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1. Introduction 

The set union problem has been widely studied during the past decades. The problem 
consists of performing a sequence of operations of the following two kinds on a collection 
of sets. 

union(A.,B) : combine the two sets .4. and B into a new set named .4.. 

find(x) : return the name of the unique set containing the element x. 

Ini tially, the collection consists of n singleton sets {1}. {2}, ... , {n}. The name of set 
{i} is i. 

The set union problem has applications in a wide range of areas, including among 
others compiling COM~ION and EQUIVALENCE statements in Fortran [Arden et a1. 
1961; Galler and Fischer 1964], implementing property grammars [Stearns and Lewis 1969; 
Stearns and Rosenkrantz 1969], computational geometry [Imai and Asano 1984; Mehlhorn 
1984c: t.lehlhorn and Naher 1986] and several combinatorial problems such as finding 
minimum spanning trees [Aho et a1. 1974; Eerschenbaum and van Slyke 1972], computing 
least common ancestors in trees [Aho et a1. 1973]. solving off-line minimum problems 
[Gabow and Tarjan 1985; Hopcroft and Ullman 1973]' finding dominators in graphs [Tarjan 
1974] and checking flow graph reclucibility [Tarjan 1973]. 

Very recently many variants of this problem ha\'e been introduced, in which the pos­
sibility of backtracking over the sequences of lmions was taken into account [Apostolico 
et al. 1988; Gambosi et al. 1988b; 1088c; t.lannila and Ukkonen 1986a; 1988; \Vestbrook 
and Tarjan 1987]. This was motivated by problems arising in Logic Programming inter­
preter memory management [Hogger 1984: ~Iannila and Ukkonen 1986b; 1986c; \Varren 
and Pereira 1977], in incremental execution of logic programs [~vlannila and Ukkonen 1988]. 
and in implementation of search heuristics for resolution [Gambosi et al. 1988c; Ibaraki 
1978; Pearl 1984]. 

In this paper we survey the most efficient algorithms designed for these problems. 
The model of computation considered is the pointer machine [Ben-Amram and Galil 1988: 
Knuth 1968; Kolmogorov 1953: Schonage 1080; Tarjan 1979a]. Its storage consists of 
an unbounded collection of records connected by pointers. Each record can contain an 
arbitrary amount of additional information and no arithmetic is allowed to compute the 
address of a record. 

In this model two classes of algorithrr.s were defined. called respectively .3epara­
bIe pointer algorithm.3 [Blum 10SG: Tarjan 19/90.] and non.~eparable pointer algorithm.1 
[Mehlhorn et al. 1987]. 

Separable pointer algorithm.1 run on a pointer machine and satisfy the .3eparablllty 
assumption as defined in [Tarjan la7aa]. The rules an algorithm must obey to be in such 
a class are the following [Blum 10S6: Tarjan 1970a] : 

(i) The operations must be perfort1wd on linf'. 
(ii) Each set element is a nodI' of the data structure. There can be also additional nod(~ 

(iii) (Separability). After each operati()n. the data structure can be partitioned into Sill) 

graphs such that each sub~nlph corresponds exactly to a cllrrent set. No edge lead~ 
from a subgraph to anot h('[. 



(iv) To perform find(.r), the algorithm obtains the node l' containing .r and follows paths 
starting from v until it reaches tl1f' node which contains the nam£' of the C'orresponding 
set. 

(v) During any operation the algorithm may insert or delete any number of edges. The 
only restriction is that rule (iii) must hold after each operation. 

The class of nonseparable pointer algorithms [\lchlhorn et al. 19871 does not require 
the separability assumption. The only requirement is that the number of pointers leaving 
each record must be bounded by some constant c > O. ~lore formally, rule (iii) above is 
replaced by the following rule. \vhile the other four rules are left unchanged: 

(iii) There exists a constant c > 0 such that there are at most c edges leaving a node. 

\Ve will see that often these two classes of pointer algorithms admit quite different 
upper and lower bounds for the same problems. 

Another model of computation considered in this paper is the random access machine, 
whose memory consists of an unbounded sequence of registers. each of which is capable of 
holding an arbitrary integer. The main difference with pointer machines is that in random 
access machines the use of address arithmetic techniques is permitted. A formal definition 
of random access machines can be found in [Aho et al. 1974, pp. 5-141. 

The remainder of the paper consists of eight sections. In section 2 we survey the most 
efficient algorithms known for solving the set union problem. Section 3 deals with the set 
union problem on adjacent intervals, while in section -i data structures which allow us to 
undo the last union performed are presented. This result has been recently generalized in 
two different directions. First, in section 5 we describe techniques for undoing any union in 
the sequence of operations performed. Second, in section 6 and 7 we show how to undo any 
number of union operations (not only the last). In section 8, we use some of the presented 
techniques in order to obtain partially persistent data structures (as defined in [Driscoll 
et al. 1986]) for the set union problem. Finally, section 9 lists some open problems and 
concluding remarks. 

2. The Set Union Problem 

The set union problem consists of performing a sequence of union and find operations. 
starting from a collection of n sing;leton sets {I}, {2}.",. {n}, The initial name of set {I} 
is i. Due to the definition of the llnion and Snd operations, there are two invariants which 
hold at any time. First. the sets are ah\'ays disjoint and define a partition of the elemenb 
into equivalence classes, Second. the name of each set corresponds to to one of the item .... 
contained in the set itself. 

A different version of this prohl£'Il1 considers the followin,!!; operation instead of union.", 

urute( A,B) : combine the two sets A and B into a new set, whose name is either .4. or n 
Unite allows the name of till' IIt'W spt to 1)1" arbitrarily chosen. This is not a significallt 

restriction in the applications. wh,'rc one IS mostly concerned on testing \vhether t \\'" 
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elements belong to the same equivalence class. no matter what the name of the class can 
be. Surprisingly, some exteIl5ioIl5 of the spt Ilnion proi)lem have quite different time bounds 
depending on whether union . .;; or unites an' considered. In the following. we will deal \vith 
unions unless otherwise specified. 

2.1. Amortized complexity 

In this section we \vill describe optimal algorithms for the set union problem [Tarjan 
1975; Tarjan and van Leeuwen 198-1J, when the amortized time complexity is taken into 
account. \Ve recall that the amortized time is the running time per operation averaged 
over a worst-case sequence of operations [Tarjan 1985]. For the sake of completeness, we 
first survey some of the basic algorithms that have been proposed in the literature [Aho 
et al. 1974; Fischer 1972; Galler and Fischer 196-1]. 

Most of these algorithms represent sets making use of rooted trees, following a tech­
nique introduced by Galler and Fischer [196-1]. Each tree corresponds to a set. Nodes of 
the tree correspond to elements of the set and the name of the set is stored in the root of 
the tree. In the remainder of the paper. we will assume that all the children of a node are 
linked in a doubly linked list and each node contains a pointer to its parent and a pointer 
to its leftmost child. This will guarantee that each edge of a tree can be traversed in both 
directions. 

In the quick-find algorithm. every element points to the root of the tree. To perform 
a union(A., B), all the element of one set are made children of the tree root of the other. 
This leads to an O(n) time complexity for each union and to 0(1) for each find. 

A more efficient variant attributed to ~dcIlroy and ~vIorris [Aho et al. 1974] and known 
as weighted quick-find, uses the freedom implicit in each union operation according to the 
following rule. 

union by size [Galler and Fischer Hl6-1J : make the children of the root of the smaller 
tree point to the root of the larger. arbitrarily breaking a tie. This requires that the size 
of each tree is maintained. 

Although this rule does not imprm'e the worst-case time complexity of each operation. 
it improves to O(log n) 1 the amortized complexity of R \lnion [Aho et al. 1974J. 

The quick-union algorithm is able to Sllpport t'ach IInion in O( 1) time and each find 
in O(n) time [Galler and Fischer 196-1]. The lwig,ht of poeh tree can now be greater than 
1. A union(A, B) is perfonnec! by l11Rkinl?; r he tree root of one set child of the tree root of 
the other. A find(x) is performed by startiug from the !lode I and by following the pointn 
to the parent until the tree root is rf'achcd. The name of the set stored in the tree root i:­
then returned. 

Also this time bound can l)f' iI1lpron·d by using the frf'edom implicit in each unio!l 
operation, according to one of tilt' fnliowin?; t\\"o llIlion l'u1es. This gives rise to weightrd 
quick-·union algorithms. 

1 Throughout this paper alllognrir lUllS Rrt-' assumed to bf' to the base 2. unless explicitely 
otherwise specified. 



union by size [Galler and Fischer 196-1J : make the root of the smaller tree point to 
the root of the larger, arbitrarily brC'rtking it rie, This requires maintaining the number of 
descendants for each node. 

union by rank [Tarjan and van Leeuwen 198-1J : make the root of the shallower tree 
point to the root of the other, arbitrarily breaking a tie. This requires maintaining the 
height of the subtree rooted at each node, in the following referred to as the rank of a 
node. 

If the root of the tree cont aining A. is made child of the root of the tree containing B, 
the names A and B are swapped between the roots. \Vith either union rule, each union 
can be performed in 0(1) time and each find in O(log n) time [Galler and Fischer 1964; 
Tarjan and van Leeuwen 1984]. Finally. a better solution can be obtained if one of the 
following compaction rules is applied to the find path. 

path compression [Hopcroft and (,llman 1973J : make every encountered node point 
to the tree root. 

path splitting [van Leeuwen and van der \Veide 1977: van der Weide 1980] : make 
every encountered node (except the last and the next to last) point to its grandparent. 

path halving [van Leeuwen and van der \Veide 1977; van der Weide 1980J : make every 
other encountered node (except the last and the next to last) point to its grandparent. 

Combining the two choices of a union rule and the three choices of a compaction rule. 
six possible algorithms are obtained. They all have an O( Q( m + n, n)) amortized time 
complexity, where a is a very slowly growing function, a functional inverse of Ackermann's 
function [Ackermann 1928J. For the proof of the following theorem, the reader is referred 
to [Tarjan and van Leeuwen 1a8-1]. 

Theorem 2.1.1. [Tarjan and \'an Leeuwen 1984] The algorithms with either linking by 
size or linking by rank and either compression. 8plitting and halving run in O( n + ma( m + 
n, n)) time on a sequence of at most 11 1Lnion,~ and m finds. 

