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A.bstmct: We consider dynamic programming solutions to a number of different 
recurrences for sequence comparison and for R~ A secondary structure prediction. 
These recurrences are defined over a number of points that is quadratic in the 
input size; however only a sparse set matters for the result. \Ve give efficient 
algorithms for these problems. when the weight functions used in the recurrences 
are taken to be linear. Our algorithms reduce the best known bounds by a factor 
almost linear in the density of the problems: when the problems are sparse this 
results in a substantial speed-up. 

In trod uction 

Sparsity is a phenomenon that has long been exploited for efficient algorithms. For instance, most 

of the best known graph algorithms take time bounded by a function of the number of actual 

edges in the graph, rather than the maximum possible number of edges. The algorithms we study 

in this paper perform various kinds of sequence analysis. which are typically solved by dynamic 

programming in a matrix indexed by positions in the inpllt sequences. 

Only two such problems are already known to be solved by algorithms taking advantage of 

sparsity: sequence alignment [27,28] and finding the longest common subsequence [.5. 12]. 

In the sequence alignment problem, as solved by Wilbur and Lipman [27.28), a sparse set of 

matching fragments between two sequences is used to build an alignment fur lhe entire seqll(,llr .. ~ 

in O(n + m + M2) time. Here nand m are the lengths of the two input sequences, and .\/ ~ 

nm is the number of fragments found. The fastp program [16J, based on their algorithm. is HI 

daily use by molecular biologists. and improvements to the algorithm are likely to be of practl<.tI 

importance. ~lost previous attempts to speed up the \\'ilbur-Lipman algorit hm are heuristic 1:1 

nature, for instance reducing the number of fragments that need be consid .. red. Our algorithrll 

runs in O(n + m + M log log min(.\I. nmJ M ))1 time for linear cost fu net ions and therefore grp;t t" 

reduces the worst case time needed to solve this problem, while still allowing such heuristics to tIP 

performed. 

The second problem where sparsity was taken into consideration is to determine the long ..... ' 

common subsequence of two input sequences of length IT! and n. This can be soh'ed in O( II'" 

time by a simple dynamic program. bllt if there are olily .\1 pairs of symbols in the sequprr' .... 

that match, this time can be reduc('(i to 0((.\1 + n)logs) [12]. Here" is tht' minimum of m itll'! 

1 Throughout this paper. we a.-;SUIlI(' that log,r = maxI l.lo!!;! .r). 



the alphabet size. The same algorithm can also be implemen ted to run in O( 11 log s + .\flog log 11) 

time. Apostolico and Guerra [·=iJ shO\~'(ld that the prohkm ran be made even more ~par5e. hy onl!' 

considering dominant matches (as defined by Hir~chberg [10]); they also reduced the time bound to 

O(n logs + mlogn + dlog(nmld)). where d ::; M is the number of dominant matches. A differPllt 

version of their algorithm instead takes time O( n log s + d log log n). \Ye give an algorithm which 

runs in O(nlogs + dloglogmin(d. nmld)) and therefore improves all these time bounds. Longest 

common subsequences have many applications. including sequence comparison in molecular biology 

as well as to the widely used diff file com parison program [4]. 

We show also that sparsity helps in solving the problem of predicting the RNA secondary 

structure with linear cost functions for single loops [23]. We give an O( n+.M log log mine Nf, n 2 I AI) 

algorithm for this problem, where n is the length of the input sequence, and M ~ n2 is the number 

of possible base pairs under consideration. The previous best known bound was O(n2 ) [13]. Our 

bound improves this by taking advantage of sparsity. 

In the companion paper [7] we study the case where the cost of a gap in the alignment or 

of a loop in the secondary structure is taken as either a convex or a concave function of the gap 

or loop length. In particular, we show how to solve the Wilbur-Lipman sequence comparison 

with concave cost functions in O( n + m + AI log M) and with convex cost functions in O( n + 
m + M 10gJJ o:(i\f)). Moreover, we give a O(n + AI log M log min(AI. n2 IJ1)) algorithm for R)iA 

structure with concave and convex cost functions for single loops. This time reduces to O(n + 
M log Afloglog min(M. n2 /.\I)) for many simple cost functions. Again. the length of the input 

sequence(s) is denoted by n (and m). JI is the number of points in the sparse problem: it is 

bounded for the sequence comparison problems by nm, and for the RNA structure problems by 1]2. 

The terms of the form log min(JI, xlM) degrade gracefully to 0(1) for dense problems. There· 

fore all our times are always at least as good as the best known algorithms: when :\1 is smaller 

than nm (or n2 ) our times will be better than the previous best times. 

Our algorithms are based on a common unifying framework. in which we find for each point 

of the sparse problem a range, which is a geometric region of the matrix in which that point ran 

influence the values of other points. We then resolve conflicts between different ranges by applyin~ 

several algorithmic techniques in a variety of novel ways. 

The remainder of the paper consists of five sections. In section 2 we present an algorithm for 

the sparse RNA secondary structure, whose running time will be analyzed in section 3. Section I 

deals with \Vilbur and Lipman's sequence alignment problem. In section :j we describe how to gf'l 

a better bound for the longest common subsequence problem. Section 6 contains some concluclill~ 

remarks. 

2. Sparse· RNA Structure 

In this section we are interested in finding the minimum energy secondary structure with no multlpl .. 

loops of an RNA molecule. 

An RNA molecule is a polymer of nucleic acids, each of which may be any of four pos:-Jld,' 

choices: adenine, cytosine, guanine and uracil (in the following denotecl respectively by the lett.'r" 

A,C,G and U). Thus, an RNA molecule can be represented as a string over an alphabet of [\lllf 

symbols. The string or sequence information is known as primary stmctuT"f' of the R~A. III .HI 
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actual RSA molecule. hydrogen bonding will cause further linkage to form between pairs of bases. 

:\ typically pairs with U. and C with C. Each base in tl\(' R:\:\ sequence will base pair with at most 

one other base. Paired bases may come from positions of the R:\.-\ molecule that are far apart from 

each other. The set of linkages between bases for a given RNA molecule is known as its secondary 

structure. Such secondary structure is characterized by the fact that it is thermodynamically stable. 

i.e. it has minimum free energy. 
:\lany algorithms are known for the computation of RN A secondary structure. For a detailed 

bibliography, we refer the reader to [20], The common aspect of all these algorithms is that 

they compute a set of dynamic programming equations, In what follows, we are interested in a 

system of dynamic programming equations predicting the minimum energy secondary structure 

with no multiple loops of an RNA molecule. Let Y = Y1 Y2 ... Yn be an RNA sequence and let x = 
YnYn-l .. , Y1' Waterman and Smith [23] obtained the following dynamic programming equation: 

where 

D[i,j] = min{D[i - i,j - 1] + b(i, j). H[i,j], V[i,j], E[i,j]}, 

V[i,j] = min D[k,j - 1] + w'Ck. i) 
O<k<1 

H[i,jj = min D[i - 1, I] + w'(l. j) 
0</<1 

E[i,j] = min D[!.:, t] + w(k + t. i + j). 
0<k<.-1 
0<I<j-1 

( 1 ) 

(2) 

(3) 

(4 ) 

The function w corresponds to the energy cost of a free loop between the two base pairs, and w' 

corresponds to the cost of a bulge. Both wand w' typically combine terms for the loop length and 

for the binding energy of bases i and j, The function b(i,j) contains only the base pair binding 

energy term. and corresponds to the energy gain of a stacked pair (see [20] for definitions of these 

terms). For the sake of simplicity and without loss of generality, we assume from now on that k 

and I in recurrence 4 are bounded above by i and j instead of i-I and j - 1. 

The obvious dynamic programming algorithm solves recurrence 1 for sequences of length n in 

time O(n4) [23]: this can be impro\'ed to O(n3 ) [24]. When wand uJ are linear functions of thp 

difference of their arguments. another easy dynamic program solves the problem in time O( n2
) [1 :l]. 

We discuss this case below. Eppstein et al. [6] considered cost functions satisfying certain convexity 

or concavity conditions. and found an O( n2 10g2 n) algorithm for such costs: this was later impro\,f'd 

to O(n2 10g n) [1]. We treat this case in the companion paper [7]. 

In recurrence 1, it may be that D is not defined for certain pairs (i. j): for R:\ ,\ structure t hl~ 

occurs when two bases do not pair. For the energy functions that are typically used, base pail" 

will not have sufficiently negative energy to form unless they are stacked without gaps at a height 

of three or more; thus we can restrict aliI' attention to pairs that can be part of such a stack [:.!Oi 

Further. the RNA structure computation reaUy uses only half of the dynamic programming matri '( 

These factors combine to greatly reduce the number of possible pairs. which we denote by AI, fmm 

its maximum possible value of n 2 to a value closer to 11 2 /128. U we req uired base pairs to form P\ "11 

higher stacks, this number would be further reduced. The computation and minimization in till' 

case is taken only over positions (i.)) which can combine to form a base pair. Such problems ".1lI 
still be solved with the algorithms listed above. by giving a value of +::c to D[i. j] at the missinl 



posItIOns. However. the complexity measures of the previous algorithms for the problem do not 

depend on the number of possible ba.se pairs. but only on the length of the input sequence. Wp 

would like to speed up these algorithms by taking more careful ad vantage of the existence of the 
missing positions, rather than simply working around them. 

