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Abstract

Spectroscopy of Two Dimensional Electron Systems

Comprising Exotic Quasiparticles

Trevor David N. Rhone

In this dissertation I present inelastic and elastic light scattering studies of col-

lective states emerging from interactions in electron systems confined to two dimen-

sions. These studies span the first, second and third Landau levels.

I report for the first time, high energy excitations of composite fermions in the

quantum fluid at ν = 1/3. The high energies discovered represent excitations across

multiple composite fermion energy levels, demonstrating the topological robustness

of the fractional quantum Hall state at ν = 1/3. This study sets the ground work for

similar measurements of states in the second Landau level, such as those at ν = 5/2.

I present the first light scattering studies of low energy excitations of quantum

fluids in the second Landau level. The study of low energy excitations of the quan-

tum fluid at 3 ≥ ν ≥ 5/2 reveals a rapid loss of spin polarization for ν . 3, as

monitored by the intensity of the spin wave excitation at the Zeeman energy. The

emergence of a continuum of low-lying excitations for ν . 3 reveals competing



quantum phases in the second Landau level with intriguing roles of spin degrees of

freedom and phase inhomogeneity.

The first light scattering studies of the electron systems in the third Landau level

are reported here. Measurements of low energy excitations and their spin degrees of

freedom reveal contrasting behavior of states in the second and third Landau levels.

I discuss these measurements in the context of the charge density wave phases, that

are believed, by some, to dominate the third Landau level, and suggest ways of

verifying this belief using light scattering.

Distinct behavior in the dispersion of the spin wave at ν = 3 is measured for

the first time. The study may highlight differences in the first and second Landau

levels that are manifested through the electron wavefunctions. In addition to intra-

Landau level measurements, inter-Landau level studies are also reported. The results

of which reveal roles of spin degrees of freedom and many body interactions in odd

denominator integer quantum Hall states.
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energy levels or subbands as defined by Ej in Eqn. 2.6. The left

panel shows a diagram of the energy levels of the quantum well. The

central panel shows the wavevector dispersion of the first and second

subband at zero magnetic field. kF and EF are the Fermi wavevector

and Fermi energy. The right panel shows the quantization of the

electron energy due to the presence of a magnetic field. The resulting

energy levels are split by the cyclotron energy, ~ωc = ~eB/m∗c. The

electron spin results in an additional splitting of the “cyclotron energy

levels” by the spin gap. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Diagram shows (a) intersubband and (b) intrasubband single particle

excitations. q is the momentum associated with the intrasubband

excitation. Intersubband excitations are excitations that involve more

than one subband while intrasubband excitations are excitations that

occur on the same subband. . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 (a) The density of states (DOS) of electrons at zero magnetic field is

constant within each subband. The DOS is quantized and is a step

like function which increases with increasing Ej. (b) The density of

states for a finite magnetic field. The energy is quantized into Landau

levels which, in the absence of disorder, are δ-functions in the DOS,

spaced by the cyclotron energy. . . . . . . . . . . . . . . . . . . . . . 18

2.6 Schematic of the Hall resistance measurement set up. The GaAs/AlGaAs

heterostructure is placed in a perpendicular magnetic field while cur-

rent, I flows along the x direction. Longitudinal and transverse volt-

age is measured as shown by Vxx and Vxy respectively. . . . . . . . . . 21

vi



2.7 Data of a Hallbar measurement which exhibits the integer quantum

Hall effect. Both the longitudinal, Vxx and transverse, Vxy voltage are

plotted. Vxy forms plateaus and is a monotonically increasing function

of the filling factor, ν. ν is tuned by changing n (by applying a gate

Voltage, Vg as shown in this figure). Vxx has minima which coincide

with formation of plateaus in the longitudinal resistance[2]. . . . . . . 23

2.8 Plot of Hallbar measurements which exhibit the fractional quantum

Hall effect. The longitudinal resistance, ρxx and transverse resistance,

ρxy are plotted. ρxy is a monotonically increasing function of the

magnetic field and has plateaus at filling factors which coincide with

minima in ρxx. The fractional filling factor, ν =1/3 was observed for

the first time by Stormer, Tsui and Gossard [3]. Extracted from Ref.

[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Schematic of the formation of composite fermions from interacting

electrons in a magnetic field. In the top panel there are three elec-

trons. In the bottom panel these three electrons bind two flux quanta

each to form composite fermions in a reduced effective field, B∗. Ex-

tracted from Ref.[4, 5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 The left panel shows electrons occupying a varying number of Landau

levels spin split by the spin gap (not shown explicitly). The right

panel shows the analogous picture for the fractional quantum Hall

effect. Composite fermions fill Landau-like levels called Λ levels, just

as electrons fill Landau levels in the IQHE. Whereas the Landau

levels are spaced by the cyclotron energy, the Λ levels are split by

the effective cyclotron energy. The spin gap is the same for both the

IQHE and the FQHE. Extracted from Ref. [4]. . . . . . . . . . . . . . 31

vii



2.11 Spin polarization in the FQHE manifests itself depending on the rel-

ative characteristic energies of the system - the Zeeman energy, ef-

fective cyclotron energy and the Fermi energy. This figure considers

an example in which four Λ levels are populated. In each panel the

energy levels either have spin up (left column) or spin down (right

column) CFs. The CFs shown have two flux quanta bound to each

electron. The left panel has the Zeeman energy larger than the Fermi

energy resulting in fully spin polarized CFs. The CFs have 4 spin up

levels populated and 0 spin down levels populated, shown as (4,0).

The center panel has slightly lower Zeeman energy such that the

Fermi energy is higher than the lowest spin down level. Consequently,

one spin down level is populated and the system becomes partially

polarized (3,1). The right panel has Zeeman energy much lower than

the Fermi energy. This allows for two spin down levels to be popu-

lated resulting in a total loss of polarization. Extracted from Ref.[4]. . 33

2.12 (a) Overview of magnetoresistance values across a wide range of mag-

netic fields. Hall resistance values, Rxx = Vxx/I and Ryy = Vyy/I are

shown for the x and y directions. The difference in conductivity

depending on direction illustrates anisotropic transport. The inset

delimits the x and y directions[6]. (b) The Rxx plot highlights the

presence of bubble phases (RIQHE phases), delimited by “B”[7]. . . . 36

viii



3.1 Sketch of a light scattering spectrum. Elastic scattering from the laser

at ωL, Stokes scattering from an electronic excitation at ωS = ωL−ω

and anti-Stokes scattering at ωAS = ωL + ω are all clearly visible.

The spectrum is plotted on different scales: (a) an absolute energy

scale; showing the laser peak at ωL, the Stokes shifted Raman peak

and the anti-Stokes shifted peak and (b) an energy shift scale; with

positive shift corresponding to lower energy. That is, the laser peak

and Raman scattered peaks are on a scale where ωL is defined to be

at zero energy shift, such that Stokes peaks are shifted to the right

of ωL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Spectra measured at various ωL translated vertically for clarity (ex-

tracted from Refs. [8, 9]) show Raman peaks alongside photolumi-

nescence peaks. The spectra are plotted (a) on an energy shift scale.

The mode at a constant shift is inelastic light scattering from the

Kohn mode at the cyclotron energy, ωc of the 2DES. (b) Spectra are

plotted on an absolute energy scale. Optical emission (luminescence)

peaks are fixed on an absolute energy scale. The peaks labeled S1

and TB are identified as photoluminescence. . . . . . . . . . . . . . . 43

3.3 Transition diagram that describes single particle excitations from two-

step light scattering processes in 3D bulk GaAs. The numbers show

the time-ordering of the transitions. ωL and ωS are the incident and

scattered photons respectively. q is the momentum associated with

the intraband excitation, where q+qo is the wavevector of the excited

electron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Band structure of GaAs [10, 11]. . . . . . . . . . . . . . . . . . . . . . 51

ix



3.5 Transition diagrams show (a) intersubband and (b) intrasubband sin-

gle particle excitations from two-step light scattering processes in

2DES in a semiconductor quantum well. The numbers show the time-

ordering of the transitions. ωL and ωS are the incident and scattered

photons respectively. q is the momentum associated with the inter-

subband excitation, where q + qo is the wavevector of the excited

electron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 A Feynman diagram showing a three step light scattering process.

Step 1: the incident photon (ωL) is annihilated in a process that

creates an electron-hole pair. Step 2: the pair interacts with the 2DES

to emit a collective excitation of energy ω and wavevector ~q = ~k. Step

3: the electron-hole pair is annihilated, creating the scattered photon

(ωS). Alternative time orderings are possible. . . . . . . . . . . . . . 55

3.7 Schematic of the experimental setup for optical measurements at mil-

likelvin temperatures. The top left panel shows a blow up of the

sample in back scattering geometry. . . . . . . . . . . . . . . . . . . . 57

3.8 Schematic showing different scattering geometries and associated con-

served wavevectors. kL and kS are the wavevectors of the incident

and scattered photons respectively. q + q⊥ represents the wavevec-

tor transferred - the in-plane excitation wavevector, q, and the or-

thogonal component, q⊥. The black circle represents the location

of the sample. Both back-scattering (θ = 180) and side scattering

(θ = 90) geometries were used for zero magnetic field measurements.

The back-scattering geometry was used exclusively for quantum Hall

studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



3.9 Shows the dispersion of the plasmon of a 2DES. (a) The energy of the

mode shifts with changes in scattering angle, θ, or in-plane wavevec-

tor, q (denoted as q// in the inset). The inset shows the scattering

geometry. (b) Momentum resolved scatter plot of the energy with

respect to the square-root of the in-plane momentum. The slope of

the line gives us a means of experimentally extracting a value for

the electron density, n. The value of n found by optical methods is

(∼ 1.4 × 1011cm−2). This value is different from that found from

transport. This is due to small changes in density seen in “light sen-

sitive” samples (samples whose density changes with varying incident

photon power). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Spectra show intersubband transitions in a GaAs QW. Polarization of

incident photons is perpendicular to scattered photons (depolarized

light scattering). The incident laser wavelengths, λL, are indicated.

The spin density excitation (SDE) dominates the spectra. The single

particle excitation (SPE) is also seen. The charge density excita-

tion (CDE) however is rather weak, as expected from light scattering

selection rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 Spectra show intersubband transitions in a GaAs QW. Incident pho-

ton polarization is parallel to scattered photons (polarized Light scat-

tering). The incident laser wavelengths, λL, are indicated. The charge

density excitation (CDE) dominates the spectra. The single particle

excitation (SPE) is also seen. The spin density excitation (SDE)

however is rather weak, as expected from light scattering selection rules 65

xi



3.12 (a)Landau level diagram showing Landau levels spaced by the cy-

clotron energy and spin split by EZ . The ground state at ν = 1 is

depicted - the lower spin branch of the N=0 LL is completely filled.

(b) An excited state of ν = 1 is shown. Incoming photons create a

“spin exciton” or spin wave which, in the q → 0 limit, has its energy

fixed at EZ according to Larmor’s theorem[12]. The numbers indicate

the time ordering of the light scattering process. (c) The dispersion

of the spin wave extracted from Ref. [12]. In the long wavelength

limit, the spin wave energy is the Zeeman energy. . . . . . . . . . . . 68

3.13 Spin wave intensity is determined by γp and the number of electrons

available for light scattering . Spin polarization depends on the rel-

ative number of electrons occupying lower and upper spin branches,

as defined in Eqn. 2.27. (a) both the upper and lower spin branches

are fully occupied at ν = 4 resulting in zero net polarization. (b) For

3 < ν < 4 the upper spin branch is partially occupied allowing for

some finite spin polarization. (c) The upper spin branch is completely

empty and the lower spin branch is fully occupied yielding maximum

spin polarization and spin wave intensity. (d) Though the system

remains fully spin polarized, as the lower spin branch empties, there

are increasingly fewer electrons available for light scattering. Conse-

quently, in this single particle picture, we expect the SW intensity to

decrease with the number of available electrons. . . . . . . . . . . . . 69

xii



3.14 The optical emission process is illustrated. (a) An electron hole pair

is created by an incident photon of energy ωL. The photoexcited

electron then thermalizes. (b) Optical relaxation takes place resulting

in an emission of a photon. The transition can be “high” energy, the

maximum energy, E1 due to recombination of an electron from the

top of the Fermi sea with a VB hole. (c) An electron at the bottom

of the conduction band may also recombine with a VB hole. This

results in a minimum energy transition, E2. The non-degenerate hole

gas is explicitly shown in panels b and c. A marvelous discussion on

optical emission in GaAS QWs can be found in Ref. [13]. . . . . . . . 72

3.15 An example of a zero magnetic field spectrum due to optical emission

from a GaAs QW (width of 300Å and n = 2.9 × 1011cm−2). As
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Chapter 1

Introduction

Two-dimensional electron systems give rise to exceedingly remarkable phenomena

in condensed matter systems. The studies of confined systems represent some of

the most complex and fascinating areas in research. Exotic quasiparticles emerge

from interacting electrons in a magnetic field, which can form fluid, solid and other

complex phases. Some flavors of these exotic quasiparticles are so remarkable that

they have neither Bose nor Fermi statistics. Related phenomena include, topological

insulators, topological quantum computation and the fractional quantum Hall effect

(FQHE). Efforts to exploit the link between the fractional quantum Hall effect and

topological quantum computation have been growing since the realization that frac-

tional quantum Hall (FQH) states could be used to support topological quantum

computation. The fractional quantum Hall state at filling factor 5/2 (ν = 5/2) is

a strong candidate for a medium to support topological quantum computation. I

will examine extensively how this exotic state may be realized in the laboratory.