No better amortized bound is possible for any separable pointer algorithm. as the 
following theorem shows. 

Theorem 2.1.2. [Banachowski 1aSO: Tarjan 1a,aa: Tarjan and \'an Leeuwen 19S-1j 
Any separable pointer algorithm req1L1re.~ fl( ll+ml1( 11l+11. Il)) lJ)orst-ca,iC time for processing 
a sequence of n unions and m find .• , 

Proof: See Theorem 2 ill :Tarjan and \'an Lpeu\\'t'n laS-1] .• 

2.2. Single operation worst-case time complexity 

The algorithms which usp allY IInion and any compaction rule have still sing\{· 
operation worst-case time cOlllplt'xifY O( log 1/) [Tarjan and \'an Leeuwen 1984J, BluIIl 



[1986] proposed a data structure for the set union problem which supports each tmion and 
find in o (log nj log log n) time in the worst (';,St:'. He also proved that no better bound is 
possible for any separable pointer algorithm. 

The data structure used to establish the upper bound is called k- UF tree. For any 
k ~ 2, a k-UF tree is a rooted tree T such that: 

(i) the root has at least t\VO children: 
(ii) each internal node has at least /..: children: 

(iii) all leaves are at the same level. 

As a trivial consequence of this definitioll, the height of a k- UF tree with n leaves is 
not greater than pogk n 1. 

\Ve refer to the root of a k- UF tree as fat if it has more than k children, and as slim 
otherwise. A k- UF tree is said to be fat if its root is fat. otherwise it is referred to as slim. 

Disjoint sets can be represented by k- UF trees as follows. The elements of the set are 
stored in the leaves and the name of the set is stored in the root. Furthermore, the root 
contains also the height of the tree and a bit specifying whether it is fat or slim. 

A find(x) is performed as described in the previous section by starting from the leaf 
containing x and returning the name stored in the root. This can be accomplished in 
O(logk n) worst-case time. 

A union( .4, B) is performed by first accessing the roots r A and r B of the corresponding 
k- UF trees T.4. and T B. Blum assumed that his algorithm obtained in constant time r A 

and rB before performing a union(A.. B). If this is not the case, r.4 and rB can be obtained 
by means of two finds (i.e., find(A.) and find( B)). due to the property that the name 
of each set corresponds to one of the items contained in the set itself. We now show 
how to unite the two k-UF trees TA and Tn. Assume without loss of generality that 
height(TB) ~ height(T.4.)' Let u be the node on the path from the leftmost leaf of T,.s. to 
rA with the same height as Tn. Clearly. l' can be located by following the leftmost path 
starting from the root r A for exactly height(T.·d - height{TB) steps. \Vhen implanting T B 
on TA , only three cases are possible. which give rise to three different types of unions. 

Type 1 - Root ra is fat (i.e .. has more than J.: children) and l' is not the root of T~ 
Then r a is made a sibling of v. 

Type 2 - Root r B is fat and t' is the root of r.4' A new (slim) root r is created and 
both rA and r a are made children of 1'. 

T'ype 3 - Root ra is slim .. -\11 the children of T'£J are made the rightmost children of ,. 

Theorem 2.2.1. [Blum 1986] k- L-F tree,;; can jupport each union and find PI 

O(log n/log log n) time in the worst ca,~e. Their 8pace compLeXIty L~ O( n). 

Proof: Each find can he performed in O( IO'!!;k 11) time. Each union{A.. B) can req 111r" 

at most O(logk n) time to locate the nodf's r.-\. T'B and /' as defined above. Both typ" : 
and type 2 unions can be performed in constant time. \ ... hile type 3 unions require at lllt ... ! 

O(k) time. due to the definition of slim root. Choosing /.. = pogn/loglognl. the clailll,~i 
time bound is obta.ined. The space complexity derives easily from the fact that a k- r' F 
tree with n leaves has at most 211 - 1 nodes. Hencefort h the fores t of k- UF tre e s w h i.-l. 
store the disjoint sets requires at most a total of O( /1) space .• 
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Blum showed also that this bound is t.ight for the class of separable pointer algoritluns. 
In particular, the reader is referred to ~I3I11111 10'6] for the proof of the following theorem. 

Theorem 2.2.2. [Blum 1986] Every separable pointer algorithm for the disjoint set 
union problem has single-operation 'wur.<t-CIl8f time complexity at least r2(lognj log log n). 

2.3. Average case complexity 

The expected running time of the basic algorithms described in section 2.1 has been 
investigated [Bollobas and Simon 1985; Doyle and Rivest 1976; Knuth and Schonage 1978: 
Yao 1976] under different assumptions on the distribution of the input sequence. In the rest 
of this section. we will assume that O( n) union and find instructions are being performed. 
This is not a significant restriction for the asymptotical time complexity as shown for 
instance in [Hart and Sharir 1986]. 

Yao [1976] defined two different models of probability based on Random Graphs and 
proved that in one of these models the weighted quick-union algorithm executes n union 
and find instructions in O(n) expected time. 

On the other hand. Doyle and Rin~st [1976] proYed that the weighted quick-find 
algorithm requires between nand 2n steps in the average, assuming that each pair of sets 
is equally likely to be merged by a union operation. However, this assumption does not 
apply to situations where one is interested in joining sets containing two elements chosen 
independently with uniform probability. 

Later on, this result was extended under a different model based on Random Graphs 
by Knuth and Schonage [1978]. Subsequently, I3011obas and Simon [1985] proved that the 
expected running time of the weighted quick-find algorithm is indeed en + o(nflognl. 
where e = 2.0487 .... 

The reader is referred to the original papers [I3011obas and Simon 1985; Doyle and 
Rivest 1976; Knuth and Schonage H178: Yao 197G] for all the details concerning the analy~i~ 
of the expected behavior of these algorithm..'i. 

2.4. Special linear cases 

The most efficient algorithms for the set union problem are optimal for the clas~ Ilf 
separable pointer algorithms. As a conseqllt'nce. in order to get a better bound. one shollld 
either consider a special case of set union or take ad,-ange of the more powerful capabili t!l'''' 
of nonseparable pointer algorithms ano random access machines [Aha et a1. 197 -fl- Gah"w 
and Tarjan [1985] used both these ideas to de\'isp one algorithm which runs in linear t iIi!<" 
on a random access machine for a special ca.sf' in which the structure of the unions is knClw:. 
in advance. This result is of theoretical interest CIS well as significant in several applicatiIII:' 
[Gabow and Tarjan 1985]_ 

The problem can be formalized as follows. "oe are given a tree T cointaining n nod .... 
which correspond to the initial 11 sin)!;leton sets. Denoting by parent( I.:) the parent of t!" 



node t' in T, we have to perform a sequence of union and find operations such that each 
union can be only of the form. unionipo/"(/lt( /').1'). For such a reason. T ,,·;ill be called 
the static union tree and the problem will be referred to as the static tree set union. Also 
the case in which the union tree can dynamically grow by means of new node insertions 
(referred to as incremental tree set uni()n) can be soh'ed in linear time. In the following. 
we will briefly sketch the solution of the static tree set union problem, referring the reader 
to [Gabow and Tarjan 1985] for incremental tree set union. 

Gabowand Tarjan's static tree algorithm partitions the nodes of T in suitably chosen 
small sets, called micros e~. Each microset contains less than b nodes (where b is such that 
b = n(1og log n) and b = O(1og n/ log log n)), and there are at most O( n/ b) microsets. To 
each microset 5 a node T rt 5 is associated. referred to as the root of S. such that 5 U {T} 
induces a subtree of T with root T. 

The roots of the microsets are maintained as a collection of disjoint sets, called 
macrose~. IvIacrosets allow to access and manipulate microsets. 

The basic ideas underlying the algorithm are the following. First, the a priori knowl­
edge about the static union tree allows to precompute the answers to the operations to 
be performed in microsets by using some table look-up. Second, we apply anyone of the 
six optimal algorithms described in section 2.1 to maintain the macrosets. By combining 
these two techniques, a linear-time algorithm for this special case of the set union problem 
can be obtained. The algorithm is quite complicated and all the low-level details as well 
as the proof of the following theorem can be found in [Gabow and Tarjan 1985]. 

Theorem 2.4.1. [Gabow and Tarjan 1985] If the knowledge about the union tree l,~ 

available in advance. each union and find operation can be supported in 0(1) amortized 
time. The total space required is O( n). 

Very recently Loebl and N esetfil [1988J presented a linear-time algorithm for another 
special case of the set union problem. They considered sequences of unions and finds 'with 
a constraint on the subsequence of finds. Namely, the finds are listed in a postorder fashion. 
where a postorder is a linear ordering of the lean's induced by a drawing of the tree in tht> 
plane. In this framework. they proved that such sequences of union and find operation ... 
can be performed in linear time, thus getting O( 1 ) amortized time per operation. Howevt>r 
a slightly more general class of input sequences. denoted by local postorder, was pro\' 1'( I 
not to be linear (even if its rate of growth is unprovable in the theory of finite sets). :\ 
preliminary version of these results was reported in [Loebl and Nesetfil 1988]. 

3. The Set Union Problem on Intervals 

In this section, we shall restrict our attention to the set union problem on interval~ 
This problem can be defined in the following general framework [lvIehlhorn et al. 1987 
Perform a sequence of the following three operations on a linear list {I, 2, ... , n} of item.~ 
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union(x) : given the marked item .T. unmark this item. 

find( x) : given the item x, return !J = min{:: I :: ~ .1' and:: is marked }. 

split(x) : given the unmarked item .1'. mark this item. 

i\larked items partition the list into adjacent inten'als. A union( x) joins two adjacent 
intervals, a find ( x) returns the right endpoint of the interval containing x and a split( x) 
splits the interval containing x. Adopting the same terminology used in [?-.lehlhorn et a1. 
1987], we will refer to the set union problem on intervals as the union-split-find problem. 
After having tackled this problem. \ve will consider t\VO particular cases: the union-find 
problem and the split-find problem, where only union, find and respectively split and find 
operations are allowed. 

