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The one-dimensional dynamic programming problem is defined as follows: given a real-valued 
function w(i,j) for integers 0 ~ i ~ j ~ nand E[O], compute 

E(j] = mjn{D[i] + u'(i,j)}, for 1 ~ j ~ n, 
O~I<) 

where D[i] is computed from E[i] in constant time. The least weight subsequence problem [4] is 
a special case of the problem where D[i] = E[i]. The modified edit distance problem [3], which 
arises in molecular biology. geology, and speech recognition, can be decomposed into 2n copies of 
the problem. 

Let ,-1 be an n X m matrix. A[i, j] denotes the element in the ith row and the jth column. 
A[i: i' ,j : i'] denotes the submatrix of A that is the intersection of rows i, i + 1, ... , i' and columns 
j,j + 1, ... ,i. We say that the cost function w is concave if it satisfies the quadrangle inequality [7] 

w(a,c) + w(b,d) ~ w(b,c) + w(a,d), for a ~ b ~ c ~ d. 

In the concave one-dimensional dynamic programming problem w is concave as defined above. A 
condition closely related to the quadrangle inequality was introduced by Aggarwal et al. [1] An 
n X m matrix A is totally monotone if for all a < band c < d, 

A[a, c] > A[b, c] ~ A[a, d] > A[b, d]. 

Let rU) be the smallest row index such that A[r(j), j] is the minimum value in column j. Then 
total monotonicity implies 

r(1) ~ r(2) ~ ... ~ rem). (1) 

That is, the minimum row indices are nondecreasing. \Ve say that an element A[i. j] is dead if 
i ~ r(j). A submatrix of A. is dead if all of its elements are dead. Note that for a ~ b ~ c ~ d, the 
quadrangle inequality implies total monotonicity. but the converse is not true. Aggarwal et al. [1] 
show that the row maxima of a totally monotone n X m matrix A can be found in O(n + m) time 
if A[i,j] for any i,j can be computed in constant time. Their algorithm is easily adapted to find 
the column minima. We will refer to their algorithm as the SMAWK algorithm. 

Let B[i,j] = D[i] + w(i,j) for 0 ~ i < j ~ n. We say that B[i,j] is available if D[i] is known 
and therefore B[i,j] can be computed in constant time. Then the problem is to find the column 
minima in the upper triangular matrix B with the restriction that B[i, j] is available only after 
the column minima for columns 1. 2, ... , i have been found. It is easy to see that when w satisfies 
the quadrangle inequaHty, B also satisfies the quadrangle inequaHty. For the concave problem 
Hirschberg and Larmore [4] and later Galil and Giancarlo [3] gave O( n log n) algorithms using 
queues. Wilber [6] proposed an O(n) time algorithm when D[i] = E[i]. However, his algorithm 
does not work if the availability of matrix B must be obeyed, which happens when many copies 
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Figure 1. ~Iatrix B at a typical iteration 

of the problem proceed simultaneously (i.e., the computation is interleaved among many copies) 
as in the modified edit distance problem [3] and the mixed convex and concave cost problem [2]. 
Eppstein [2] extended Wilber's algorithm for interleaved computation. Our algorithm is more 
general than Eppstein's; it works for any totally monotone matrix B (we use only relation (1», 
whereas Eppstein's algorithm works only when B[i,j] = D[i] + w(i,j). Our algorithm is also 
simpler than both Wilber's and Eppstein ·s. Recently, Larmore and Schieber [5] reported another 
linear-time algorithm. which is quite different from ours. 

The algorithm consists of a sequence of iterations. Figure 1 shows a typical iteration. \Ve use 
NUl, 1 :S j :S n. to store interim column minima before row r; N[j] = B[i,j] for some i < r (the 
usage will be clear shortly). At the beginning of each iteration the following invariants hold: 

(a) O::S rand r < e. 
(b) E[j] for all 1 :S j < e have been found. 
(c) E[j] for j ~ e is min(.NU],mini~r B[i,j]). 