Before we start our discussion on how to compute recurrence 1, we outline an algorithm for 

finding all the M pairs (i.j) for which we have to compute D. Assume that we are interested in 

finding all pairs stacked without gaps at a height of k or more. This is equivalent to finding all 

substrings XiXi+l ".Xi+l and Xj+IXj+I_1 ••• Xj of length k such that Xi+h base pairs with Xj+l-h 

for 0 ~ h ~ l. We obtain such substrings as follows. 

\Ve find a sequence x' complementary to x and in the reverse order; Le., if Xi is A. C, G, or U 

we set x~_i+1 equal to C, A. U. or G respectively. We then find all common substrings of length 

k between x and X·. This ta.sk. and in fact the more general ta.sk of finding all common substrings 

of length k between two any two sequences x and y (which we will use for the sparse sequence 

alignment problem), can be performed in linear time by llsing the suffix tree data structure. 

We outline the steps involved in such computation, pointing out the time bound for each of 

them. The reader is referred to [17. 29] for a definition of suffix tree of a string z, as well as for an 

algorithm that constructs it in O(JzJlogs). where s is the size of the alphabet. In general s can be 

taken without loss of generality to be less than JzJ; however here s = 6 (we add two new endmarker 

symbols to the four possible bases) and so the logs term vanishes. 

\Ve build the suffi.x tree for string XSly$2, where SI and S2 are two different endmarkers which 

match no symbol of x and y. Each leaf fi of the tree corresponds to a suffix of the string, starting 

from position i in the string. Further. every node in the tree has a string associated with it, which is 

the common prefix of all suffixes corresponding to leaves below the node in the tree. In particular. 

given two leaves ii and i j corresponding to positions in x and y, the least common ancestor of 

the leaves corresponds to the maximal common prefix of the two leaves, which is the maximum 

common substring of the two strings starting at positions i and j. 

Thus to accomplish our goal we need only find each node u of the tree with the length l( u) 

of the corresponding string satisfying l( u) ~ k; and for each such node find all pairs i and j with 

i ~ nand j > n (so that i corresponds to a position in x, and j to a position in y). and with fJ 

the least common ancestor in the tree of fj and i j • The first part of this task. finding nodes wit h 

long enough corresponding su bstrings. is easily accomplished with a pre-order traversal of the Sll m x 

tree. We mark these nodes. so that we can quickly distinguish them from Hodes with correspondirll~ 

substrings that are too short. 

Xext observe that a node u is the least common ancestor of ii and i j if. and only if, ii and ,-. 

descend from different children of u. Thus to enumerate the desired substrings corresponding to rl. 

we need simply take each pair v and w of children of ll. such that z: f. w. and list pairs (i.j) wil h 

lj a descendant of v with i ~ n and I) a descendant of w with j > n. To speed this procedure ...... 

should consider only those v having descendants ii meeting the condition above. and similarly fllr 

w; in this way each pair of children considered generates at least one substring, except for the paIr' 

v, v of which there are linearly many in the tree. 

To be able to perform the above computation. at the time we consider node u we must have f •. r 

each of its children two lists of their descendant leaves, corresponding to positions in the two input 
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strings. By performing a post-order tra\'ersal of the tree. we can list the substrings corresponding 

to each node u as above, and thC'n merge the lists oflea\'0s at the children of II to form th(' lists at 

u ready for the computation at the parent of u. 

Thus to summarize the generation of matching substrings, we first compute a suffix tree: next 

we perform a pre-order traversal to eliminate those nodes corresponding to suffixes that are too 

short: and finally we perform a post-order traversal. maintaining lists of leaves descended from 

each node, to generate pairs of positions corresponding to the desired common substrings. The 

generation of the suffix tree and the pre-order tra\'ersal each takes time O( n). The post-order 

traversal and maintenance of descendant lists also takes time O(n), and the generation of pairs of 

leaves corresponding to common substrings takes time O( M). Thus the total time for these steps 

is O(n + AJ). For arbitrary input strings x and y taken from an alphabet of size s, the time would 

be O(nlogs + Ai). 

Now let us return to the computation of recurrence 1. _-\s we have said, we assume in this 

paper that wand w' are linear function of the difference of their arguments, i.e. w{s. t) = e· (t - s) 

and w'(s, t) = e' . (t - s) for some fixed constants e and c' . In the companion paper [7]. we will 

investigate the case when these weight functions are either convex or concave. 

It can be easily shown that H[i,j] and V[i.j] can be computed in constant time for each of 

the M pairs we are interested in. For instance. in the computation of H[i,j], we simply maintain 

for each i the value of I, with I < j. minimizing D[i - l.l] - e'l, which supplies the minimum in 

recurrence 3: then the minimum for j + 1 can be found by a single comparison between the previous 

minimum and D[i - I,j] - e'j. Thus the difficulty in the computation is to efficiently comput!' 

E[i,j] given the required values of D. We will perform this computation of E in order by rows. 

For brevity, let C( k, I; i. j) stand for D[ k. I] + u'( k + l. i + j). Define the range of a point (k./) 

to be the set of points (i,j) such that i > k and j > l. By the structure of recurrence 4. a point 

can only influence the value of other points when those other points are in its range. Two poin ts 

(k.l) and (k', I') can have a non-empty intersection of their ranges. The following fact is useful for 
the computation of recurrence 4. 

Fact 1: Let (i. j) be a point in the range of bot h (k./) and (k' .1') and assu me that C( k. I; i.) ) ~ 
C(k',I';i.j). Then. C(k,l;x,y) ~ C(k',I';x,y) for each point (.r.y) common to the range of borh 

(k,/) and (k'.I'). In other words. (k./) is always better than or equal to (k'.l') for all the point­
common to the range of both. 

Proof: The difference 

{D[k,l] + e· «(i + j) - (I. + I))) - (D[k'.I'] + c' ((i + j) - (k' + I'))) 
= (D[k./]- c' (k + Il) - (D[k'.I']- ('. (k' + I')) 

depends only on (k, l) and (k', I'). • 

From now on we will assume that there are no ties in range conflicts. since they can be br()~.'" 
cons is ten tly. 

For the non·sparse version of th(' dynamic program. it can be further shown from the ail",. 

fact that the point (k,/) giving the minimum for (i.j) is leither (I - l.j -1) or it is one of the POIII'-
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giving the minimum at (i - 1. j) or (i. j - 1). Thus at each point we need only compare three values 

to find the minimum of recurrence .. 1. This gives a simple O(n?) dynamic programmin~ algorithm. 

first pointed out by Kanerusi and Goad [13J. We now describe how to improve this time bound. 

when M is less than n'2, by taking advantage of the sparsity of the problem. 

Let i l . i2 , .. • • i p . P ~ M, be the non-empty rows of E and let ROH.T[s J be the sorted Est of 

column indices representing points for which we ha\'e to compute E in row is. Our algorithm 

consists of p steps. one for each non-empty row. During step s ~ p, the algorithm processes points 

in ROW[s] in increasing order. Processing a point means computing the minimization at that 

point. and, if appropriate. adding it to our data structures for later computations. For each step 

s, we keep a list of active points. .-\ point (i r • j') is active at step s if and only if r < sand, 

for some maximal interval of columns [i' + l,hJ, (in}') is better than all points processed during 

steps 1.2, ... ,s-1. We call this interval the active intU't'alofpoint (ir,j'). Xotice that the active 

intervals partition [1, nJ. 

Given the list of active points at step s. the processing of a point (i .. ,jq) can be outlined as 

follows. The computation of the minimization at (i .. ,jq) simply involves looking up which active 

interval contains the column jq. We will see later how to perform this lookup. The remaining part 

of processing a point consists of updating the set of active points, to possibly include (i .. ,jq)' This 

is done as follows. Suppose (ir.j'), r < s, supplied the minimum value for (i .. ,jq). Then the range 

of (ir.j') contains that of (i ... jq). By Fact 1. if C(ir.j'; i .. + l.jq + 1) < C(i .. ,jq; is + l,jq + 1) 

then point (is,jq) will never be active. Therefore we do not add it to the list. Otherwise, we must 

reduce the active interval of (ir. j') to end at column jq. and add a new active interval for (is. jq ) 
starting at column jq. Further. we must test (is,jq) successively against the active points with 

greater column numbers. to see which is better in their active intervals. If (is, jq) is better. the old 

active point is no longer active. and (is. jq) takes over its active intervaL \\'e proceed by testing 

against further active points. If (is. jq) is worse, we have found the end of its active interval by 

Fact 1 and this interval is split as described above. 