I will address theoretical considerations and discuss how experimental probes may

be used to help build up the understanding of this potentially remarkable state of

matter.

The fractional quantum Hall effect occurs in a two-dimensional electron fluid
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at low temperature and high magnetic field. Two-dimensionality can arise through

various means. For instance, electrons can be confined to the surface of liquid helium

or to the surface of some insulator. For the purposes of the quantum Hall effect,

the most salutary method of producing a two-dimensional electron system (2DES)

is to confine electrons within a solid - sandwiching them between two different types

of semiconductors. Modulation-doped gallium-arsenide/aluminum-galliumarsenide

(GaAs/AlGaAs) heterostructures have provided an immaculate 2DES for research

and for high-performance applications. It is these “ideal” 2DES’s displaying strong

Coulomb interactions, in the presence of high magnetic field, at low temperature,

that gives rise to the complex behaviors that manifest in the fractional quantum

Hall effect. Much of the novel physics found in these systems is very sensitive to

the impact of disorder, and is observed only in the highest quality samples. Sample

fabrication methods will be considered briefly in Chapter 2. Here I highlight that

current samples have remarkably long electron mean free paths of the order of 0.1mm

or more than 105 lattice sites. These immaculate samples have greatly reduced

impact of disorder that would destroy the more fragile quantum Hall states. Such

delicate states include the state at filling factor 5/2, in the second Landau level -

whose observation is directly due to the dramatic improvement in sample quality

gained from molecular beam epitaxy (MBE) growth and sample structure design

with a precision that reaches the atomic scale.

The vast majority of Quantum Hall studies have involved transport measure-

ments. These transport measurements involve measuring a current and voltage and

have impact of edge states. Alternative probes, such as optical methods, probe the

bulk states of quantum fluids. Optical methods are unique probes which comple-

ment existing transport studies and provide venues for characterization which other

probes lack.

In this dissertation I discuss our recent inelastic light scattering studies of the
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emergent states formed by strongly interacting 2D electrons in the presence and

absence of a magnetic field. I focus on applying these techniques towards better

understanding the behavior of interacting quasiparticles in the second Landau level,

especially at ν = 5/2. I begin Chapter 2 with a brief introduction to the key prop-

erties of 2D electron systems that are relevant to our studies. I discuss the basic

physics of 2DESs and the experimental realizations of such systems in MBE-grown

semiconductor heterostructures. This is followed by an overview of the relevant en-

ergy scales in interacting 2D systems. These are then used to describe the energies

of relevant single-particle and collective excitations of the 2D system. The Chapter

includes a general discussion of the phases of 2DES’s when interactions dominate.

For phases found in zero magnetic field, I highlight the two main kinds of single par-

ticle transitions that can occur. For non-zero magnetic fields, I provide an overview

of the integer and fractional quantum Hall effects and a brief discussion of electron

states in these regimes. Moreover, I introduce a class of phases that exist in higher

Landau levels - electron “crystalline” phases - and briefly mention how quantum

phase transitions are relevant for a careful consideration of these novel phases.

There are several experimental venues for studying the quantum Hall effect.

Methods employing the use of electron transport, such as Shubnikov de Haas and

Hall resistance measurements, have impact of edge states since electron transport oc-

curs around the edges of a 2DES. In this dissertation, the tool of choice to investigate

quantum Hall systems is light scattering. Light scattering methods provide a dis-

tinct tool that probes the bulk states of the excitations of quantum Hall fluids. Light

scattering has been enormously successful in studying the excitations of fractional

quantum Hall fluids[28] since the early 1990’s. It has developed into an important

characterization tool which complements transport studies of electron fluids in the

quantum Hall regime. More importantly, light scattering is a unique probe that

can provide information on quantum fluids which is inaccessible by other means.
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Chapter 3 describes the essentials of inelastic light scattering in 2D systems hosted

by semiconductor heterostructures. Resonant inelastic light scattering is a powerful

probe of the excitations in these structures. I review the basic mechanisms of light

scattering from electron systems in semiconductor heterostructures, and highlight

the physics that can be extracted from light scattering spectra. Next, I describe the

experimental setup for milli-Kelvin spectroscopy. While discussing the scattering

geometry used throughout this work, I highlight the characteristic wavevector of

the light scattering technique and link this to the excitations in systems in which

weak residual disorder introduces a break-down of wavevector conservation. This

allows light scattering to “trace” the dispersion of excitations. I describe the role of

resonant enhancement, which dramatically enhances the scattering cross-section of

2DESs to detectable levels.

In Chapter 4, I report the first light scattering studies of high energy composite

fermion excitations of fractional quantum Hall states. These high energy excitations

comprise excitations across multiple composite Fermion energy levels and show the

topological robustness of fractional quantum Hall states. The study performed

primarily at ν = 1/3, has implications for the high energy excitations for the states

in the second Landau level, such as those at ν = 5/2.

I report the first light scattering studies of the states in the second Landau Level

in Chapter 5. I discuss the unexpected rapid loss of spin wave intensity for filling

factors less than three, which could be interpreted as a loss of full spin polarization.

It appears that the possible loss of spin polarization could extend to the state at

ν = 5/2. The result has implications for widely accepted theory that describes a

spin polarized state at 5/2 - the Moore-Read state. I also describe results that show

the formation of inhomogeneous domains in the second Landau level. Evidence for

these domains arises for ν . 3 and persists to filling factor ν . 5/2. I surmise the

electron fluid at 5/2 could consist of both polarized and unpolarized domains.
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The state at ν = 5/2 has been studied by a variety of means - theoretical

calculations [29, 30, 31, 32], transport measurements [33, 6, 34, 17], surface acoustic

wave studies [23, 35] and more recently Knight shift measurements [36]. Our light

scattering results, the first such studies reported, are compared with existing studies

whose conclusions of the behavior of the 5/2 state remain controversial [33, 37, 38].

In Chapter 5, I give a more in depth overview of the studies surrounding 5/2 and

highlight the contribution light scattering studies can make towards furthering our

understanding of this enigmatic state.

The state at ν = 5/2 exists in the center of the second Landau level (N=1 LL) and

lies at the crossroads of two vastly different regimes - the first Landau level (N=0 LL)

and the third Landau level (N=2 LL). These distinct regimes are dominated either

by conventional quantum Hall states (N=0 LL) or by charge density wave phases

(electron “crystalline” phases) (N ≥ 2). To better understand the state at half

filling in the N=1 LL, I compare it to the states at half filling in the N=0 and N=2

LLs. In Chapter 6, I report the first light scattering studies of the electron phases

in the N=2 LL. I show that although the phase at half filling in the N=2 LL lower

spin branch is not spin unpolarized, there is some reduction of spin polarization.

In addition, I consider the existence of signatures of vibrational modes of electron

charge density wave phases. I compare and contrast these findings with those of the

second Landau level.

One of the primary motivations for using light scattering to study the state at

5/2 was to probe its spin degrees of freedom. Studies were focused on low energy

intra-Landau level excitations (with change in spin) in the second Landau level.

Chapter 5 describes the collapse of the long wavelength spin flip mode (that is, spin

wave fixed at the Zeeman energy) for ν . 3. In Chapter 7, I expand the analysis of

the spin flip dispersion to large wavevectors, and in particular, I address a distinctive

feature in the dispersion at ν = 3. I compare the distinctive dispersion at ν = 3
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with the dispersion at ν = 1 to attempt to elucidate the differences in behavior of

the first and second Landau levels. In addition, I describe the dispersion of spin-

flip excitations across cyclotron gaps. These measurements of inter-Landau level

excitations may serve as a tool for probing the spin degrees of freedom of fractional

quantum Hall states in the second Landau level.

Chapter 8 presents some potentially exciting preliminary results and speculates

on their interpretation. In addition, some possibly elucidating future experiments

are suggested. Intriguing evidence of what could be interpreted as phase separation

around ν = 5/2 due to Coulomb interactions is presented. I propose the use of

elastic scattering studies to monitor phase inhomogeneity - domain size and domain

binding energy - for states in both the second and third Landau levels. In addition

to more in depth studies of low energy excitations as a function of small changes in

filling factor, other tunable parameters, such as temperature and well width could

be examined. Also, further studies of high energy excitations could serve as a useful

characterization tool. In addition to excitations across multiple composite fermion

energy levels, measurements of high energy excitations could reveal evidence for

neutral fermion excitations at ν = 5/2 [39].
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Chapter 2

2D Electron Systems in GaAs

Quantum Structures

2.1 Overview

The purpose of this Chapter is mainly to provide the framework that will assist us

in understanding some fascinating phenomena of strongly interacting electrons in a

magnetic field. I will try to build context and to provide the vernacular needed for

future chapters.

A two dimensional electron gas exhibits remarkable phenomena under the right

conditions of residual disorder, temperature and applied magnetic field. These phe-

nomena, the integer and fractional quantum Hall effect are remarkable manifesta-

tions of low-dimensional physics. Electron crystalline or Wigner solid-like structures

[23, 40] also exist in 2D electron systems.

I begin with a discussion on the design of the samples in which the two dimen-

sional electron system (2DES) “lives” and discuss how one derives reduced dimen-

sionality from a three dimensional semiconductor heterostructure. I then explore

the properties of this 2DES in a zero magnetic field and give a simplified discussion
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of the associated eigenstates and eigenenergies.

Applying a magnetic field to the 2DES adds to the richness of phenomena ex-

hibited in these systems. I introduce the formation of Landau levels (quantized

“orbits” of electrons due to magnetic field) and describe how this gives rise to the

phenomena seen in the integer quantum Hall effect (IQHE). In addition, I introduce

how the formation of Landau levels (LL’s) coupled with electron-electron interac-

tions and correlations can give rise to an even richer quantum mechanical effect - the

fractional quantum Hall effect (FQHE). The remarkable behavior of the emergent

particles of the FQHE comprise a major part of this dissertation.

I very briefly discuss the relevance of quantum phase transitions for 2DES in a

magnetic field. I also briefly explore the transition from highly correlated quantum

to less correlated regimes, via populating an increasing number of Landau levels, and

outline the transition from dominating electron fluid to dominating charge density

wave phases. I highlight that, under the right conditions, these phases can coexist.

2.2 Sample Design

Advances in fractional quantum Hall studies have been made possible by the tremen-

dous improvement of sample quality. Current state-of-the-art samples utilize molec-

ular beam epitaxy (MBE) [41] to produce high quality two-dimensional electron

systems (2DES). A schematic of the layer sequence in a GaAs/AlGaAs heterostruc-

ture is shown in Fig. 2.1. In the figure shown, the active layer, or the quantum

well (QW) consists of 240 Angstroms of GaAs, sandwiched between two AlGaAs

layers. GaAs and AlGaAs have very small lattice mismatch and GaAs/AlGaAs het-

erojunctions can be grown with very little strain. This enables the MBE growth of

multilayered GaAs/AlGaAs quantum structures of extremely high quality. These

atomically precise systems create the “clean” environment for electrons to behave
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Figure 2.1: Schematic of the design for the AlGaAs/GaAs heterostructure. The
active layer or quantum well is located in the 240 Å region of GaAs, to which
electrons have migrated from the doping layers located a distance, d from the quan-
tum well (modulation doping). As shown on the left side, the potential within the
heterostructure, Ec(z), depends on the electrostatic potential created by the delta
doping layers. Ec(z) is a symmetric function of z because of the presence of doping
layers placed symmetrically on both sides of the well.
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ideally.