Invariant (b) means that D[i] for all 0 :S i < c are known, and therefore B[i,j] for 0 :S i < e and 
c ::S j :S n is available. Initially, r = O. e = 1, and all }VU] are +00. 

Let p = rnin(2c - r, n), and let G be the union of N[c : p] and B[r : e - 1, c : pl, N[c : p] 
as its first row and B[r : c - 1, e : p] as the other rows. G is a (c - r + 1) x (e - r + 1) matrix 
unless 2c - r > n. Let F[jl, c:S j :S p, denote the column minima of G. Since matrix G is totally 
monotone, we use the SMAWK algorithm to find the column minima of G. Once F[c : p] are found, 
we compute E[j] for j = c, c + 1, ... as follows. Obviously, E[e] = F[c]. For c + 1 :S j :S p, assume 
inductively that B[c : j - 2,j : p] (/3 in Figure 1) is dead and B[j - 1,j : n] is available. It is 
trivially true when j = c + 1. By the assumption E[j] = min(F[j], BU - 1, j]). 

(1) If E[j - l,j] < FU], then E[j] = B[j - 1,j], and by relation (1) E[r: j - 2,j: n] (a, ,8,;, 
and the part of G above /3 in Figure 1) and S[j : n] are dead. We start a new iteration with 
c = j + 1 and r = j - 1. 

(:2) If F[j] $ B[j - I,j], then E[j] = F[j]. We compare E[j - l,p] with FlP]. 
(2.1) If B[j - l.p] < F[p], B[r : j - 2,p + 1 : n] (a and; in Figure 1) is dead by relation (1). 

B[c : j - 2.j : p] (/3 in Figure 1) is dead by the assumption. Thus only F[j + 1 : p] among 
B[O : j - 2.j + 1 : n] may become column minima in the future computation. We store 
F[j + 1 : p] in N[j + 1 : p] and start a new iteration with c = j + 1 and r = j - 1. 

(2.2) If F(p] :S B[j - l,p], B[j - l,j : p] (6 in Figure 1) is dead by relation (1) in submatrix 
B[r : j - 1. j : p] (/3. 6, and the part of G above /3). Since B[j,j + 1 : n] is available from 
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procedure concave 1D 
c +- 1; 

end 

r +- 0; 
N[l: n] +- +00; 
while c ~ n do 

p +- min(2c - r, n): 
use S)'IAWK to find column minima F[e: p] of G; 
E[e] +- F[e]; 
for j +- e + 1 to p do 

if B[j - 1,j] < F[j] then 
E[j] +- B(j - 1. j]; 
break 

else 
E[j] - F(j]; 
if B(j - 1. p] < F[p] then 

N[j + 1: p] .- F[j + l:p]; 
break 

end if 
end if 

end for 
if j ~ p then 

e.- j + 1; 
r +- j - 1 

else 
e - p + 1; 
r +- max(r, row of F[pJ) 

end if 
end while 

Figure 2. The algorithm for concave 1D dynamic programming 

E(j], the assumption holds at j + 1. \Vego on to column j + 1. 

If case (2.2) is repeated until j = p, we have found E[j] for c ~ j ~ p. We start a new iteration 
with e = p + 1. If the row of F(P] is greater than r, it becomes the new r (it may be smaller than 
r if it is the row of N(pJ). Note that the three invariants hold at the beginning of new iterations. 
Figure 2 shows the algorithm, where the break statement causes the innermost encl06ing loop to 
be exited immediately. 

Each iteration takes time O(c - r). If either case (1) or case (2.1) happens, we charge the time 
to rows r, ... , c - 1 because r is increased by (j - 1) - r ~ c - r. If case (2.2) is repeated until j = p, 
there are two cases. If p < n, we charge the time to columns e .... , p because c is increased by 
(p+ 1) - c ~ c - r + 1. If p = n, we have finished the whole computation, and rows r, . .. , c - 1( < n) 
have not been charged yet; we charge the time to the rows. Since c and r never decrease, only 
constant time is charged to each row or column. Thus the total time of the algorithm is linear in 
n. 
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