The union-split-find problem and its subproblems have applications in a wide range of 
areas, including computational geometry [Imai and Asano 1984; Mehlhorn 1984c; Mehlhorn 
and Niiher 1986], shortest paths [Mehlhorn 198-1b; Ahuja et al. 1988] and the longest 
common subsequence problem [Aho et a1. 1983: Apostolico and Guerra 1987]. 

3.1. Union-Split-Find 

In this section we will describe optimal separable and nonseparable pointer algorithms 
for the union-split-find problem. The best separable algorithm for this problem runs in 
O(log n) worst-case time for each operation. while nonseparable pointer algorithms req uirf' 
only O(1og log n) worst-case time for each operation. In both cases, no better bound is 
possible. 

As far as separable pointer algorithms are concerned. the upper bound can be easily 
obtained by means of balanced trees [Aho et a1. 197-1; Adelson-Velskii and Landis 1962: 
)'1ehlhorn 1984a; Nievergelt and Reingold 1973]. while for the proof of the following lowf'r 
bound the reader is referred to [~Iehlhorn et al. 1987]. 

Theorem 3.1.1. [~lehlhom et a1. 1DS7] For any separable pointer algorithm. both 
the worst-case per operation time complexity (If the 8plit-find problem and the amortiud 
time complexity of the union-split-find problem are S1(log 11). 

Turning to nonseparable pointer algorithms. the upper bound can be found in [Karl:< 
son 1984; Mehlhorn and Naher 1986; van Emde Boas 1877; van Emde Boas et al. 1977]. II. 
particular, van Emde Boas et a1. [1977] introduced a priority queue which supports amO!u.~ 
other operations inJeri, delete and .~ucce8cqor on a set whose elements belong to a fixt .. ! 
universe 5 = {I. 2, .... n}. The time req\lired by each of those operation is O(1og log 11 I 

Originally, the space was O( n log log n) but later was improved to O( n) by van Emde B()J\-~ 
[van Emde Boas 1977]. A detailed description of the data structure and its time compleXI! ~ 
can be found in [van Emde Boas 1977: va.n Emde BOilS et al. 1977]. The above operati()I;" 
correspond respectively to union. split and find. and therefore the following theorem ea...,ii~ 
follows. 



Theorem 3.1.2. [van Emde Boas 1971] TherF. exist<~ a data siT1Lcture supporting each 
union. find and split in O(log log Il) worsi-Cf/;;(; time. The space required is O( n). 

Proof: See Theorem 3 in [van Emde Boas 1977] • 

The bound obtained by means of van Emde Boas' priority queue IS tight, as the 
following theorem shows. 

Theorem 3.1.3. [:\lehlhorn et a1. 1987] For any nonseparable pointer algorithm. 
both the worst-case per operation time complexity of the split-find problem and the amortized 
time complexity of the ·union-split-find problem are n(log log n). 

Proof: See Theorem 1 in [:'vlehlhorn et a1. 1987] .• 

Notice that this implies that for the union-split-find problem the separability assump­
tion causes an exponential loss of efficiency. It is still open whether the use of nonseparable 
pointer algorithms can improve the time complexity of the more general set union problem. 

3,2. Union-Find 

The union-find problem is a restriction of the set union problem described in section 2. 
when only adjacent intervals are allowed to be joined. Henceforth, both the O( a( m + n. n)) 
amortized bound given in Theorem 2.1.1 and the O( log nl log log n) single-operation worst­
case bound given in Theorem 2.2.1 still hold. 

However, while Tarjan's proof of the O(a{m + n.n)) amortized lower bound works 
also for the union-find problem, Blum's proof does not seem to be easily adaptable to 

the new problem. Hence, it remains an open problem whether no better bound than 
O(log n/ log log n) is possible for the single-operation worst-case time complexity of sepa· 
rable pointer algorithms. 

It is also open whether less than O(log log n) worst-case per operation time can he 
achieved for nonseparable pointer algolithms. Gabow and Tarjan used the data structurf' 
described in section 2.4 to obtain an O( 1) amortized time on a random access machine. 

3.3. Split-Find 

According to Theorems 3.1.1. 3.1.2 and 3.l.3. the two algorithms given for the mop' 
general union-split-find problem. are still optimal for the single-operation \\Torst-case tilll" 
complexity of the split-find problem .. -\s a result. ('ach split and find operation can be SlIl' 

ported in 8(log n) and in 8(log Io,!:!; 11) time respecri\'ely in the separable and nonseparal,;. 
pointer machine model. 

The amortized complexity of this problem can he rf'duced to O(log* n), where log- 1/ .­

the iterated logarithm function I, as shown by Hopcroft and Cllman [1973]. Their algorith::. 

1 log* n = min{ i Ilog[i] n ::; 1}. where log[i1 n = log log[,-1) n for i > 0 and log(O] n = ' 

Roughly speaking, it is the mllllbt~r of times the logarithm must be taken to obtaill ., 
number less than one. 
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is based upon an extension of an idea by Stearns and Rosenkrantz [1969J. The basic data 
structure is a tree, for which each node at 1('\'(>1 i. i '2: 1. has at most 2F

(i-lj children, 
where F(i) = F(i - 1)2F (i-l), for i '2: 1, and F(O) = 1. A node is said to be complete 
either if it is at level 0 or if it is at level i '2: 1 and has 2F(i-l) children. all of which are 
complete. The invariant maintained for the data structure is that no node has more than 
two incomplete children. ~vloreo\'er, the incomplete children (if any) \\till be leftmost and 
rightmost. As in the usual tree data structures for set union, the name of a set is stored 
in the tree root. 

At the beginning, such a tree with n leaves is created. Its height is O(1og* n) and 
therefore a find(x) carried out as usual will require O(log* n) time to return the name of 
the set. To perform a split( x), we start at the leaf corresponding to x and traverse the 
path to the root to partition the tree into two trees. It is possible to show that using this 
data structure, the amortized cost of a split is O(log* n) [Hopcroft and Ullman 1973]. 

This bound can be further improved to O( a( m. n)) as showed by Gabow [19851. The 
algorithm used to establish this upper bound relies on a sophisticated partition of the items 
contained in each set. The underlying data structure is quite complicated and the reader 
is referred to [Gabow 1985] for the proof of the following theorem. 

Theorem 3.3.1. [Gabow 1985] There e.xi,~L~ a da.ta stnLciure supporting a sequence of 
m find and split operations in O(ma(m, n)) worst-case time. The space required is O(n). 

It is still open whether an amortized bound less than O( 0:( m, n)) can be obtained on 
a pointer machine. Gabow and Tarjan. using the power of a random access machine, wen' 
able to achieve 8( 1) amortized time. This bound is obtained by employing a slight variant 
of the data structure sketched in section 2..!. The details can be found in [Gabow and 
Tarjan 19851. 

4. The Set Union Problem with Deunions 

!vlannila and Ukkonen [1986a] defined a generalizatioll of the set union problem. rr' 

ferred to in the following as set union I'.·itll cleunioIls. in which in addition to union alld 
find the following extra operation is allowed. 

deunion : undo the most recently performed union operation not yet undone. 

~Iotivations for studying this problem nri~e in Prolog interpreter memory managemellt 
without function symbols (Hogger 108·-1; }.lannila and Ckkonen 1986b: 1986c; \VaITI·t: 
and Pereira 19771. Variables of Prolog clauses correspond to the elements of the set-­
unifications correspond to unions and backtracking corresponds to dcunions [1.1annila al;': 
Ukkonen 1986b]. 

Recently, the amortized cOlllpl('xity of set union with cl(,llnions was characterized 1.\ 
\Vestbrook and Tarjan [1987], who derived a 8( log 11/ log log 1)) upper and lower boun.: 
The upper bound is obtained by t'xtc>nding the path compaction techniques described ... 
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the previous sections in order to deal with deunions. The lower bound holds for separable 
pointer algorithms. The same upper and lower boullds hold also for the single-operation 
worst-case time complexity of the problem. 

4.1. Amortized complexity 

In this section, \ve will describe 8(logn/loglogn) amortized algorithms for the set 
union problem with deunions [Mannila and "Ckkonen 1987; Vvestbrook and Tarjan 1987]. 
They all use one of the union rules combined with path splitting and path halving. Path 
compression with anyone of the union rules leads to an O(log n) amortized algorithm, as 
it can be seen by first performing n - 1 unions which build a binomial tree [Tarjan and 
van Leeuwen 1984] of depth O(log n) and then by repeatedly carrying out a find on the 
deepest leaf, a deunion and a redo of that union. 

In the following, a union operation not yet undone will be referred to as live, and 
as dead otherwise. To handle deunions, a union stack is maintained, which contains the 
roots made nonroots by live unions. Furthermore, for each node x a node stack P{x) is 
maintained, which contains the pointers leaving ;T created either by unions or by finds. 
During a path compaction caused by a find, the old pointer leaving x is left in P( x) 
and each newly created pointer (x. y) is pushed onto P(x). The bottommost pointer 
on these stacks is created by a union and will be referred to as a union pointer. The 
other pointers are created by path compaction and are called find pointers. Each of these 
pointers is associated to a unique union operation, the one whose undoing would invalidate 
the pointer. The pointer is said to be li\"e if the associated union operation is live, and it 
is said to be dead otherwise. 

Unions are performed as in the set union problem, except that for each union a 
new item is pushed onto the union stack. containing the tree root made nonroot and 
some bookkeeping information about the set name and either size or rank. To perform a 
deunion, the top element is popped from the union stack and the pointer leaving that node 
is deleted. The extra information stored in the union stack allows to maintain correctly 
set names and either sizes or ranks. 

There are actually two versions of these algorithms, depending on \vhen dead pointers 
are destroyed from the data structure. Eager algorithms pop pointers from the node stacks 
as soon as they become dead (i.e .. after a clcunion operation). On the other hand. lazy 
algorithms destroy dead pointers in a lazy fashion while performing subsequent union and 
find operations. Combined with the allowed union and compaction rules. this gives a total 
of eight algorithms. They all have the same :ime and space complexity, as the follo\\'in,!!, 
theorem shows. 

Theorem 4.1.1. Either unum by ,qze or unlOn by rank in combination with el­

ther path splitting or path halvmg !}We3 both eager and lazy algorithm3 which run ITI 

O(log n/ log log n) amortized time for operation. The space required by all these algorithm .• 
is O(n). 

