Data Structures and Algorithims for

Disjoint Set Union Problems

Zvi Galil
Giuseppe F. Italiano

CUCS-473-89

Data Structures and Algorithms for

Disjoint Set Union Problems *

Zvi Galil 2

Giuseppe F. Italiano '3+4

Abstract

This paper surveys algorithmic techniques and data structures that have been pro-
posed to solve the set union problem and its variants. Their discovery required a new set
of algorithmic tools that have proven useful in other areas. Special attention is devoted to
recent extensions of the original set union problem, and some effort is made to provide a
unifying theoretical framework for this growing body of algorithms.

Categories and Subject Descriptors: E.1 [Data Structures]: Trees; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-
computations on discrete structures; G.2.1 [Discrete Mathematics]: Combinatorics
combinatorial algorithms; G.2.2 [Discrete Mathematics]: Graph Theory-graph algo-
rithmas.

General Terms: Algorithms, Theory.

Additional Key Words and Phrases: Backtracking. equivalence algorithm. partition. s«
union. time complexity.

*

Work supported in part by NSF (irants DCR-85-11713 and CCR-%6-05353.
Department of Computer Science. Columbia University. New York, NY, 10027.
Department of Computer Science, Tel Aviv University. Tel Aviv, Israel.

Dipartimento di Informatica e Sistenustica. Universita di Roma. Rome, Italy.

W N e

Supported in part by an IBM Graduate Fellowship.

1. Introduction

The set union problem has been widely studied during the past decades. The problem
consists of performing a sequence of operations of the following two kinds on a collection
of sets.

union(A,B) : combine the two sets 4 and B into a new set named A.
find(x) : return the name of the unique set containing the element z.

Initially, the collection consists of n singleton sets {1}, {2},...,{n}. The name of set
{i} is 1.

The set union problem has applications in a wide range of areas. including among
others compiling COMMON and EQUIVALENCE statements in Fortran [Arden et al.
1961; Galler and Fischer 1964|, implementing property grammars [Stearns and Lewis 1969;
Stearns and Rosenkrantz 1969}, computational geometry [Imai and Asano 1984; Mehlhorn
1984c: Mehlhorn and Néher 1986 and several combinatorial problems such as finding
minimum spanning trees [Aho et al. 1974; Kerschenbaum and van Slyke 1972], computing
least common ancestors in trees [Aho et al. 1973], solving off-line minimum problems
[Gabow and Tarjan 1985; Hopcroft and Ullman 1973], finding dominators in graphs [Tarjan
1974] and checking flow graph reducibility [Tarjan 1973].

Very recently many variants of this problem have been introduced, in which the pos-
sibility of backtracking over the sequences of unions was taken into account [Apostolico
et al. 1988; Gambosi et al. 1988b; 1988¢; Mannila and Ukkonen 1986a; 1988; Westbrook
and Tarjan 1987]). This was motivated by problems arising in Logic Programming inter-
preter memory management [Hogger 1984: Mannila and Ukkonen 1986b; 1986c; Warren
and Pereira 1977], in incremental execution of logic programs [Mannila and Ukkonen 1988],
and in implementation of search heuristics for resolution [Gambosi et al. 1988c; Ibaraki
1978; Pearl 1984].

In this paper we survey the most efficient algorithms designed for these problems.
The model of computation considered is the pointer machine [Ben-Amram and Galil 1988:
Knuth 1968; Kolmogorov 1953: Schénage 1980; Tarjan 1979a). Its storage consists of
an unbounded collection of records connected by pointers. Each record can contain an
arbitrary amount of additional information and no arithmetic is allowed to compute the
address of a record.

In this model two classes of algorithms were defined. called respectively separa-
ble pointer algorithms [Blum 1986: Tarjan 1979a] and nonseparable pointer algorithma
[Mehlhorn et al. 1987].

Separable pointer algorithms run on a pointer machine and satisfy the separability
assumption as defined in [Tarjan 1979a]. The rules an algorithm must obey to be in such
a class are the following [Blum 1986: Tarjan 1979a] :

(1) The operations must be performed on line.
(i1) Each set element is a node of the data structure. There can be also additional nodes.
(iii) (Separability). After each operation. the data structure can be partitioned into sub
graphs such that each subgraph corresponds exactly to a current set. No edge leads
from a subgraph to another.

[RV

(iv) To perform find(z). the algorithm obtains the node » containing = and follows paths
starting from v until it reaches the node which contains the name of the corresponding
set.

(v) During any operation the algorithm may insert or delete any number of edges. The
only restriction is that rule (iii) must hold after each operation.

The class of nonseparable pointer algorithms [Nehlhorn et al. 1987] does not require
the separability assumption. The only requirement is that the number of pointers leaving
each record must be bounded by some constant ¢ > 0. More formally, rule (iii) above is
replaced by the following rule. while the other four rules are left unchanged:

(iii) There exists a constant ¢ > 0 such that there are at most ¢ edges leaving a node.

We will see that often these two classes of pointer algorithms admit quite different
upper and lower bounds for the same problems.

Another model of computation considered in this paper is the random access machine,
whose memory consists of an unbounded sequence of registers. each of which is capable of
holding an arbitrary integer. The main difference with pointer machines is that in random
access machines the use of address arithmetic techniques is permitted. A formal definition
of random access machines can be found in [Aho et al. 1974, pp. 5-14].

The remainder of the paper consists of eight sections. In section 2 we survey the most
efficient algorithms known for solving the set union problem. Section 3 deals with the set
union problem on adjacent intervals. while in section 4 data structures which allow us to
undo the last union performed are presented. This result has been recently generalized in
two different directions. First, in section 3 we describe techniques for undoing any union in
the sequence of operations performed. Second, in section 6 and 7 we show how to undo any
number of union operations (not only the last). In section 8, we use some of the presented
techniques in order to obtain partially persistent data structures (as defined in [Driscoll
et al. 1986]) for the set union problem. Finally, section 9 lists some open problems and
concluding remarks.

2. The Set Union Problem

The set union problem consists of performing a sequence of union and find operations.
starting from a collection of n singleton sets {1}.{2}.....{n}. The initial name of set {:}
1s . Due to the definition of the union and ind operations, there are two invariants which
hold at any time. First. the sets are always disjoint and define a partition of the elements
into equivalence classes. Second. the name of each set corresponds to to one of the items
contained in the set itself.

A different version of this problem considers the following operation instead of unions.
unite(A,B) : combine the two sets A and B into a new set, whose name is either A or B

Unite allows the name of the new set to be arbitrarily chosen. This is not a significant
restriction in the applications. where one is mostly concerned on testing whether two

3

elements belong to the same equivalence class, no matter what the name of the class can
be. Surprisingly, some extensions of the set union problem have quite different time bounds
depending on whether unions or unites are considered. In the following. we will deal with
unions unless otherwise specified.

2.1. Amortized complexity

In this section we will describe optimal algorithms for the set union problem [Tarjan
1973; Tarjan and van Leeuwen 1984], when the amortized time complexity is taken into
account. We recall that the amortized time is the running time per operation averaged
over a worst-case sequence of operations [Tarjan 1985]. For the sake of completeness, we
first survey some of the basic algorithms that have been proposed in the literature [Aho
et al. 1974; Fischer 1972; Galler and Fischer 1964].

Most of these algorithms represent sets making use of rooted trees, following a tech-
nique introduced by Galler and Fischer [1964]. Each tree corresponds to a set. Nodes of
the tree correspond to elements of the set and the name of the set is stored in the root of
the tree. In the remainder of the paper. we will assume that all the children of a node are
linked in a doubly linked list and each node contains a pointer to its parent and a pointer
to its leftmost child. This will guarantee that each edge of a tree can be traversed in both
directions.

In the quick-find algorithm, every element points to the root of the tree. To perform
a union(4, B), all the element of one set are made children of the tree root of the other.
This leads to an O(n) time complexity for each union and to O(1) for each find.

A more efficient variant attributed to Mcllroy and Morris [Aho et al. 1974] and known
as weighted quick-find, uses the freedom implicit in each union operation according to the
following rule.

union by size [Galler and Fischer 1964] : make the children of the root of the smaller
tree point to the root of the larger, arbitrarily breaking a tie. This requires that the size
of each tree is maintained.

Although this rule does not improve the worst-case time complexity of each operation,
it improves to O(logn) ! the amortized complexity of a union [Aho et al. 1974].

The quick-union algorithm is able to support each union in O(1) time and each find
in O(n) time [Galler and Fischer 1964]. The height of each tree can now be greater than
1. A union(A, B) is performed by making the tree root of one set child of the tree root of
the other. A find(z) is performed by starting from the node r and by following the pointer
to the parent until the tree root is reached. The name of the set stored in the tree root i~
then returned.

Also this time bound can be improved by using the freedom implicit in each union
operation, according to one of the following two nnion rules. This gives rise to weighted
quick-union algorithms.

! Throughout this paper all logarithins are assumed to be to the base 2, unless explicitely
otherwise specified.

union by size [Galler and Fischer 1964] : make the root of the smaller tree point to
the root of the larger, arbitrarily breaking a tie. This requires maintaining the number of
descendants for each node.

union by rank [Tarjan and van Leeuwen 1984] : make the root of the shallower tree
point to the root of the other, arbitrarily breaking a tie. This requires maintaining the
height of the subtree rooted at each node. in the following referred to as the rank of a
node.

If the root of the tree containing A is made child of the root of the tree containing B,
the names A and B are swapped between the roots. With either union rule, each union
can be performed in O(1) time and each find in O(logn) time [Galler and Fischer 1964;
Tarjan and van Leeuwen 1984]. Finally. a better solution can be obtained if one of the
following compaction rules is applied to the find path.

path compression [Hopcroft and Ullman 1973] : make every encountered node point
to the tree root.

path splitting [van Leeuwen and van der Weide 1977: van der Weide 1980] : make
every encountered node (except the last and the next to last) point to its grandparent.

path halving [van Leeuwen and van der Weide 1977 van der Weide 1980] : make every
other encountered node (except the last and the next to last) point to its grandparent.

Combining the two choices of a union rule and the three choices of a compaction rule.
six possible algorithms are obtained. They all have an O(a(m + n,n)) amortized time
complexity, where « is a very slowly growing function, a functional inverse of Ackermann'’s
function [Ackermann 1928]. For the proof of the following tlieorem, the reader is referred
to [Tarjan and van Leeuwen 1984].

Theorem 2.1.1. [Tarjan and van Leeuwen 1984] The algorithms with either linking by
size or linking by rank and either compression, splitting and halving run in O(n+ma(m +
n,n)) time on a sequence of at most n unions and m finds.

No better amortized bound is possible for any separable pointer algorithm. as the
following theorem shows.

Theorem 2.1.2. [Banachowski 1980: Tarjan 1979a: Tarjan and van Leeuwen 1984

Any separable pointer algorithm requires Q(n+ma(m+n,n)) worst-case time for processing
a sequence of n unions and m finds.