In order to obtain high quality mobile electrons, the GaAs/AlGaAs heterostruc-

ture is doped with silicon in an AlGaAs layer. This δ-doping procedure is known as

modulation doping (see Fig. 2.1) - a silicon atom when substituted in place of a Ga

ion in the AlGaAs lattice frees an electron that migrates to the lower energy states

of the GaAs quantum well. A layer of silicon atoms thus gives rise to the mobile 2D

electron density that exists in the quantum well. The doping layer can be either on

one side of the quantum well (asymmetric doping), or on both sides of the quantum

well (symmetric doping). The latter (shown in Fig.2.1) allows for a higher density

of electrons. Figures 2.1 and 2.2 illustrate that electrons in a quantum well have a

lower potential in the GaAs region than in the AlGaAs layers.

2.2.1 Quantum Wells

To describe the electronic states of the heterostructure, one may use the envelope

wavefunction approximation [42]. The wavefunction for electrons is written as,

ψq,j(~r) = χj(z)eiq·~ruj(~r) (2.1)

where q is the wavevector perpendicular to the ẑ direction and j indexes the states

associated with the reduced dimensionality along the ẑ direction. χj(z) is the elec-

tron wavefunction for motion in the ẑ direction and uj(~r) is a component of the

Bloch function with periodicity such that uj(~r) = uj(~r+ ~R) (~R is the Bravais lattice

vector).

We can apply the Hamiltonian

H =
−~2

2m∗
∂2

∂z2
+ V (z) (2.2)
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Figure 2.2: Schematic of a quantum well of width L with a sketch of the wavefunc-
tions of the first and second energy levels depicted. The well has energy, Ec(z) =
Vo in the region of AlGaAs. In the GaAs region, Ec(z) has a convex shape due to
the presence of ionized Si donors. The band bending only depends along z and is
symmetric due to the presence of donors placed symmetrically on both sides of the
well.
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to ψq(~r), where the potential V (z) is along the ẑ direction.

V (z) =0; (0 < z < L)

V (z) =Vo; (z < 0, z > L)

and m∗ is the effective mass of the electrons. As a result, we find that the wave-

function in the ẑ direction is determined by the following effective mass equation,

[
−~2

2m∗
∂2

∂z2
+ V (z)

]
χj(z) = Ejχj(z) (2.3)

Using the following boundary condition of continuity in χ(z) and 1
m∗

∂
∂z
χ(z) across

the interfaces, we can find the QW energy levels (discrete energy levels formed due

to reduced dimensionality), which is the familiar solution to the finite square well

problem in quantum mechanics. Note that the effective mass term in the second

condition ensures particle current conservation. In the simplest approximation of

large barriers (V(z)−→ ∞ ) the resulting eigenenergies are the energy levels of the

familiar infinite square well:

Ej =
j2~2π2

2m∗L2
(2.4)

where j is a positive integer (1,2,3,...) and L is the size of the quantum well. The

index j describes the presence of “subbands” or energy levels due to the reduced

dimensionality along the z direction. The corresponding eigenstates are

ψj(z) = Asin(jπz/L) (2.5)

where A is the normalization constant. More accurate values of the QW energy

levels can be obtained by using a finite barrier height, which for AlxGa1−xAs layers
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is roughly x × 1eV in the conduction band for Al concentrations x < 0.1 [42].

Combining the simplified QW energy with kinetic energy due to in-plane motion

(from the free electron states), the total energy is:

Ej,q =Ej +
~2q2

2m∗
(2.6)

where q is the wavevector in the plane perpendicular to ẑ.

The ground state and first excited states are shown in Figs. 2.2 and 2.3. Doping

fills the well to a density, n. Since electrons from the delta doping layers migrate

from the AlGaAs to fill the QW, as shown Fig. 2.3, the Fermi energy (EF ) may be

kept below the second subband (Ej=2) through the control of the density and QW

design (that is, only the lower subband is filled). Figure 2.3 shows energy levels for

zero and nonzero perpendicular magnetic field (B[T ]).

The two dimensional electron system in quantum wells made by MBE can have

huge mobilities, (µ > 107cm2V s in our samples). Mobility is defined as:

~vd = µ~E (2.7)

where ~vd is the drift velocity of electrons, and ~E is the applied electric field. The

mobility, µ, varies with electron density, n. In our work, n is changed by selecting

samples with different parameters, such as δ-doping layer distance, d. Also, tuning

the aluminum concentration, x (in AlxGa1−xAs) and changing the density of silicon

dopants can modify the 2D electron density. The quantum well samples studied in

the thesis were overdoped in the Si layer to provide electrostatic screening of fluctu-

ations in the densities of impurities in the donor layer from affecting the electrons

in the quantum well. Overdoping is avoided in transport measurements as it gives

rise to parallel conductance which interferes with Hall measurements.



2.2. SAMPLE DESIGN 14

Figure 2.3: Quantum confinement of electrons along the ẑ direction gives rise to
energy levels or subbands as defined by Ej in Eqn. 2.6. The left panel shows a
diagram of the energy levels of the quantum well. The central panel shows the
wavevector dispersion of the first and second subband at zero magnetic field. kF
and EF are the Fermi wavevector and Fermi energy. The right panel shows the
quantization of the electron energy due to the presence of a magnetic field. The
resulting energy levels are split by the cyclotron energy, ~ωc = ~eB/m∗c. The
electron spin results in an additional splitting of the “cyclotron energy levels” by
the spin gap.
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2.3 Basic Properties: zero magnetic field

The reduced dimensionality to two dimensions gives rise to some interesting prop-

erties, such as a constant density of states and Fermi energy dependence on density

different from that of bulk 3D GaAs. We explore the basic properties of the two

dimensional electron system (2DES) by analyzing the density of states, starting

with an exploration of the number of states with respect to wavevector that yields

n = gsk
2
F/4π, where gs is the factor of 2 from spin degeneracy of electrons. We can

derive an expression for the Fermi energy for a 2DES, EF = 2π~2n
m∗

[43].

Coulomb interactions give rise to much of the interesting physics observed in 2D

systems. We can measure the relative strength of the Coulomb energy in the system

by defining a dimensionless ratio of the Coulomb energy to the characteristic kinetic

energy of the electrons. We can examine two regimes - a classical regime, where the

temperature is greater than the Fermi temperature, TF = EF/kB and a quantum

regime where the temperature is much less than TF . It is interesting to find that the

density dependence of the relative strength of Coulomb interaction in the system

changes in different temperature regimes.

For high temperature conditions (T > TF ) we compare the Coulomb energy,

EC = e2/εr, (where r is the average inter-particle spacing, and ε is the dielectric

constant,) with the energy from thermal fluctuations (kBT ). To determine how the

relative strength of the Coulomb interaction varies with density as it competes with

thermal fluctuations, we examine the ratio

ζ = EC/kBT =
e2/εr

kBT
=
e2
√
πn

εkBT
∝ n1/2 (2.8)

For low temperatures (T < TF ), EC now competes with the EF and we examine,
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Figure 2.4: Diagram shows (a) intersubband and (b) intrasubband single particle
excitations. q is the momentum associated with the intrasubband excitation. In-
tersubband excitations are excitations that involve more than one subband while
intrasubband excitations are excitations that occur on the same subband.

ξ = EC/EF to obtain

ξ =
1√
nπ

e2m∗

~2ε
∝ n−1/2 (2.9)

The density dependence of ξ is different from that of ζ. That is, for temperatures

greater than TF , the relative strength of the Coulomb interaction increases with

increasing density as particles get closer together. The reverse happens in the low

temperature limit - as particles move farther apart, the relative strength of the

Coulomb interaction increases.

The electrons within the QW can support excitations both within the same sub-

band and across different subbands, as shown in Fig. 2.4. Intrasubband excitations
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(excitations with initial and final states within the same subband), have a marked

dependence on wavevector.

2.4 2D Systems in Magnetic Fields

The application of a magnetic field to an electron gas has striking consequences.

The continuum of energies of the electron gas is quantized into energy levels called

Landau levels that are separated by multiples of the cyclotron energy. We can begin

to describe this by considering the Hamiltonian:

H =
1

2m∗

[
~p +

e

c
~A

]2
(2.10)

where ~p is the in-plane momentum and ~A is the vector potential that satisfies the

relation: ~∇× ~A = Bẑ for a perpendicular magnetic field B. Depending on the physics

we intend to illustrate, the choice of gauge will vary. For the purposes of introducing

the energy levels and eigenstates, it is more convenient to use the Landau gauge.

Substituting the Landau gauge, ~A = xBŷ, into Eqn. 2.10 yields the following:

H =
1

2m∗

[
p2x +

(
py +

e

c
Bx

)2]
(2.11)

Since there is no y term, H commutes with py. That is, py → ~ky and ky becomes

a cyclic coordinate or a good quantum number for the Landau gauge. Using this

translational symmetry in y, we can write the in-plane wavefunction as φk(~r) =
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Figure 2.5: (a) The density of states (DOS) of electrons at zero magnetic field is
constant within each subband. The DOS is quantized and is a step like function
which increases with increasing Ej. (b) The density of states for a finite magnetic
field. The energy is quantized into Landau levels which, in the absence of disorder,
are δ-functions in the DOS, spaced by the cyclotron energy.

eikyξk(x). Equation 2.11 gives,

Hkξk(x) =
1

2m∗

[
p2x +

(
~ky +

e

c
Bx

)2]
ξk(x)

=

[
p2x

2m∗
+
m∗ω2

c

2

(
x+ kyl

2
o

)2]
ξk(x)

=Ekξk(x) (2.12)

where the cyclotron frequency is ωc = eB/m∗c, the magnetic length is lo =
√

~c/eB

and the index k represents the cyclic coordinate ky. From the second line of Eqn.

2.12 we recognize that this is the familiar one-dimensional harmonic oscillator Hamil-

tonian centered at x = −kyl2o. The energies of the harmonic oscillator are shown in
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Eqn. 2.13 and illustrated in Fig. 2.5(b):

En,k = ~ωc(n + 1/2) (2.13)

where n is a positive integer (0,1,2,...). The corresponding eigenstates, known as

Landau levels, have single particle wavefunctions represented by,

φn,k(~r) = AeikyHn((x+ kl2o)l
−1
o )e−(x+kl

2
o)

2/2l2o (2.14)

where Hn are Hermite polynomials. Spin degrees of freedom split the Landau levels

by the Zeeman energy, EZ = gµBBT , where g is the Lande factor, µB is the Bohr

magneton, and BT is the total magnetic field. BT = B for a perpendicular magnetic

field. The spin splitting is illustrated in Fig. 2.3.

An important parameter in quantum Hall systems is the filling factor, denoted

by ν, which is the number of occupied Landau levels (LL) at a given magnetic field

and density. We can write the filling factor as

ν =
n

G
= 2πl2n =

n

B/φo
(2.15)

where φo is the magnetic flux quantum (φo = hc/e), n is the electron density and G

is the degeneracy per unit area of each LL (G = 1/2πl2o = B/φo). As B increases, the

cyclotron energy increases, the inter-LL spacing increases and consequently fewer

Landau levels are filled. Note that a non-integer value of ν indicates partial occu-

pation of the highest populated LL.



2.5. QUANTUM HALL EFFECTS 20

2.5 Quantum Hall Effects

In 1879 E.H. Hall [44] discovered that electric currents exhibit surprising behavior

in a magnetic field. That is, in the presence of a magnetic field (as shown if Fig.2.6)

and an applied voltage (longitudinal voltage, Vxx), an induced voltage (or transverse

voltage Vxy) arises that is perpendicular to the applied current, I. The effect was

shown to arise from the Lorentz equation,

~F = e( ~E +
1

c
~v × ~B) (2.16)

that is, for E = Eŷ and B = Bẑ, a drift velocity arises that is ~v = eE
B
x̂. If the

current is given by ~j = en~v (e is the charge, n is the 2D density), then we can define

a Hall resistivity as follows:

ρH =
Ey
Jx

=
B

nec
(2.17)

The Hall resistance, ρH in the classical limit is a linear function of the magnetic

field

2.5.1 Integer Quantum Hall Effect

A remarkable, unexpected twist to the classical Hall effect was discovered by K.

von Klitzing et al. in 1980 [45, 2]. In higher quality 2D electron systems, at lower

temperatures and higher magnetic fields the Hall resistance, RH = VH/I becomes

quantized (RH = ρH in two dimensions). The phenomenon is known as the integer

quantum Hall effect (IQHE). Remarkably, the quantization occurs at integer mul-

tiples of fundamental constants: RH = h/νe2. Quantum Hall traces (plots showing

Rxx = Vxx/I and Rxy = Vxy/I versus magnetic field) reveal the existence of plateaus

at the special values of RH(ν). It was this deviation from the linear behavior in the

Hall resistance and its ‘exact’ quantization that made the IQHE so striking. See Fig.
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Figure 2.6: Schematic of the Hall resistance measurement set up. The
GaAs/AlGaAs heterostructure is placed in a perpendicular magnetic field while cur-
rent, I flows along the x direction. Longitudinal and transverse voltage is measured
as shown by Vxx and Vxy respectively.
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2.7. The origin of plateaus is linked to residual disorder in the 2DES[4]. Residual

disorder gives rise to localized states which manifest plateaus in the quantum Hall

trace. We can illustrate this nicely if we fix the magnetic field and tune the density

- we add electrons so that the Fermi level traverses a region of localized states. The

additional electrons will be captured by the localized states and consequently not

contribute to transport. The localized states act like a reservoir for the electrons.