A detailed description of step s is as follows. Let ..tCTn" E denote the list of all active poinls 

(leaderl. cd, (leader2, C2)· ••.. (leader u. Cu ) during step s. Therefore, each element in ACT IV £ i .. 

composed of an information field (leader) and of a key field (column); the meaning of each !lim 

(leaderl.cd, 1 ~ I < lL, is that the point denoted by the pair has active interval [CI + l,CI+d. Tla .. 

first and last pair are dummy pairs taking care of boundary conditions. \\'e set Cl = 0, C u = nand 

leaderl = leader", = O. ~Ioreover, we set C(leaderl.cl:l.j) = +x and C(leacieru,cu;i,j) =-"'X 

The list ACTIV E satisfies the following invariants which willi)\' maintained by our algoritlllJ' 

1. 0 = C1 < C2 < ... < Cu = n; 

2. (Ieader/,ct), 1 ~ I < u, has active interval [CI + l.cl+d: 

3. All points (ir,jq), r < s. not in ACT l\' E need nol be considNpd for the computation of } 

on row is and beyond. 

For a given jq in ROW[s], til(' computation of EII,.jq] is pprformecl as follows. Csin)?;! !.,< 

keys in ACTrVE, we look up which actin' interval f.j hl'longs to. That is. we find an I such rll.,' 

CI < jq ~ c/+I. If CI = O. then E[i •. hJ does not depend on any of tllf' points processed in pre\<i"'I' 

steps and it is therefore set to the \'a!Uf> gi\<en by the initial conditions in recurrence 4. If CI .,. " 



E(i." jq) is set to C(leader/. C/; is, jq). By definition of active point and the invariants :2 and 3 aboye. 

E[is.ja] is correctly computed. We refer to the operation of obtaining; for a given Ii in ROI~l51 
the in~erval which it belongs to as LOOI\'UP(ACTn'L,jq)' :\amely. LOOIO,)'P(ACTIVE,jq) 

returns the largest column number in ACT IV E less than jq. 
Once we have all values of E on row is, we can compute the corresponding \'alues of D. 

Based on these latter values, not all the points in either ACT IV E or ROW[s] may turn out to 

be active at later steps, because new range conflicts may now arise. \Ve resolve such conflicts 

between different points by first doing the following for each jq in ROlV[s]. Let (leader/. ct). 

1 ~ 1, be the point that provides the minimum in recurrence 4 for (is,jq)· We check whether 

C(leadeT[, C/; is + 1, jq + 1) ~ C(is, jq: is + 1. jq + 1). If this is the case, we delete jq from ROW[s] 
since (i.,jq) cannot be active by Fact 1. Otherwise. we check whether jq = Cl+l' If this test is 

negative, we do nothing and (is,jq) remains in ROW[s]. rr the test is positive, we have that the 

range of (i.,jq) is completely contained in the range of (i/+I,CI+d. Thus, one of the two points 

must be deleted. Indeed, if C(leader/+ I. C/+ I; is + 1, jq + 1) ~ C(i., jq; is + 1, jq + 1), we delete (i., jq) 
from ROW[s] since it cannot be active by Fact 1. Otherwise. we will later delete (ieaderl+l,c/+l) 

from A.CTIV E. 
Let jr,j2', ... ,j~ be the column indices of the surviving points in ROW[s] (listed in sorted 

order). Starting from K, we discard all the column indices j~ immediately following it such that 

C(is, ji'; is+ 1, j~' + 1) ~ C(i., j~'; is + 1. j~ + 1). When we find a point q' such that C( is, j~'; i.+ 1, j~~ + 
1) > C(is, j;'; is + 1, j~, + 1), we stop and repeat the same process for q'. As a result, we discard from 

ROW[s] all column indices j~ such that C(is. j;,; i.+ 1, j~ + 1) ~ C( i., j;; is +1, j~ +1), for some rI < 
p. Again, by Fact 1, all discarded points cannot be active at later steps. The result is a list of points 

(i.,jD, .... (i.,jj) that must all be inserted in ACTI1IE. We refer to the process of obtaining 

the sorted list (i.,jf), ... ,(i.,jj) from (i.,j~').(i •. jn, ... ,(i •. jn as REDUCE(RO~F[s]). It is 

implemented as a simple scan of a sorted list and therefore requires O(IROTV[s]l) time. As a 

consequence of Fact 1, for each jq and j/ in ROW[s]. q < I, we have that 

(S) 

\Ve must now insert into ACTIVE the remaining points in ROll'. However. the insertion 

of such points may cause the deletion of other points in ACT rv E. We proceed by first deleting. 

in increasing order by column. all points in ACTI\' £ that cannot be active any longer. Thf'll. 

we insert points from ROW[s]. The detection of all points that must be deleted from ACT fl' F 

can be performed as follows. We start with the first column index j1 in ROH'. Let I be SlIch 

that C/ < il ~ Cl+l' By "walking- on ACTI\' E. we find the minimal h. 1 < h < n, such that 

C(i., il; i. + 1; Ch + 1) > C(leaderlt,clt; i. + 1: Ch + 1) and C( i •. jl ; i. + 1. cq + 1) ~ C(leaderq • cq: I. + 
l,cq + 1),1 < q < h. During this walk. we mark as deletable all points (leaderq,c q ). 1< q < II 

from ACT IV E. We repeat the above process with j2 starting at h. if h ~ Ch. Otherwise, we sl art 

at an index I such that C/ < j2 ~ C'+I' We iterate throllgh this process with successive indic.· ... 

in ROlV[s] and ACT IV E until WI' reach the end of either list. Then. we remove all deletahl.· 

points from ACTIVE. We refer to the operation of deleting a pair (leader. c) from ACT IV E .1 .... 

DEL(ACTIVE,c). By Fact 1 and inl'quality.). all the deleted points cannot be active in any IIf 

the subsequent steps. 



After this step, all the possible range conflicts between points in ROWand ACTIF E have 

been examined and solved. Therefore. all the remaining points in ACT IV E and ROW will be 

active for later computation. Thus we insert in ACT IV E all the points with column index in 

R01V(sJ. We refer to each insertion as IN S ERT(ACT IV E. j). 

Let N EXT(LIST. item) denote the operation that returns the element succeeding item in 

LIST and assume that the last element in ROWls] is a dummy column index, say n + 1. ~Ioreover. 

let AP P El'.[ D(LIST, item) denote the operation that appends item at the end of LIST. The 

algorithm discussed above can be formalized as follows: 

Algorithm SRNA: 
ACTIVE +- «0,0), (0, n »); 
for s +- 1 to P do begin 

j - NEXT(ROlV[s], ¢); 
while j f; n + 1 do begin 

1* compute E[i~,j] and decide whether to keep j in ROW[s] */ 
jdead +- false; 
(leader, c) - LOOKUP(ACTHT,j): 
E[i~,j]+- D[leader, c] + w(leader + c. is + j); 
nextj +- NEXT( ROW[s].}); 
if C(leader,c;is + l.j + 1) ~ C(i.,j;i. + l.j + 1) then begin 

DEL(RO~i<'[s],j); 
jdead - true: 

end; 
e ..... NEXT(ACTIVE, e); 
if(e = j) and C(leader,c;is + 1,) + 1) ~ C(is,j;i~ + l,j + 1) then 

if jdead = false then 

j +- nextj; 
end; 

DEL(ROW[s].j); 

/* remove from ROWls] the points no longer able to be active * / 
ROW[s] +- REDUCE(ROlV[s]); 

/* delete elements from A CTlllE * / 
j +- NEXT(ROW[s]. <t»; 
(leader, e) - LOOh·UP(ACTlVE.j); 
(leader, c) - NEXT( A CTIVE, c); 
OLD +- </>; 
while j f; n + 1 and (c i' n) do begin 

while C(leader.c;i. + 1.e+ 1) > C(i •• j;I. + I,e + 1) do begin 
APPESD( OLD, c); 
(leader. c) +- ,VEXT(ACTI\E,c); 

end; 
j ..... NEXT( ROW[s],}); 
if j > c then (/(uder. c) +- LOO/\TP( A (TilE.): 

end; 
APPEl'lD( OLD. n + I); 

/* delete points in OLD from .-\ CTIVE * / 
c +- NEXT(OLD.o): 
while c i' Tl + 1 do begin 

. -



DEL(ACTI FE. c): 
c - J\,£XT( OLD. c): 

end: 
/* insert points from ROW into ACTIVE • / 

j - NEXT(ROW.¢): 
while j =1= n + 1 do begin 

end; 
end; 

INSERT(A CTIl'E.j); 
j i- NEXT( ROW[s],j); 

Theorem 1. Algorithm SRN A correctly computes recurrence -to 
Proof: By induction, using the discussion preceding the algorithm. • 

In order to simplify the presentation of algorithm SRN A. we have assumed that each column 

index is an integer between 0 and n. We remark that a slight variation of the same algorithm works 

correctly if we label column indices to be integers between 0 and min(n. AI). Such a labeling can 

be clearly obtained in O(n) time. 