Proof : See Theorem 2 in [Tarjan and van Leeuwen 1934].

2.2. Single operation worst-case time complexity

The algorithms which use any union and any compaction rule have still single-
operation worst-case time complexity O(logn) [Tarjan and van Leeuwen 1984]. Blum

3

[1986] proposed a data structure for the set union problem which supports each union and
find in O(log n/ loglogn) time in the worst case. He also proved that no better bound is
possible for any separable pointer algorithm.

The data structure used to establish the upper bound is called k-UF tree. For anv
k> 2,a k-UF tree is a rooted tree T such that:

(1) the root has at least two children:
(ii) each internal node has at least & children:
(iii) all leaves are at the same level.
As a trivial consequence of this definition, the height of a k-UF tree with n leaves is
not greater than [log, n].
We refer to the root of a k-UF tree as fat if it has more than k children, and as slim
otherwise. A k-UF tree is said to be fat if its root is fat. otherwise it is referred to as slim.

Disjoint sets can be represented by k-UF trees as follows. The elements of the set are
stored in the leaves and the name of the set is stored in the root. Furthermore, the root
contains also the height of the tree and a bit specifying whether it is fat or slim.

A find(z) is performed as described in the previous section by starting from the leaf
containing z and returning the name stored in the root. This can be accomplished in
O(log; n) worst-case time.

A union(A4, B) is performed by first accessing the roots r,, and rg of the corresponding
k-UF trees T4 and Tg. Blum assumed that his algorithm obtained in constant time r4
and rg before performing a union(A. B). If this is not the case, r 4 and rp can be obtained
by means of two finds (i.e., find(A) and find(B)), due to the property that the name
of each set corresponds to one of the items contained in the set itself. We now show
how to unite the two k-UF trees T4 and Tg. Assume without loss of generality that
height(Tg) < height(T4). Let v be the node on the path from the leftmost leaf of Ty to
r4 with the same height as Tp. Clearly. v can be located by following the leftmost path
starting from the root r4 for exactly height(T.4)— height(Tg) steps. When implanting Tg
on T, only three cases are possible. which give rise to three different types of unions.

Type 1 - Root rg is fat (i.e.. has more than & children) and v is not the root of T,
Then rpg is made a sibling of v.

Type 2 - Root rg is fat and v is the root of ry. A new (slim) root r is created and
both r4 and rg are made children of r.

Type 3 - Root rg is slim. All the children of rg are made the rightimost children of r

Theorem 2.2.1. [Blum 1986] k-UF trees can support each union and find 1n
O(logn/ loglogn) time in the worst case. Their space complezity 1s O(n).

Proof: Each find can be performed in O(log; n) time. Each union(.4, B) can requur«
at most O(log, n) time to locate the nodes ry. rp and v as defined above. Both type |
and type 2 unions can be performed in constant time, while type 3 unions require at ot
O(k) time, due to the definition of slim root. Choosing & = [logn/loglogn], the claim~i
time bound is obtained. The space complexity derives easily from the fact that a k-['F
tree with n leaves has at most 2n — 1 nodes. Henceforth the forest of k-UF trees whicl.

store the disjoint sets requires at most a total of O(n) space. o

6

Blum showed also that this bound is tight for the class of separable pointer algorithms.
In particular, the reader is referred to 'Blum 1936] for the proof of the following theorem.

Theorem 2.2.2. [Blum 1986] Every separable pointer algorithm for the disjoint set
union problem has single-operation worst-cese time complezity at least Q(logn/ loglogn).

2.3. Average case complexity

The expected running time of the basic algorithms described in section 2.1 has been
investigated [Bollobas and Simon 1985; Doyle and Rivest 1976; Knuth and Schonage 1978:
Yao 1976] under different assumptions on the distribution of the input sequence. In the rest
of this section, we will assume that O(n) union and find instructions are being performed.
This is not a significant restriction for the asymptotical time complexity as shown for
instance in [Hart and Sharir 1986].

Yao [1976] defined two different models of probability based on Random Graphs and
proved that in one of these models the weighted quick-union algorithm executes n union
and find instructions in O(n) expected time.

On the other hand. Doyle and Rivest [1976] proved that the weighted quick-find
algorithm requires between n and 2n steps in the average, assuming that each pair of sets
is equally likely to be merged by a union operation. However, this assumption does not
apply to situations where one is interested in joining sets containing two elements chosen
independently with uniform probability.

Later on, this result was extended under a different model based on Random Graphs
by Knuth and Schénage [1978]. Subsequently, Bollobas and Simon [1983] proved that the
expected running time of the weighted quick-find algorithm is indeed e¢n + o(n/logn).
where ¢ = 2.0487.. ..

The reader is referred to the original papers [Bollobas and Simon 1985; Doyle and
Rivest 1976; Knuth and Schénage 1978: Yao 1976] for all the details concerning the analysis
of the expected behavior of these algorithms.

2.4. Special linear cases

The most efficient algorithms for the set union problem are optimal for the class of
separable pointer algorithms. As a consequence. in order to get a better bound. one should
either consider a special case of set union or take advange of the more powerful capabilitic~
of nonseparable pointer algorithms and random access machines [Aho et al. 1974]. Gabow
and Tarjan [1985] used both these ideas to devise one algorithm which runs in linear tin«
on a random access machine for a special case in which the structure of the unions is know:.
in advance. This result is of theoretical interest as well as significant in several applicatiors
[Gabow and Tarjan 1985].

The problem can be formalized as follows. We are given a tree T cointaining n node~

which correspond to the initial n singleton sets. Denoting by parent(v) the parent of th.

{

node v in T, we have to perform a sequence of union and find operations such that each
union can be only of the form wunion(parenti¢), v). For such a reason. T will be called
the static unton tree and the problem will be referred to as the static tree set union. Also
the case in which the union tree can dynamically grow by means of new node insertions
(referred to as incremental tree set union) can be solved in linear time. In the following.
we will briefly sketch the solution of the static tree set union problem, referring the reader
to [Gabow and Tarjan 1985] for incremental tree set union.

Gabow and Tarjan’s static tree algorithm partitions the nodes of T in suitably chosen
small sets, called microsets. Each microset contains less than b nodes (where b is such that
b= Q(loglogn) and b = O(log n/ loglogn)), and there are at most O(n/b) microsets. To
each microset S a node r ¢ S is associated. referred to as the root of S. such that SU {r}
induces a subtree of T' with root r.

The roots of the microsets are maintained as a collection of disjoint sets, called
macrosets. Macrosets allow to access and manipulate microsets.

The basic ideas underlying the algorithm are the following. First, the a priori knowl-
edge about the static union tree allows to precompute the answers to the operations to
be performed in microsets by using some table look-up. Second, we apply any one of the
six optimal algorithms described in section 2.1 to maintain the macrosets. By combining
these two techniques, a linear-time algorithm for this special case of the set union problem
can be obtained. The algorithm is quite complicated and all the low-level details as well
as the proof of the following theorem can be found in [Gabow and Tarjan 1985].

Theorem 2.4.1. [Gabow and Tarjan 1985] If the knowledge about the union tree is
available in advance. each union and find operation can be supported in O(1) amortized
time. The total space Tequired 13 O(n).

Very recently Loebl and Nesetril [1988] presented a linear-time algorithm for another
special case of the set union problem. They considered sequences of unions and finds with
a constraint on the subsequence of finds. Namely, the finds are listed in a postorder fashion.
where a postorder is a linear ordering of the leaves induced by a drawing of the tree in the
plane. In this framework. they proved that such sequences of union and find operations
can be performed in linear time, thus getting O(1) amortized time per operation. However
a slightly more general class of input sequences. denoted by local postorder, was provex!
not to be linear (even if its rate of growth is unprovable in the theory of finite sets). A
preliminary version of these results was reported in [Loebl and Nesetiil 1988].

3. The Set Union Problem on Intervals

In this section, we shall restrict our attention to the set union problem on intervals
This problem can be defined in the following general framework [Mehlhorn et al. 1987
Perform a sequence of the following three operations on a linear list {1,2,...,n} of items

4

8

union(x) : given the marked item r. unmark this item.
find(x) : given the item z, return y = min{: [= > r and : is marked }.
split(x) : given the unmarked item r. mark this item.

Marked items partition the list into adjacent intervals. A union(r) joins two adjacent
intervals, a find(z) returns the right endpoint of the interval containing r and a split(z)
splits the interval containing . Adopting the same terminology used in [Mehlhorn et al.
1987), we will refer to the set union problem on intervals as the union-split-find problem.
After having tackled this problem. we will consider two particular cases: the union-find
problem and the split-find problem, where only union, find and respectively split and find
operations are allowed.

The union-split-find problem and its subproblems have applications in a wide range of
areas, including computational geometry [Imai and Asano 1984; Mehlhorn 1984c; Mehlhorn
and Naher 1986], shortest paths [Mehlhorn 1984b: Ahuja et al. 1988] and the longest
common subsequence problem [Aho et al. 1983; Apostolico and Guerra 1987].

3.1. Union-Split-Find

In this section we will describe optimal separable and nonseparable pointer algorithms
for the union-split-find problem. The best separable algorithm for this problem runs in
O(log n) worst-case time for each operation, while nonseparable pointer algorithms require
only O(loglogn) worst-case time for each operation. In both cases, no better bound is
possible.

As far as separable pointer algorithms are concerned. the upper bound can be easily
obtained by means of balanced trees [Aho et al. 1974; Adelson-Velskii and Landis 1962:
Mehlhorn 1984a; Nievergelt and Reingold 1973], while for the proof of the following lower
bound the reader is referred to [Mehlhorn et al. 1987).

Theorem 3.1.1. [Mehlhorn et al. 1987) For any separable pointer algorithm. both
the worst-case per operation time complerity of the split-find problem and the amortized
time complezity of the union-split-find problem are Q(logn).

Turning to nonseparable pointer algorithms. the upper bound can be found in [Karls
son 1984; Mehlhorn and Naher 1986; van Emde Boas 1977; van Emde Boas et al. 1977). 1
particular, van Emde Boas et al. [1977] introduced a priority queue which supports among
other operations insert, delete and successor on a set whose elements belong to a fixe«!
universe S = {1,2,....n}. The time required by each of those operation is O(loglogn:
Oniginally, the space was O(n loglog n) but later was improved to O(n) by van Emde Boas
[van Emde Boas 1977]. A detailed description of the data structure and its time complexits
can be found in [van Emde Boas 1977: van Emde Boas et al. 1977]. The above operations
correspond respectively to union. split and find. and therefore the following theorem easiiy
follows.

Theorem 3.1.2. [van Emde Boas 1977 There exists a data structure supporting each
union. find and split in O(loglog n) worst-case time. The space required i3 O(n).
Proof : See Theorem 3 in [van Emde Boas 1977] o

The bound obtained by means of van Emde Boas' priority queue is tight, as the
following theorem shows.