As a result the Hall resistance remains constant, with small changes in density, as

a “magic” filling factor is traversed.

Another important feature of the integer quantum Hall effect is “superflow”

current (current flows while resistance goes to zero) in Rxx shown as minima in

the quantum Hall trace. Also, Rxx displays Arrhenius behavior such that, Rxx ∼

exp
(
−∆/2kBT

)
; where ∆(ν) is the activation gap for the quantum Hall states and

is filling factor dependent. As the temperature approaches zero, Rxx −→ 0. That

is, there is dissipationless transport.

The seminal work of von Klitzing [2] highlighted the fact that the combination

of fundamental constants, h/e2 has the unit of resistance. Moreover, it provided

another means to measure the fine structure constant, α = e2/~c. The Hall quan-

tization in this remarkable phenomenon is universal; it is independent of sample

geometry, and material parameters such as the dielectric constant and the electron

effective mass.

2.5.2 Fractional Quantum Hall Effect

Two years after von Klitzing’s discovery of the integer quantum Hall effect, another

unexpected discovery in quantum Hall physics was made by Tsui, Stormer and

Gossard. In 1982, the fractional quantum Hall effect [46, 47, 3] was introduced to
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Figure 2.7: Data of a Hallbar measurement which exhibits the integer quantum
Hall effect. Both the longitudinal, Vxx and transverse, Vxy voltage are plotted. Vxy
forms plateaus and is a monotonically increasing function of the filling factor, ν. ν is
tuned by changing n (by applying a gate Voltage, Vg as shown in this figure). Vxx has
minima which coincide with formation of plateaus in the longitudinal resistance[2].
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Figure 2.8: Plot of Hallbar measurements which exhibit the fractional quantum Hall
effect. The longitudinal resistance, ρxx and transverse resistance, ρxy are plotted.
ρxy is a monotonically increasing function of the magnetic field and has plateaus
at filling factors which coincide with minima in ρxx. The fractional filling factor,
ν =1/3 was observed for the first time by Stormer, Tsui and Gossard [3]. Extracted
from Ref. [3].

the world and described a new class of quantized Hall plateaus defined as

RH = h/e2ν (2.18)

where ν can be a rational fraction. The state at ν = 1/3 was the first fractional

quantum Hall state discovered as shown in Fig. 2.8.
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2.5.2.1 Composite Fermions

Prior to the discovery by Tsui, Stormer and Gossard, a theory that predicted the

FQHE did not exist. A theory of the fractional quantum Hall effect should explain its

behavior both quantitatively and qualitatively. It should explain essential features

of the fractional quantum Hall effect such as the sequence of observed fractions, the

plethora of states in the lowest Landau level (LLL) and the conspicuous absence of

states in the higher Landau levels (N ≥ 2LL). In addition, it should include the

electron spin as a degree of freedom.

Typically one starts with analyzing the Hamiltonian to try to extract the behav-

ior of the system by tackling the eigenvalue problem, where,

HΨ =EΨ

H =
∑
j

1

2m∗

[
~
i
∇j +

e

c
~A(~rj)

]2
+
e2

ε

∑
j<k

1

|~rj − ~rk|

+
∑
j

U(~rj) + gµB ~B�~S (2.19)

The first term in Eqn. 2.19 represents the kinetic energy in a magnetic field with

vector potential ~A. The second term represents the Coulomb interaction (j and k

are indices that label the electrons in the 2D system). The third and fourth terms

represent the disorder potential and the Zeeman energy respectively. We will “turn

off” these last two terms as simplifying assumptions in our first attempt in tackling

the eigenvalue problem. To justify this approach we note that these various terms

have different energy scales. In GaAs, with dielectric constant, ε=12.6 and Lande′

g factor of -0.44, we can consider the following energies to get a feeling for their
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relative importance in our GaAs quantum well.

~ωc =
~eB
mbc

∼ 20B[T ]K

VC =
e2

εlo
∼ 50

√
B[T ]K

Ez = 2gµB ~B � ~S =
gmb

2me

~ωc ∼ 0.3B[T ]K

lo =

(
~c
eB

)1/2

∼ 25nm√
B[T ]

The cyclotron energy is always much bigger than the Zeeman energy. The Coulomb

term is stronger than the cyclotron energy for small fields but weaker for fields above

∼ 6T .

Further simplifications can be made in addition to turning off the disorder po-

tential and freezing the spin degrees of freedom. If one considers only behavior in

the lowest Landau level, one can ignore the energy contribution from the first term

in Eqn. 2.19, leaving only the Coulomb term. The reason one can ignore the first

term is that it is a constant in the lowest Landau level, and does not play a role

in describing the essential physics of the FQHE. The essence of the problem is thus

contained in the Coulomb part of the Hamiltonian in Eqn. 2.19:

H =
e2

ε

∑
j<k

1

~rj − ~rk
(2.20)

At first glance, the problem is deceptive in its apparent simplicity. In fact, it

cannot be solved using a brute force computational approach as this is prohibitive

due to the massive incalculable size of the Hilbert space. A solution that involves a

perturbative approach is impossible, as there are no small parameters.

Instead, one must use experiment as a guide with which to build a theory that

satisfies observations made in the real world. Shortly after the discovery of the
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fractional quantum Hall effect, Laughlin was the first to develop a working model

that described some states of the FQHE, as we will describe as follows. To find the

wavefunction for FQHE states, start with the single particle state of an electron in

the lowest Landau level. To do this, it is necessary to consider the first term in Eqn.

2.19. It is convenient for this part of the discussion to write the vector potential,

~A in the symmetric gauge, such that, ~A = 1/2( ~B × ~r) = B
2

(−y, x, 0). In this gauge

the eigenvalues of angular momentum, Lz are good quantum numbers [4, 48]. The

single particle state in the LLL is the following [4]:

ηl(z) = (2π2ll!)−1/2zle−
1

4lo2
|z|2

with z = x − iy and l being an eigenvalue of Lz. The many electron wavefunction

can be written as

Ψ = FA[{zj}]exp
[
−1

4

∑
l

|zl|2
]

(2.21)

where FA is a polynomial of z′s antisymmetric under exchange of two coordinates

(the spin part is symmetric and not explicitly shown here). The task is to find

FA[{zj}] as a function of ν.

For the state at ν=1, we note that the wavefunction can be written as follows

[4, 49],

Ψν=1 =
∏
j<k

(zj − zk)exp
[−1

4l2o

∑
l

|zl|2
]

(2.22)

where indices, j,k, and l run from 1 to N, the number of particles.

For ν = 1/3 one can assume that FA[{zj}] =
∏

j<k f(zj−zk), where f(z) is z(φ+1)

(where φ is an even integer because Ψ has to be antisymmetric under the exchange

of two electrons) [49]. This choice of FA[{zj}] resulted in the Laughlin wavefunction:

Ψ1/(φ+1) =
∏
j<k

(zj − zk)φ+1exp
[
− 1

4l2o

∑
l

|zl|2
]

(2.23)
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where the choices ν = 1/(φ + 1) are defined to be the Laughlin fractions (φ = 2

for ν = 1/3). The caveat of this approach, albeit a brilliant first ansatz, is that

it does not describe all the fractions of the FQHE. Further work had to be done

to accomplish a more robust theoretical model. Haldane attempted to describe the

FQHE states in a hierarchy of “parent” and “daughter” states [50], but was not

successful in earnestly predicting experimental results. A more robust theory was

needed.

The following approach was motivated by the idea of emergent phenomena and

led to the development of “Composite Fermions”. Emergent phenomena arise out

of collective behavior or many body effects; that is, new physics can emerge when

many individual entities act in unison to give rise to a new entity. For instance,

many water molecules act together to give rise to water waves. Water waves cannot

be attributed to a single water molecule but instead is a property of many molecules.

P.W. Anderson’s 1972 article, “More is different” [51], highlights the importance of

emergent phenomena in physics. We seek to draw an analogy with emergent particles

in other condensed matter systems (such as phonons, magnons, Landau quasiparti-

cles and cooper pairs) to the FQHE in order to uncover the emergent “particle” of

the FQHE. If we identify such emergent “particles”, we can then identify their weak

interactions that can be used in our perturbative machinery. Jain first proposed the

idea of composite fermions (CFs) - the emergent “particles” of the FQHE systems

- that explain the FQHE [52]. A composite fermion is a bound state of an electron

and an even number of quantized vortices [4]. The vortices arise from the phase

added to the electron wavefunction due to the presence of the vector potential. The

vortex of the FQHE is different from the vortex of superconductivity. Instead the

vortex of FQHE is a property of the many-body wavefunction of the quantum fluid

in Eqn. 2.23. Recall that the complex function, z = re−iθ has a vortex at the origin

since a complete loop around the origin changes θ by −2π. It follows that (z − z0)
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Figure 2.9: Schematic of the formation of composite fermions from interacting elec-
trons in a magnetic field. In the top panel there are three electrons. In the bottom
panel these three electrons bind two flux quanta each to form composite fermions
in a reduced effective field, B∗. Extracted from Ref.[4, 5].

has a vortex at z0 and in the case of (z1− z2)φ, z1 has φ vortices at z2 and vice verse

for z2. An alternative, qualitative definition for a CF is that it is a bound state

of an electron and an even number of magnetic flux quanta, where one quantum,

φo = hc/e = 2πl2oB. Though fluxes do not actually bind electrons in reality and B

is uniform throughout the sample (there is no bunching of the field), the “bound

flux model” still describes the results quite well. The “binding of flux quanta” to

electrons is illustrated in Fig. 2.9.

The next step of explaining the FQHE is to consider the FQHE as an IQHE

of composite fermions [4]. The composite fermions live in an effective field, B∗ [4].
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The total perpendicular field is such that, B = B∗+φnφo, giving rise to an effective

filling factor, ν∗ = nφo/|B∗|. Consequently, the resulting fractions may be written

as follows: ν = ν∗

φν∗±1 . The ± sign in the denominator corresponds to positive and

negative values for B∗. Composite fermions form “Landau-like” energy levels called

Λ levels that are spaced by an effective cyclotron energy. The notion of Λ levels and

fractional filling factor is depicted in Fig. 2.10

Let us examine the wavefunction for composite fermions. We start by rewriting

the Laughlin wavefunction in the following convenient form:

Ψ1/(φ+1) =
∏
j<k

(zj − zk)φΨν=1 (2.24)

Upon examination of Eqn. 2.24, we see that the wavefunction has been constructed

by taking the state at ν = 1 and associating φ vortices to the wavefunction of

each electron. This “binding” of an even number of vortices, φ to electrons forms

composite fermions that obey fermionic statistics [52]. Based on this observation,

Jain suggested the following trial wavefunction for the states p/φp+ 1 [52], where p

is an integer, such that p = ν∗:

Ψp/(φp+1) = P̂LLL
∏
j<k

(zj − zk)φΨν=p (2.25)

where the projection operator, P̂LLL, projects the composite fermion wavefunctions

into the lowest Landau level [53, 52, 54]. That is, the wavefunctions for fractional

states (ν = p/(φp + 1)) can be derived from those of IQHE states (ν = p) and the

use of the projection operator.

The binding of vortices to electrons reduces the overall energy of the system and

makes CFs the favorable ground state [4]. The CF formulation agrees with many

features of experiment and makes it a reasonable theory. The FQHE is like an IQHE
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Figure 2.10: The left panel shows electrons occupying a varying number of Landau
levels spin split by the spin gap (not shown explicitly). The right panel shows the
analogous picture for the fractional quantum Hall effect. Composite fermions fill
Landau-like levels called Λ levels, just as electrons fill Landau levels in the IQHE.
Whereas the Landau levels are spaced by the cyclotron energy, the Λ levels are split
by the effective cyclotron energy. The spin gap is the same for both the IQHE and
the FQHE. Extracted from Ref. [4].
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of ‘new’ or emergent particles which we call CFs.

2.5.2.2 Composite Fermions and Spin

In the previous section, we assumed fully spin polarized composite fermions. Ex-

periments have shown that spin degrees of freedom do play a very important role

in the understanding of the fractional quantum Hall effect. Understanding the spin

degrees of freedom of composite fermion systems will be a major part of this thesis.