Proof: The time bounds for the eager and lazy algorithms follow from Theorem 1 
and Theorem 2 in [Westbrook aIld Tarjan laS;]. The space bound for the eager algorithm" 

12 



was recently improved from O( n log n) to O( 11) [:\Iannila and 'Ckkonen 1987: \Vestbrook 
and Tarjan 1987]. Also the space complexity of th(: lazy algorithms can be shown to be O( n) 
by following the stamping technique introduced by Gambosi et al. [1988b], which allows 
to establish that the lazy algorithms require no more space than their eager counterparts . 

• 
This bound is tight as shown in the following theorem, whose proof can be found in 

[vVestbrook and Tarjan 1987]. 

Theorem 4.1.2. [,Westbrook and Tarjan 1987] Every ~eparable pointer algorithm for 
the ~et union problem with deunions requires at least S1(log n/ log log n) amortized time per 
operation. 

4.2. Single operation worst-case time complexity 

In this section we will show that an extension of Blum's data structure described in 
Section 2.2 can support also deunion .. ,;;. As a result, the augmented data structure will 
support each union, find and deunion in O(log 11/ log log n) time in the worst case, with an 
O( n) space usage. 

For any integer k ~ 2. a separator k-tree (sk-tree. in short) is a rooted tree T with 
nodes uniquely labeled in [1, nl and Stlch that: 

(i) T is a k- UF tree; 

(ii) each pointer of T can be a simple pointer or a separator. To each separator an integer 
in [1, nl is associated. 

In the following we will assume I.: = flog n/ log log n 1. Sk-trees are represented as 
fo11O\vs. For each node v, the children of v are linearly ordered from left to right in a 
doubly linked list. Appropriate marks identify separator pointers. 

As in the case of k- UF trees, an sk-tree T corresponds to a set, the elements of the 
set being stored in the leaves of T and the tree root containing the name of the set. 

A find( x) is performed as in k- FF trees. and therefore in time proportional to t}w 

height of T. 

Also a union(A, B) is performed as in the case of k- UF trees. The only difference i~ 

that now when performing a type 3 IInion. which makes all the pointers previously entering 
a root r2 enter a node v in anothrr sk-tree T). the pointer connecting the leftmost child of 
r2 to v is marked a separator. and the lalwl of 1"2 (i.e. the old name of the set represenkcl 
by T2 ) is stored in the separator. 

Furthermore, because of the linear order on the children of each node, each union call 

be implicit ely described by its characteTl.~tic pointer. defined as follows. The characterist ic 
pointer of a type 1 union is thf' only 1H'\\· pointer introduced. The characteristic poinkr 
of a type 2 union is the leftmost j>ointf'r introduced (only two new pointers are introduCf'(\ 
and both point to the same root \ Finally. the charac'tt>ristic pointer of a type 3 union I." 

the separator associated to that Illlioll. The node from which the characteristic pointer j ... 
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leaving is called the characteristic node. Thp introduction of characteristic pointers and 
characteristic nodes enables one to jwrfnrm deUlli()Ils. In addition. each time a union is 
executed some extra information is stored ill a union stack, as follows. Following each 
union operation, a pointer to the characteristic node is pushed onto the union stack, along 
with the type identifier (1, 2 or 3) of that unioll. 

'Ve now describe how deunions can be performed. Type 1 and type 2 unions are easily 
undone in constant time, by popping the top item in the union stack and accessing the 
characteristic node. In case of a type 1 union, the pointer to the parent of the characteristic 
node is made null. In case of a type 2 union, both the characteristic node and its sibling 
have the pointer to the parent set to null. To undo a type 3 union, we access the separator 
pointed to by the top of the stack and disconnect this pointer and all the pointers to 
its right. All the nodes now detached from the tree are made children of a new root to 
which the name stored in the separator is assigned. By the definition of type 3 union, this 
requires O( k) time. 

The correctness hinges on the following lemma. 

Lemma 4.2.1. Sk-trees are correctly ma.intained during any sequence of union, find 
and deunion operations. 

Proof: Since finds do not modify the data structure and unions are performed as in 
k- UF trees. it is only necessary to prove that any union-deunion pair leaves the structure 
unchanged. 

For type 1 and type 2 unions, this is trivially true. 
For what concerns type 3 unions. we first notice that to each separator exactly one 

name (i.e., the name erased by the corresponding union) is associated. In fact, when a 
pointer e is made separator, it is mO\'ed and attached to the right of some pre-existing 
pointers. Hence, it is no longer the lefmost pointer entering a node and it cannot result 
again in the separator associated to any other subsequent union operation. 

Let us prove that a type 3 union-deunion pair lea\'es the structure unchanged. In fact. 
a type 3 union can only move pointers to tlw right of its corresponding separator. \vhile 
maintaining their relative left-to-right order and storing the name erased in the separator. 
The corrsponding type 3 deunion will redirect all the pointers to the right of the separator 
to a new node which gets the only name stored in the separator itself (i.e., the old name 
of the set), while maintaining again the left-tn-ri.e;ht order hetween pointers. 

This guarantees that the structure of sk-trecs is maintained in any sequence of union. 
find and deunion operations. • 

Usingsk-trees each union. fino and deunioI1 operation requires O(logn/ loglogn) tiult' 
in the worst case. No better bound i" po~sible for any separahle pointer algorithm. 

Theorem 4.2.1. [Apostolic() f't aJ. lOSS] 51.:· t.rp.e, •. 'ILpport each lLnion, find and 
deunion in 8(10gn/loglogn) Uiur.<t·r(l.<e t11T~e. The totCll .• pare required is O(n). 

Proof: Unions and dell111":I!-' reqllirc' U( I.') \\·()[' ... r·(·R:';(' time. Any find take tin\!' 
proportional to the height of all ... k·rl'f'p. Sil1('p <til sk-t!'t", is subject to the same heigh! 
bound as a k-UF tree (namely ()i!()!!,k 1/)). rhe tilllP boulld !lOW follows immediately. :\ ... 
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for the space complexity, sk-trees require the same space as k- FF trees. Since the stack 
records correspond to unions not yet undone. :1nd there nrc at most n - 1 of these. the 
data structure requires a total of O( n) space. 

The lower bound is a trivial consequence of Theorem 2.2.2 .• 

5. The Set Union Problem with Arbitrary Deunions 

rvIannila and Ukkonen [19S8] introduced another variant of the set union problem, 
called set union problem with arbitrary c1euniolls. This problem consists of maintaining a 
collection of disjoint sets under an intermixed sequence of the following operations. 

union(x,y,A) : combine the sets containing elements x and y into a new set named A.. 

find(x) : output the name of the set which currently contains element x. 

deunion(i) : undo the i-th union so far performed. 

After a deunion(i), the name of the sets are as if the i-th union had never occurred. 

Jl..fotivations for studying this prohlem arise in the incremental execution of logic pro­
grams [Mannila and Ukkonen 1988]. In their paper, ~lannila and Ukkonen proved an 
S1(1og n) lower bound for the set union problem with arbitrary deunions. They gave also 
one algorithm with an G(log n) single-operation \VOrst-case time complexity. Unfortu­
nately, their algorithm is not correct. In the following, we present an optimal algorithm 
whose running time is O(log n) per operation in the worst case. First, let us turn to the 
lower bound argument. 

Theorem 5.1. [Mannila and l-kkonen 1985] The amortized complexity of the ut 
union problem with arbitrary deunion3 i,q 11(log 11) for ,qeparable pointer algorithms and 
n(1og log n) for nonuparable pointer algorithm8. 

Proof: By reduction to the union-f.nd-split problem [:"lehlhom et al. 1987]. a.s 
characterized in Theorems 3.1.1 and 3.1.3. For the Getnils of the reduction see Theorem .5 
in [Mannila and Ukkonen 1988] .• 

The upper bound argument Ilsed by ~Iannila alld Ckkonen [1988] is based on the 
linking and cutting trees of Sleator and Tarjan [1983; 1985]. The linking and cutting tret>s 
maintain a collection of rooted tf('f'S under an arbitrary sequence of operations chosen from 
a suitable repertoire. For our plIrposes. it stlffic('s to considpr only the following ones. 

findroot(x) : output the ro()t of til(' tree containing the node x: 

link(x,y) : add an edge from n r()ot .r to a node !J in a different tree, thus combining 
the two trees containing x and y illto olle 11(,\\' tree: 

cut(x): delete the edge from .r to its parent. thus gi\'inp; rise to two new trees and 
destroying the old one. 

In [Mannila and likkonen lOSS] the Ilsnal rooted tree rf'presentation of sets with thl' 
names stored in the root is uSf'd Fllrtiwnnore. (-'aclt find is implemented by means of a 
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findroot, while a union(.T. y . .4.) is performed by linking the roots of the two trees containing 
the nodes x and y. A deunion( i) is carried out by simply cut ting the edge introduced by the 
i-th union union. Unfortunately. linking the tree roots does not yield a correct algorithm. 
as the counterexample shown in Figure 5.1 points out. 

a) 

b) 

e) 

(a) (b) (e) 

Tree obtained after performing union(1,2,A), union(2,3,B) and 
union(3,4,C) on the initial collection of singleton sets. 

Tree obtained by Mannila and Ukkonen I s algorithm after a deunion (2) . 

Tree which should t.e obtained after a deunion(2) . 

Figure 5.1 

However, the upper bound of the set union problem with arbitrary deunion is still 
O(log n) for separable pointer algorithms. This can be established using either the linkin£ 
and cutting trees of Sleator and Tarjan [1983; 1985] or the topology trees introduct"li 
by Frederickson [1985], in such a way that for each tree also a name is maintained. l!l 
the following, we will describe ho",,' to augment topology trees in order to deal with tlll.­

problem. A similar argument can be applied also to linking and cutting trees, 

The topology tree is a data structure capable of maintaining a forest of trees und,·! 
arbitrary insertions and deletions of edges. If the forest contains a total of n nodes. bot h 
updates can be carried out in O( log n) time in the \vorst case. 