Theorem 3.1.3. [Mehlhorn et al. 1987] For any nonseparable pointer algorithm,
both the worst-case per operation time complexity of the split-find problem and the amortized
time complezity of the union-split-find problem are Q(loglogn).

Proof : See Theorem 1 in [Mehlhorn et al. 1987]. o

Notice that this implies that for the union-split-find problem the separability assump-
tion causes an exponential loss of efficiency. It is still open whether the use of nonseparable
pointer algorithms can improve the time complexity of the more general set union problem.

3.2. Union-Find

The union-find problem is a restriction of the set union problem described in section 2,
when only adjacent intervals are allowed to be joined. Henceforth, both the O(a(m+n.n))
amortized bound given in Theorem 2.1.1 and the O{log n/ log log n) single-operation worst-
case bound given in Theorem 2.2.1 still hold.

However, while Tarjan’s proof of the Q(a(m + n.n)) amortized lower bound works
also for the union-find problem, Blum's proof does not seem to be easily adaptable to
the new problem. Hence, it remains an open problem whether no better bound than
O(logn/loglogn) is possible for the single-operation worst-case time complexity of sepa-
rable pointer algorithms.

It is also open whether less than O(loglogn) worst-case per operation time can be
achieved for nonseparable pointer algorithms. Gabow and Tarjan used the data structure
described in section 2.4 to obtain an O(1) amortized time on a random access machine.

3.3. Split-Find

According to Theorems 3.1.1. 3.1.2 and 3.1.3. the two algorithms given for the more
general union-split-find problem, are still optimal for the single-operation worst-case time
complexity of the split-find problem. As a result. each split and find operation can be sup
ported in ©(logn) and in O(loglog n) time respectively in the separable and nonseparali
pointer machine model.

The amortized complexity of this problem can be reduced to O(log® n). where log™ 1 :-
the iterated logarithm function '. as shown by Hopcroft and Ullman [1973]. Their algorith::.

! log” n = min{: | log[i] n < 1}. where logl!l n = log log!' "Y' n for i > 0 and log[o] n=-
Roughly speaking, it is the number of times the logarithm must be taken to obtain

number less than one.

10

is based upon an extension of an idea by Stearns and Rosenkrantz [1969]. The basic data
structure is a tree. for which each node at level 7. ¢ > 1. has at most 2F¢~1) children,
where F(i) = F(i — 1)2F0=D for i > 1, and F(0) = 1. A node is said to be complete
either if it is at level 0 or if it is at level i > 1 and has 2F¢=1) children. all of which are
complete. The invariant maintained for the data structure is that no node has more than
two incomplete children. Moreover, the incomplete children (if any) will be leftmost and
rightmost. As in the usual tree data structures for set union, the name of a set is stored
in the tree root.

At the beginning, such a tree with n leaves is created. Its height is O(log™ n) and
therefore a find(z) carried out as usual will require O(log™ n) time to return the name of
the set. To perform a split(z)., we start at the leaf corresponding to z and traverse the
path to the root to partition the tree into two trees. It is possible to show that using this
data structure, the amortized cost of a split is O(log* n) [Hopcroft and Ullman 1973].

This bound can be further improved to O(a{m, n)) as showed by Gabow [1985]. The
algorithm used to establish this upper bound relies on a sophisticated partition of the items
contained in each set. The underlying data structure is quite complicated and the reader
is referred to [Gabow 1985] for the proof of the following theorem.

Theorem 3.3.1. [Gabow 19383] There ezists a data structure supporting a sequence of
m find and split operations 1n O(ma(m, n)) worst-case time. The space required is O(n).

It is still open whether an amortized bound less than O(a(m, n)) can be obtained on
a pointer machine. Gabow and Tarjan, using the power of a random access machine, were
able to achieve ©(1) amortized time. This bound is obtained by employing a slight variant
of the data structure sketched in section 2.4. The details can be found in [Gabow and
Tarjan 1983).

4. The Set Union Problem with Deunions

Mannila and Ukkonen [1986a] defined a generalization of the set union problem. re
ferred to in the following as set union with deunions. in which in addition to union an
find the following extra operation is allowed.

deunion : undo the most recently performed union operation not vet undone.

Motivations for studying this problem arise in Prolog interpreter memory management
without function symbols [Hogger 1984; Mannila and Ukkonen 1986b: 1986c; Warre::
and Pereira 1977]. Variables of Prolog clauses correspond to the elements of the sets
unifications correspond to unions and backtracking corresponds to deunions [Mannila a1

Ukkonen 1986b].

Recently, the amortized complexity of set union with deunions was characterized 1.
Westbrook and Tarjan [1987], who derived a ©(logn/ loglogn) upper and lower bouu:
The upper bound is obtained by extending the path compaction techniques described ::.

11

the previous sections in order to deal with deunions. The lower bound holds for separable
pointer algorithms. The same upper and lower bounds hold also for the single-operation
worst-case time complexity of the problem.

4.1. Amortized complexity

In this section, we will describe O(logn/loglogn) amortized algorithms for the set
union problem with deunions [Mannila and Ukkonen 1987; Westbrook and Tarjan 1987].
They all use one of the union rules combined with path splitting and path halving. Path
compression with any one of the union rules leads to an O(log n) amortized algorithm, as
it can be seen by first performing n — 1 unions which build a binomial tree [Tarjan and
van Leeuwen 1984] of depth O(logn) and then by repeatedly carrying out a find on the
deepest leaf, a deunion and a redo of that union.

In the following, a union operation not yet undone will be referred to as live, and
as dead otherwise. To handle deunions, a union stack is maintained, which contains the
roots made nonroots by live unions. Furthermore, for each node z a node stack P(z) is
maintained, which contains the pointers leaving r created either by unions or by finds.
During a path compaction caused by a find, the old pointer leaving r is left in P(z)
and each newly created pointer (z.y) is pushed onto P(z). The bottommost pointer
on these stacks is created by a union and will be referred to as a union pointer. The
other pointers are created by path compaction and are called find pointers. Each of these
pointers is associated to a unique union operation, the one whose undoing would invalidate
the pointer. The pointer is said to be live if the associated union operation is live, and it
is said to be dead otherwise.

Unions are performed as in the set union problem, except that for each union a
new item is pushed onto the union stack, containing the tree root made nonroot and
some bookkeeping information about the set name and either size or rank. To perform a
deunion, the top element is popped from the union stack and the pointer leaving that node
is deleted. The extra information stored in the union stack allows to maintain correctly
set names and either sizes or ranks.

There are actually two versions of these algorithms, depending on when dead pointers
are destroyed from the data structure. Fager algorithms pop pointers from the node stacks
as soon as they become dead (i.e.. after a deunion operation). On the other hand. Jazy
algorithms destroy dead pointers in a lazy fashion while performing subsequent union and
find operations. Combined with the allowed union and compaction rules. this gives a total
of eight algorithms. They all have the same :ime and space complexity, as the following
theorem shows.

Theorem 4.1.1. FEither union by size or unton by rank in combination with e:-
ther path splitting or path halving gqives both eager and lazy algorithms which run n
O(logn/loglogn) amortized time for operation. The space required by all these algorithms
13 O(n).

Proof : The time bounds for the eager and lazy algorithms follow from Theorem 1
and Theorem 2 in [Westbrook and Tarjan 1987]. The space bound for the eager algorithni~

12

was recently improved from O(nlogn) to O(n) [Mannila and Ukkonen 1987: Westbrook
and Tarjan 1987]. Also the space complexity of the lazy algorithms can be shown to be O(n)
by following the stamping technique introduced by Gambosi et al. [1988b], which allows
to establish that the lazy algorithms require no more space than their eager counterparts.

This bound is tight as shown in the following theorem, whose proof can be found in
[Westbrook and Tarjan 1987].

Theorem 4.1.2. [Westbrook and Tarjan 1987] Every separable pointer algorithm for
the set union problem with deunions requires at least Q(logn/loglogn) amortized time per
operation.

4.2. Single operation worst-case time complexity

In this section we will show that an extension of Blum’s data structure described in
Section 2.2 can support also deunions. As a result, the augmented data structure will
support each union, find and deunion in O(log n/ loglogn) time in the worst case, with an
O(n) space usage.

For any integer k > 2. a separator k-tree (sk-tree, in short) is a rooted tree T with
nodes uniquely labeled in [1, n] and such that:

(1) T is a k-UF tree;
(ii) each pointer of T can be a simple pointer or a separator. To each separator an integer
in [1, n] is associated.

In the following we will assume & = [logn/loglogn]|. Sk-trees are represented as
follows. For each node v, the children of v are linearly ordered from left to right in a
doubly linked list. Appropriate marks identify separator pointers.

As in the case of k-UF trees, an sk-tree T corresponds to a set, the elements of the
set being stored in the leaves of T and the tree root containing the name of the set.

A find(z) is performed as in k-UF trees. and therefore in time proportional to the
height of T.

Also a union(4, B) is performed as in the case of k-UF trees. The only difference is
that now when performing a type 3 union. which makes all the pointers previously entering
a root r, enter a node v in another sk-tree T, the pointer connecting the leftmost child of
re to v is marked a separator, and the label of r; (i.e. the old name of the set represente«
by T3) is stored in the separator.

Furthermore, because of the linear order on the children of each node. each union can
be implicitely described by its characteristic pointer, defined as follows. The characteristic
pointer of a type 1 union is the ouly new pointer introduced. The characteristic pointer
of a type 2 union is the leftmost pointer introduced (only two new pointers are introducesd
and both point to the same root). Finally. the characteristic pointer of a type 3 union is
the separator associated to that union. The node from which the characteristic pointer i~

13

leaving is called the characteristic node. The introduction of characteristic pointers and
characteristic nodes enables one to perform :leunions. In addition, each time a union is
executed some extra information is stored in a union stack, as follows. Following each
union operation, a pointer to the characteristic node is pushed onto the union stack, along
with the type identifier (1, 2 or 3) of that union.

We now describe how deunions can be performed. Tyvpe 1 and type 2 unions are easily
undone in constant time, by popping the top item in the union stack and accessing the
characteristic node. In case of a type 1 union, the pointer to the parent of the characteristic
node is made null. In case of a type 2 union, both the characteristic node and its sibling
have the pointer to the parent set to null. To undo a type 3 union, we access the separator
pointed to by the top of the stack and disconnect this pointer and all the pointers to
its right. All the nodes now detached from the tree are made children of a new root to
which the name stored in the separator is assigned. By the definition of type 3 union, this
requires O(k) time.

The correctness hinges on the following lemma.

Lemma 4.2.1. Sk-trees are correctly maintained during any sequence of union, find
and deunton operations.

Proof : Since finds do not modify the data structure and unions are performed as in
k-UF trees, it is only necessarv to prove that any union-deunion pair leaves the structure
unchanged.

For type 1 and type 2 unions, this is trivially true.