3. Time complexity 

In this section we analyze the running time of algorithm SRN A. We must account for a preprocess­

ing phase of O( n), which is also the time we need to read the i npu t. Furthermore, it is easily seen 

that there are no more than O( M) insertions. deletions and look II p operations on A.CT J1/ E and 

the rest of the algorithm takes just O(M). Therefore the total time of SRNA is O(n+M + T(M)). 

where T(M) is the time required to perform the 0(.\1) insertions. deletions and lookup operation on 

A.CT IV E. This time complexity depends on which data structure we use for the implementation 

of ACTIVE. 

If ACT JV E is implemented as a binary search tree [:3. 15, 21]. we obtain an O( n + AI log AI) 
time bound. However, we can obtain a better time bound by exploiting the fact that ACT JF £ 

contains integers in [0, min( n, M )J. Indeed, if ACT J\' E is implemented as a flat tree [22J we obtain a 

bound of O( n+M log log mint n .• \/)), since each operation on ACT I V E costs O(log log mint n, ;\1)). 

Even better, by using the fact that the operations perfofmed on ACT n: E are blocks of eithPf 

insertions or deletions or lookup operations, we can lI~e .J ohnson's \'ari,ltion to fiat trees [9] 10 

obtain an O(n + AI loglogmin(.\/. n! /.\1)) time bound. We now discuss sllch an implementation 

as well as its timing analysis; this requires some care and SOIlW knowledge of the internal working 

of Johnson's data structure. 

Johnson's priority queue maintains a Sl't of items with prioritif's that are integers in the interval 

{l, ... , n}. It takes O(loglogG) time to initialize the data strllct life. to insert or delete an item in 

the data structure. or to look up for thp neighbors of all item 1101 in the data structure. where (; 

is the length of the gap between the lI1'arpst integers ill the ~tr1)clllr(' below ,tnd abo\'e the priorit\ 

of the item being inserted, deletecL or ~";lfched for. 

\Ve need to know the following fMls about Johlls()I\',; data structure. The items are kept 

in n buckets. one for each integf'f III th,' domain {I., ... Il}. Each bucket contains items of lh.· 
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correspond i ng priori ty. :\ on-em pty b1lckets are rnai n t:t i lied ilia dou bly linked lis t sorted accord illg 

to t he priority. 

As for van Emde Boas' flat trees. the idea is to maintain a complete binary tree with n leave;;: 

and traverse paths in this tree using binary search. The leaves of the binary tree correspond ill a 

left-to-right order to the items in the priority don:ain. Each integer in {1. .... n} and therefore each 

bucket defines a unique path to the root of the tree. The length of such paths is at most O(log n). 

These paths are dynamically constructed whenever needed. When an item has to be inserted. 

a new path segment is added to the tree, while the deletion of an item implies the removal of a 

path segment. In both cases. the length of the path segment involved is O(logG) in the worst case. 

By constructing and visiting just a logarithmic number of nodes in each path segment, we get the 

o (log log G) bounds. 

The following lemma was implicit in [9]. 

Lemma 1. A homogeneous sequence of k ;:; n operations (i.e. all insertions, all deletions, or all 

lookups) on Johnson's data structure requires at most O(k log log(nlk)) time. 

Proof: We first prove that it suffices to consider just sequences of insertions. In fact. k deletions 

are just the reversal of the corresponding k insertions and therefore require the same time. On the 

other hand, k lookup operations can be performed by performing the corresponding insertions. 

then finding the lookup results by inspecting the linked list of buckets. and finally deleting the k 

inserted items. Thus the total time of k lookup operations is bounded above by the total time of k 

insertions. In the companion paper [7J we present an alternate proof of the time bound for lookups 

that does not require the modification of the data structure. 

It remains for us to bound the cost of k insertions. Denote by ti. 1 ;:; i;:; k, the length of the 

new path added to the data structure because of the i-th insertion. The total cost of k insertions 

will therefore be 0(2:::7=1 log Ij). Let liS now consider the total additional size of the resulting tree 

after the k insertions, L7=1 ij. This will be maximized when the k items to be inserted are equally 

spaced in the priority domain {l. ... ,n}, giving rise to L~=II, ;:; k + klog(nlk). By convexity of 

the log function, L~= 1 log tj is O( k log;( 1 + log( n/ k))) and therpfore the total cost of k insertions is 

O(k log loge nl k)) .• 

\Ve are now able to analyze the overall time bound of the SRN A algorithm. 

Theorem 2. Algorithm SRN A solves the sparse R~:\ s('condary strllcture problem in a total of 

O(n + Mloglogmin(M.n2/.\I» time. 

Proof: By the above discussion, SRNA requirt's ,It most 0(1l + At + T(M») time. wh{'[p 

TC\f) is the worst-case time of performing the 0(.\/) insertions. deletions and lookup operations 

in ACT J1I E. By implementing ..ICT 1\' E with Johnson's data 5t rl1ct urI', T( M) is O(M log log (;') 

and therefore 0 ('\-flog log M). 

It remains to show that the timp ("ompl!'xily of SRN A is bOil nded by O( n + .\flog log( n'1 1.\1 I I. 
By lemma 1, the total time spent by algorithm SRNA f)U row I. I ~ i ~ p. is O(M;loglog(nIM,)I. 

where JIi ;:; n denotes the number of poi nts in row i. This gi VI'S a total of O()';= 1 ,\Ii log log( n/.H, ) , 

time. Define 0i = nl Mi. 1 ;:; i -:; p. for pach row I. Then. the rutal tiIlle of SRN A is asympoticalh 

bounded by Lf=l L~~110g10gQ, slIhjl'rt to the constraint ~~=1 L~\~1 fl', < n 2 • By cOI1\'exity (If 

the log log function. I:f=l I:;~1 Ingl"t!;(I, ~ .\Iloglog(Tl~/.\/). 
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Therefore, SRNA requires at most O(n + JIloglogmin(.\J.n2j.H)) time .• 

4. vVilbur-Lipman Fragment Alignment Problem 

In this section we will consider the comparison of two sequences. of lengths nand m. which (lifTer 

from each other by a number of mutations. An alignment of the sequences is a matching of positions 

in one with positions in the other, such that the number of unmatched positions (insertions and 

deletions) and matched positions with the symbol from one sequence not the same as that from 

the other (point mutations) is kept to a minimum. This is a well-knov;n problem, and a standard 

dynamic programming technique solves it in time O(nm) [19]. Tn a more realistic model, a sequence 

of insertions or deletions would be considered as a unit. with the cost being some simple function 

of its length; sequence comparisons in this more general model can be solved in time O(n3) [25]. 

The cost functions that typically arise are convex: for such functions this time has been reduced to 

O(n2 10g n) [6.8,18] and even O(n 2o(n)), where 0 is a very slowly growing function, the functional 

inverse of the Ackermann function [14]. 

Since the time for all of these methods is quadratic or more than quadratic in the lengths of 

the input sequences, such computations can only be performed for fairly short sequences. Wilbur 

and Lipman [27, 28] proposed a method for speeding these computations up, at the cost of a small 

loss of accuracy, by only considering matchings between certain subsequences of the two input 

sequences. Since the expected number of point insertions. deletions and mutations in the optimal 

alignment of two random sequences is very low. especially for small alphabets, considering longer 

subsequences has also the advantage of computing more meaningful alignments. 

Let the two input sequences be denoted x = XIX2 ••• Xm and Y = YlY2 ... Yn. \Vilbur and 

Lipman's algorithm first selects a small number of fragments, where each fragment is a triplp 

(i.j,k) such that the k-tuple of symbols at positions i and j of the two strings exactly match each 

other; that is, Xi = Yj,Xi+l = Y)+l .... ,Xi+k-l = Yj+k-l. \Vilbur and Lipman took their set of 
fragments to be all pairs of matching substrings of the two input strings having some fixed length k. 

Recall that in the description of the RN A structure algorithm. we gave a procedure for finding all 

such fragments; they may be found in time O«n + m) logs + .H), wl)('re nand m are the lengths of 

the two input sequences, and s is the number of symbols in the input alphabet; we will assump in 

our time bounds that this is the procedure used to generate the fragments. However our algorithm 

for sparse sequence alignment does not require that this procedure be used, and in fact it gives tht> 

correct results even when we allow different fragments to ha\'e different lengths. 