In the following, we will deal with trees in which no node has degree greater tha:. 
three. This is not a significant restriction. since every tree can be transformed into a 
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new tree whose nodes have degree at most three. by following the well known technique 
described in [Harary 1969, p. 132]. The new t fee will have still O( n) edges and nodes. 

The idea underlying Frederickson's data structure is that of defining a topological 
partition of a tree into clusters of nodes subject to the following rules. In what follows. we 
will refer to the degree of a cluster as the number of tree edges with exactly one endpoint 
in the cluster. 

1. For each level i. the clusters at level i forms a parti tion of the nodes. 
2. A cluster at level a contains only one node. 
3. A cluster at level i > a is either of degree at most three and is obtained by the union 

of k clusters (2 ~ k ~ 4) of level i - 1 connected together in one of the ways shown in 
figure 5.2 or a cluster of level i - 1 and degree three. 

I~O 

Topologies for clusters 

Figure 5.2 

A topology tree was defined by Frederickson as a tree in wruch each internal vertex hl\.' 
at most four children, a vertex at level! represents a cluster of level i in the topological 
partition and a vertex has children corresponding to the clusters whose union is the clu.<;trr 

it represents. Figure 5.3 exhibits a topology tree of a gi\'en tree. 
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b) The corresponding topology tree 

Figure 5.3 

(b) 

Inserting or deleting an edge in the original tree involves operation like splitting a 
topology tree or merging two topology trees, which implies a costant amount of time to 

be spent for each vertex along a cost ant number of paths in the topology tree. Since its 

height can be at most O(log n), a topology tree can be updated in O(log n) worst-ca..<;r 
time due to the insertion or the deletion of an edge in the original tree. All the details of 
the method are spelled out in [Frederickson 1985]. 

Using topology trees. we are now able to prove the upper bound for the set union 
with arbitrary deunions. A union(x. y. A.) is performed by inserting the edge (x, y) an(j 
therefore by merging two topology trees. Some special care has to be taken to maintam 
the name of the set as explained later. A deunion( i) cuts the edge introduced by the I' t t. 
union by splitting a topology tree. A find( x) is carried out as usual. 

Since in this case the trees are unrooted and a union( x. y, .4.) joins directly the t~ .. · 
nodes x and y (instead of their roots as in Mannila and ukkonen's algorithm), a deuruon( I 

returns to the correct state as if the i -th union had never occurred. The details and t h .. 
complexity of the algorithm are characterized by the following theorem. 

Theorem 5.2. There exi"t" a data structure which "upporu each union, find 4"4 
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deunion(i) in O(log n) time and O( 11) space. 

Proof: Define an augmented ',crsiol1 of topology trees in which for each cluster an 
additional information, called its label. is maintained. The label of a cluster is defined as 
the most recent name introduced by a union which linked two nodes in the cluster. 

In order to test which is the most recent union in a cluster, we can assign a different 
stamp to each perfonned union. obtained for instance by incrementing a counter. U nfor­
tunately, in this case the space required by the stamps is not bounded by any function of 
n (the number of nodes) but only by a function of m (the total number of operations). 

To overcome this drawback, we use the space saving stamping technique introduced 
in [Gambosi et al. 1988b] which allows to recycle unused stamps. In this technique, 
n - 1 different stamps are maintained in two lists. a list of 'u3ed stamps and a list of free 
stamps. Each time we perform a union, we get the first item in the free list. This stamp is 
associated to the operation and inserted at the end of the used list. Each time a deunion( i) 
is perfonned, the stamp associated to the union that has to be removed is deleted from the 
used list and returned to the free list. As a consequence. stamps are ordered in the used 
list according to the time in which their associated unions were perfonned. Clearly, at any 
time at most n - 1 different stamps are maintained in both lists, and the used list contains 
exactly one stamp for each union not yet undone. Using the data structure proposed by 
Dietz and Sleator [1987] to maintain the list of used stamps, we can insert an item, delete 
an item or compare the relative order of two items of this list in constant time. Hence. 
given hvo stamps we can decide in O( 1) time which is the one corresponding to the more 
recent union. 

\Ve need to augment topology trees as follows. For each vertex representing a cluster 
in the topology tree, both its label (i.e .. the name of the most recent union perfonned 
between nodes in the cluster) and its stamp (i.e .. the stamp associated to such a union) 
are maintained. Due to the definition of label of a cluster. stamps are heap-ordered in the 
sense that for each nonroot vertex v in the topology tree the stamp stored in v is before 
the stamp stored in parent( v) in the list of used stamps. Updating labels of clusters during 
either a union or a deunion(i) (i.e., either an insertion or a deletion of an edge in the tree) 
simply means to restore the heap order for the stamps after either splitting a topology trf'f' 
or merging two topology trees. In the worst case. this requires that a constant number of 
paths in the topology tree are examined for each operation. Since Dietz and Sleator's data 
structure allmvs us to spend only O( 1) time for pac h \,prtex examined in the topology tff't-' 

while restoring the heap order for the stamps. a total of O( log n) time per update results 
Because at most O( n) different stamps are needed. the space is O( n ). 

The described algorithm runs on a pointer machine, since so do both Dietz aud 
Sleator's algorithm [Dietz and Sleator 1987] and \Villard's algorithm [\Villard 1982] which 
is called as a subroutine by the former. • 

6. The Set Union Problem with Dynamic \Veighted Backtracking 

In this section \ .... e \vill consider a further extension of the set union problem wit L 
deunions, by assigning weights to each union and by allmving to backtrack either to tb, 

19 



union of maximal weight or to a generic union so far performed. \Ve will refer to this 
problem as the set union problem \\"ith cl.nJalllic \\"f:ighted bAcktracking. The problem 
consists of supporting the following operations. 

union( A .. B, w): combine sets A .. B into a Hew set named A and assign weight w to the 
operation. 

find(x): return the name of the set cOIltaining element x. 

increase_weight(i, ~): increase by ~ the weight of thei-th union performed, ~ > O. 

decreasE-weight( i, ~): decrease by ~ the weight of the i-th union performed, ~ > O. 

backweight: undo all the unions performed after the one with maximal weight. 

backtrack( i): undo all the unions performed after the i-th one. 

Motivations for the study of the set uIlion problem with dynamic weighted backtrack­
ing arise in the implementation of search heuristics in the framework of Prolog environment 
design [Hogger 1984; \Varren and Pereira 1977]. In such a context, a sequence of union 
operations models a sequence of unifications between terms [Mannila and Ukkonen 1986bJ. 
while the weight associated to a union allows to evaluate the goodness of the state result­
ing by the unification to which the union is associated. Thus. backtracking corresponds 
to return to the most promising state examined so far. in the case of a failure of the cur­
rent path of search. Furthermore. the repertoire of operations is enhanced by allowing to 
update (both to increase and to decrease) the weight associated to each union already per­
formed. This operation adds more heuristic power to the algorithms for Prolog interpreter 
memory management. and therefore improves the practical performance of the previow, 
known "blind" uniform-cost algori thms. 

The possibility to backtrack to the state just before any union performed so far is 
maintained, as implemented by the backtrack(i) operation. This makes it possible to 
implement several hybrid strategies based on best-first search combined with backtracking 
[Ibaraki 1978; Pearl 1984] in the framework of the control of the resolution process. 

6.1. Single-operation worst-case time complexity 

Before analysing the time complexity of the set union problem with weighted back 
tracking, \Ve need to introduce a data structme. called Backtracking Q'ueue (in short BQ' 
To each item x of a BQ a real \"altle /'(.r), called its key. is associated. Furthermore. f'a,·!. 

time a new item x enters a BQ. an ordinal Humber p(.r) is associated to it. referred to ,1-
its position into the queue. The operations defined on BQ's are the following. 

insert(x. v. Q) : insert item I with key t' into the BQ Q. If exactly i items W"l' 

previously in Q. the position of .r is defined as p(.r) = i + 1. 

increase( i.~. Q) : if Q contains fewer than i elements. then return Q. Othen\'!" 
increase by ~ > 0 (~ real) the key itssociated to rhe item J' in position i. 

decrease(i,~, Q) : if Q contains fewer than i elements. then return Q. Othen\'I" 
decrease by ~ > 0 (~ real) the b'y a.'isociatecl to the item x in position i. 
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backd Q) : return to the state of the BQ Q just before the current item of largest key 
was inserted into Q. 

back2 { i, Q): if Q contains fewer than i elements. then return Q. Otherwise return to 
the state of the BQ just before the item currently in position i was inserted. 

So. BQ's are priority queues for which some sort of getting back to the past is allowed. 
It is possible to support all the above operations in O( log n) worst-case time. The details 
can be found in [Gambosi et a1. 1985c]. 

Theorem 6.1.1. [Gambosi et a1. 1988c] There exists an implementation of BQ's 
which supports each insert, increase, decrease, back l and back2 in O(logn) worst-case 
time and requires 0(71) space. 

Gambosi et a1. [1988c] introduced a data structure for the set union problem with 
weighted backtracking. The data structure supports each operation in O(logn) worst-case 
time and requires O( n) space. They showed also that no better bound is possible for any 
nonseparable pointer algorithm. \Ve will give a sketch of the data structure. The low-level 
details can be found in [Gambosi et a1. 1988c]. 

During the execution of any sequence of union, find, backweight, backtrack. 
increase_weight and decrease_u'eight, all the items are partitioned into a collection of 
disjoint sets. As usual, we will refer to a union as live if it has not been undone by 
backtracking and as dead otherwise. 

At any time the actual partition is the same that would have been resulted from simply 
applying the currently live unions to the initial set of singletons, in the exact order in 
which such unions were performed in the actual sequence of operations. This individuatf>S 
a virtual sequence of live unions. It is therefore possible to uniquely denote each live union 
by the ordinal number it gets in that virtual sequence of unions. Furthermore, it can be 
proved that each union, as long as it is liye, maintains the same ordinal number it \va.'" 
given at the time of its creation. 

The ideas underlying the data structure which supports the above operations are til<' 
follo\ving. As before, we maintain every set a." a tree, whose root contains the name of til<' 
set. \Vhen a union is performed, exactly one pointer linking two tree roots is introduct"\. 
which is associated to the union operation. Hence. also a pointer is said to be live or drllii 
according to its corresponding union: live pointers return a connection which has not Y"1 
been cancelled by backtracking. 