For what concerns type 3 unions, we first notice that to each separator exactly one
name (i.e., the name erased by the corresponding union) is associated. In fact, when a
pointer e is made separator, it is moved and attached to the right of some pre-existing
pointers. Hence, it is no longer the lefmost pointer entering a node and it cannot result
again in the separator associated to any other subsequent union operation.

Let us prove that a type 3 union-deunion pair leaves the structure unchanged. In fact,
a type 3 union can only move pointers to the right of its corresponding separator, while
maintaining their relative left-to-right order and storing the name erased in the separator.
The corrsponding type 3 deunion will redirect all the pointers to the right of the separator
to a new node which gets the only name stored in the separator itself (i.e., the old name
of the set), while maintaining again the left-to-right order between pointers.

This guarantees that the structure of sk-trees is maintained in any sequence of union.
find and deunion operations. e

Using sk-trees each union. find and deunion operation requires O(log n/ loglog n) time
in the worst case. No better bound i~ possible for any separable pointer algorithm.

Theorem 4.2.1. [Apostolico et al. 1083] Sk-trees support each union, find and
deunion in O(logn/loglogn) worst-case time. The total space required 1s O(n).

Proof : Unions and deunions require (k) worst-case rime. Any find take time
proportional to the height of an <k-tree. Since an sk-rree 1s subject to the same heigh:
bound as a k-UF tree (namely Otlog; n)). the time bound now follows immediately. A-

14

for the space complexity, sk-trees require the same space as k-UF trees. Since the stack
records correspond to unions not yet undone. and there are at most n — 1 of these. the
data structure requires a total of O(n) space.

The lower bound is a trivial consequence of Theorem 2.2.2. o

5. The Set Union Problem with Arbitrary Deunions

Mannila and Ukkonen [1988] introduced another variant of the set union problem,
called set union problem with arbitrary deunions. This problem consists of maintaining a
collection of disjoint sets under an intermixed sequence of the following operations.

union(x,y,A) : combine the sets containing elements r and y into a new set named A.
find(x) : output the name of the set which currently contains element z.
deunion(i) : undo the i-th union so far performed.

After a deunion(z), the name of the sets are as if the :-th union had never occurred.

Motivations for studying this problem arise in the incremental execution of logic pro-
grams [Mannila and Ukkonen 1988]. In their paper, Mannila and Ukkonen proved an
Q(log n) lower bound for the set union problem with arbitrary deunions. They gave also
one algorithm with an O(logn) single-operation worst-case time complexity. Unfortu-
nately, their algorithm is not correct. In the following, we present an optimal algorithm
whose running time is O(log n) per operation in the worst case. First, let us turn to the
lower bound argument.

Theorem 5.1. [Mannila and Ukkonen 1988| The amortized complezity of the set
union problem with arbitrary deunions 13 Q(logn) for separable pointer algorithms and
Qloglogn) for nonseparable pointer algorithmas.

Proof : By reduction to the union-find-split problem [Mehlhorn et al. 1987]. as

characterized in Theorems 3.1.1 and 3.1.3. For the details of the reduction see Theorem 3
in [Mannila and Ukkonen 1988]. o

The upper bound argument used by Mannila and Ukkonen [1988] is based on the
linking and cutting trees of Sleator and Tarjan [1983; 1985]. The linking and cutting trees
maintain a collection of rooted trees under an arbitrary sequence of operations chosen from
a suitable repertoire. For our purposes. it suffices to consider only the following ones.

findroot(x) : output the root of the rree containing the node r:

link(x.y) : add an edge from a root r to a node y in a different tree, thus combining
the two trees containing z and y into one new tree:

cut(x) : delete the edge from r to its parent. thus giving rise to two new trees and
destroying the old one.

In [Mannila and Ukkonen 1933] the usual rooted tree representation of sets with the
names stored in the root is used Furthermore. each find is implemented by means of a

15

findroot, while a union(z.y. A4) is performed by linking the roots of the two trees containing
the nodes r and y. A deunion(:) is carried out by simply cutting the edge introduced by the
i-th union union. Unfortunately, linking the tree roots does not yield a correct algorithm.
as the counterexample shown in Figure 5.1 points out.

@OW @@ & @

(a) (c)

a) Tree obtained after performing union(l,2,A), union(2,3,B) and
union(3,4,C) on the initial collection of singleton sets.

b) Tree obtained by Mannila and Ukkonen's algorithm after a deunion(2) .
c) Tree which should be obtained after a deunion(2).

Figure 5.1

However, the upper bound of the set union problem with arbitrary deunion is still
O(logn) for separable pointer algorithms. This can be established using either the linking
and cutting trees of Sleator and Tarjan [1983; 1983 or the topology trees introduced
by Frederickson [1985], in such a way that for each tree also a name is maintained. In
the following, we will describe how to augment topology trees in order to deal with thu-
problem. A similar argument can be applied also to linking and cutting trees.

The topology tree is a data structure capable of maintaining a forest of trees unde:
arbitrary insertions and deletions of edges. If the forest contains a total of n nodes. both
updates can be carried out in O(logn) time in the worst case.

In the following, we will deal with trees in which no node has degree greater tha::
three. This is not a significant restriction. since every tree can be transformed into a

15

new tree whose nodes have degree at most three. by following the well known technique

described in {Harary 1969, p. 132]. The new tree will have still O(n) edges and nodes.
The idea underlying Frederickson's data structure is that of defining a topological

partition of a tree into clusters of nodes subject to the following rules. In what follows. we

will refer to the degree of a cluster as the number of tree edges with exactly one endpoint

in the cluster.

For each level 1. the clusters at level 1 forms a partition of the nodes.

A cluster at level 0 contains only one node.

A cluster at level i > 0 is either of degree at most three and is obtained by the union

of k clusters (2 < k < 4) of level 1 — 1 connected together in one of the ways shown in

figure 5.2 or a cluster of level 1 — 1 and degree three.

W o

o
o

Topologies for clusters

Figure 5.2

A topology tree was defined by Frederickson as a tree in which each internal vertex has
at most four children, a vertex at level i represents a cluster of level i in the topologica!
partition and a vertex has children corresponding to the clusters whose union is the cluster
it represents. Figure 5.3 exhibits a topology tree of a given tree.

17

(a) (b)

a) Topological partition of a tree

b) The corresponding topology tree

Figure 5.3

Inserting or deleting an edge in the original tree involves operation like splitting a
topology tree or merging two topology trees, which implies a costant amount of time to
be spent for each vertex along a costant number of paths in the topology tree. Since its
height can be at most O(logn), a topology tree can be updated in O(logn) worst-case
time due to the insertion or the deletion of an edge in the original tree. All the details of
the method are spelled out in [Frederickson 1983].

Using topology trees. we are now able to prove the upper bound for the set union
with arbitrary deunions. A union(z.y.A) is performed by inserting the edge (z,y) and
therefore by merging two topology trees. Some special care has to be taken to maintain
the name of the set as explained later. A deunion(i) cuts the edge introduced by the 1-tk
union by splitting a topology tree. A find(z) is carried out as usual.

Since in this case the trees are unrooted and a union(z.y, A) joins directly the twx.
nodes r and y (instead of their roots as in Mannila and Ukkonen's algorithm), a deunioni «
returns to the correct state as if the i-th union had never occurred. The details and the
complexity of the algorithm are characterized by the following theorem.

Theorem 5.2. There ezists a data structure which supports each union, find ane

18

deunion(i) in O(logn) time and O(n) space.

Proof : Define an augmented version of topology trees in which for each cluster an
additional information, called its label. is maintained. The label of a cluster is defined as
the most recent name introduced by a union which linked two nodes in the cluster.

In order to test which is the most recent union in a cluster, we can assign a different
stamp to each performed union. obtained for instance by incrementing a counter. Unfor-
tunately, in this case the space required by the stamps is not bounded by any function of
n (the number of nodes) but only by a function of m (the total number of operations).

To overcome this drawback, we use the space saving stamping technique introduced
in [Gambosi et al. 1988b] which allows to recycle unused stamps. In this technique,
n — 1 different stamps are maintained in two lists. a list of used stamps and a list of free
stamps. Each time we perform a union, we get the first item in the free list. This stamp is
associated to the operation and inserted at the end of the used list. Each time a deunion(z)
is performed, the stamp associated to the union that has to be removed is deleted from the
used list and returned to the free list. As a consequence, stamps are ordered in the used
list according to the time in which their associated unions were performed. Clearly, at any
time at most n— 1 different stamps are maintained in both lists, and the used list contains
exactly one stamp for each union not yet undone. Using the data structure proposed by
Dietz and Sleator [1987] to maintain the list of used stamps, we can insert an item, delete
an item or compare the relative order of two items of this list in constant time. Hence,
given two stamps we can decide in O(1) time which is the one corresponding to the more
recent union.

We need to augment topology trees as follows. For each vertex representing a cluster
in the topology tree, both its label (i.e.. the name of the most recent union performed
between nodes in the cluster) and its stamp (1.e., the stamp associated to such a union)
are maintained. Due to the definition of label of a cluster, stamps are heap-ordered in the
sense that for each nonroot vertex v in the topology tree the stamp stored in v is before
the stamp stored in parent(v) in the list of used stamps. Updating labels of clusters during
either a union or a deunion(:) (i.e., either an insertion or a deletion of an edge in the tree)
simply means to restore the heap order for the stamps after either splitting a topology tree
or merging two topology trees. In the worst case. this requires that a constant number of
paths in the topology tree are examined for each operation. Since Dietz and Sleator’s data
structure allows us to spend only O(1) time for each vertex examined in the topology tree
while restoring the heap order for the stamps. a total of O(logn) time per update results.
Because at most O(n) different stamps are needed. the space is O(n).

The described algorithm runs on a pointer machine, since so do both Dietz and
Sleator’s algorithm [Dietz and Sleator 1937]) and Willard's algorithm [Willard 1982] which
is called as a subroutine by the former. o

6. The Set Union Problem with Dynamic Weighted Backtracking

In this section we will consider a further extension of the set union problem with
deunions, by assigning weights to each union and by allowing to backtrack either to tl

19

union of maximal weight or to a generic union so far performed. We will refer to this
problem as the set union problem with dynamic weighted backtracking. The problem
consists of supporting the following operations.

union(A. B, w): combine sets 4, B into a new set named 4 and assign weight w to the
operation.

find(z): return the name of the set containing element x.

increase_weight(i, A): increase by A the weight of the ¢-th union performed, A > 0.
decrease_weight(i, A): decrease by A the weight of the i-th union performed, A > 0.
backweight: undo all the unions performed after the one with maximal weight.
backtrack(i): undo all the unions performed after the i-th one.