To articulate how spin may become important, we can compare Ez to the energy

of the highest occupied Λ level. If the spin gap is larger than the Fermi energy,

then the composite fermions will be spin polarized. That is, only spin up Λ levels

are populated, the lowest energy spin down Λ level having greater energy than EF .

Figure 2.10 illustrates the case for ν∗ = 4 (4 Λ levels of CFs filled), where CFs can

be polarized, partially polarized or unpolarized depending on the magnitude of the

Zeeman energy relative to the Fermi energy.

A more formal description of spin can be gained from extending the Hamiltonian

described in Eqn. 2.20 by turning on the spin interaction [4]:

H =
e2

ε

∑
j<k

1

|~rj − ~rk|
+ gµBBSz (2.26)

We can write down the spin part of wavefunction after we define the density of spin

up and spin down CFs such that, n = n↑ + n↓. The spin part of the wavefunction

can then be written as, Φn↑,n↓ = Φn↑Φn↓ . We can also define spin polarization, γp,

as

γp =
n↑ − n↓
n↑ + n↓

(2.27)

The total wavefunction for composite fermions in terms of spin eigenfunction is
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Figure 2.11: Spin polarization in the FQHE manifests itself depending on the relative
characteristic energies of the system - the Zeeman energy, effective cyclotron energy
and the Fermi energy. This figure considers an example in which four Λ levels are
populated. In each panel the energy levels either have spin up (left column) or
spin down (right column) CFs. The CFs shown have two flux quanta bound to
each electron. The left panel has the Zeeman energy larger than the Fermi energy
resulting in fully spin polarized CFs. The CFs have 4 spin up levels populated and
0 spin down levels populated, shown as (4,0). The center panel has slightly lower
Zeeman energy such that the Fermi energy is higher than the lowest spin down level.
Consequently, one spin down level is populated and the system becomes partially
polarized (3,1). The right panel has Zeeman energy much lower than the Fermi
energy. This allows for two spin down levels to be populated resulting in a total loss
of polarization. Extracted from Ref.[4].
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consequently [4]:

Ψ p
φp+1

= P̂LLLΦn↑,n↓Φ
φ
l (2.28)

From Eqn. 2.28 we see that the total wave function is coupled to the spin proper-

ties of the state. This is an important fact that will be highlighted further in the

upcoming chapters.

2.6 Quantum Phase Transitions in 2D electron

systems

The concept of phase transitions is pervasive in condensed matter physics and is an

important facet of quantum Hall physics. These transitions often involve a change

in the symmetry of the system and can be classified in terms of certain character-

istics. For instance, first order phase transitions can be loosely described as those

transitions which have a discontinuity in the derivative of the free energy[55]. Sec-

ond order transitions are smooth in the first derivative of the free energy but have

a discontinuity in the second derivative. The water to ice transition is an example

of a first order phase transition. First order phase transitions typically involve a

latent heat at the transition. An example of second order phase transitions is the

ferromagnetic to antiferromagnetic transition in magnets where the transition oc-

curs at the Curie temperature. Quantum phase transitions, instead, occur at zero

temperature and typically have tunable parameters like pressure or magnetic field

which induce the transition.

Phase transitions play key roles in low-dimensional electron systems. A well

known example, first proposed by Wigner [56] involves a transition from an electron

fluid to an electron solid at zero temperature due to a decrease in electron density.

Dominating Coulomb interactions cause classical and quantum phase transitions
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to highly correlated states. These transitions typically accompany a change in the

symmetry of the state, which may be engendered by a modification in the charge

distribution dictated by the electron interaction.

For 2DES’s, we have already shown (section 2.3 on Basic Properties) that the

parameter ξ is a measure of the relative strength of the Coulomb interaction to the

kinetic energy. It has a critical value where a quantum transition can occur. That

is, at this critical value, the energy due to Coulomb interactions dominates kinetic

energy and the electrons crystallize.

We will come across more examples of quantum phase transitions in later chap-

ters. Identifying phase transitions will be an important undertaking for understand-

ing quantum Hall systems.

2.7 Quantum Regimes in N=0,1,2 Landau Levels

The general features of magnetoresistance measurements vary depending of the

Landau level. Figure 2.12 shows some of these features for small and large values

of filling factor. Upon careful examination one finds the following: The first LL is

speckled with a myriad of fractional quantum Hall states (that is, Rxx goes to zero

for fractional values of ν). The second LL comprises precious few FQHE states,

while in higher Landau levels, these states are entirely absent. More compelling is

the unusual behavior of quantum Hall traces in the N ≥ 1 LL that is described

by reentrant integer quantum Hall states (RIQHE). These states are characterized

by having integer quantum Hall resistance values while having non-integer filling

factors. These RIQHE states are entirely absent in the LLL. Remarkably, they are

a common feature of the excited LLs. Another interesting feature of the excited LLs

is the presence of phases with anisotropic transport [40], commonly referred to as

“stripe phases”. Anisotropic transport is clearly seen in Fig. 2.12 for ν > 4.
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Figure 2.12: (a) Overview of magnetoresistance values across a wide range of mag-
netic fields. Hall resistance values, Rxx = Vxx/I and Ryy = Vyy/I are shown for the
x and y directions. The difference in conductivity depending on direction illustrates
anisotropic transport. The inset delimits the x and y directions[6]. (b) The Rxx plot
highlights the presence of bubble phases (RIQHE phases), delimited by “B”[7].
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2.7.1 Wigner Crystals, Bubble phases, Stripe phases, Ne-

matic phases and more

Hartree-Fock calculations predicted the formation of a charge density wave (CDW)

of electrons in the LLL [57, 58, 59]. These CDW states were expected to be in

the form of a Wigner crystal, or a triangular lattice of electrons in two dimensions

[56]. This prediction holds for filling factors ν < 1/5, however, for the most part,

the LLL is dominated by fractional quantum Hall fluids (FQHL). Nevertheless, the

predictions from Hartree-Fock theory become pervasive in the higher LL’s [60, 61,

62]. This is a consequence of the different nature of the electron wavefunction in the

LLL and the excited LL’s. The FQHL is favored in the LLL because the electron

wavefunction lacks a node [40], whereas, in the excited LLs, the wavefunction has

a node. The nodes reduce the short-range Coulomb repulsion between electrons

and blocks the electron-electron correlations that are needed for the formation of

the fractional quantum Hall liquid. This key difference in the wavefunction allows

for the strikingly different behavior of the phases and plays a substantial role in

the relative energetics of the various phases. A detailed discussion can be found in

Ref. [21, 22]. In the excited LL’s, Hartree-Fock theory predicts, as mentioned in

the previous section, the formation of electron solid phases or CDWs of which there

are two main categories: bubble phases and stripe phases. Bubble phases comprise

a triangular lattice of electron clusters with M electrons per site. Where M=1,

we recover the Wigner crystal. Stripe phases are described as being parallel lines

of charge, oriented due to some unknown source of rotational symmetry breaking.

Moreover, it has been found that thermal and quantum fluctuations could give rise

to liquid crystal like phases such as nematic and smectic phases [63]. This adds to

the richness of CDW phenomena in the excited LLs.

There is a great deal of evidence from transport [40, 7, 6, 64] and microwave
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resonance measurements [23, 35, 65] for the existence of CDW states in the excited

LL’s. For instance, the anisotropic transport seen in the excited LL’s can be ex-

plained by the presence of stripe phases - charge transport is only allowed along

the direction parallel to the lines of charge and is insulating in the perpendicular

direction. RIQHE states arising from bubble phases have isotropic transport and

are insulating because of the localization of charge to binding sites in the disorder

potential. Work done with microwave resonance claims to be able to detect the

vibrational modes of these pinned electron solids.

2.7.2 Competing phases

As I have discussed, there are a great many different phases in two dimensional

electron systems in a magnetic field. Revealing interplays between these different

phases constitutes a major goal of this dissertation. There is evidence (from trans-

port and microwave resonance studies) for the existence of competing electron fluid

and charge density wave phases in the excited LL’s. We will use ILS to further probe

competition between phases in higher Landau levels. This competition is marked

in the N = 1 and N = 2 LL’s [7, 66]. The presence of competing phases is not

surprising as the ground state energies of these phases are often closely spaced [67],

allowing for small changes in some tunable parameter to favor one phase or the

other.
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Chapter 3

Optical Spectroscopy

3.1 Light Scattering

3.1.1 Overview

Light scattering is pervasive in many aspects of condensed matter science. Since the

discovery of Raman scattering by Sir Chandrasekhara Venkata Raman in 1928[68],

it has become an invaluable characterization tool for a large variety of condensed

matter systems. I will give a brief outline of light scattering focusing on its relevance

in two dimensional electron systems (2DES). An account of the history and theory

can be found in the book by Hayes and Loudon [69]. I will address how light

scattering can be used to characterize 2DES, in AlGaAs/GaAs heterostructures, in

both zero and nonzero magnetic field. In particular, I will provide a framework

for understanding the heart of this dissertation - remarkable behavior of composite

fermions excitations, exotic quasiparticles in the second Landau level and striking

differences among the excitations in the N=0,1 and 2 LL’s.

Of particular interest here is inelastic light scattering (ILS) and Rayleigh scat-

tering (elastic light scattering, RS)[69]. The term “Raman scattering” tradition-
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ally refers to scattering of light by optical phonons in solids and by molecular

vibrations[70]. In this thesis, I will use Raman scattering to refer to a broad class

of inelastic light scattering phenomena, including scattering from elementary exci-

tations associated with degrees of freedom of ions and electrons in crystalline solids.

A few exceptions are long wavelength acoustic phonons (sound waves) and acoustic

magnons, which belong to a class of inelastic scattering called Brillouin scattering

(the energy shifts that are studied here overlap with those of Brillouin scattering).

In its simplest form, ILS can be described as a two photon process - the simulta-

neous annihilation and creation of incident (ωL) and scattered (ωS) photons in the

scattering medium. Single photon processes also occur and involve optical absorp-

tion or optical emission of photons by a medium. Optical emission can be important

for exploiting resonance enhancement in ILS measurements. That is, it is useful in

identifying the appropriate energies for resonance enhancement. I will describe this

in more detail at the end of this chapter.

The two-step light scattering process as a whole satisfies energy conservation

rules. However, each step is a virtual process that does not satisfy energy conserva-

tion. Incoming photons with energy ωL, wavevector ~kL and polarization êL interact

with the medium in a manner that results in the creation of a scattered photon

of energy ωS, wavevector ~kS and polarization êS. Energy conservation implies that

ωL = ωS±ω. In translationally invariant systems, the wavevector must be conserved

in every step of the process. Consequently, the wavevector of the excitation, ~q is

equal to the in-plane momentum transferred to the 2DES, ~k = ~kL − ~kS. Neverthe-

less, the presence of disorder breaks translational symmetry and gives rise to the

break-down of wavevector conservation, some of the momentum being transferred

to defects in the sample.

When ωS < ωL, energy is transferred to the 2DES and an excitation at energy ω

is created. The process is known as Stokes scattering. If ωS > ωL then an excitation
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is annihilated in the 2DES and the process is known as anti-Stokes scattering. The

ratio of intensities of anti-Stokes and Stokes scattering is given by

IAS
IS

=
RAS(ωL, ωAS)

RS(ωL, ωS)

n(ω)

n(ω) + 1
(3.1)

where RAS(S) depends on ωL, the Stokes scattering photon energy ωS, and the

anti-Stokes scattering photon energy ωAS. n(ω) = [exp(~ω/kBT )−1]−1 is the Bose-

Einstein thermal factor[69]. When RAS ∼ RS, IAS/IS = exp(−~ω/kBT ). At low

temperature, such that ~ω � kBT , the anti-Stokes intensity is negligible when the

electrons are in thermal equilibrium with the sample. In this thesis, I will consider

only Stokes scattering.

Spectra in Fig. 3.1 show the energy of the laser, Stokes peak and anti-Stokes peak

on two scales: an absolute energy scale and an energy shift scale. One advantage

of displaying Raman scattering on both energy shift and absolute energy scales is

being able to distinguish between optical emission (single photon processes) and

inelastic light scattering (two photon processes), as will be detailed below.