A fragment (i',/,k') is said to be be/ow (i.j.k) if i + k ~ i' and j +k ~ /; i.p. the substrin~ 

in fragment (i'./,k') appear strictly after those of (i.j.k) in the input strings. Equivalentl~' \\f' 

say that (i.j,k) is above (i',j',k'). The length of fragment (i.j,k) is the number k. The diayon,1i 

of a fragment (i,j, k) is the number j - i. An alignment of fragmellts is defined to be a sequenc p <If 

fragments such that, if (i. j, k) and ( i' . j'. k') are adjacen t fragmen ts in the s('q lJence. ei t her (i' .;'. J.:' , 

is below (i,j,k) on a different diagonal (a gap). or the t\\'o fragmt'llts are Oil the same diagoll.d 

with i' > i (a mismatch). Note that with this definition. mismatched fragments may ovprl"i' 

For instance if x =AUGCUUAGCCTUA and y =ArGCl'LTAC:\lTL\. a possible alignnwIlt .. I 

fragments is It = (1.1.3),12 = (4.5.:n.h = (6,7,3).f4 = (11.1'2.:3). which shows a gap betwf"'ll 

fl and 12, an overlapping mismatch between 12 and h and a non-ovprlapping mismatch betw(>(>ll f. 



and fl' The cost of an alignment is taken to be t:le SUIIl of the costs of the gaps. minus the number 

of matched symbols in the fragments. The cost of a gap is some function of the distanc(' betwepn 

diagonals w(IU - i) - U' - i')!). The number of matched symbols may not necessarily be the sum 

of the fragment lengths. because two mismatched fragments may overlap. 1\ evertheless it is easily 

computed as the sum of fragment lengt hs minus the overlap lengths of mismatched fragment pairs. 

When the fragments are all of length 1. and are taken to be all pairs of matching symbols from 

the two strings. these definitions coincide ".lith the usual definitions of sequence alignments. \\'hen 

the fragments are fewer. and with longer lengths, the fragment alignment will typically approximate 

fairly closely the usual sequence alignments. but the cost of computing such an alignment may be 

much less. 

The method given by \Vilbur and Lipman [28] for computing the least cost alignment of a set 

of fragments is as follows. Given two fragments, at most one will be able to appear after the other in 

any alignment, and this relation of possible dependence is transitive: therefore it is a partial order. 

Fragments are processed according to any topological sorting of this order. Some such orders are 

by rows (i), columns (j), or back diagonals (i + j). For each fragment. the best alignment ending 

at that fragment is taken as the minimum, over each previous fragment. of the cost for the best 

alignment up to that previous fragment together with the gap or mismatch cost from that previous 

fragment. The mismatch cost is being taken care of by the total number of matched symbols in 

the fragments: if the fragment whose alignment is being computed is 1 = (i,j. k) and the previous 

fragment is J' = (i -l.j -l.k'). then the number of matched symbols added by 1 is k if J' and 

f are non-overlapping and k - (k' -l) otherwise. Therefore, in both cases the number of matched 

symbols added by 1 is k - max(O. k' - i). For instance. in the pxample given above the number 

of matched symbols added by h is 3 - max(O.3 - 2) = 2, while the number of matched symbols 

added by I .. is 3 - max(O.3 - .5) = 3. Formally. we ha\'e 

{

min D[i -l.j -i.k'] + max(O,k' -i) 
D(i,j,k) = -k + min (i-I,J-I,k') 

min D[i'.j',k'] + 1c(1(j - i) - (j' - i')I) 
(,' .J' .1.') above (i.i,k) 

(6) 

The naive dynamic programming algorithm for this computation. given by Wilbur and Lipman. 

takes time O(Af2). If.\/ is sufficiently small. this will be faster than many other sequence alignmpnt 

techniques. However we would Like to speed the computation up to take time linear or close to 

linear in AI; this would make such computations even more practical for small M. and it would 

also allow more exact computations to be made by allowing ,\f to be larger. 

\Ve consider recurrence 6 as a dynamic program on points in a two-dimensional matrix. Fadl 

fragment (i,j,k) gives rise to two points. (i,j) and (i + k - 1.j + k - 1). We compute the h,~' 

alignment for the fragment at point (i,j); however wp do not add this alignment to the dOlL, 

structure of already computed fragments until we reach (i + k - l.j + k - 1). In this way. !h,· 

computation for each fragment will only see other fragments that it is helow. \\'e compute separat .. " 

the best mismatch for each fragment: this is always the previous fragrnent from the same diagoll.d. 

and so this computation can easily be pprformed in total time of 0(.\1). From now on we \I, 11: 

ignore the distinction between the two kinds of points in the matrix. and the complication .. I 



the mismatch computation. Thus, we ignore k ill recurrence 6 and consider the following two­

dimensional subproblem: Compute 

E[i,j] = min D[i',j'] + Il'(!(j - i) - (j' - i')I), 
(i' .j') above (i,j) 

where D[i.j] is an easily computable fUllction of E[i,j]. 

As in the R~ A structure computation, each point in which we have to compute recurrence i 

has a range consisting of the points below and to the left of it. However for this problem we 

divide the range into two portions. the left influence and the right influence. The left influence of 

(i, j) consists of those points in the range of (i. j) which are below and to the left of the forward 

diagonal j - i, and the right influence consists of the points above and to the right of the forward 

diagonal. Within each of the two influences, w(lp - ql) = w(p - q) or w(lp - qi) = w(q - p); i.e. 

the division of the range in two parts removes the complication of the absolute value from the cost 

function_ 

For brevity, let C(i'.j'; i,j) = D[i',j'] + w(l(j -i) - (j' - i')I). We have the following Fact: 

Fact 2: Let (i,j) be a point in the left influence (right influence, respectively) of both (k, l) 

and (k'.I') and assume that C(k./;i,j) - C(k',/';i.j) ~ O. Then (k,/) is always better than (k'.L') 

for the computation of recurrence i 011 all points common to the left influence (right influence, 

respectively) of both. 

Notice that if we had not split the ranges of points into two parts, we could not show such a 

fact to be true. Since it is similar to the central one used in the RN A structure computation. one 

would expect that the computation of recurrence i (and thus recurrence 6) can be performed along 

the same lines of recurrence 4. Indeed. we can write recurrence 7 as 

E[i,j] = min{Lf[i.j]. Rf[i,j]}. 

where 

R/{i,j] = min D(i'.j') + u'((j - i) - (j' - i')) 
(,',,') above (.,,) ., ., . . 
) -I <)-1 

and 

Lf[i.j] = rrun DU'.j') + w((j' - i') - (j - i)). 
(.'.,') above ( .. ,) 

( 1 II I 

j - i < j' - i' 

Both recurrences 9 and 10 look very similar to recurrence 4, except that they must be plI I 

together to compute recurrence 7. Thus, the order of computation of the points must be the salll" 

for the two recurrences. ~Ioreover, now we have two collections of influences that are eighth-planM 

geometric regions while in the Rl\' A structure computation we had ranges that were quarter-plalloH 
geometric regions. 

In what follows, we choose to compute the values at points in order by their rows. A~ .. 

consequence. we have that the computation of recurrence 9 is the same as (4). the only differPII< r 

is that here regions are bounded by forward diagonals instead of by columns. That is, algorithm 



SRNA can compute recurrence 9 provided that each point (ir,j), 1 ::; r < s, is represent.ed in 

ACT n: E by the pair (in j - ir) and that ead pain t (is. j) is represented by j - is in no It l"]. 
If we could perform the minimization for left influences in order by columns, we would get that 

SRNA could be adapted to compute recurrence 10. However this would conflict with the order of 

computation for right influences. Instead we need a slightly more complicated algorithm. so that 

we can compute recurrence 10 in order by rows. 

We now briefly outline our approach to the computation of (10) by rows. We again maintain a 

collection of active points, each of which is best for some of the remaining uncomputed points. As 

a consequence, the matrix Ll can be partitioned into geometric regions such that for each region 

R there is a point (i,j) which is the best for the computation of (10) for points in R. Obviously. 

R is contained in (i,j)'s left influence. \Ve refer to (i,)) as the owner of region R. 

However, unlike in the computation of (9), the regions in which such points are best may be 

hounded also by forward diagonals. according to the boundaries of the left influences. As a result, 

each region is either a triangle or a convex quadrilateral, since the boundaries of each region are 

composed of rows, diagonals and columns (see Fig. 1). Furthermore, it is no longer true that each 

point will own at most one region: when we insert a new point in the set of active points it may spLit 

a region into two parts. As a consequence. each point may own more than one region. However, 

all regions owned by a point are disjoint. 