Motivations for the study of the set union problem with dynamic weighted backtrack-
ing arise in the implementation of search heuristics in the framework of Prolog environment
design [Hogger 1984; Warren and Pereira 1977]. In such a context, a sequence of union
operations models a sequence of unifications between terms [Mannila and Ukkonen 1986b)].
while the weight associated to a union allows to evaluate the goodness of the state result-
ing by the unification to which the union is associated. Thus, backtracking corresponds
to return to the most promising state examined so far. in the case of a failure of the cur-
rent path of search. Furthermore. the repertoire of operations is enhanced by allowing to
update (both to increase and to decrease) the weight associated to each union already per-
formed. This operation adds more heuristic power to the algorithms for Prolog interpreter
memory management. and therefore improves the practical performance of the previous
known “blind” uniform-cost algorithms.

The possibility to backtrack to the state just before any union performed so far is
maintained, as implemented by the backtrack(:) operation. This makes it possible to
implement several hybrid strategies based on best-first search combined with backtracking
[Ibaraki 1978; Pearl 1984] in the framework of the control of the resolution process.

6.1. Single-operation worst-case time complexity

Before analysing the time complexity of the set union problem with weighted back
tracking, we need to introduce a data structure, called Backiracking Queue (in short BQ-
To each item z of a BQ a real value »(r), called its key, is associated. Furthermore. eact.
time a new item z enters a BQ. an ordinal number p(r) is associated to it, referred to u-
its position into the queue. The operations defined on B@'s are the following.

insert(r,v, @) : insert item r with key v into the BQ Q. If exactly i items w1
previously in @, the position of r is defined as p(z) =7 + 1.

increase(:, A, Q) : if @ contains fewer than ¢ elements. then return Q. Otherwis.
increase by A > 0 (A real) the key associated to the item r in position i.

decrease(i,A, @) : if Q contains fewer than i elements, then return Q. Otherwi~
decrease by A > 0 (A real) the key associated to the item r in position i.

20

back,(Q) : return to the state of the BQ @ just before the current item of largest key
was inserted into Q.

backy(i,Q): if Q contains fewer than 7 elements, then return Q. Otherwise return to
the state of the BQ just before the item currently in position i was inserted.

So. BQ’s are priority queues for which some sort of getting back to the past is allowed.
It is possible to support all the above operations in O(log n) worst-case time. The details
can be found in [Gambosi et al. 1988c].

Theorem 6.1.1. [Gambosi et al. 1988c] There ezists an implementation of BQ's
which supports each insert, increase, decrease, back, and back, in O(logn) worst-case
time and requires O(n) space.

Gambosi et al. [1988¢] introduced a data structure for the set union problem with
weighted backtracking. The data structure supports each operation in O(logn) worst-case
time and requires O(n) space. They showed also that no better bound is possible for any
nonseparable pointer algorithm. We will give a sketch of the data structure. The low-level
details can be found in [Gambosi et al. 1933c].

During the execution of any sequence of union, find, backweight, backtrack.
increase_weight and decrease_weight, all the items are partitioned into a collection of
disjoint sets. As usual, we will refer to a union as live if it has not been undone by
backtracking and as dead otherwise.

At any time the actual partition is the same that would have been resulted from simply
applying the currently live unions to the initial set of singletons, in the exact order in
which such unions were performed in the actual sequence of operations. This individuates
a virtual sequence of live unions. It is therefore possible to uniquely denote each live union
by the ordinal number it gets in that virtual sequence of unions. Furthermore, it can be
proved that each union, as long as it is live, maintains the same ordinal number it was
given at the time of its creation.

The ideas underlying the data structure which supports the above operations are tlie
following. As before, we maintain every set as a tree, whose root contains the name of the
set. When a union is performed. exactly one pointer linking two tree roots is introduce«!.
which is associated to the union operation. Hence. also a pointer is said to be live or deaii
according to its corresponding un:on: live pointers return a connection which has not ye
been cancelled by backtracking.

At the time of its execution. each union is associated to its ordinal number in th«
virtual sequence of live unions. This number is also stored as the label of the pointer corr:
sponding to that union. The operations are implemented according to a lazy method. tha-
is pointers invalidated by backtracking are not removed immediately from the structur
As a consequence, both live and dead pointers may be in the data structure at the san.-
time and some stamping techniques [Gambosi et al. 1988b| can be used to discrimina:.
between the two kinds of pointers. However, at any timne there is at most one (live or dea.:
pointer leaving any given node.

In order to be able to perform union by rank. the ranks of the nodes are maintain-
during the evolution of the structure. Following a technique described also in [Gambosi - -

21

al. 1988a; 1938b], to each node a balanced tree [Adelson-Velskii and Landis 1962; Aho et
al. 1974; Nievergelt and Reingold 1973]. referred to as rank(x). is associated. Each item of
rank(z) (in the sequel referred to as a rank of r) corresponds to a pointer (v, z) entering z.
Its key in the balanced tree rank(z) is the ordinal number of the union which introduced
(v,z), while it also stores the rank of r immediately after the introduction of (v. z). Notice
that. as a consequence of this definition, there exists a one to one correspondence between
pointers and rank items: in order to allow fast references between ranks and pointers, a
bidirectional link is introduced between a rank item and its corresponding pointer. The
notion of liveness can now be extended to a rank of any node z: hence, a rank of z is said
to be live if and only if the corresponding pointer is live. otherwise it is said to be dead.

To restore the correct rank of any node x in presence of live and dead ranks, the
largest live rank (i.e. the value corresponding to the live union with largest ordinal number)
must be individuated in rank(z). This information clearly turns out to be useful while
implementing the union by rank rule.

Similarly, balanced trees may be also associated to each node z in order to store
the names assigned to sets represented by trees rooted at z during the evolution of the
structure: such a balanced tree will be referred to as name(z). As in the case of the rank
balanced trees, each item in name(r) corresponds to a pointer (v, z) entering z, has the
ordinal number of that pointer as a key and stores the name associated to z after the
introduction of (v,z). Once again. there are bidirectional links between names (items in
name(z)) and the corresponding pointers and the notion of liveness can be extended to the
names. When the current name of a root r must be individuated, a search for the largest
live item in name(r) must be accomplished (i.e., a search for the name corresponding to
the live union with largest ordinal number).

The weights of the live unions are maintained in a Backtracking Queue Q. Each item
in Q represents a live union together with its current weight, while the position into Q is
its ordinal number in the virtual sequence of live unions.

Furthermore, the following invariant (referred to as pointer consistency) is maintained:
?If there are k live unions at a given time, then a pointer in the data structure is dead if
and only if it 13 labeled with an ordinal number larger than k.

Notice that whenever pointer consistency holds. the liveness of a pointer can be ver-
ified in constant time by simply comparing its label with the value {4, available in the
Backtracking Queue.

The different operations can be implemented as follows.

unton(A4, B, w) - Let us denote by r and y the tree roots of the sets A and B. Remove
all pointers leaving ¢ and y together with their associated ranks and names. Locate and
remove the pointer (if any) previously introduced with ordinal number 1,4, + 1. Since this
pointer has an ordinal number exceeding i,,,. due to pointer consistency it is certainly
dead and hence can be deleted together with its rank and name. Restore the actual height~
h: and hy of z and y by means of a search for the largest live items in rank(z) and rank(y)
Link by rank z and y, associating to the new pointer the ordinal number i,pq; + 1. Insert
the new rank and the name A of the resulting set either in rank(zr) and name(z) or in
rank(y) and name(y). according to the pointer introduced. Perform an insert((z,y), w.Q "
into the Backtracking Queue. Finally. set t,,,4; t0 inar + 1.

22

find(z) - starting from node z, follow the live pointer leaving the node. The liveness
of a pointer can be tested in costant time as described above. Repeat until a node r(r)
with no live outgoing pointer is entered. This node is the tree root of the set containing
r. A search for the largest live item in name(r(z)) returns the actual name of the set

contalning z.
increase_weight(2. A) - perform an increase(i, A, Q) on the Backtracking Queue.
decrease_weight(i, A) - perform a decrease(i. . Q) on the Backtracking Queue.
backweight - perform a back,(Q) on the Backtracking Queue.
backtrack(z) - perform a back,(i.Q) on the Backtracking Queue.

The worst-case complexity per operation of the data structure can be characterized
by the following theorem. For its proof. the reader is referred to [Gambosi et al. 1988c].

Theorem 6.1.2. [Gambosi et al. 1988c] It is possible to perform each union, find.
increase_weight, decrease_ weight, backweight and backtrack in O(logn) time. The space
required 13 O(n).

6.2. A lower bound for set union with weighted backtracking

The bound in Theorem 6.1.2 is the best possible for any nonseparable pointer algo-
rithm. Recall rules (i)-(v) in the definition of nonseparable algorithms given in section 1.
The algorithm of section 6.1 clearly obeys these rules. For such a class of algorithms, the
following lower bound holds.

Theorem 6.2.1. Let A be any nonseparable pointer algorithm. Then there ezists
a sequence of weighted unions, finds. increase_weight, decrease_weight, backweight,
backtrack, such that the worst-case per operation time complezity of A 13 Q(logn).

Proof : By reduction to the partially persistent set union problem (see Section 8).
In other terms, we will show that we can implement unweighted unions (referred to as
union'), finds and finds in the past (both referred to as find') as defined for instance in
[Mannila and Ukkonen 1988] by using weighted unions. finds and backtrack as defined
for our problem. Since Mannila and Ukkonen proved an 2(log n) bound for the worst-case
single operation time complexity of the partially persistent set union problem [Mannila
and Ukkonen 1988] for the class of algorithms defined above. the same lower bound will
also apply to the worst-case single operation time complexity of the set union problem
with weighted backtracking.

Unweighted unions (unions’) can be easily implemented by means of weighted union.
where the weight w is always constant. while finds can be implemented in the same fashion
in the two problems. In order to perform a find'(z.k) as defined in [Mannila and Ukkonen
1988], that is to return the name of the set which contained item z just after the k-th
union was performed, we first perform a backtrack(k), that is we undo all the unions
performed after the k-th one. and keep track of all the work done while switching from

23

the old representation to the new one. A find(r) is now able to correctly return the
name of the set containing r after the k-th union. Using the extra information computed
while backtracking we can finally rebuild the old representation as if no backtracking
had ever taken place. The time is still bounded by the worst-case time complexity of a
backtrack. This completes the reduction to the partially persistent set union problem. As
a consequence of Theorem 2 in [Mannila and Ukkonen 1988], we can conclude that the
lower bound for the worst-case per operation time complexity of the set union problem
with weighted backtracking is Q(logn). e

6.3. Amortized analysis

In this section, we will refine the algorithm presented in section 6.1 in order to get
better amortized bounds. Such solution relies on the use of an extension of Fibonacc:
Heaps [Fredman and Tarjan 1987]. which we call Backtracking Fibonacci Heaps (BF-heaps
for short). A BF-heap maintains a collection of items of a set S = {sy,52,...,5,}. where
each item s has an associated value v(s), under a sequence of the following operations.

insert(s,v) : insert item s with v(s) = v in the heap: assign to s an integer p(s), as defined
in section 6.1 and referred to as its position in the queue.

findmaz : return (a pointer to) the element with maximal value in the heap.
decrease(s, A) : decrease by \ the value v(s).

increase(s, A) : increase by A the value v(s).

back, : delete all elements inserted in the heap after the insertion of the maximum.

backy (i) : delete all elements inserted in the heap after the insertion of the element in
position z.

meld(h,, hy) : meld heaps h; and h;.

