
NetServ on OpenFlow 1.0

E. Maccherani1, J.W. Lee2, M. Femminella1, G. Reali1, H. Schulzrinne2

1 DIEI – University of Perugia, Perugia, Italy {maccherani,femminella,reali}@diei.unipg.it

2 Dept of Computer Science, Columbia University, New York, USA {jae,hgs}@cs.columbia.edu

Currently, the Linux kernel is used to implement the

NetServ transport layer. Packet filters, used to intercept packets
in the NetServ node, and rules, used to route them to the proper
service container, are installed in the node forwarding plane by
using the netfilter library through the iptables tool. This type of
solution is optimal in a prototyping point of view, but could be
a bottleneck in real deployment environments. In fact the
packets data path is implemented in software and, not only for
a packet elaboration, but also for a normal routing task, it could
takes times; in terms of performances, it cannot compete with
common hardware routers, making difficult to widely adopt NS
in real networks. The need of having a fast data path is now
solved through the integration of an OpenFlow (OF) enabled
switch inside the NS architecture. The switch acts as an
hardware forwarding plane for the NS node, providing wire
speed for packets that only needs to be routed or partially
modified.

An OF-enabled NS node is composed by an OF switch and
one or more NS machines, also called Processing Units (PUs),
directly connected to it through an Ethernet connection. All the
network packets that comes in and out from a PU must go
through the OF switch.

An OF controller (OFC), that is needed for the switch to
operate properly, has been implemented as a normal NS service
that runs inside the OSGi environment and can be deployed in
any NS node. Our OFC handles all the normal routines that is
requested by to the OF protocol v.1.0 and also implements both
layer two switching and layer three routing capabilities. In
addition, a whole software module is dedicated to the NS
integration, enabling the correct packets flow in and out the
several PUs. The OFC can be deployed not only inside a PU
attached to the switch, but also in any NS node that is network
reachable by the switch. Moreover a single controller can
manage multiple switches, becoming a centralized forwarding
intelligence. The OFC is deployed as an usual NS service
through the NSIS signaling protocol. Inside the OFC SETUP
message, we must include some information that are used by
the controller to know which and how many PUs are attached
to a certain OF switch. Our architecture also supports OFCs
that are deployed as a normal process, without being inside a
NS runtime environment, but losing all the dynamic
capabilities that this type of setup enables.

Figure 1 – Signaling Flow inside an OF-enabled NetServ node.

A PU attached to the OF switch is an ordinary NS node that
acts exactly as expected in respect to the NSIS signaling and
service handling. Some modifications to the NS controller
software has been done so that it will be aware of being part of
an OF-enabled NS node. A PU and the OFC can exchange
information and state changes through the JSON-RPC protocol.
This one is a very simple protocol that enables a remote
procedure call encoded in the JSON format. When the PU is
started, the NS controller sends a message to the OFC saying
that it is alive. The OFC elects the first waking up PU of the
node (in case a node has several PU attached) as master, and
write a packet flow entry inside the switch’s flow table to
forward all NSIS signaling to the master PU.

Because of the flow match, if a NS SETUP signaling
arrives to the master PU, the NS controller retrieves and installs
the service. If the SETUP message contains packet filter rules,
it also sets up netfilter tables. In addition, it sends a JSON-RPC
method call to the OFC notifying it that a filtering rule exists
for that switch, PU and service.

When ordinary network packets arrives to the OF switch, it
behaves as usual, matching an entry in its flow table, or
sending the packet to the OFC if no match was found. In this
case, the OFC checks if the packet could match one of the NS
service filters and, if there‘s no match, the packet is routed to
destination as usual. If the OFC founds a match, it writes a
packet flow entry inside the switch’s flow table in order to
forward all this packet flow to the correct PU. This “flow mod
command” contains a match for every header field supported

by the OpenFlow Protocol, and two different actions. The first
one the modification of the destination Ethernet MAC address;
this is because it must exactly match with the MAC address of
the PU’s MAC NIC, otherwise the Linux Kernel will drop the
packet. The second action is to output this packets flow to the
switch port that is connected to the correct PU (the one that
runs the requested service). Following packets of the same flow
don’t need to go through the OFC, because a matching rule
already exists inside the switch’s flow table, so they are
forwarded to the PU at wire speed. Packets arrives to the PU
and, as in a normal NS node, they are delivered by netfilter to
the correct processing service, and then, after the elaboration,
they come out modified to the same network interface
(connected to the OF switch). The switch asks again to the
OFC how to handle this new packets flow (new because the
input NIC of the switch is different from the previous one, or
maybe because the service has changed some data inside the
packet header). The OFC knows that every packet that arrives
to a NIC that connects a PU must not pass through the service
matching rules check (because it has already been processed),
but must go straight to the routing/switching module.