At the time of its execution. each union is associated to its ordinal number in t1w 
virtual sequence of live unions. This number is also stored as the label of the pointer con" 
sponding to that union. The operations are implemented according to a lazy method. tl!;I' 

is pointers invalidated by backtracking are not removed immediately from the structllr" 
As a consequence, both live and dead pointers may be in the data structure at the sail.' 
time and some stamping technique:; [Gambosi et a1. 1aSSbj can be used to discriminil r. 
between the two kinds of pointers. Howe\·er. at any tilIle there is at most one (live or dt'i\o: 
pointer leaving any given node. 

In order to be able to perform union by rank. the ranks of the nodes are maintaiw" 
during the evolution of the structll[f'. Following a technique described also in [Gambosi ' . 
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a1. 1988a; 1988b], to each node a balanced tree [Adelson-Velskii and Landis 1962: Aho et 
a1. 197-1-: Nie .... ergelt and Reingold 1973]. referred to as rank(.r). is associated. Each item of 
rank( x) (in the sequel referred to as a r(/n"~ of.r) corresponds to a pointer (u. x) entering x. 
Its key in the balanced tree rank(.r) is the ordinal number of the union which introduced 
(v,x), while it also stores the rank of.r immediately after the introduction of(v. x). )rot ice 
that. as a consequence of this definition. there exists a one to one correspondence between 
pointers and rank items: in order to allow fast references between ranks and pointers, a 
bidirectional link is introduced between a rank item and its corresponding pointer. The 
notion of liveness can now be extended to a rank of any node x: hence, a rank of x is said 
to be live if and only if the corresponding pointer is live. otherwise it is said to be dead. 

To restore the correct rank of any node .1' in presence of live and dead ranks, the 
largest live rank (i.e. the value corresponding to the live union with largest ordinal number) 
must be individuated in rank(x). This information clearly turns out to be useful while 
implementing the union by rank rule. 

Similarly, balanced trees may be also associated to each node x in order to store 
the names assigned to sets represented by trees rooted at x during the evolution of the 
structure: such a balanced tree will be referred to as name( x). As in the case of the rank 
balanced trees, each item in name(.r) corresponds to a pointer (v, x) entering x, has the 
ordinal number of that pointer as a key and stores the name associated to x after the 
introduction of (v, x). Once again. there are bidirectional links between names (items in 
name(x)) and the corresponding pointers and the notion ofliveness can be extended to the 
names. \Vhen the current name of a root T' must be individuated, a search for the largest 
live item in name(r) must be accomplished (i.e., a search for the name corresponding to 
the live union with largest ordinal number). 

The weights of the live unions are maintained in a Backtracking Queue Q. Each item 
in Q represents a live union together with its current weight. while the position into Q is 
its ordinal number in the virtual sequence of live unions. 

Furthermore, the following invariant (referred to as pointer con3i3tency) is maintained: 
" If there are k live unions at a given time, then a pointer in the data structure is dead if 
and only if it is labeled with an ordinal number larger than 1.:". 

Notice that whenever pointer consistency holds. the liveness of a pointer can be ver· 
ified in constant time by simply comparing its label with the value imax available in tlw 
Backtracking Queue. 

The different operations can be implemented as follows. 

union(A, B, w) - Let us denote by.r and y the tree roots of the sets A. and B. Remo\'t' 
all pointers leaving x and y toget her with t lwir associated ranks and names. Locate and 
remove the pointer (if any) preyiollsly introduced with ordinal number imax + 1. Since thi~ 
pointer has an ordinal number pxceeding imax • due to pointer consistency it is certainly 
dead and hence can be deleted tog,pther with its rank and name. Restore the actual heighr ... 
hx and hy of x and y by means of a se<1.rch for the largest E\'e items in rank(x) and rank( y J 

Link by rank x and y, associatim; to t 11(> new pointer tIll' ordinal number imax + 1. Insert 
the new rank and the name A (If the rpslllting set either in rank(x) and name(x) or ill 
rank(y) and name(y). accordinlZ: to the pointer introduced. Perform an insert((x, y), w, Q' 
into the Backtracking Queue. Filially. ~et imac to imaL + 1. 
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f ind( x) - starting from node x, follow the live pointer leaving the node. The liveness 
of a pointer can be tested in costant time as described above. Repeat until a node r(.r) 
with no live outgoing pointer is entered. This node is the tree root of the set containinu 

o 
x. A search for the largest li"e item in name(I'(.r)) returns the actual name of the set 
containing x. 

increase_weight( i. ~) - perform an incrwse( i, ~,Q) on the Backtracking Queue. 

decrease_weight( i,~) - perform a decrease( i,~. Q) on the Backtracking Queue. 

backweight - perform a back l (Q) on the Backtracking Queue. 

backtrack( i) - perform a back2( i. Q) on the Backtracking Queue. 

The worst-case complexity per operation of the data structure can be characterized 
by the following theorem. For its proof, the reader is referred to [Gambosi et al. 1988c]. 

Theorem 6.1.2. [Gambosi et a1. 1988c] It i3 p033ible to perform each union, find. 
increase_weight, decrease_weight, backweight and backtrack in O(1og n) time. The space 
required is O( n ). 

6.2. A lower bound for set unIOn with weighted backtracking 

The bound in Theorem 6.1.2 is the best possible for any nonseparable pointer algo­
rithm. Recall rules (i)-( v) in the definition of nonseparable algorithms given in section 1. 
The algorithm of section 6.1 clearly obeys these rules. For such a class of algorithms, the 
following lower bound holds. 

Theorem 6.2.1. Let A. be any non3eparable pointer algorithm. Then there exi3ts 
a sequence of weighted unions. finds. increase_weight. decrease_weight, backweight. 
backtrack, such that the worst-case per operation time complexity of A. i.~ n(log n). 

Proof: By reduction to the partially persistent set union problem (see Section S). 

In other terms, we will show that we can implement unweighted unions (referred to <l." 
union'), finds and finds in the pa....,t (both referrpc1 to as find') as defined for instance in 
[r"lannila and l!kkonen 1988] by using weighted IInlOn.~. Jmd., and backtrack as definpd 
for our problem. Since Mannila and l!kkonen prow'd an n( log 11) bound for the worst-C~f' 
single operation time complexity of the partially persistent set union problem [~lannila 
and Ukkonen 1988] for the class of algorithms defined above. the same lower bound will 
also apply to the worst-case sin,l!;le operation time complexity of the set union problf'm 
with weighted backtracking. 

Unweighted unions (union,.;') ,an be easily implemented by means of weighted unio7l.­
where the weight w is always constant. while finds can be implemented in the same fasruoIl 
in the two problems. In order to Iwrform a filld'(.r./;) a..'i defined in [).lannila and Ukkonf'Il 
1988], that is to return the nanw of the set which contained item x just after the I.··rb 
union was performed, we first IH'rtorm a bad-trad:( I.:). that is we undo all the union .... 
performed after the k-th one. and k<>ep track of all the work done while switching frolll 
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the old representation to the new one. A find(.r) is now able to correctly return the 
name of the set containing .r after the ,l.·-tIl lIIlIon. C sing the extra infornlation computed 
while backtracking we can finally rebuild the old representation as if no backtracking 
had e\'er taken place. The time is still bounded by the worst-case time complexity of a 
backtrack. This completes the reduction to the partially persistent set union problem .. -\.s 
a consequence of Theorem :2 in [~Iannila and Ckkonen 1988J, \ve can conclude that the 
lower bound for the worst-case per operation time complexity of the set union problem 
wi th \veighted backtracking is S1(log n). • 

6.3. Amortized analysis 

In this section, we will refine the algorithm presented in section 6.1 in order to get 
better amortized bounds. Such solution relies on the use of an extension of Fibonacci 
Heaps [Fredman and Tarjan 1987J. which we call Backtracking Fibonacci Heaps (BF-heap,4 
for short). A BF-heap maintains a collection of items of a set 5 = {81' 82, ... , 8 n }. where 
each item 8 has an associated vallle t'( s). under a seq uence of the following operations. 

in8ert(s, v) : insert item s with {'(s) = l' ill the heap: assign to 8 an integer pes), as defined 
in section 6.1 and referred to as its position in the queue. 

findmax : return (a pointer to) the element with maximal value in the heap. 

decrease(s,~) : decrease by ~ the \'alue ds). 

increase(s,~) : increase by ~ the \'alue l'(s). 

back l : delete all elements inserted in the heap after the insertion of the maximum. 

back2(i) : delete all elements inserted ill the heap after the insertion of the element 111 

position i. 

meld(h],h2): meld heaps hI and h 2 . 

A BF-heap is essentially an F·heap where each item s stores its associated POSltlOll 

p(s). Furthermore, an array ACCESS[!. .... 11] is introduced which. for each entry i :::; i mar . 

stores a pointer to the item s with p(s) = i. In !?;eneral. the structure may store a set of 
dead elements, i.e. elements deleted by bad" and fwd',] operations hut still not remo\"Pfi 
from the heap. A dead element ,.; can be ident ified since pi. s) > i max. \Vhile imax represent!' 
the number of live elements in the st ructure. let I.\fAX be the total number of element~ 
stored. 

To obtain a better amortizl'(i bound we substitute DQ's with BF -heaps in the algo. 
rithm sketched in thepre\'ious ".'('Iion. It ;s possible to state the following lemma. 

Lelnma 6.3.1. If we begm IJ'lth no BF.heap, .. and perform an arbitrary "equence of 
k operations. with n :::; k iTL~t'rf and III ~ /.. decrf(l,';C the tntal time complexity of ,~1Lrh 

a sequence is O(k+(m+n) IOI!,II). Hence. eachfllldll1{1.r. increa ... e. back l • back2 and 
meld can be supported in 0(1) aTTlortlzed tl1ne. whde the amortized time complexity of both 
decrease and insert is O(lo~ 11 I 



Proof: increase(s,...1) and meld(h),h'2) are performed as defined on F-heaps. Let 
us now sketch the implementation of the remailling operations. 