There is one further complication: we do not know in advance the boundaries of these regions, 

but we actually discover them row by row. Assume that in the computation of (10) we are processing 

row i. At this step. our algorithm has computed the partition of the matrix Ll up to row i, but we 

do not know the behavior of the currently active regions after row i. In fact, it can happen that a 

new point (i'. j'), jl > i. cointained in a region R active at i may split R into two parts. depending 

on whether (iI, j') is better than the owner of R in their common left influence. In such a case. we 

wait until row i' before deciding whether R should be split. Furthermore. when we have a region 

bounded on the left by a forward diagonal and on the right by a column. we must remove it when 

the row on which these two boundaries meet is processed. :\t this point we compare the two regions 

on either side. to see whether their boundary should continue as a diagonal or as a column. Once 

again. we will decide it when considering the row in which their boundaries meet. 

:\. region R is said to be active at row i, 1 ::; i ~ m. if and only if R intersects row i. Whil.> 

processing row i. the active points are the owners of a.ctive regions. In our computation of (10) b:­

rows. we maintain a set of active regions under the updates required by the insertions and deletion­

of regions described above. 

Even though there are two types of border. it can be shown that the regions appear in a linp;u 

order for the row we are computing, and this order can be maintained under the changes in the ~.·t 

of active regions required by the insertion of new points and by the removal of regions. Therefor.' 

we may use a binary search tree to perform the computation in time OPf logJ/). Because of tilt' 

two types of border, however. the points being searched for cannot be represented as a single set." 

fixed integers. Therefore the algorithm sketched above dO€s not seem to benefit directly from t I ... 

use of the flat trees of van Emde Boas, or J oh nson's i III prow'ment to flat trees. which depend .. " 

the points being dealt with being unchanging integers. However. we can use two flat trees. one f •• , 

column boundaries and one for diagonal boundaries. The diagonal boundaries can be represent ... t 
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as the integer numbers of the diagonals. and the column boundaries can be represented as the 

integer numbers of the columns. Searching for the region containing a point is then accompli~llf'd 

by finding the rightmost boundary to the left of the point in each flat tree. and choosing among 

the two resulting column and diagonal boundaries the one that is closer to the point. Thus we may 

perform the computation of fragment alignment in the same time bounds as for R~A structllrP 

computation. 

Let i l . i2 •••• , i p , P < ;\1. be the non-empty rows of LI in (10). Our algorithm for the compu­

tation of LI consists of p steps. At step 8, we compute II for row i~. Assume that we have q active 

regions R 1 , R 2 , ••• ,Rq listed in sorted order of their appearance on row i~. We keep the owners of 

these regions in a doubly linked list on'.V ER. The i-th element in OlVN ER is the owner of R i • 

Initially, OlVN ER contains the dummy point (A, A) that owns the whole matrix LI. OH'JV ER 

implicitly maintains the order in which active regions appear in row i$' 
y...'e maintain the boundaries of the q active regions by means of two sorted lists C-BOU.VD 

(column boundary) and D-BOUSD (diagonal boundary). Each element in C-BOU.VD is a pair 

(rightr,c), where rightr is a pointer to an element in OWl'fER and c is a column number. The 

meaning of such pair is that column c is the boundary of two active regions. The region whose 

owner is pointed to by rightr is to the right of c. Pairs are kept sorted according to their column 

number. 

Similarly, each element in D-BOUSD is a pair (abover.d), where abover is a pointer to an 

element in OW N ER and d is a diagonal number. The meaning of such pair is that diagonal d is 

the boundary of two active regions. The region whose owner is pointed to by aboL'ET is abov(' d. 

Pairs are kept sorted according to their diagonal number. 

We notice that given two adjacent column boundaries in C-BOU.VD. it may happen that tht' 

two regions bounded by those columns are not adjacent since regions bounded by diagonals may 

be in between these two regions .. -\ similar thing may happen to adjacent diagonal boundarips in 

D-BOU1VD. Thus, we need to use both data structures to locate in \vhich active region a point 

(i$,jl) falls. 

We also keep lists LVTERSECT[rj. 1 $ r $ m, for each row of LI. Such lists contain point~ 

in which we must resolve a conflict between the two active regions meeting at that point. At s!t'p 

S, we maintain the invariant that I,VTERSECT[rj = Q, 1 $ r $ i$ - 1. A column index c is III 

!l·./TERSECT[c - dj, c - d > i~, if and only if c is left boundary of an active region Rand t "., 

region to the left of R has diagonal d as its bottom boundary. We refer to the point (c - d.r I.\.­

an active intersection point. Equivalently, (c - d.c) is an active intersection point if and only If, 

and d are boundaries of two active rf'gions and neither c intersects another diagonal boundary 11< ,r 

d intersects another column boundary in any row from i. to c - d - 1. 

Each column c can be in at m06t one intersection list. \\'e assume that each column in S(lIII' 

intersection list has a pointer to th(' item representing it in such list. We also assume that 1'.\ •• 

diagonal has a flag which is on wlwn that diagonal is illvolved in an active intersection PI)II,' 

However, we will ignore the details of the update of the intersection lists and of the correspond I;': 

pointers for columns and flags for dia~onals. 

Assuming that IlVT ERS ECT[r 1 = 0, 1 ~ r $ i. - 1 and that C-80UND and D-BOI·.\ I 

correctly represent the active regions at step 3, we locate the active region containing (£$, )11 .,. 
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follows. We find a pair (rightru. cu ) in C-BOFXD such that Cu < jt ::; Cu +l and we find a pair 

(abm·£'rv.dv) in D-LJOUND such that dv ::; j, - is < d,+l' Consider the row Cu - d,. in which 

column Cu and diagonal dv intersect. If Cu - dlJ ~ is. then (is. jz) belongs to the region owned by 

the element in OWNER pointed to by rightru (see Fig. 2a.) since column Cu "hides" the region 

bounded from below by dv as \vell as the regions bounded by columns preceding CU' If Cu - dL• < is. 

then (is. jll falls into the region owned by the element in OWN ER pointed to by aboverv (see 

Fig. 2b.) since diagonal dv "hides" the region bounded by Cu as well as the regions bounded by 

diagonals preceding dv • 

We refer to the process of finding pairs in C-BOUND (D-BOUND, respectively) for a given 

(is.j,) in ROW[s] as LOOKU P( C-BOUND. jd (LOOI\U P(D-BOUND, id. respectively). 

We also denote the process of computing the owners of regions containing given (is.jt) in 

ROW[s] as WIN N ER(j,). Given the results of the two LOO J(U P operations, WIN N ERUtl 

can be performed in constant time. ~Ioreo\"er, based on the results of ~v IN N ER. we can compute 

recurrence 10 and then recurrence 6 (via (8)) in constant time for (is.i,). 

After computing D for row is. not all points on this row may turn out to generate active regions. 

Indeed, assume that (ir,jq) provided the minimum in recurrence 10 for (is,jll. The left influence of 

(ir,jq) totally contains the left influence of(is,jtl. If C(ir.jq; is + 1,j, + 1)::; C(is,j,; i" + l,jt + 1). 

we can discard (is.j,) since. by Fact 2. it will never O\\'n an active region. Consequently. we 

discard all points in row is that are dominated by the owners of their active regions. \Ve refer to 

this process as REDUCE(ROW[is]). It produces a sorted subsequence of the column indices in 

ROW[s]. Once we know the values of D for points in row is and the outcomes of the LOO hT P 

operations. REDUCE can be implemented in O(ROleV[sJI) time. 

We must now show how to update C-BOU1VD and D-BOUSD so as to include the boundarips 

of active regions owned by points in ROIV[s] that survived REDUCE. J\Ioreover, we must update 

O~V N ER. The insertion of these boundaries may also cause the insertion of new active intersection 

points and the deletion of old ones. Thus. we have to update such lists as well. 

Assume that we have correctly processed the first / -1 points in ROlV(sJ and let (i~.jtl be tlip 

next point to be processed. Let (rightrh. Ch) and (rightrl1+1. CI1+1 ) be two pairs in C-BOCSD S1)ch 

t ha t C h < j, ::; Ch+ 1. Similarly, let (aboL'er k. dk ) and (abol'er k+ 1, dk + tl be two pai rs in D- 80 C.\" fJ 

such that dk::; i,- is < dk+l. AU these pairs can be fuund by means of LOOKUP operatioll' 

\Ve now proceed as shown in the following cases. 

a. Point (is,i,) falls in the region owned by the point in OII'N ER pointed to by rightrh. I·"' 

this point be (ir,Ch)' We distinguish two subcases: Ch+1 > jl and Ch+l = j,. 
a.l Ch+I > j,. The region owned by (ir. C/i) must be split into two and the region owned 1.\ 

(i6,j,) must be inserted between them (see Fig. 3a.). Thus. we generate two new enlrw" 

for OWN ER. i.e. (i~.j,) and (I r • CII). and we insert them (in the order given) in OlVS f J,' 

immediately after the entry pointed to by rightr/i. We insert also the pair h.j,) ill I 

BOUND and the pair ((1. j, - I J) in D-80UND. where: points to (is.jt) and (1 point,.. " 

the new occurrence of (ir,l",,) in OW N E R. T he insertion of t he region owned by ( i,. } 

may cause the creation of an active intersection point, i.e. (Ch+l - (jt - is),Ch+d. Ind ... ··: 

ifch+l is not in any intersf'<"tion list. we insert it in [STERSECT[Ch+l - (j,- i~)l. 



