nlimerical Recipes in C: The Art of Scientific Compllting. Cambridge University Press. Cam
bridge. 1988.

[Sutherland63aJ Sutherland. Ivan E. Sketchpad, A Man-Machine Graphical Communication Sys
tem. Ph.D. Thesis. Electrical Engineering. January 1963.

[Sutherland63b) Sutherland. Ivan E. Sketchpad: A M:m-Machine Graphical Communication Sys
tem. AFTPS Conference Proceedings, Spring Joint Computer Conference. 1963. 329-346.

28 of 28 Inferring Constraints from Multiple Snapshots