A BF-heap is essentially an F-heap where each item s stores its associated position
p(s). Furthermore, an array ACCESS|[1..... n]is introduced which. for each entryi < i,,,,,.
stores a pointer to the item s with p{(s) = :. In general. the structure may store a set of
dead elements, i.e. elements deleted by back| and back, operations but still not removed
from the heap. A dead element s can be identified since p{s) > imq;. While ima, represents
the number of live elements in the structure, let [y, 4y be the total number of elements
stored.

To obtain a better amortized bound we substitute BQ’s with BF-heaps in the algo-
rithm sketched in the previous section. It is possible to state the following lemma.

Lemma 6.3.1. If we begin uith no BF-heaps and perform an arbitrary sequence of
k operations. with n < k insert and in < k decrease. the total time complezity of such
a sequence 138 O(k + (m + n) logn). Hence, each findmar. increase, back,, back, and
meld can be supported in O(1) amaortized time, while the amortized time complezity of both
decrease and insert 1s O(logn)

24

Proof : increase(s,.\) and meld(h,.hs) are performed as defined on F-heaps. Let
us now sketch the implementation of the remaining operations.

- An insert(s,v) is performed by inserting in the BF-heap the new element with p(s) =
imar + 1. If entry ima; + 1 of ACCESS refers to a (dead) element s’, such element
is deleted from the BF-heap. As for F-heaps, the actual insertion of an element is
performed by means of a meld operation. Variable i,,,, is increased by 1 and variable
Izsax stores the value mar(imaz. Inyay).

- A decrease(s, A) is carried out by first deleting s and by saving v(s) and p(s). Then
an insert(s,v(s) — A) in position p(s) is performed.

- A findmaz consists of deleting from the BF-heap all elements referred to by locations
ACCESS[j] with Infax > j > imar (i.e. all elements s with P(8) > tmaz)- A number
of deletions is performed which is equal to the number of dead nodes in the BF-heap.
thus resulting in an O(logn) cost amortized on the set of insert operations which
introduced the dead nodes. Then the new maximum has to be found. This causes a
search among the O(logn) root nodes of the underlving F-heap. Last, Ip;4x is set
equal to inq;.

- A back, updates ;4. to the value of the maximal node in the BF-heap.

- A back,(2) sets imq, to 1.

Following the technique of recovering dead nodes and pointers during findmaz and
insert operations as described in {Gambosi et al. 19388a]. it is possible to verify that
such a structure requires O(n) space. Moreover, introducing the new operations does not
affect the amortized complexity of operations already defined on F-heaps, since all the
new operations either are defined in terms of operations on F-heaps or have an O(1) time
complexity, e

The following theorem is easily derived from Lemma 6.3.1 and from Theorem 6.1.2.

Theorem 6.3.1. [Gambosi et al. 1988¢| It is possible to perform each backweight,
backtrack and increase_weight in O(1) amortized time and find, decrease_weight and
unzon in O(logn) amortized time. The space required 13 O(n).

A slightly better amortized bound for find as the ratio of finds to unions and back-
tracks tends to increase can be obtained as suggested by Tarjan [1988], by using the data
structure described in [Westbrook and Tarjan 1937] in combination with BF-heaps. This
results in a O(logn/maz{1.log(~ logn)}) amortized bound for finds. where v is the ratio
of the number of finds to the number of unions and backtracks in the sequence.

7. The Set Union Problem with Unrestricted Backtracking

A further generalization of the set union problem with deunions was considered in
[Apostolico et al. 1988]. This generalization was called the set union problem with un
restricted backtracking. since the lhimitation that at most one union could be undone pet
operation was removed.

As before. we denote a union not yet undone by live. and by dead otherwise. In Fhe
set union problem with unrestricted backtracking, deunions are replaced by the following
more general operation.
backtrack(i) : Undo the last live unions performed. for any integer : > 0.

Note that this problem lies in between set union with deunions and set union \v.ith
weighted backtracking. In fact. as previously noted. it is more general than the set union
problem with deunions, since a deunion can be implemented as backtraf;k(1). On the
other hand, it is a particular case of the set union with weighted backtraking, whfen o.nly
unweighted union, find and backtrack operations are considered. Asa consequence, }ts time
complexity should be between O(log n/ log logn) and O(logn). In this section we will show
that in fact a ©(log n) bound holds for nonseparable pointer algorithms, thus proving that
set unijon with unrestricted backtracking is as difficult as set union with dynamic weighted
backtracking. Surprisingly. the time complexity reduces to O(logn/ loglogn) for separable
pointer algorithms when unites instead of unions are performed (i.e.. when the name of
the new set can be arbitrarily chosen).

7.1. Amortized complexity

It is not surprising that there is a strict relationship between backtracks and deunions.
We already noted that a backtrack(1)is simply a deunion operation. Furthermore, a back-
track(i) can be implemented by performing exactly : deunions. Hence, a sequence of m,
unions, m, finds and my backtracks can be carried out by simply performing at most m,
deunions instead of the backtracks. Applying Westbrook and Tarjan’s algorithms to the
sequence of union, find and deunion operations, a total of O((m, + m3)logn/loglogn)
worst-case running time will result. As a consequence. the set union problem with un-
restricted backtracking can be solved in O(log n/ loglog n) amortized time per operation.
Since backtracks contain deunions as a particular case. this bound is tight for the class of
separable pointer algorithms.

Westbrook and Tarjan's algorithms. despite their amortized efficiency. are not very
efficient when the worst-case per operation time complexity of the set union problem with
unrestricted backracking is taken into account.

Using sk-trees, a backtrack(i) can require Q(/ logn/loglogn) worst-case time. Also
note that the worst-case time complexity of backtrack(:) is at least (:) as long as one
insists on deleting pointers as soon as they are invalidated by backtracking (as the eager
methods described in section 4.1 do). since in this case at least one pointer must be removii
for each erased union. This is clearly undesirable. since ¢ can be as large as n— 1. In ord.
to overcome this difficulty. dead pointers have to be destroyed in a lazy fashion. Worst-ca~.
per operation efficient algorithms will be shown in the next subsection.

7.2. Single operation worst-case time complexity

The set union problem with unrestricted backtracking can be considered in two v
sions, depending on whether we consider union or unite operations. Surprisingly. the~.

26

two versions have completely different single-operation worst-case time complexity. In fact,
in case of unions (i.e., when the name of the new set is not arbitrarily chosen). a O(log n)
bound holds for nonseparable pointer algorithms. But if we allow the name of the new set
to be arbitrarily chosen (i.e., if we perform unite instead of union), then the complexity of
the problem reduces to ©(logn/ loglog n) for separable pointer based algorithms.

The following theorem holds for the set union with unrestricted backtracking. when
union operations are taken into account.

Theorem 7.2.1. It is possible to perform each unton, find and backtrack(i) in O(logn)
time in the worst case. This bound is tight for nonseparable pointer algorithms.

Proof : The upper bound is a straightforward consequence of Theorem 6.1.2. since
unrestricted backtracking is a particular case of weighted backtracking. Furthermore, the
proof of the lower bound given in Theorem 6.2.1 for nonseparable pointer algorithms holds
also for the new problem. since it makes use only of union. find and backtrack. e

In the following, we will restrict our attention to the version where unite oper-
ations are performed (instead of unions) and show that the upper bound reduces to
O(log n/ loglogn). No better bound is possible for separable pointer algorithms. The
upper bound is based on a data structure which stores a collection of disjoint sets in such
a way that the identity of each member of the collection is preserved. We denote this
data structure by reminescent separator k-tree or in short rsk-tree. As usual. we assume
k = [logn/ loglogn].

We give a high-level description of rsk-trees and their properties, together with the
implementation of the unite, find and backtrack operations. All the details of the method
are contained in [Apostolico et al. 1988].

Rsk-trees are a lazy version of sk-trees. They do not destroy immediately the pointers
made void by backtracking. Rather. these pointers are maintained in the structure and
removed in a lazy fashion. Clearly, the implementation of unions and finds described in
the previous section for the sk-trees must be slightly changed in order to take in account
the dead pointers still present in the structure.

An rsk-tree is an sk-tree whose pointers are labeled as live. dead. or cheating, and
whose separator pointers are in addition labeled as either active or inactive. Live pointers
represent a connection which has not been cancelled by backtracks. while dead pointer
represent no connection at all: although still in the structure, dead pointers only wait to
be destroyed. Between live and dead pointers. lie cheating pointers. They are derived from
dead type 3 unites. As a consequence. they represent a faulty connection and hencefortl:
do not have to be destroved but only to be replaced by the right pointers. As for sk-trees.
separators are associated to type 3 unites. Theyv are active if their associated unite is live
inactive otherwise.

In general, a pointer may fall in any of these classes. except that a pointer «
(v, parent(v)) cannot be cheating unless either € is an inactive separator or there is au.
inactive separator to the left of ¢ within distance & (i.e. among the & siblings to the lefs
of v there is a node u, such that (u.parent(v)) is an inactive separator). This restrictic.:.
97

corresponds to the fact that both cheating pointers and inactive separators are due to dead
tvpe 3 unites, which move at most & pointers.

We describe how finds and unites must be modified in order to take into account the
dead and cheating pointers present in the structure. Let 5. 5,,..., S, be the disjoint sets
stored in the rsk-tree 7. We now show how to execute a find by computing a map from
the set of leaves of T to the set of names 51, 5>..... Sp. Let z be a leaf of T and also a
member of the set S;, 1 < ¢ < p. Let Y be the name of S;. We ascend from z towards
the root of T following live pointers until a node is met without outgoing live pointers.
We call such a node the apex of x and we shall refer to it as apez(z). Only three different
cases can occur which correspond to three types of apices:

Live apex - there is no (live, dead or cheating) pointer leaving apex(z), i.e., apex(z)
is the root 7 of T. The label of r is the name Y of S,.

Dead apex - apex(z) is such that its outgoing pointer is dead. The label of apex(z)
is the name Y of S,.

Cheating apex - apex(r) is such that its outgoing pointer e is cheating. If e is an
inactive separator, then the name of S; can be found in the label of e. Otherwise, there is
at least one inactive separator within distance & to the left of e. In this case, the name of
S, can be found in the label of the nearest separator to the left of e.

We now describe how unite operations can be performed. Let A and B be two different
classes of the partition of S, such that A # B. In the collection of rsk-trees that represents
this partition, let T,y and Tg be the rsk-trees storing respectively 4 and B. We recall that.
since we allow that any two disjoint sets be stored in the same data structure, T4 and Ty
may coincide even if A # B.