In comparison to the default NS architecture, the OF
integration allows to separate the data path to the control path.
NetServ, besides all its advanced features, is essentially a
programmable router, so it has to accomplish all the routing
stuffs as fast as possible, in order to be deployed in real
environments. This path separation leaves the whole
programmability and flexibility of a software component into
the upper control layer, where new network algorithms and
services can be dynamically deployed and tested. The
forwarding layer is instead an hardware data path that can
ensure fast wire speed performances, as good as other hardware
routers. Obviously wire speed performances can be reached
when packets doesn’t need to pass through a PU, but only
routed to the correct destination, otherwise is clear that it is
necessary to take in account also the elaboration time of the
packet that in this case is software based (we can also design an
architecture where instead some modules are hardware
processing modules, implemented by NetFPGA cards.

Having an OF-enabled data path can also help to remove
some processing power resources constrain. As we have seen
before, we can attach several PU to a single OF switch. In
addition, the OFC listens for a wide range of JSON-RPC calls
so that a remote service can control all OF switch features. In
order to increase the packet processing speed, we can install the
same elaboration service in multiple PUs attached to the same
switch, and split the desired packet flow through all the PU, so
that we can have packet processing in parallel. This also helps
to reduce overload situations in which the bottleneck is
represented by the processing power of a single PU. An
external controller or service, for example always deployed
inside a NS node, can utilize these remote calls to access all OF
switch counters that are maintained per-flow, per-port and per-
queue (i.e. received/transmitted packets and bytes, packets
matches, packets drops). Monitoring the state of the node, a
management agent or the NAME itself, can discover that a
specific threshold is going to be reached and decides that the
elaboration must be splitted across several PUs. He sends
appropriate signaling messages to these PUs, that will install

the service and then it informs the OF switch that a certain
type of packet flow must be equally splitted to NICs where the
PUs are attached. Now, to our best knowledge, it is not
possible to perform this type of action inside an OF switch, but
it will when the OF specifications v.1.2 will be ready. It will
contain an extension of the usual flow mod command that can
match every bit inside the packet header, so we can utilize the
IP ID field of the IP header, comparing it to a bitmask, to
separate the packet flow. Our implementation splits the flow
utilizing another technique; we send the whole packet flow to
every PU that must process it, without splitting it. The packet
separation is done inside the linux kernel, taking advantage of
the netfilter u32 module that can extend a filtering rule
matching a certain bit’s pattern of a packet.

The integration of the OF switch inside the NS architecture
enables advanced features and capabilities in an autonomic
management point of view. External services, or the NAME
itself, can exploit the JSON-RPC calls to the OFCs (and hence
to OF-enabled NS nodes) in order to totally control the data
path layer. Gathering several information about the state of the
nodes or packet statistics is useful in order to have an accurate
monitoring situation of the network. The data path maintains
counters divided by table, flow, port and queue, and they
include received/transmitted packets and bytes, flow duration,
packet matches and drops, frame/overrun/CRC errors,
collisions. Using this information, NAME can easily detect
fault situations and alarms, and plan requested actions to
restore a stable network state.

In the matter of an active network management, i.e. to
avoid bottleneck or to achieve a certain network policy, the OF
data path can be utilized to directly mangle packet flows, such
as dynamically redirect or output it to certain ports,
split/join/drop flows, manipulate VLANs tags and priority,
change several fields of layer two/three/four headers, create
queue linked to an output port in order to provide Quality-of-
Service support. All this capabilities are performed in
hardware, so they run at wire speed. In addition, as we have
mentioned before, NAME can choose to instantiate additional
PUs attached to an OF data path to elaborate packets of the
same flow, to prevent an overload situation, or to assure a
specific output throughput. Additional PUs can also be used to
install multiple services onto the same node, for example when
the memory or the elaboration limit of a single PU as been
reached.

The OFC sends periodically Link Layer Discovery Protocol
(LLDP) messages over the network, in order to advertise
network devices about the identity and capabilities of the
switches that he handles. It also listens for incoming LLDP
frames, so that it can reconstruct the network topology (at least
inside the local area network where the OF switches are
located). NAME can asks this information to OFCs and acquire
the knowledge about local network topologies. This will help it
to better know the actual context and then define needed
actions and strategies to pursue active policies.

According to the system needs, such as the fulfillment of
some policies, the NAME can choose to replicate or move to
any NetServ node the OFC itself (if it is running inside a
NetServ container).