In addition to ILS by collective and single-particle modes of the system, it is also

possible for incident photons to excite photoluminescence (optical emission) transi-

tions. The 2DES system absorbs the incident photons by creation of electron-hole

pairs across the semiconductor band gap. Photon emission occurs after relaxation

of the pair into a state with an allowed optical transition. Because the energy of the

emitted photon via luminescence is related only to the energy of the relaxed state,

there is little, if any, dependence of the emitted photon frequency on ωL. Figure 3.2

illustrates that as ωL is tuned, both Raman peaks and the laser peak shift, while

optical emission peaks have fixed energy. To the contrary, on an energy shift scale,

optical emission peaks move while Raman peaks are fixed.
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Figure 3.1: Sketch of a light scattering spectrum. Elastic scattering from the laser
at ωL, Stokes scattering from an electronic excitation at ωS = ωL − ω and anti-
Stokes scattering at ωAS = ωL + ω are all clearly visible. The spectrum is plotted
on different scales: (a) an absolute energy scale; showing the laser peak at ωL, the
Stokes shifted Raman peak and the anti-Stokes shifted peak and (b) an energy shift
scale; with positive shift corresponding to lower energy. That is, the laser peak and
Raman scattered peaks are on a scale where ωL is defined to be at zero energy shift,
such that Stokes peaks are shifted to the right of ωL.
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Figure 3.2: Spectra measured at various ωL translated vertically for clarity (ex-
tracted from Refs. [8, 9]) show Raman peaks alongside photoluminescence peaks.
The spectra are plotted (a) on an energy shift scale. The mode at a constant shift
is inelastic light scattering from the Kohn mode at the cyclotron energy, ωc of the
2DES. (b) Spectra are plotted on an absolute energy scale. Optical emission (lumi-
nescence) peaks are fixed on an absolute energy scale. The peaks labeled S1 and TB
are identified as photoluminescence.
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Figure 3.3: Transition diagram that describes single particle excitations from two-
step light scattering processes in 3D bulk GaAs. The numbers show the time-
ordering of the transitions. ωL and ωS are the incident and scattered photons re-
spectively. q is the momentum associated with the intraband excitation, where q+qo
is the wavevector of the excited electron.

3.1.2 Light Scattering in 3D systems: Mechanism and Se-

lection Rules

An overview of light scattering is first given for 3D systems so that we can segue

into studying the system of interest - two dimensional electron systems. Though I

will try to provide a fairly in-depth framework of the light scattering process, only

the main results of the discussion will be pertinent for the following chapters.

The mechanism of inelastic light scattering involves the coupling of the electric

moments of the scattering medium to incoming and outgoing photons. For visible

or infrared light, the dominant contributions to these electric moments come from

the excitations of electrons across energy band gaps, as illustrated in Fig. 3.3.

Coupling of ωL and ωS to the medium is understood as the modulation of the

electric susceptibility by elementary excitations.

The coupling of light to optical transitions of the scattering medium is enhanced

when ωL and ωS are close to the interband gaps. This leads to a large resonance
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enhancement in the intensity of scattered light. These enhancements are referred

to as resonant Raman processes and will be described in further detail later in this

chapter.

Calculating the differential scattering cross-section (quantifies the number of

photons scattered through a small change in angle over a small change in energy)

involves parameters describing the modulation of the dielectric susceptibility. With

the help of group theory, macroscopic considerations provide symmetry-based selec-

tion rules for the polarization of the incident and scattered light. Quantum mechan-

ics is used to describe the resonance enhancement of the Raman scattering process

that occurs when photon energies are close to optical transition energies. This ap-

proach takes into account the explicit interaction between photons and electronic

states of the medium. Resonance enhancement is an important facet of ILS as it

enables the observation of processes that would be otherwise too weak to observe.

3.1.2.1 Light Scattering Susceptibilities and Group Theoretical Argu-

ments

Not all excitations can be observed via light scattering. A mode can be Raman

“active” or Raman “silent” depending on its symmetry properties. We can predict

which modes can observed by understanding the symmetry properties of the light

scattering matrix elements. Light scattering radiation is linked to a fluctuating

electric-dipole which is set up in the scattering medium by the simultaneous action

of the incoming photon radiation and the excitation of the medium[69]. We define

a modulated Raman susceptibility, δχij, a second rank tensor, the form of which is

determined by symmetry of the scattering medium and of the elementary excitations.
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Now, the polarization is related to the susceptibility as follows:

Pi(ωS) =
∑
j

δχijEj(ωL)

where, P is the polarization and E, the electric field. The intensity of light, I is

proportional to the square of the polarization[70].

|P (ωL)|2 ∝ I(ωL, ωS, ~k) ∝ |êS · δχij · êL|2 (3.2)

where êL and êS are the unit polarization vectors for incident and scattered photons

respectively. Making a series expansion of δχij in powers of coordinates that rep-

resent the elementary excitations of the scattering medium allows us to tackle the

problem of calculating I(ωL, ωS, ~k). The expansion can also be used to determine

the selection rules for the polarization of incident and scattered photons, as will be

outlined later in this chapter. Though the symmetry properties hold for all kinds of

excitations, we will focus on optical phonons for concreteness. The expansion, for

the case of vibrational modes in a lattice, is

δχij =
∑
m

Rm
ijQm(0) +

∑
mn,qp

Rmn
ij Qm(~q)Qn(~p) + . . . (3.3)

where the second rank tensors Rm
ij and Rmn

ij are the first and second order Raman

tensors respectively. The first term describes the single phonon coordinate at ~q = 0

for first order scattering. The second term has the two phonon coordinates, ~p+~q ≈ 0,

that describes second order scattering.

Equations 3.2 and 3.3 can be used to calculate inelastic light scattering inten-

sities. The first term of Eqn. 3.3 vanishes for modes that are not Raman allowed

modes. Equation 3.2 is used to determine the selection rules for the polarization
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of ωL and ωS. Modes that are Raman allowed transform according to one of the

symmetries of 2nd rank scattering tensors. That is, for allowed scattering, the con-

ditions under which δχij is satisfied will be determined only by the transformation

properties of the initial and final states under the symmetry properties of the crystal

point group [71]. Though an in depth discussion of group theory applied to ILS is

beyond the scope of this dissertation, I will highlight a few pertinent results, as well

as provide a brief background for these results below.

3.1.2.2 A Quantum Mechanical Approach

ILS by electron systems is best described within a quantum mechanics framework.

Consider the Hamiltonian for a system of electrons in a radiation field[69]:

H =
1

2m∗

∑
j

[
~pj +

e

c
~A(~rj)

]2
+

1

2

∑
i 6=j

VC(~ri − ~rj) (3.4)

where VC represents the electron-electron interaction and ~A(~r) is the vector potential

for the photons. We ignore here the presence of a magnetic field. Treating the system

perturbatively, we can rewrite the Hamiltonian as

H = Ho +Hint (3.5)

= Ho +Hee +H ′int +H ′′int (3.6)

Ho +Hee =
∑
j

~p2j
2m∗

+
1

2

∑
i 6=j

VC(~ri − ~rj) (3.7)

H ′int =
e

2m∗c

∑
j

[~pj · ~A(~rj) + ~A(~rj) · ~pj] (3.8)

H ′′int =
e2

2m∗c2

∑
j

| ~A(~rj)|2 (3.9)
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The H ′′int term is second order in fields and therefore contributes to the light scat-

tering processes described by first order perturbation theory. The H ′int term on the

other hand, being first order in fields it thus appears in the second order terms of

perturbation theory for calculating the light scattering intensity [72].

The scattering rate from an initial state |I〉 to a final state |F 〉 is determined via

time-dependent perturbation theory. The transition rate is given by Fermi’s golden

rule [69]

1

τFI
=

2π

~
|HFI |2δ(EF − EI − ~ω) (3.10)

where

HFI =〈F |Hint|I〉 (3.11)

+
∑
j>1

∑
l1...lj−1

〈F |Hint|lj−1〉〈lj−1|Hint|lj−2〉...〈l1|Hint|I〉
(EI − Elj−1

)(EI − Elj−2
)...(EI − El1)

for an arbitrary number of j steps of the scattering process, where EF (I) is the final

(initial) state and Elj is the energy of the intermediate state |lj〉. The total scattering

rate is obtained by summing 1/τFI over all final states and initial states. Each j-step

process involves j corresponding matrix elements of Hint acting on combinations of

initial, intermediate or final states. The denominator clearly shows how the jth step

may result in a maximum in the scattering intensity when one of the terms in the

denominator goes to zero. Only two-step and three-step processes are relevant to

this dissertation, and will be considered below.

The scattering rate allows us to quantify the differential cross section, discussed

previously in terms of dielectric susceptibilities, as follows [73, 74]:

dσ

dΩdω
= ~

ωS
ωL

〈∑
F

|MFI |2δ(EF − EI − ~ω)

〉
(3.12)
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where MFI is the relevant matrix element, and the angle brackets indicate an average

over the initial states.

We consider only scattering via single electron states in a semiconductor. Since

light scattering is second order in the vector potential, the lowest order perturbation

theory expansion of MFI is first order in H ′′int and second order in H ′int [75, 74, 72].

MFI can be rewritten as

MFI = r0
∑
α,β

γα,β〈F |C†αCβ|I〉 (3.13)

where ro = e2/m∗c2 is the “classical” electron radius. α and β are indices for the

electron states, which are characterized by wavevector and spin sα. C†α and Cα

are the creation and annihilation operators for the single particle states |α〉. The

quantity γαβ is

γαβ =〈α|ei~q·~r|β〉êL · êS (3.14)

+
∑
l

[
〈α|jS|l〉〈l|jL|β〉

(E∗β − E∗l + ~ωL)
+
〈α|jL|l〉〈l|jS|β〉

(E∗α − E∗l − ~ωL)

]
(3.15)

where jL(S) = 1
m∗
êL(S) · ~pe±i

~kL(S)·~r, E∗α (E∗β) is the energy of the single particle state

|α〉 (|β〉), and E∗l is the energy of the intermediate state |l〉. The first term in

the expression is due to the |A|2 term of the electron-photon interaction (linked

to H ′′int). The other two terms are due to the second order contributions of the

~p · ~A term (linked to H ′int). For intraband scattering the second set of terms in γαβ

almost vanishes (the two terms in the brackets cancel) [76]. Consequently, the term

due to H ′′int dominates. However, for interband transitions, the cancellation of the

second and third term does not occur; and as a result H ′int is allowed to play a role in

scattering. This is an especially significant one since it is responsible for the resonant

enhancement of the light scattering cross-section (the denominator vanishes when
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the incident photon energy approaches the energy of a gap). The first term in γαβ

is non-resonant. Hee plays no role in the two-step light scattering process described

above; but will come into play for three-step light scattering processes discussed

below.

band |J, Jz〉 wavefunction

cb |1
2
,+1

2
〉 S ↑

|1
2
,−1

2
〉 S ↓

hh |3
2
,+3

2
〉

√
1
2
(X + iY ) ↑

|3
2
,−3

2
〉

√
1
2
(X − iY ) ↓

lh |3
2
,+1

2
〉
√

1
6
(X + iY ) ↓ −

√
2
3
Z ↑

|3
2
,−1

2
〉
√

1
6
(X − iY ) ↑ +

√
2
3
Z ↓

so |1
2
,+1

2
〉
√

1
3
(X + iY ) ↓ −

√
1
3
Z ↑

|1
2
,−1

2
〉
√

1
3
(X − iY ) ↑ +

√
1
3
Z ↓

Table 3.1: Kane model wavefunctions [1] along kz for the electron states in a GaAs
QW near the Γ-point for the conduction band (cb), heavy hole (hh), light hole (lh)
and split-off (so) valence bands. Fig. 3.4 shows the bands structure for GaAs and
the corresponding valence band states.

We can simplify the expression for the scattering cross-section by considering

a particular form for the single electron states in the expression for γαβ. To do

this, we will use the Kane model [1] to represent the electronic states for the GaAs

band structure. The Kane model is valid for III-V semiconductors in which the

relevant states are near the Brillouin zone center or Γ-point. In the Kane model, the

conduction band states are s-like (denoted by S ↑ and S ↓, where the arrow indicates

the orientation of spin). The valence band basis functions have p-like symmetry and

are denoted by X ↑, X ↓, Y ↑, Y ↓, Z ↑, and Z ↓, whose combinations are required

to have states of total angular momentum, as shown in Table 3.1.

Hamilton and McWhorter [73] use the wavefunctions of the Kane model along
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Figure 3.4: Band structure of GaAs [10, 11].

with the approximation: ωL ∼ ωS, to yield

γαβ = 〈α|ei~q·~r|β〉
[
êL · A · êS + i(êL × êS) · B · 〈sα|~σ|sβ〉

]
(3.16)

where ~σ represents the Pauli matrices, |sα〉 is the spin state of |α〉, and A and B

are tensors that are linked to excitations that are spin conserving, and to those

that involve a change in the spin state respectively. I will elaborate on this in the

upcoming section. There we will find that light scattering from a 2DES in GaAs

consists of two distinct components: one that is symmetric in the polarizations

and another that is antisymmetric in the polarizations. That is, one is maximized

when the polarizations are parallel (polarized) while the other is maximized when

the polarizations are perpendicular (depolarized). Off-resonance, we find that A ∝

m∗−1, where m∗ is the effective mass tensor, so that the first term is linked to charge

density excitations. The matrix elements of the Pauli matrices of the second term

indicate that this term is linked to excitations in which the spin quantum number

changes. This ability to discern between charge density and spin density excitations
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by using polarization selection rules is a powerful feature of inelastic light scattering.