A unite(4, B) must have as the unique effect that the live paths from any element of
A U B must lead now to the same label (either 4 or B), corresponding to the fact that
such elements are now in the same set (named either 4 or B). Any live path in either T4
or T starting from leaves not in 4 U B must continue to lead to the same label as it did
prior to performing unite(.4. B).

Roughly speaking. the first step to be performed consists of detaching from T4 and Ty
the subtrees which store respectively A and B. Suppose now that we want to detach from
T4 the subtree which stores the elements of the set 4 and let apexr(.A) denote the apex
of all the nodes in the set A. This detachment depends on the type of apex encountered
If apex(4) is live, then no detachment is involved at all. If apex(.A) is dead, then the
detachment can be simply accomplished by removing the pointer leaving apex(A). In the
case where apex(A) is cheating. we know that either the pointer leaving apex(4) or some
inactive separator to its left within distance k, stores A as its label. In both cases. we reac!.
this inactive separator which stores A and. starting with it. cut all pointers to its right np
to and excluding the first inactive separator. if any such separator exists. Furthermore
the nodes now detached are made children of a new root labeled with A.

Having detached the two subtrees as described above, we now combine them into a
single tree, using the union algorithm described fro sk-trees in section 4.2. The resultin
tree is still an rsk-tree in that sense that it may store also sets in the collection other tha:.
AU B, since in the subtrees containing 4 and B only the roots and possibly the childre:.
of the roots were modified.

28

It remains to show how a backtrack(:) may be performed on rsk-trees. The effect
of such operation is to undo the last ; unites performed not vet undone, which results in
simply changing some pointers from live to either dead or cheating and from cheating to
dead. Furthermore, some active separators may become inactive. This requires obviously
some bookkeeping in order to associate pointers and separators with the corresponding
unites and to easily check the state of pointers and/or separators. It is important to
note that while performing a backtrack(i), no pointer is destroyed from the structure.
What happens is simply that, as a consequence of this operation. some pointers and/or
separators change their state. All the details of the method are contained in [Apostolico
et al. 1988]. The time and space complexity of the algorithm are characterized by the
following theorem.

Theorem 7.2.2. [Apostolico et al. 1988] Rsk-trees support each unite and find
operation in O(logn/loglogn) time, each backtrack in O(1) time and require O(n) space.

Proof : See Theorem 4.1 in [Apostolico et al. 1988]. o

As a consequence. this algorithm generalizes the bounds obtainable with Westbrook
and Tarjan's algorithms [1987], since it achieves the same optimal performance, but in the
worst (not only amortized) case.

No better bound is possible for any separable pointer algorithm. Recall rules (i)-(v) as
defined in section 1 for separable pointer algorithms. The lazy algorithm described above
clearly obeys rules (i), (i1), (iv) and (v). It satisfies also rule (iii), if we regard pointers as
disappearing from the model as soon as they become either cheating or dead, as observed
by Westbrook and Tarjan {1987]. In fact, the presence of cheating and dead pointers has
no effect on the performance of the algorithm in the model. since they give connections
which are never followed. For the class of separable pointer algorithms, the following lower
bound holds.

Theorem 7.2.3. For any n, any separable pointer algorithm for the set unton with
unrestricted backiracking has single-operation time complezity at least Q(logn/ loglogn)
in the worst case.

consider only unite and find operations. e

It is somewhat surprising that the two versions of the set union problem with un-
restricted backtracking have such a different time complexity. and that the version with
unites can be solved quite more efficiently than the version with unions.

We recall here that after a unite(. 4, B), the name of the newly created set is either 4
or B. This is not a significant restriction in the applications, where one is mostly concernei
on testing whether two elements belong to the same equivalence class, no matter what th«
name of the class can be.

The lower bound of Q(log n) is a consequence of Theorem 2 in [Mannila and Ukkone:.
1988], which depends heavily on the fact that each union cannot arbitrarily choose a new
name. The crucial idea behind the proof of Theorem 2 in [Mannila and Ukkonen 198+

29

is that at some point we may have to to discriminate between ©(n) different names of
a set containing any given element in order to output a correct answer. But. if a new
name can be arbitrarily chosen after performing a union. the inherent complexity of the
set union problem with unrestricted backtracking reduces to €(log n/loglogn). Hence, the
constraint on the choice of a new name is responsible for the gap between Q(log n/ loglogn)

and Q(logn).

8. Partially Persistent Data Structures for Set Union

In this section we describe partially persistent [Driscoll et al. 1986; Overmars 1983]
data structures for the set union problem. In such a case. union is defined as usual and
creates a new version of the data structure. As a consequence, if [unions were performed
(0 €1 < n-—1) there are exactly [+ 1 versions of the data structure numbered from 0 to
[. A find operation is now extended as follows:

find_past(x,k)} - return the name of the set which contained the element z in the k-th
version of the data structure. This operation is defined only for 0 < k < [.

A find_past(z,l) is performed on the last version of the data structure and is therefore
equivalent to the classical definition of find previously given. As in the case of the set union
problem with unrestricted backtracking, we have two versions of ‘this problem depending
on whether union or unite operations are performed. The time complexity of the two
versions is quite different, as shown in the ollowing two theorems.

Theorem 8.1. There ezists a data structure which supports each union and find_past
in O(logn) worst-case time with an O(n) space usage. No better bound is possible for
nonseparable pointer algorithms.

Proof: Consider the data structure introduced for dealing with the set union problem
with weighted backtracking. Unions can be carried out exactly in the same way. with the
only difference that now the weights can be neglegted. In addition . the total number ..
unions performed. is maintained. With this information. a find_past(r. k) may be carri+:
out 1n three steps.

1. Set tmaz tO tmar — k.
2. Perform a find(z) in the resulting data structure.
3. Restore the correct value of i,,,,, by adding & to it.

Note that this is somewhat similar to performing a virtual backtracking whose effi~ -
is undone at the end of the find_past operation.

Since a find_past is implemented by means of a find plus some operations wh.
require constant time, the time and space bounds now easily follow from Theorem 7.4 :
Furthermore, the time bound is tight for the class of nonseparable pointer algorithms a~ .
consequence of Theorem 2 in [Mannila and Ukkonen 1938]. o

30

The amortized time of a union can be further reduced to O(1) by using the data
structures introduced in [Brown and Tarjan 1980: Huddleston and Mehlhorn 1982]. Differ-
ent data structures can be also used to establish the previous upper bound. as shown for
instance in [Gaibisso et al. 1987: Mannila and Ukkonen 1988]. Furthermore. if we perform
unites instead of unions. a better algorithm can be found.

Theorem 8.2. There ezists a data structure which supports each unite and find_past
in O(log n/ loglogn) time with an O(n) space usage. No better bound is possible for sepa-
rable pointer algorithms.

Proof : For the upper bound, consider rsk-trees and apply the same argument as in
Theorem 8.1. The lower bound is a straightforward consequence of Theorem 2.2.2.

As in the case of the set union problem with unrestricted backtracking, the constraint
on the choice of a new name is responsible for the gap between Q(logn/loglogn) and

Q(logn).

9. Conclusions and Open Problems

In this paper we have described the most efficient known algorithms for solving the
set union problem and some of its variants. Most of the algorithms we have described
are optimal with respect to a certain model of computation (e.g., pointer machines with
or without the separability assumption and random access machines). There are still
several intriguing open problems in all the models of computation we have considered. In
particular, it is still open whether both the amortized and the single-operation worst-case
complexity of the following problems can be improved.

. The set union problem.
. The set union problem with deunions.
. The set union problem with arbitrary deunions.
. The set union problem with unrestricted backtracking.
If possible, these improvements will require either a nonseparable pointer algorithm:
or the extra power of a random access machiune.

[V RN]

Furthermore. there are also no lower hounds for some of the set union problems «:.
intervals. In the pointer machine model with the separability assumption, there is no lowe:
bound for the amortized complexity of union-find and split-find as well for the worst-ci~
complexity of union-find. In the realm of nonseparable pointer algorithms, it remains st:..
open whether both the O(log n/ log log n) worst-case bound [Blum 1986] for union-find «:...
the O(a(m,n)) amortized bound [Gabow 1985] for split-find can be improved. The rw:
problems require ©(1) amortized time on a random access machine as shown by Gab.
and Tarjan [1985].

Finally, we showed in section 8 how to access efficiently past versions of set union da:
structures by studying partial persistence in the set union problem. It seems to be wor*:
of further investigation to study whether these techniques can be extended in order '

31

both access and modify the past versions of the set union data structures, thus obtaining
fully persistent data structures [Driscoll et al. 1936]. This problem is significant for several
applications as well as being of theoretical interest [Driscoll et al. 1986: Overmars 1983].

Acknowledgements We would like to thank Alberto Apostolico, Hal Gabow, Lane
Hemachandra, Bob Tarjan and Henrvk Wozniakowski for many valuable comments and
suggestions. We are also grateful to Giorgio Gambosi and Maurizio Talamo for pointing
out [Dietz and Sleator 1987].

References

ACKERMAN, W. 1928, Zum Hilbertshen Aufbau der reelen Zahlen. Math. Ann. 99, pp.
118-133.

ADELSON-VELSKII, G. M.. AND LANDIS, Y. M. 1962. An algorithm for the organization
of the information. Soviet. Math. Dokl 3, pp. 1259-1262.

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. 1973. On computing least common
ancestors in trees. Proc. 5th Annual ACM Symposium on Theory of Computing, pp.
253-265.

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. 1974. The design and analysis of
computer algorithms. Addison-Wesley, Reading. Mass.

AHO, A. V., HOPCROFT, J. E.. AND ULLMAN, J. D. 1983. Data structures and algorithms.
Addison-Wesley, Reading. Mass.

AHUJA, R. K., MEHLHORN. K., ORLIN, J. B.. AND TARJAN, R. E. 1988. Faster algorithms
for the shortest path problem. Manuscript.

APOSTOLICO, A., GAMBOSI, G.. ITALIANO. G. F.. AND TALAMO, M. 1988. An
O(logn/ loglogn) algorithm for the set union problem with unrestricted backtracking.
Manuscript.

APOSTOLICO, A., AND GUERRA, C. 1987. The longest common subsequence problem
revisited. Algorithmica 2, pp. 315-336.

ARDEN, B. W,, GALLER. B. A.. AND GrRAHAM, R. M. 1961. An algorithm for equivalence
declarations. Comm. ACM 4, pp. 310-314.

BANACHOWSKI, L. 1980. A complement to Tarjan’s result about the lower bound on the
complexity of the set union problem. Inform. Processing Lett. 11, pp. 59-65.

BEN-AMRAM, A. M., AND GALIL, Z. 1983. On pointers versus addresses. Proc. 29th
Annual Symposium on Foundations of Computer Science, pp. 532-538.