.. 
1 , 

a.2 Ch+1 = il' Point (is' Ch+1 l falls on the border of two acti\'c regions, one owned by (i, .. Ch l 

and the other owned by (ir,.Ch+1). where this lat1N point is pointC'd to b:, rightrh+l in 

OlVNER(seeFig. 3b.). WeknowthatC(ir,.ch+1;is+1.ch+1+1) ~ C(ir,ch;i s +l,ch+1+ 

1) and that C(i~,ch+1;i~ + l.ch+1 + 1) ~ C(ir,ch;i. + l,ch+1 + 1). We have to establish 

whether (ir" ch+d is better than (is, Ch+1) in the left influence of this latter point. If this 

is the case. we do nothing. Otherwise. (is, Ch+ 1) conquers part of (ir" ch+d's left influence. 

The border between these two regions is diagonal Ch+l -is' Accordingly, we insert the entry 

(i~, ch+d in OWNER immediately before the entry pointed to by rightrh+l' We insert 

also (a,jl-i s) in D-BOUl\'D, with a = rightrh+l and set rightrh+! in C-BOUl\'D to point 

to the newly inserted entry in OW N ER. The insertion of the region owned by (is, ch+d 

may cause the creation of an active intersection point, i.e. (Ch+2 - (Ch+l - i s).Ch+2). 

Indeed, if Ch+2 is in no intersection list, we insert it in UolT ERS ECT[Ch+2 - (Ch+1 - is»), 

b. Point (is, jt) falls in the region owned by the point in OILY ER pointed to by abover!,;. Let this 

point be (ir, d!,;, + ir), k' > k. We have three subcases: til. < jl - is and Ch+l > jl; d!,; = jl - is 

and Ch+I > jl; Ch+I = it. 
b.l d!,; < jl - is and Ch+l > il. The region owned by (ir,d!,;. + ir) must be split into t\\,·o 

and the region owned by (is.jll must be inserted in between them (see Fig. 4a.). The 

details for the corresponding update ofOIVSER are analogous to the ones reported in 

case (a.l) and are left to the reader. The insertion of the region owned by (i~,jtl can 

cause the creation of two active in tersection points. (Ch+ 1 - (jt - is), ch+d and (j/ - d!,;. jil. 
and the deletion of a p06sibly active intersection point. (Ch+l - d!,;,Ch+d. Indeed. if 

column Ch+l is in INTERSECT[Ch+l - dk ] we delete it from there and insert it in 

INTERSECT[Ch+l -(j/- i. l]. Finally, we must insert column j/ in INTERS ECT[j/-dk ] 

b.2 d/; = j/ - i. and Ch+l > ]1. Point (ij,jd falls on the border between two regions, one 

owned by (in dk • + ir) and the other owned by (ir" dk + ir.). where this latter point is the 

immediate predecessor of the element in Oil'S E R pointed to by abover!,; (see Fig. 4b.l. 

If C(ir.,dk + iT'; is + 1.jl + 1) ~ C(i.,jl; is + 1.]1 + 1), \ve can discard (is,jll by Fact 2. 

Otherwise, we insert the point (is,jt} in OWS ER immediately to the left of the element 

pointed to by abover/;. This is equivalent to creating a new active region. We insert thE> 

pair h,jd in C-BOUND. where I points to the newly inserted element. The insertion 

of this nev·; region may cause the creation of an active intersection point. U/ - dk-1.)I). 

Indeed, if diagonal d!,;-l has its flag off, we mllst insert il in U{TERSECT[j/ - dk-d. 

b.3 CHI = k This case is analogous to case (a.2). 

\Ve notice that at most a constant number of lookups. insertions and deletions in C-BO{'Sf) 

and D-BOUND is performed. Furthermore, the sum of the time taken by all the other operation,; 

involved in the corresponding update of OW.v ER and the intersection lists adds up to a constant. 

We have the following lemma. 

Lemma 2. The total number of active regions is at most '2.\/. 

Proof: Each point (i,j) insert('(1 for the first time in 0\\' S E H introduces a new active region 

and splits an old one into two. Sincl' (here are at most .\1 points that can be inserted in OH! N F II. 

the bound follows immediately. • 



In order to finish step s. we must process all active illtersection points in between rows is and 

is+l - 1. Assume we have processed intersection lists for rows is ..... 1 - 1. Here we show how to 

process INTERSECT[tj, t < i s+1 • 

If INTERSECT[tj is empty, we ignore it. Thus, let IXTERSECT[I] :/: 4>. We first bucket 

sort the indices (column numbers) in such list. Proceeding in increasing order, we find (rightr.jq) 

in C-BOUND and (abover,jq - t) in D-BOUND for each jq in INTERSECT[tj. This can be 

performed using LOOl\'U P. As a result. we obtain two sorted lists of pairs, one from C-BOlh'lD 
and the other from D-BOUND. We process these lists ill increasing order taking a pair from each 

list. Assume that we have processed the first / - 1 pairs in both lists. This corresponds to having 

processed the first / - 1 points in INTERSECT[t]. We now show how to process (rightr,jd and 

(abover,jl - t). This is equivalent to processing (t,j,), 

Since (t,jd is an active intersection point, three active regions meet there (see Fig. 5). Namely, 

the active region having diagonal j, - t as an upper boundary. let it be R". the active region having 

j, - t as lower boundary, let it be R'. and the active region having column jl as its left boundary, 

let it be R. ~loreover, let (ir'" j, - t + ir" ), (i r " e') and (ir. j,) be the owners of regions R", R' and 

R. respectively. We can find those points in OIl' N ER by using either rightr or abover. 

R' cannot be active any more since (irl.e') is worse than (ir".j,-t+ir,,) «(ir,j,), respectively) 

for points in R" (R, respectively). We delete its owner from OlVNER. Next, we have to decide 

whether R" gets extended to the right of column i" 
IfC(ir,j,;t+ l,j, + 1) S; C(ir".j, - t + ir"; p·l.jl + 1). R" does not extend to the right of jl. 

Thus, we remove (abover.j, - t) from D-BOUND since j, - t is not bottom boundary of any region. 

The removal j, - t may cause the creation of a new active intersection point between column jl 

and some diagonal boundary d, d < jl - t. It may also cause the deletion of one active intersection 

point. This involves the update of intersection lists with row number greater that t. The possible 

intersection points to be inserted or deleted can be easily located as explained above. Each insertion 

in the intersection lists can be accomplished in constallt time. As for the deletions. we defer the 

actual removal of the items from the intersection list to the time when the list is considered and 

bucket sorted. This will give a constant amortized time complexity also for each deletion. 

Otherwise, R" gets extended to the righ t of j/. We set abover = rightr and delete (rightr, Jd 
from C-BO(II\'D since R" and R now share a diagonal boundary. Again, the removal of column )I 

may create a new active intersection point between diagonal j, - t and some column boundary r. 

e > iJ. Again, this involves the update of intersection lists with row numbf'r greater than t. which 

can be accomplished as explained above. 

We remark that the bucket sorting of I.VT E RS ECT[t] is not rea.lly required for its processing. 

Indeed, there is a more complicated processing of the points in ISTERSECT[t] that avoids tllf' 

bucket sorting of the points. Howevpr, it achieves no gain in time complexity. 

\Ve have the following lemma. 

Lemma 3. The total number of active intersection points is bounded above by 4.M. 

Proof: The algorithm creates active intersection points either when inserting a point III 

OHlNER for the first time or whl'n processing an active inters(>ction point. Each new POIII! 

inserted in OlVN ER can create at llIost 2 active int(lrsection points. Thus. no more than '2.\/ 

active intersection points can be ('fpated while updating 0 I\' S £ R. 



Each ne"·,: active intersection point introduced during the processing of intersection lists may 

be amortized against an active region being de:cted. Thlls. hy lemma 2. no more than :!..\! new 

active intersection points may be created during this phase .• 

Let IT EM(LIST, pointer) and P REl' IOU S( LIST. pointer) denote the operations that r('­

turn the item in LIST pointed to by pointer and the item iII L [ST preceding it. respectin>ly. 

Furthermore. let E S S EST IALS be a list which contains all the boundaries of active regions 

generated by points in ROW[s). The above algorithm can be formalized as follows. 