3.1.2.3 Parallel Polarization

This is the case for êL//êS. Assuming a parabolic valence band, we can rewrite A

as follows[73]:

A = I
[
1 +

2P 2

3m

(
E∗1

E∗21 − (~ωL)2
+

E∗2
E∗22 − (~ωL)2

+
E∗3

E∗23 − (~ωL)2

)]
(3.17)

where I is the unit dyadic, P = |〈S|pz|Z〉| is the interband matrix element of the

momentum and E∗1 , E∗2 and E∗3 are the gaps of the Kane model[1] which are as-

sociated with the heavy, light and split-off valence bands respectively. The light

and heavy hole bands are degenerate, while the split-off valence band has an energy

difference of Eso (shown if Fig. 3.4).

3.1.2.4 Cross Polarization

Here êL⊥êS. The second part of γαβ in Eqn.3.16, which is antisymmetric in the

incident and scattered polarizations can be rewritten as

B = I
2P 2

3m
(~ωL)

[
1

E∗20 − (~ωL)2
− 1

(E0 + Eso)2 − (~ωL)2

]
(3.18)

The 〈sα|~σ|sβ〉 term vanishes for states that do not involve a change in spin.

That is, the antisymmetric term is proportional to electron-density fluctuations in

spin[75]. Consequently, light scattering for depolarized spectra is strongest for spin-

density excitations. Recall that Hee plays no role in the two-step light scattering

process shown above.
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3.1.3 Light Scattering in 2D systems

Our discussion has focused thus far on three-dimensional systems. However, the

systems of interest here are two dimensional. Fortunately, much of the results of

the discussion pertaining to light scattering in 3D systems is also applicable in 2D

systems. To see this, we examine the Hamiltonian describing the in-plane behavior of

the electrons in the 3D system and find that, within the effective mass approximation

[77], it is equivalent to that of the 2D system. In particular, the polarization selection

rules of the confined electrons to photons is the same in both 2D and 3D. That is,

the light scattering mechanisms in 2D and 3D systems are similar [77].

Inelastic light scattering is a unique and effective tool for probing 2DES’s. This

is in part due to resonance enhancement which makes “weak” signals observable

by experiment. Moreover, ILS can discern between collective and single particle

excitations. In addition, it can differentiate between charge and spin excitations.

Consequently, light scattering can be used to “map out” energy level structures with

spin degrees of freedom and to estimate electron-electron interaction energies.

ILS in 2D systems, in the simplest form, can be described as a two-step process,

similar to that in Fig. 3.3 for 3D systems. Figure 3.5 shows the transition diagram

for intersubband and intrasubband transitions in 2D systems, introduced in the

previous chapter. Recall that intersubband excitations are excitations that involve

more than one subband while intrasubband excitations are excitations that occur

on the same subband. From our analysis of ILS in 3D systems, we can write the

scattering intensity in 2D systems,

I(ω) ∝

∣∣∣∣∑
l1

〈F |H ′int|l1〉〈l1|H ′int|I〉
ωI − ωl1

∣∣∣∣2 (3.19)

where |F 〉, |I〉, are final and initial states respectively. H ′int is the interaction Hamil-
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Figure 3.5: Transition diagrams show (a) intersubband and (b) intrasubband single
particle excitations from two-step light scattering processes in 2DES in a semicon-
ductor quantum well. The numbers show the time-ordering of the transitions. ωL
and ωS are the incident and scattered photons respectively. q is the momentum
associated with the intersubband excitation, where q + qo is the wavevector of the
excited electron.
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Figure 3.6: A Feynman diagram showing a three step light scattering process. Step
1: the incident photon (ωL) is annihilated in a process that creates an electron-
hole pair. Step 2: the pair interacts with the 2DES to emit a collective excitation
of energy ω and wavevector ~q = ~k. Step 3: the electron-hole pair is annihilated,
creating the scattered photon (ωS). Alternative time orderings are possible.

tonian, |l1〉 are intermediate states and ωl1 represents the corresponding energies

for those states. Examining the denominator of Eqn. 3.19 elucidates the exis-

tence of a single resonance enhancement condition for two-step ILS. That is, when

ωI → ωl1 the intensity, I(ω) grows large. This condition can be rewritten as follows:

ωI − ωl1 = ωL − (Eo + ∆10) = ωs − Eo → 0 , where Eo is the band gap between

the valence band and the conduction band and ∆10 is the intersubband spacing of

the conduction band. The expression shows that a resonance arises when either the

incoming photon energy, ωL matches Eo + ∆10 (defined as an incoming resonance)

or when the scattered photon energy, ωS matches Eo (an outgoing resonance).

There exists more complicated higher order Raman processes. Fig. 3.6 shows a

Feynman diagram that describes a three-step Raman scattering process. The first

and last steps of this three-step process comprise the same steps as the two-step

process described previously. The second step however involves an electron-electron
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interaction which causes a transition from the first intermediate state to the second

intermediate state, resulting in an emission of a collective mode as described by the

following:

I(ω) ∝

∣∣∣∣∑
l1,l2

〈F |H ′int|l2〉〈l2|Hee|l1〉〈l1|H ′int|I〉
(ωI − ωl2)(ωI − ωl1)

∣∣∣∣2 (3.20)

Eqn. 3.20 reveals that there is an incoming resonance associated with the l1 tran-

sition, as seen with two-step process. In addition, there is a second resonance,

associated with the second term in the denominator, such that

ωI − ωl2 =ωL − (ω + El2)

=ωS − El2 = 0

where El2 is the energy of the transition between the states |l2〉 and |I〉. The second

resonance condition is described by the overlap of ωS with an optical gap (outgoing

resonance).

3.2 Experimental Considerations

The majority of measurements were performed on a high-quality, symmetrically

doped, 240 Å wide GaAs single quantum well (sample #3-6-07.3) of electron density,

n=3.7x1011 cm−2 and mobility, µ=17.5x106 cm2/Vs (at T=300 mK). Additional

samples were studied in section 3.3. To access temperatures above 1.8K, at zero

magnetic field, samples were mounted in a cryostat with windows for optical access.

They were attached with rubber cement to a copper holder and were in direct contact

with helium gas or liquid. Only portion of the sample was attached to the copper

holder, the other portion allowed to contract when cooling to minimize impact of

strain.
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Figure 3.7: Schematic of the experimental setup for optical measurements at mil-
likelvin temperatures. The top left panel shows a blow up of the sample in back
scattering geometry.
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Figure 3.8: Schematic showing different scattering geometries and associated con-
served wavevectors. kL and kS are the wavevectors of the incident and scattered
photons respectively. q + q⊥ represents the wavevector transferred - the in-plane
excitation wavevector, q, and the orthogonal component, q⊥. The black circle repre-
sents the location of the sample. Both back-scattering (θ = 180) and side scattering
(θ = 90) geometries were used for zero magnetic field measurements. The back-
scattering geometry was used exclusively for quantum Hall studies.
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In order to access temperatures below 1.8K, in finite magnetic field, samples were

mounted on the cold finger of a dilution refrigerator with a base temperature of below

40 mK and inserted into the cold bore of a 16 T superconducting magnet as shown

in Fig. 3.7. The magnetic field perpendicular to the sample is B = BT cosθ as shown

in the inset of Fig. 3.7 (BT is the total applied magnetic field). The samples are

attached to the copper rod using copper-loaded grease to improve thermal contact.

In addition, thin gold wires were attached to both the GaAs sample via diffused

indium dots and to the copper rod to improve thermal contact with the electron

gas. The dilution refrigerator used was an Oxford Instruments Kelvinox with a

cooling power of 400µW at 100 mK.

The dilution refrigerator has four parallel windows for optical access. The inner

vacuum can of the dilution refrigerator has a bottom window which is mated to a 4 K

window mounted on a raised flange on the bottom of the cryostat. Both windows are

enclosed in a small area that uses the relatively low heat of vaporization of liquid He

to trap He gas in a small pocket, or “vapor lock” to keep boiling He from obscuring

the optics path. The third window, the “77 K window”, is thermally anchored to

the nitrogen jacket. This window at 77 K minimizes blackbody radiation from the

room temperature portions of the system. The fourth window is attached directly

to the cryostat. All of the windows are made of Spectrosil B, which transmits light

in the range of interest, ∼ 800nm, while blocking black body radiation (peaked at

10µm at room temperature) at wavelengths greater than 4µm.

The energy of the linearly polarized photons, ωL and ωS, are tuned close to

fundamental optical transitions of the GaAs quantum well. Tunability is provided

via a Ti:sapphire laser with sharp peaks (< 30µeV ) and of photon energy in the

range of the fundamental optical gap of GaAs (800nm - 820nm). The Ti:sapphire

laser is optically pumped by a Coherent Verdi Diode laser which outputs light at

532nm. The light from the Ti:sapphire laser is linearly polarized. A polarization
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rotator is used to rotate this polarization by 90 degrees so that the incident beam

is either parallel (polarized) or perpendicular (depolarized) to the scattered beam.

The beam is focused by a cylindrical lens to a spot that is about 2mm × 200µm.

The power density is kept less than 10−4Wcm−2 to avoid heating of the electron gas

at millikelvin temperatures. At higher temperatures, the power density can be up

to two orders of magnitude higher.

Wavevector conservation is illustrated in Fig. 3.8. Panel a shows the wavevector

relationship between kL, kS and q for arbitrary θ as shown in the figure. The

two diagrams in panel b illustrate the case for side-scattering (θ = 90) and back-

scattering (θ = 180). The wave vector transferred from the photons to the 2D system

is q = (2ωL/c) sin θ, much smaller than 1/lo, where lo =
√

~c/eB is the magnetic

length. However, the presence of weak short-range disorder induces a breakdown

of wave vector conservation [78, 79, 80, 81], which allows light scattering to detect

the critical points in the exciton dispersion, such as the rotons, because of van Hove

singularities in the density of states at these energies. As we will see later on, this

serves as a useful tool in identifying large wavevector modes via light scattering.

The experimental setup is constructed to optimize the collection of light with

free space optics and prevent electron heating by the incident laser beam. Light

is collected by lenses and focused onto the entrance slit of the spectrometer. The

solid angle of light scattering that can be collected depends upon the F# of the

cryostat. That is, the distance to the window/diameter of window. The immersion

cryostat, employed at B = 0, has an F# ∼2, while the dilution refrigerator has an

F# ∼4. The lens diameters and focal lengths are chosen by matching the F#’s of the

cryostat, collection optics, and spectrometer; and setting the desired magnification of

the collection path. The finite solid angle of the collection introduces an uncertainty

in the wavevector transferred to the 2DES.

Scattered light is dispersed and recorded by a T64000 triple grating spectrom-
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eter, equipped with holographic gratings to reduce the stray light. Measurements

are taken either in additive mode or subtractive mode, with high and low resolution

respectively. Photons are detected with a multi-channel photodetector, or charged

coupled device (CCD) with 13µm pixels. The combined resolution of the system

with entrance slits on the spectrometer set to 50µm is 30µeV . The response of the

spectrometer is linearly polarized, so that spectra can be taken with linear polar-

ization of the incident photons parallel (polarized) or perpendicular (depolarized)

to the scattered photons’ polarization. As discussed in previous sections, excitation

modes with changes in the spin degree of freedom are stronger in depolarized spec-

tra, while those modes with changes in the charge degree of freedom are stronger in

polarized spectra.

3.3 Light Scattering from Collective Excitations

in 2DES’s at B=0

Several electronic excitations are accessible via light scattering using a cryostat

in the side-scattering configuration at zero magnetic field (at 2K): the plasmon,

a collective intrasubband excitation, and also intersubband collective excitations

involving charge density (CDE) and spin density (SDE) fluctuations. CDE and

SDE modes are linked to Coulomb and spin exchange energies respectively. The

intersubband single particle excitation (SPE) is also readily measureable.

Figure 3.9 shows the plasmon mode from a GaAs QW (sample #2− 25− 05.1,

300Å width, µ ∼ 25× 106cm2/V s and n ∼ 2.6× 1011cm−2). The dispersive nature

of the plasmon mode is shown through its shift in energy with changes in in-plane

wavevector (equivalent to changes in scattering angle, θ). The dispersion, in the
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small wavevector limit, described by

ω2
p = 2πne2q/εm∗ (3.21)

where q is the in-plane wavevector, and ε is the dielectric constant of GaAs Using

the light scattering geometry (shown in the inset of Fig. 3.9) we can derive an

expression for the in-plane wavevector,

q = 2

(
2π

λL

)
sinθ (3.22)

Measurements of the plasmon’s dispersion confirms the known electron density of

the 2DES to within uncertainty and experimental error.