BLUM, N. 1986. On the single operation worst-case time complexity of the disjoint set
union problem. SIAM J. Comput. 15, pp. 1021-1024.

BOLLOBAS, B., AND SIMON, I. 1985. On the expected behaviour of disjoint set union
problems. Proc. 17th Annual ACM Symposium on Theory of Computing, pp. 224-231.

BROWN, M. R., AND TARJAN. R. E. 1980. Design and analysis of a data structure for
representing sorted lists. STAM J. Comput. 9. pp. 5394-614.

DIETZ, P. F., AND SLEATOR. D. D. 1987. Two algorithms for maintaining order in a list.
Proc. 19th Annual ACM Symposium on Theory of Computing, pp. 365-372.

DOYLE, J., AND RIVEST, R. 1976. Linear expected time of a simple union-find algorithm.
Inform. Processing Lett. 5. pp. 146-148.

33

DRISCOLL, J. R.. SARNAK. N.. SLEATOR. D. D.. AND TARJAN, R. E. 1986. Making data
structures persistent. Proc. 18th Annual ACM Symposium on Theory of Computing. pp.
109-121.

FISCHER, M. J. 1972. Efficiency of equivalence algorithms. In Complezrity of computer
computations. R. E. Miller and J. W. Thatcher. Eds.. Plenum Press, New York. pp. 153-
168.

FREDERICKSON, G. N. 1985. Data structures for on-line updating of minimum spanning
trees with applications. SIAM J. Comput. 14. pp. 781-798.

FREDMAN, M. L., AND TARJAN. R. E. 1987. Fibonacci heaps and their uses in improved
network optimization algorithms. J. Assoc. Comput. Mach. 34, pp. 596-615.

GABOW, H. N. 1985. A scaling algorithm for weighted matching on general graphs. Proc.
26th Annual Symposium on Foundations of Computer Science, pp. 90-100.

GAaBOW, H. N., AND TARJAN, R. E. 1985. A linear time algorithm for a special case of
disjoint set union. J. Comput. Sys. Sci. 30. pp. 209-221.

GAIBISSO, C., GAMBOSI. G.. AND TALAMO, M. 1987. A partially persistent data structure
for the set union problem. Manuscript.

GALLER, B. A., AND FISCHER, M. J. 1964. An improved equivalence algorithm. Comm.
ACM 7, pp. 301-303.

GAMBOSI, G.. ITALIANO, G. F.. AND TaLAMO, M. 1988a. Getting back to the past in the
union find problem. Proc. 5th Symposium on Theoretical Aspects of Computer Science
(STACS 1988), Lecture Notes in Computer Science 294, Springer-Verlag, Berlin, pp. 8-17.

GAMBOSI, G., ITALIANO, G. F.. AND TALAMO, M. 1988b. Worst-case analysis of the set
union problem with extended backtracking. Theoret. Comput. Sci.. to appear.

GAMBOSI, G., ITALIANO, G. F., AND TaLAMO. M. 1988c. The set union problem with
dynamic weighted backtracking. Manuscript.

HARARY, F. 1969. Graph theory. Addison-Weslev, Reading. Mass.

HART, S., AND SHARIR. M. 1986. Non-linearity of Davenport-Schinzel sequences and of
generalized path compression schemes. Combinatorica 6, pp. 151-177.

HOGGER, C. J. 1984. Introduction to logic programming. Academic Press.

HOPCROFT, J. E., AND ULLMAN. J. D. 1973. Set merging algorithms. SIAM J. Comput.
2. pp. 294-303.

HUDDLESTON, S., AND MEHLHORN. K. 1982. A new data structure for representing sorted
lists. Acta Informatica 17. pp. 157 184.

IBARAKI, T. 1978. M-depth searchi in branch and bound algorithms. Int. J. Comput
Inform. Sci. 7, pp. 313-373.

IMAL, T.. AND ASANO, T. 1984. Dynamic segment intersection with applications. Proc
25th Annual Symposium on Foundations of Computer Science. pp- 393402,

34

KARLSSON, R. G. 1984. Algorithms in a restricted universe. Tech. Report CS-84-50.
Department of Computer Science. University of Waterloo.

KERSCHENBAUM, A.. AND VAN SLYKE, R. 1972, Computing minimum spanning trees
efficientlv. Proc. 25th Annual Conf. of the ACM, pp. 518-527.

KNUTH, D. E. 1968. The Art of Computer Programming. Vol. 1: Fundamental Algorithms.
Addison-Wesley, Reading, Mass.

KNUTH, D. E. 1973. The Art of Computer Programming. Vol. 3: Sorting and Searching.
Addison-Wesley, Reading, Mass.

KNUTH, D. E.. AND SCHONAGE. A. 1978. The expected linearity of a simple equivalence
algorithm. Theoret. Comput. Sci. 6, pp. 281-315.

KOLMOGORV, A. N. 1953. On the notion of algorithm. Uspehi Mat. Nauk. 8, pp. 175-176.

LOEBL, M., AND NESETRIL. J. 1938. Linearity and unprovability of set union problem
strategies. Proc. 20th Annual ACM Symposium on Theory of Computing, pp. 360-366.

MANNILA, H., AND UKKONEN, E. 1986a. The set union problem with backtracking. Proc.
13th International Colloguium on Automata, Languages and Programming (ICALP 86).
Lecture Notes in Computer Science 226, Springer-Verlag, Berlin, pp. 236-243.

MANNILA, H., AND UKKONEN, E. 1986b. On the complexity of unification sequences.
Proc. 3rd International Conference on Logic Programming. Lecture Notes in Computer
Science 225, Springer-Verlag, Berlin, pp. 122-133.

MANNILA, H., AND UKKONEN. E. 1986¢c. Timestamped term representation for imple-
menting Prolog. Proc. $rd IEEE Conference on Logic Programming, pp. 159-167.

MANNILA, H., AND UKKONEN, E. 1987. Space-time optimal algorithms for the set union
problem with backtracking. Technical Report C-1987-80. Department of Computer Sci-
ence. University of Helsinki, Helsinki, Finland.

MANNILA, H., AND UKKONEN, E. 1988. Time parameter and arbitrary deunions in the set
union problem. Technical Report A-1988-4, Department of Computer Science, University

of Helsinki, Helsinki, Finland.

MEHLHORN, K. 1984a. Data structures and algorithms, Vol. 1: Sorting and searching.
Springer-Verlag, Berlin.

MEHLHORN, K. 1984b. Data siructures and algorithms, Vol. 2: Graph algorithms and
NP-completeness. Springer-Verlag. Berlin.

MEHLHORN, K. 1984c¢. Data structures and algorithms, Vol. 3: Multidimensional searching
and computational geometry. Springer-Verlag, Berlin.

MEHLHORN, K., AND NAHER. S. 19%6. Dynamic Fractional Cascading. Technical Report
TR 06/1986, FB10, Universitat des Saarlandes. Saarbriicken. West Germany.

MEHLHORN, K., NAHER, S.. AND ALT, H. 1987. A lower bound for the complexity of the
union-split-find problem. Proc. 14th International Colloguium on Automata. Language:

35

and Programming (ICALP 87). Lecture Notes in Computer Science 267, Springer-Verlag.
Berlin, pp. 479-488.

NIEVERGELT, J., AND REINGOLD. E. M. 1973. Binary search trees of bounded balance.
SIAM J. Comput. 2, pp. 33—43.

OVERMARS, M. H. 1983. The design of dynamic data structures. Lecture Notes in Com-
puter Science 156, Springer-Verlag, Berlin.

PEARL. J. 1984. Heuristics. Addison-Wesley, Reading, Mass.
SCHONAGE, A. 1980. Storage modification machines. SIAM J. Comput. 9, pp. 490-508.

SLEATOR. D. D., AND TARJAN. R. E. 1983. A data structure for dynamic trees. J.
Comput. Sys. Sci. 26, pp. 362-391.

SLEATOR, D. D., AND TARJAN, R. E. 1985. Self-adjusting binary search trees. J. Assoc.
Comput. Mach. 32, pp. 652-686.

STEARNS, R. E., AND LEwIS. P. M. 1969. Property grammars and table machines. Infor-
mation and Control 14, pp. 524-549.

STEARNS, R. E., AND ROSENKRANTZ, P. M. 1969. Table machine simulation. Conf. Rec.
IEEFE 10th Annual Symp. on Switching and Automata Theory, pp. 118-128.

TARJAN, R. E. 1973. Testing flow graph reducibility. Proc. 5th Annual ACM Symp. on
Theory of Computing. pp. 96-107.

TARJAN, R. E. 1974. Finding dominators in directed graphs. SIAM J. Comput. 3. pp.
62-89.

TARJAN, R. E. 1975. Efficiency of a good but not linear set union algorithm. J. Assoc.
Comput. Mach. 22, pp. 215-225.

TARJAN, R. E. 1979a. A class of algorithms which require non linear time to maintain
disjoint sets. J. Comput. Sys. Sci. 18, pp. 110-127.

TARJAN, R. E. 1979b. Application of path compression on balanced trees. J. Ass<or
Comput. Mach. 26. pp. 690-715.

TARJAN, R. E. 1985. Amortized computational complexity. STAM J. Alg. Disc. Meth 6
pp. 306-318.

TARJAN, R. E. 1988. Personal communication.

TARJAN, R. E., AND VAN LEEUWEN, J. 1984. Worst-case analysis of set union algorithm-
J. Assoc. Comput. Mach. 31, pp. 245-281,

VAN EMDE Boas, P. 1977. Preserving order in a forest in less than logarithmic time ane
linear space. Inform. Processing Lett. 6, pp. 30-82.

VAN EMDE BOAS, P.. Kaas, R.. AND ZIJLSTRA. E. 1977. Design and implementation .
an efficient priority queue. Math. Systems Theory 10, pp. 99-127.

36

VAN LEEUWEN, J.. AND VaN DER WEIDE, T. 1977. Alternative path compression tech-
niques. Technical Report RUU-CS-77-3, Department of Computer Science, University of
Utrecht. Utrecht, The Netherlands.

VAN DER WEIDE. T. 1980. Data structures: an aziomatic approach and the use of binomaial
trees in developing and analyzing algorithms. \lathematisch Centrum, Amsterdam. The

Netherlands.

WARREN, D. H. D., AND PEREIRA, L. M. 1977. Prolog - the language and its implemen-
tation compared with LISP. ACM SIGPLAN Notices 12. pp. 109-115.

WESTBROOK, J.. AND TARJAN, R. E. 1987. Amortized analysis of algorithms for set
union with backtracking. Technical Report TR-103-87, Department of Computer Science.
Princeton University, Princeton.

WILLARD, D. E. 1982. Maintaining dense sequential files in a dynamic environment. Proc.
14th Annual ACM Symposium on Theory of Computing. pp. 251-260.

YAO, A. C. 1976. On the average behavior of set merging algorithms. Proc. 8th Annual
ACM Symposium on Theory of Computing, pp. 192-193.