- .~n insert(s, v) is p~rformed by inserting in the I3F-heap the new element with pes) = 
Zmax + 1. If entry lmax + 1 of ACCESS refers to a (dead) element Sf, such element 
is deleted from the BF-heap. :\s for F-heaps, the actual insertion of an element is 
performed by means of a meld operation. Variable imar is increased by 1 and variable 
l.\1.4.X stores the value ma.r(imtlr, 1.\1.4.\). 

- A decrease(s,~) is carried out by first deleting .s and by saving v(s) and p(s). Then 
an insert(s,v(s) -~) in position pes) is performed. 

- A findmax consists of deleting from the BF-heap all elements referred to by locations 
ACCESS[j] with hJ AX ~ j > i max (i.e. all elements s with p( s) > imax ). A number 
of deletions is performed which is equal to the number of dead nodes in the BF-heap. 
thus resulting in an O(log n) cost amortized on the set of insert operations which 
introduced the dead nodes. Then the new maximum has to be found. This causes a 
search among the O(log n) root nodes of the underlying F-heap. Last, 1MAX is set 
equal to i max . 

- A back l updates i mar to the value of the maximal node in the BF-heap. 
- A back2{ i) sets imax to i. 

Following the technique of recovpring dead nodes and pointers during f indmax and 
insert operations as described in [Gambosi et al. 1988aJ, it is possible to verify that 
such a structure requires O( n) space. :v101'eo'.'er, introducing the new operations does not 
affect the amortized complexity of operations already defined on F-heaps. since all the 
new operations either are defined in terms of operations on F-heaps or have an 0(1) time 
complexity. • 

The following theorem is f'asily deri\'ed from Lemma 6.3.1 and from Theorem 6.1.2. 

Theorem 6.3.1. [Gambosi et ,d. 1088cJ It is po.q,qible to perform each backweight. 
backtrack and increase_weight in O( 1) amortized time and find, decrease_lceight and 
union in O(logn) amortized time. The ~pace required i,~ O{n). 

A slightly better amortized bound for find as t he ratio of finds to unions and bac k­
tracks tends to increase can bf' obtained as suggpsted by Tarjan [1988], by using the data 
structure described in [\Vestbrook and Tarj:lI1 lOS/] ill mmbination with BF-heaps. Thi:­
results in a 0(logn/max{1.log(1Iogn)}) amortized bOllnd for finds. \vhere "'f is the rati() 
of the number of finds to the Jl\ll11her of unions and backtracks in the sequence. 

7. The Set Union Problem with Unrestricted Backtracking 

A further generalization of t Iw ... et union problem wi t h cieunions was considered ill 
[Apostolico et al. 1988]. This \!,t'lwralization was call1'd tilt' set union problem with IIII 

restricted backtracking. since tilt' Illl1itatio!1 that at most OIlt' union could be undone P{'Y 

operation was removed. 



As before. we denote a union not yet undone by li,,·e. and by dead otherwise. In ~he 
set union problem with unrestricted backtracking, dcunions are replaced by the followmg 

more general operation. 
backtrack(i) : Undo the last i liye unions performed. for any integer i ~ o. 

~ote that this problem lies in between set union with deunions and set union with 
weighted backtracking. In fact. as previously noted. it is more general than the set union 
problem with deunions, since a deunion can be implemented as backtrack(1). On the 
other hand it is a particular case of the set union with weighted backtraking, when only , . . 
unweighted union, find and backtrack operations are considered. As a consequence, lts tlme 
complexity should be between O(log n/ log log n) and O(log n). In this section we will show 
that in fact a G(log n) bound holds for nonseparable pointer algorithms. thus proving that 
set union "'lith unrestricted backtracking is as difficult as set union with dynamic weighted 
backtracking. Surprisingly. the time complexity reduces to G(log n/ log log n) for separable 
pointer algorithms ''lhen unites instead of unions are performed (i.e .. when the name of 
the new set can be arbitrarily chosen). 

7.1. Amortized complexity 

It is not surprising that there is a strict relationship between backtracks and deunions. 
'We already noted that a backtrack( 1) is simply a deunion operation. Furthermore, a back­
track(i) can be implemented by performing exactly i deunions. Hence. a sequence of m] 
unions, m2 finds and m3 backtracks can be carried out by simply performing at most m] 
deunions instead of the backtracks. Applying \Yestbrook and Tarjan's algorithms to tJw 
sequence of union. find and deunion operations. a total of O( (m] + m2 )log n/log log n) 
worst-case running time will result. As a consequence. the set union problem with un· 
restricted backtracking can be solved in O(log rt/ log log n) amortized time per operation. 
Since backtracks contain deunions as a particular case. this bound is tight for the class of 
separable pointer algorithms. 

\Vestbrook and Tarjan's algorithms. despite their amortized efficiency. are not \'t'ry 
efficient when the worst-case per operation time complexity of the set union problem wi r h 
unrestricted back racking is taken into account. 

Using sk-trees, a backtrack( i) can require n( i 10,12; 11/ log log 11 \ worst-case time .. -\1:-'<1 
note that the worst-case time complexity of backtrack( i) is at least n( i) as long as IIiif' 

insists on deleting pointers as soon as they are invalidated by backtracking (as the eaqrr 

methods described in section -1.1 do), since in this case at least one pointer must be remm'," i 
for each erased union. This is clearly undesirable. since i can Iwas large as n - 1. In orel,,! 
to overcome this difficulty. dead pointers havf' to be destroyed in a lazy fashion. \\-orst·ca,,,· 
per operation efficient algorithms will be shown in the next subsection. 

7.2. Single operation worst-case time complexity 

The set union problem with ullfestricted backtrackin?; can be considered in two \"'! 

sions, depending on \'lhether we cOllsic\('r '11110n or tL11zfe operations. Surprisingly. tl)l' .... ,· 
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two versions haye completely different single-opera tion \\'orst-case time complexity. In fact. 
in case of unions (i.e., when the name of the ne\\' set is Hot arbitrarily chosen). a C0( log TI) 

bound holds for nonseparable pointer algorithms. But. if we allo\',; the name of the ne\v set 
to be arbitrarily chosen (i.e .. if we perform unite instead of union), then the complexity of 
the problem reduces to G(log nl log log n) for separable pointer based algorithms. 

The following theorem holds for the set union with unrestricted backtracking. when 
union operations are taken into account. 

Theorem 7.2.1. It is possible to perform each 'Union. find and backtrack(i) in O(log n) 
time in the worst case. This bo'Und is tight for nonseparable pointer algorithms. 

Proof: The upper bound is a straightforward consequence of Theorem 6.1.2. since 
unrestricted backtracking is a particular Ca5e of weighted backtracking. Furthermore. the 
proof of the lower bound giyen in Theorem 6.2.1 for nonseparable pointer algorithms holds 
also for the new problem. since it makes use only of union. find and backtrack .• 

In the following, we will restrict our attention to the version where unite oper­
ations are performed (instead of unions) and show that the upper bound reduces to 
O(lognjloglogn). No better bound is possible for separable pointer algorithms. The 
upper bound is based on a data structure which stores a collection of disjoint sets in such 
a way that the identity of each member of the collection is preserved. \Ve denote this 
data structure by reminescent separator k-tree or in short rsk-tree. As usuaL we assume 
k = flog njlog log n 1. 

vVe give a high-level description of rsk-trees and their properties. together with the 
implementation of the unite, find and backtrack operations. All the details of the method 
are contained in [Apostolico et al. 10S8]. 

Rsk-trees are a lazy version of sk-trees. They do not destroy immediately the pointers 
made void by backtracking. Rather. these pointers are maintained in the structure and 
removed in a lazy fashion. Clearly, the imIJlementation of unions and finds describpd ill 
the previous section for the sk-trees must be sli)!;htly changed in order to take in accoullt 
the dead pointers still present in the structure. 

An rsk-tree is an sk-tree whose pointers ,up labpled as lin". dead. or cheating, awl 
whose separator pointers are in addition labeled as either active or JIlilCri\·e. Live pointf>p, 
represent a connection which has not been cancelled by backtracks, while dead pointf'f'. 
represent no connection at all: although still in the structure, dead pointers only wait til 
be destroyed. Between live and dead pointers, lie cheating pointers. They are derived fr(llll 
dead type 3 unites. As a consequence. they represent a faulty connection and hencefort b 
do not have to be destroyed but only to be replaced by the right pointers. :\.s for sk-tft'f .... 
separators are associated to type 3 unites. They are (Jcti pe if their associated unite is Iiv.· 
inactive otherwise. 

In general, a pointer may fall in any of th('se classes. ('xcept that a pointer ( 
(v,parent(v)) cannot be cheating \lnless either e is an ina.ctive separator or there is aI, 

inactive separator to the left of ( within distance I.. (i.e. among the ". siblings to the \f·f! 
ofv there is a node u, such that (ll.partnt(p)) is an inactive separator). This restricti •. : . 
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corresponds to the fact that both cheating pointers and inactive separators are due to dead 
type 3 unites. which move at Ill05f k poillter:'. 

\Ve describe how finds and unites must be modified in order to take into account the 
dead and cheating pointers present ill the structure. Let 5\.52 , ..•• 5p be the disjoint sets 
stored in the rsk-tree T. \Ve now show how to pxecute a find by computing a map from 
the set of leaves of T to the set of names 5\.52 .•••• 5p . Let x be a leaf of T and also a 
member of the set 5q , 1 ~ q ~ p. Let Y be the name of 5q • We ascend from x towards 
the root of T following live pointers until a node is met without outgoing live pointers. 
\V'e call such a node the apex of x and we shall refer to it as apex(x). Only three different 
cases can occur which correspond to three types of apices: 

Live apex - there is no (live, dead or cheating) pointer leaving apex(x), i.e., apex(x) 
is the root r of T. The label of r is the name Y of 5q . 

Dead apex - apex(x) is such that its outgoing pointer is dead. The label of apex(x) 
is the name Y of 5 q • 

Cheating apex - apex( x) is such that its ou tgoing pointer e is cheating. If e is an 
inactive separator, then the name of 5 q can be found in the label of e. Otherwise, there is 
at least one inactive separator within distance ", to the left of e. In this case, the name of 
5 q can be found in the label of the nearest separator to the left of e. 