Algorithm Left Influence: 
OWNER - (A,A): 
for s +- 1 to P do begin 

j <- NEXT(ROH'[s].<i»: 
while j :I n + 1 do begin 

j* compute LI[iJ , j] and decide whether to keep j in RO lV[sJ * j 
(rightr. c) .- LOOKUP{ C-BOl'.YD, j); 

end; 

(abover, d) +- LOOf:UP( D-BOU.YD, j); 
(i. cl) <-- WIJ\'.YER(j): 
LI[i."j]- D[i.cl] + w((cl- i) - (j - i,,)): 
if C(i.cl;is + I.j + 1):::; C(iJ.j:is + l.j + 1) then 

DEL(ROW[s].j) 
else APPESD( ESSE.\'TIALS. (righlr. e). (abover. d)); 
j .- NEXT( ROW[s],j); 

j* insert the boundaries of th .. active regions owned by points in ROW[s] * j 
j +- NEXT(ROlr[s]. 0): 
(rightr, c) - NEXT( ESSENTIALS. 0); 
(abover.d) <-- NEXT(ESSEl'lTIALS, (righlr. c)): 
while j :I n + 1 do begin 

end; 

if ITEM( 0 WSER. rightr) = IFl.\'.\'ER(j) then 
update C - BOUND. D - BOCYD. OWNER. 

and IVTERSECT following case (a): 
else update C - BOU.VD, D - BO{,SD. Oll'.\'ER. 

and [STERSECT followill.£?; case (b); 
end; 
j +- NEXT(ROll'[s],j): 
(rightr. c) ~ SEX T( ESSES Tl.·\ LS·. (1I1mlu. d)): 
(abover, d) - SEXT( ESSESTIA [S. (rlyhtr. e)): 

j* remove active intersection points between rows '., and 1,+1 • / 
for t <- is to is+l - I do begin 

if INTERSECT[tj ~ 0 then begin 
INT ER5jFJ' r[ Ij ~ B ecl\' E [SO R n IS lERS ECT[ t]): 
j - YEXn ISTERSECT[lj.o): 
while j f. n + I do begin 

(rtyhtr.r) - LOOATP(C-lJOI'YD, )): 
(nb(}l'(r. d) - LOOATI)( f)-IN) { 'S!), )); 

A P/)f.'.\'f) ( ESSE.\'TlALS. ( riyhtr. c). ( abolH. d)); 
j - .\TXT(ISTERSECT[lj.)): 



.:u 

end; 
APPESD(ESSENTlALS.p. n + 1)) 
(rightr.c) - XEXT(ESSESU.ILS,o): 
(abovEr. d) - SEXT( ESSES Tl.-I LS, (riglztr. e): 
while (rightr. e) -:p p. n + 1) do begin 

(i". e") - PRE VIO US( 0 II"YER, abol'er): 
(i.j) - ITEJ!( OWSER. rightr): 

/* remove the region no longer active * / 

end; 

end; 
end: 

end: 

DEL(OTVNER. abol'er) 
if C(i,j;t + l.j + 1) ~ C(i". ell:t + l,j + 1) then begin 

DEL(D-BOUl-lD, j - t): 

update intersection lists; 
end else begin 

DEL( C-BOUND, j): 
update intersection lists; 

end: 
(rightr,e) - SEXT(ESSESTlALS.(abover,d); 
(abover.d) - ,VEXT(ESSENTIALS.(rightr,c»; 

We have the following theorem. 

Theorem 3. Algorithm Left Influence correctly computes recllrrence 10. 

Proof: By induction. using the discussion preceding the algorithm. • 

The time complexity can be analyzed as follows. 

Theorem 4. \Vilbur and Lipman's fragment alignment problem can be solved in a total of O( m + 
n + J;f log log min(AJ, nm/M» time. 

Proof: The problem can be solved by computing r('currence G .. -\s we mentioned. this can be 

reduced to the computation of (8). (9) and (10). Recurrence 9 can be computed using algorithm 

SRNA and therefore by theorem 2 in 0(.\1 log log min(.\/.llm/M)) time. 

To bound the overall time required to compute recurrence 10. we need to analyze algorithm 

Left Influence. By the above discussion. the time reqllin'd by I hi" algor:thm is Oem + n + .\/ + 
T(J1), where T(A!) is the total time required to ma.intain thp lists C-BOC.VD and D·BOC:\'lJ 
and to bucket sort each INTERSECTlOS list. 

By lemma 2 and by lemma:l. thf're can be at most 0(.\/) illst'ftions. deletions and 100ktJp 

operations in C-BOUND and D·130{·SD. Fllrtherrnore. Left Influence requires that for each row 

at most a constant number of hOlllogenpo1l5 seq uenee's of 1 hest' operations (i.e., all insertions. ;tll 

deletions. or all lookups) is performp<l. If we Ilse Johnson's Jala ~trllClllre to support them. an ar~lJ 

ment completely analogous to the prllof of theorem :2 gin's a 10t<l.I of O( .\1 log log min{.\f. nmj .\11' 
time. 

As for bucket sorting the ISrf:U . .,'ECTlOS lisls. assul1l" thl'[(' are c, points to buckf'l 

sort at row i, 1 ~ i ~ m. If WI' lISt' again Johnson's J;lla -tructure [9]. this can be dOll" 



in O(Ciloglogmin(M.n/c;)). Therefore the total time is O(Z=;:lc,loglogmin(JLnjc,)). By 
lemma 3. >;:1 Cj ~ 4,\1. Again. a total ofO(JIloglogmin(.\I.nmjJl)) time re~lIlts by cOllv.'xity 

of the log log function. 

Once the value of LI[i,i] and RI[i.j] are a\'ailable, the computation of E[i.j] and D[i.j] can 

be performed in constant time. 

Therefore the total time required to solve the fragment alignment problem is Oem + n + 
AI 10glogmin(M. nm/M)) .• 

5. The Longest Common Subsequence Problem 

In this section we describe how to solve efficiently the longest common subsequence problem. \Ve 

assume that the reader is familiar with the algorithms of Apostolico and Guerra [5]. 

Recurrence 4. used for the computation of RN A structure with linear loop cost functions. can 

also be used to find a longest common subsequence of two input sequences. The differences are 

that now we are looking for the maximum rather than the minimum, and that D[i, i] depends only 

on E[i,j]. Indeed, D[i,j] = E[i.j] + 1 for pairs of symbols (i,j) that match, and D[i.j] = E[i.j] 
otherwise. The cost function W(I, y) is always zero (and therefore linear). Thus any bounds on 

the time for solving recurrence 4 will also apply to the longest common subsequence problem. As 

we have stated the solution. the time bound applies with ,\I being the total number of matching 

positions between the two input strings. 

Apostolico and Guerra [5] cleverly showed that the problem can be made even more sparse, 

by considering only dominant matches. They give an algorithm which runs in O( n log s + m log n + 
dlog(nm/d)), where d is the number of dominant matches. A different version of this algorithm 

can be also implemen ted in O( n log s + d log log n) ti me. We now ou tline how to achieve a bettPr 

time bound, by modifying their algorithm to take advantage of our techniques. 

The key observation is to replace the C-trees defined and used in [,5] with Johnson's data 

structure [9]. Apostolico and Guerra showed that their algorithm performs at most Oed) insertions. 

deletions and lookup operations on integers in {l, ... , n}. Furthermore, their algorithm can be 

implemented in such a way that for each step insertions, deletions and lookup operations are nevI'r 

intermixed on the same priority queue. Therefore we can apply lemma 1 and the same argullwlIl 

of theorem 2 to obtain an algorithm which runs in O(d log log mint d. nm/d)). 

As in the algorithm of Apostolico and Guerra, and other similar algorithms for this problf'!1l. 

our algorithm also includes a preprocessing pha.Ee; this takes time O( n log.'). where,., is the alphah." 

size (without loss of generality at m06t m + 1). We must also initialize 0(.,) sE'arch strurtlHf~. 

with total cardinality of at most n; using Johnson's data structure this can be ;tccomplishl:'(1 if! 

O(s loglog(n/s)) time which is dominated by the O(n logs) term. 

Therefore the total time is O( n log s + dlog log mined. nm/d)). 

6. Conclusions 

\Ve have shown how to efficiently solve th(' Wi!bur-Lipman sequence alignment problem. the 1Il111 

imal energy RNA secondary structure with single loops and the longest common subseq1l"!I' ,. 

problem. Our approach takes advantage of the fact that all the above problems can be soh ... l 

by computing a dynamic programming recurrence on a sparse set of entries of the correspondilll!: 



dynamic programming matrix. We have also assumed that the weight functions involved are lin­

ear. In the companion paper [I] we will analyze the case where the weight functions an' either 

convex or concave. Our algorithms have time bounds that vary almost linearly in the density of the 

problems. Even when the problems are dense, our algorithms are no worse than the best known 

algorithms: when the problems are sparse. our time bounds become much better than those of 

previous algorithms. 
\Ve remark that all our algorithms are independent of the particular heuristics used to make the 

input sparse. This is especially important for the Wilbur-Lipman sequence alignment algorithm, 

where such heuristics may vary depending on which application the algorithm is used for. 
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