\Ve now describe how unite operations can be performed. Let A and B be two different 
classes of the partition of 5, such that A. =1= B. In the collection of rsk-trees that represents 
this partition, let TA, and T B be the rsk-trees storing respectively A. and B. \Ve recall that. 
since we allow that any two disjoint sets be stored in the same data structure, T A, and T B 

may coincide even if A. =1= B. 
A unite(A., B) must have as the unique effect that the live paths from any element of 

Au B must lead now to the same label (either A or B), corresponding to the fact that 
such elements are now in the same set (named either A. or B). Any live path in either T,4 
or TB starting from leaves not in Au B must continue to lead to the same label as it did 
prior to performing unite( A. B). 

Roughly speaking. the first step to be performf'd consists of detaching from TA, and Til 
the subtrees which store respectively A and B. Suppose now that we want to detach from 
TA, the subtree which stores the elements of the set A and let apex(A) denote the ap.,x 
of all the nodes in the set A. This detachment depends on the type of apex encountered 
If apex( A) is live, then no detachment is iIl\'oh'ed at all. If apex( A) is dead, then dw 
detachment can be simply accomplished by removing the pointer leaving apex(A). In tb.· 
case where apex(A.) is cheating. we know that either the pointer leaving apex(A.) or SOHlt' 

inactive separator to its left within distance k, stores A as its label. In both cases. we reae!. 
this inactive separator which stores .4. and. starting with it. cut all pointers to its right Ill' 
to and excluding the first inactive separator. if any such separator exists. Furthermor.· 
the nodes now detached are made children of a new root labeled with A .. 

Having detached the two subtrees a.'i described above. we now combine them into i1 

single tree, using the union algorithm described fro sk-trees in section 4.2. The resultil": 
tree is still an rsk-tree in that st'nse that it may store also sets in the collection other thaI. 
A. U B, since in the subtrees containing; A and B only the roots and possibly the childr.·:. 
of the roots were modified. 
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It remains to show how a backtrack( i'I may be performed on rsk-trees. The effect 
of such operation is to undo the last I unites performed not yet undone, which results in 
simply changing some pointers from live to either dead or cheating and from cheating to 
dead. Furthermore, some active separators may become inactive. This requires obviously 
some bookkeeping in order to associate pointers and separators with the corresponding 
unites and to easily check the state of pointers and/or separators. It is important to 
note that while performing a backtrack( i), no pointer is destroyed from the structure. 
\Vhat happens is simply that, as a consequence of this operation. some pointers and/or 
separators change their state. All the details of the method are contained in [Apostolico 
et a1. 1988]. The time and space complexity of the algorithm are characterized by the 
following theorem. 

Theorem 7.2.2. [Apostolico et a1. 19S5] R.sk-tree.s .support each unite and find 
operation in O(log n/log log n) time, each backtrack in 0(1) time and require O( n) .space. 

Proof: See Theorem 4.1 in [Apostolico ct a1. 1988] .• 

As a consequence. this algorithm generalizes the bounds obtainable with 'Westbrook 
and Tarjan's algorithms [1987], since it achieves the same optimal performance, but in the 
worst (not only amortized) case. 

~o better bound is possible for any separable pointer algorithm. Recall rules (i)-(v) as 
defined in section 1 for separable pointer algorithms. The lazy algorithm described above 
clearly obeys rules (i), (ii), (iv) and (v). It satisfies also rule (iii), if we regard pointers as 
disappearing from the model as soon as they become ei ther cheating or dead, as observed 
by \Vestbrook and Tarjan [1987]. In fact, the presence of cheating and dead pointers has 
no effect on the performance of the algorithm in the model. since they give connections 
which are never followed. For the class of separable pointer algorithms, the following lower 
bound holds. 

Theorem 7.2.3. For any n. any .separable pointer algorithm for the ut union wIth 
unre.stricted backtracking ha.s .single-operation time complexity at lea.st S1(log n/ log log Tl I 

in the wor.st ca.se. 

Proof: It is a trivial extension of Theorem 2.2.2. which states that it suffices to 

consider only unite and find operations .• 

It is somewhat surprising; that the two "ersions of the set union problem with UIl· 

restricted backtracking have sllch a different time complexity. and that the version wit h 
unites can be solved quite more efficiently than the \'ersion with unions. 

\Ve recall here that after a unite( A. B). the name of the newly created set is either .4 

or B. This is not a significant restriction in the applications, where one is mostly concerno .. : 
on testing whether two elements bplong to the same <'qui valence class. no matter what til" 
name of the class can be. 

The lower bound of S1(log n) is a consequence of Theorem 2 in [\Iannila and l'kkoIlt"l. 
1988], which depends heavily on the fact that each union cannot arbitrarily choose a np" 
name. The crucial idea behind the proof of Theorem 2 in [).Iannila and Ukkonen 19S-' 
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is that at some point we may haxe to to discriminate between 8( n) different names of 
a set containing any given dement in order to output a correct ans\yer. I3ut. if a new 
name can be arbitrarily chosen after performing a union. the inherent complexity of tht" 
set union problem with unrestricted backtracking reduces to S1(log nl log log n). Hence, the 
constraint on the choice of a new name is responsible for the gap between S1( log nl log log n) 

and S1(log n). 

8. Partially Persistent Data Structures for Set Union 

In this section we describe partially persistent [Driscoll et aL 1986; Overmars 1983J 
data structures for the set union problem. In such a case. union is defined as usual and 
creates a new version of the data stnlcture. As a consequence, if I unions were performed 
(0 ::; I ::; n - 1) there are exactly 1+1 versions of the data structure numbered from 0 to 
l. A find operation is now extended as follows: 

nnd_past(x,k) - return the name of the set which contained the element x in the k-th 
version of the data structure. This operation is defined only for 0 ::; k ::; 1. 

A find_past(x, I) is performed on the last version of the data structure and is therefore 
equivalent to the classical definition of find previously given. As in the case of the set union 
problem with unrestricted backtracking, we have two versions of this problem dependin~ 
on whether union or unite operations are performed. The time complexity of the two 
versions is quite different, as shown in the following two theorems. 

Theorem 8.1. There exi3t.s a data 3tructure which 3upportJ each union and find_pa.<t 
in O(logn) worJt-caJe time with an O(n) space 1£sage. No better bound is possible fOT 
nonseparable pointer aIgorithm.s. 

Proof: Consider the data structure introduced for dealing with the set union problplIl 
with weighted backtracking. Unions can be carried out exactly in the same way. with t lw 
only difference that now the weights can be neglegted. In addition l. the total numbpr ,.: 
unions performed. is maintained. \\'ith this information. a fincLpastLr, Ie) may be earn.',; 
out in three steps, 

1. Set imax to imax - k. 

2, Perform a find(x) in the rpsulting data structure. 

3, Restore the correct valup of I mar by adding Ie to it. 

Note that this is somewhat similar to performing a virtual backtracking whose (-'tf, .. ' 
is undone at the end of the find_past operation. 

Since a find_past is implelllcl1tPci by means of a find plus some operations wIll,: 
require constant time, the time and space bounds now easily follmv from Theorem 1.4 : 
Furthermore, the time bound is t i~ht for the class of nonseparable pointer algorithms <1 .. ' 

consequence of Theorem 2 in [~Iannila and Ukkonen l0SS\ .• 
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The amortized time of a union can be further reduced to O( 1) by using the data 
structures introduced in [Brown and Tarjan 1080: H udcllestoll and ~fehlhorn 1982]. Differ­
ent data structures can be also used to establish the pre\'ious upper bound. as shown for 
instance in [Gaibisso et al. 1987: :\fannila and Ukkonen 1988]. Furthermore. if we pelform 
unites instead of unions. a better algorithm can be found. 

Theorem 8.2. There exists a data $tr1Lciure which _~upports each unite and find_pa$i 
in O(log n/ log log 11) time with an O( 11) space usage. No better bound is possible for sepa­
rable pointer algorithms. 

Proof: For the upper bound, consider rsk-trees and apply the same argument as in 
Theorem 8.1. The lower bound is a straightforward consequence of Theorem 2.2.2 .• 

As in the case of the set union problem with unrestricted backtracking, the constraint 
on the choice of a new name is responsi ble for t he gap between n(1og n flog log n) and 
n(logn). 

9. Conclusions and Open Problems 

In this paper we have described the most efficient known algorithms for solving the 
set union problem and some of its variants. :\[ost of the algorithms we have described 
are optimal with respect to a certain model of computation (e.g., pointer machines with 
or without the separability assumption and random access machines). There are still 
several intriguing open problems in all the models of computation we have considered. III 
particular, it is still open whether both the amortized and the single-operation worst-ca..;;f' 
complexity of the following problems can be improved. 

1. The set union problem. 
2. The set union problem with deunions. 
3. The set union problem with arbitrary deunions. 
4. The set union problem with unrestricted backtracking. 

If possible. these improvements ",,'ill require either a nonseparable pointer algoritbIl: 
or the extra pO\ver of a random access machine. 

Furthermore. there are also no lower bounds for some of the set union problems I.:. 

intervals. In the pointer machine model with the separability assumption. there is no 10m': 

bound for the amortized complexity of union-find and split-find as well for the worst-(·n.'· 
complexity of union-find. In the rpalm of nonseparable pointer algorithms, it remaim :-;r I:: 
open whether both the O(log 11/ log log 11) worst-case bound [I3lum 1986] for union-find ;\:,', 
the O(a:(m.n)) amortized bound [Gabow 10851 for split-find can be improved. The rw· 

problems require 8(1) amortized rinw on a random access mnchine as shown by Gab. ,'.' 
and Tarjan [1985]. 

Finally, we showed in section S bow to <tece5S efficielltly past versions of set union <la:, 
structures by studying partial IWNiqpnce in the set union problem. It seems to be W()t'· 

of further investigation to study wlwther these techniques can be extended in order '. 
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both access and modify the past \-ersions of the set union data structures, thus obtaining 
fully persistent data structures [Driscoll et (ll. 10SG]. This problem is significant for several 
applications as well as being of theoretical interest [Driscoll et al. 1986: Overmars 1983]-

Acknowledgements "\Ve would like to thank Alberto Apostolico, Hal Gabow, Lane 
Hemachandra, Bob Tarjan and Henryk "\Vozniakowski for many valuable comments and 
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