Figures 3.10 and 3.11 show the intersubband excitations of a GaAs QW (sample

#9− 16− 04.2 with 300Å wide QW, µ ∼ 5× 106cm2/V s and n = 1.39× 1011cm−2

). The spin density excitation (SDE), charge density excitation (CDE) and single

particle excitation (SPE) are shown. These excitations, as already mentioned, can

be detected using light scattering. The CDE energy is upshifted from the SPE

energy due to Coulomb interactions. To the contrary, the energy of the SDE is

downshifted from the SPE energy due to exchange effects [82, 83, 84]. Intersubband

excitation peaks can be very sharp, with FWHM as low as ∼ 0.10meV (in sample

#3− 12− 09.1). These extremely sharp peaks are narrower than those reported in

the literature (0.14meV) [84]. The low FWHM is a measure of the high quality of

the quantum well; a “dirty” well yielding broad peaks and pristine samples giving

narrow peaks. A “back of the envelope” method for considering this is to examine

the uncertainty principle [85]

∆E∆τ & ~ (3.23)

were ∆E symbolizes the FWHM and ∆τ represents the lifetime of the excitation
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Figure 3.9: Shows the dispersion of the plasmon of a 2DES. (a) The energy of the
mode shifts with changes in scattering angle, θ, or in-plane wavevector, q (denoted as
q// in the inset). The inset shows the scattering geometry. (b) Momentum resolved
scatter plot of the energy with respect to the square-root of the in-plane momentum.
The slope of the line gives us a means of experimentally extracting a value for the
electron density, n. The value of n found by optical methods is (∼ 1.4× 1011cm−2).
This value is different from that found from transport. This is due to small changes
in density seen in “light sensitive” samples (samples whose density changes with
varying incident photon power).



3.4. LIGHT SCATTERING IN THE IQH REGIME 64

Figure 3.10: Spectra show intersubband transitions in a GaAs QW. Polarization of
incident photons is perpendicular to scattered photons (depolarized light scattering).
The incident laser wavelengths, λL, are indicated. The spin density excitation (SDE)
dominates the spectra. The single particle excitation (SPE) is also seen. The charge
density excitation (CDE) however is rather weak, as expected from light scattering
selection rules.

for homogeneous electron systems. Consequently, the smaller the value of ∆E, the

larger the lifetime of the state will be and thus the “cleaner” the 2DES.

The spectra in Fig. 3.11 and Fig. 3.10 clearly show the polarization rules’ ability

to distinguish between charge and spin density excitations.

We can “finger print” the 2DES by studying its Raman spectra. Thus far we

already have a means to measure electron density, Coulomb interaction energy, Ex-

change energy and the quality of the 2DES. Let us now examine how light scattering

might be useful for characterizing quantum Hall systems.

3.4 Light Scattering in the IQH Regime

The Integer Quantum Hall Effect (IQHE) can be accessed at a magnetic field of

roughly 1T (1T = 104Gauss). At this field, the magnetic length, lo is ∼ 250Å,
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Figure 3.11: Spectra show intersubband transitions in a GaAs QW. Incident pho-
ton polarization is parallel to scattered photons (polarized Light scattering). The
incident laser wavelengths, λL, are indicated. The charge density excitation (CDE)
dominates the spectra. The single particle excitation (SPE) is also seen. The spin
density excitation (SDE) however is rather weak, as expected from light scattering
selection rules

as shown by Eqn. 3.22. In light scattering the maximum wavevector that can be

transferred to the 2DES is kmax ≈ 1.5 × 105cm−1 (kmaxlo ≈ 0.4). Consequently, in

the case of wavevector conservation, only long wavelength modes, with k < 1/lo, of

dispersive charge or spin density excitations can be accessed by light scattering.

The lowest energy charge density excitation, where Landau level index changes

by one and spin degrees of freedom are fixed, is described by Kohn’s theorem.

This Kohn mode is pinned at the cyclotron energy, ωc [86]. While forbidden by

lowest order selection rules, this long wavelength mode has been observed via light

scattering at ν = 1 [87]. The dispersion of the Kohn mode or magnetoplasmon

mode for q � 1/lo is described as [88]

√
ω2
c + ωp(q)2 (3.24)
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Light scattering can also access long wavelength inter-Landau level spin flip exci-

tations as well as intra-Landau level excitations. Intra-Landau level spin flip ex-

citations, or spin waves, have long wavelength energy fixed at the Zeeman energy

according to Larmor’s theorem [12].

The break-down of wavevector conservation allows light scattering to probe

shorter wavelength excitations [89, 90, 87]. I will illustrate this in greater detail in

later chapters. The strongest light scattering response arises from critical points in

the dispersion which results in van Hove singularities in the density of states. Conse-

quently, light scattering modes are not restricted to the long wavelength limit. That

is, intermediate wavelengths, such as qlo, as well as large wavevector modes can also

be accessed [89, 90, 87, 91]. That is, light scattering can probe the major features

of dispersive IQHE charge and spin excitations. These probes provide information

on electron-electron interactions and exchange self-energy of the 2DES in the IQHE

regime. Light scattering proves to be a good characterization tool for 2DES in finite

magnetic field, as was already shown for zero magnetic field.

3.5 Light Scattering in the FQH Regime

The foundation for light scattering in the fractional quantum Hall (FQHE) regime is

in many ways similar to that of the IQHE. For instance, there exists a restriction of

wavevector transfer for translationally invariant systems which breaks down in the

presence of disorder. In the FQHE regime however, the excitations of quasiparticles

of the quantum liquid are probed. Light scattering studies have already reported

a great variety of long wavelength, low energy charge and spin density excitations

[28]. I will describe in later chapters the plethora of both long wavelength and

large wavevector modes that exist in fractional quantum systems. As we will see

in Chapter 4, showing that FQHE systems can have large wavevector, high energy
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modes, has implications for the topological robustness of composite fermions [92, 5].

Light scattering can probe inter-Λ level (Landau-like levels for composite fermions)

excitations. It gives information of energy level structure and the strength of quasi-

particle interactions of FQHE systems. Furthermore, as I will describe in later

chapters, light scattering provides a unique probe of both the charge and spin de-

grees of freedom of highly correlated electron systems that can give rise to exotic

forms of matter. Fractional quantum Hall states of particular interest include that

at ν = 5/2, the best known even-denominator state, theoretically shown to have a

spin-polarized ground state [93] and have non-abelian braiding statistics [32]. The

latter which could make this state useful for realizing topological quantum compu-

tation. The former which light scattering has the capacity to probe [94, 95, 66, 5].

3.6 Monitoring spin polarization with spin waves

The study of spin degrees of freedom will be a central part of this thesis. Light

scattering is a delightful tool for this study as it provides a unique, direct probe of

the bulk states of quantum fluids. As we have seen in this Chapter, the polarization

selection rules of ILS allows one to discern between spin and charge degrees of

freedom. Light scattering methods may be applied to study a 2DES in a magnetic

field like that shown in Fig. 3.12(a) where a 2DES at ν = 1 is depicted. For

instance, light scattering can monitor the changes in spin degrees of freedom during

the creation of the “spin exciton” or spin wave (SW) shown in Fig. 3.12(b). The

SW dispersion at ν = 1 (extracted from Ref. [12]) is displayed in Fig. 3.12(c) and

shows that the energy of the SW in the long wavelength limit is EZ . Light scattering

measurements will reveal spectral weight at an energy shift, EZ from the laser.

In the previous Chapter, we quantified spin polarization in Eqn. 2.27 by com-

paring the number of electrons occupying upper and lower spin branches of the lth
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Figure 3.12: (a)Landau level diagram showing Landau levels spaced by the cyclotron
energy and spin split by EZ . The ground state at ν = 1 is depicted - the lower spin
branch of the N=0 LL is completely filled. (b) An excited state of ν = 1 is shown.
Incoming photons create a “spin exciton” or spin wave which, in the q → 0 limit,
has its energy fixed at EZ according to Larmor’s theorem[12]. The numbers indicate
the time ordering of the light scattering process. (c) The dispersion of the spin wave
extracted from Ref. [12]. In the long wavelength limit, the spin wave energy is the
Zeeman energy.
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Figure 3.13: Spin wave intensity is determined by γp and the number of electrons
available for light scattering . Spin polarization depends on the relative number of
electrons occupying lower and upper spin branches, as defined in Eqn. 2.27. (a) both
the upper and lower spin branches are fully occupied at ν = 4 resulting in zero net
polarization. (b) For 3 < ν < 4 the upper spin branch is partially occupied allowing
for some finite spin polarization. (c) The upper spin branch is completely empty
and the lower spin branch is fully occupied yielding maximum spin polarization and
spin wave intensity. (d) Though the system remains fully spin polarized, as the
lower spin branch empties, there are increasingly fewer electrons available for light
scattering. Consequently, in this single particle picture, we expect the SW intensity
to decrease with the number of available electrons.



3.6. MONITORING SPIN POLARIZATION WITH SPIN WAVES 70

LL: N = l, ↓ and N = l, ↑ respectively. The intensity of the SW is expected to

depend sensitively on the net polarization of the 2DES. The intensity of the SW

also depends on the number of spins available to participate in the light scattering

process. I attempt to quantify this by defining an expression for the SW intensity,

γI (applicable to the N=1 LL),

γI =
n↑ − n↓
n↑ + n↓

× nν
nν=3

(3.25)

γI =γp ×
nν
nν=3

(3.26)

illustrated by Fig. 3.13. n↑ (n↓) represents the electron density in the lower (upper)

spin branch of a Landau level and γp is the spin polarization as defined in Eqn. 2.27.

nν is the number of electrons occupying the highest occupied energy level while nν=3

is the maximum number of electrons that can occupy a filled energy level at ν = 3.

We have limited our considerations to the range 2 < ν < 3.

Since the SW is a long wavelength excitation, one expects its supporting medium

to have a spatial extent greater than the wavelength of the SW. The quantum fluid

in the lowest LL, in the presence of disorder, is expected to have a relatively large

spatial extent of . micron dimensions [96]. ILS studies [94, 97, 98] have demon-

strated that the FQH fluid in the LLL supports the SW mode. If heterogeneity (i.e.

its length scale) were increased further; for instance, if the supporting medium were

to break up into submicron domains (� 1µm), then the excitation giving rise to the

SW may be suppressed. That is, if translational symmetry is completely broken,

the SW excitation may be destroyed. Rotational symmetry is another important

symmetry linked to the SW excitation. Having rotational symmetry implies angular

momentum is conserved. Larmor’s theorem tells us that the long wavelength spin

wave excitation is fixed at the Zeeman energy. The spin precession in Larmor’s
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theorem requires that angular momentum is conserved. Consequently, if there is

some mechanism that destroys the rotational symmetry of the system, we might

also expect Larmor’s theorem to breakdown.

3.7 Optical Emission

3.7.1 Overview of Optical Emission

Optical emission measurements constitute a huge part of research in condensed

matter physics and other fields of science. With respect to GaAs quantum wells,

optical emission occurs when electrons and holes are excited to some energy above

the Fermi energy. Electrons and holes then thermalize to some state |i〉 where they

then relax to a state |f〉 via the emission of a photon. Though luminescence is much

easier to measure than light scattering, optical emission data are exceedingly difficult

to interpret. Consequently, only a very qualitative and rudimentary discussion will

be given here, largely for the purposes of putting our light scattering machinery into

better context. A detailed account of optical emission in GaAs quantum wells is

available in Ref. [42].

3.7.2 Optical Emission from 2DES

When incident photons have energy ωL greater than the sum of the optical band

gap and Fermi energy of the QW, the 2DES will luminesce. Figure 3.14 shows

optical transitions of conduction band electrons recombining with valence band (VB)

holes. The electron-hole recombination results in the emission of light of a range of

wavelengths. Panel (a) of Fig. 3.14 shows the 2DES being excited by a photon and

subsequently thermalizing. Thermalization is the process by which excited electrons

and holes return to a relaxed state via phonon scattering [99]. Panel (b) shows light
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Figure 3.14: The optical emission process is illustrated. (a) An electron hole pair
is created by an incident photon of energy ωL. The photoexcited electron then
thermalizes. (b) Optical relaxation takes place resulting in an emission of a photon.
The transition can be “high” energy, the maximum energy, E1 due to recombination
of an electron from the top of the Fermi sea with a VB hole. (c) An electron at the
bottom of the conduction band may also recombine with a VB hole. This results in
a minimum energy transition, E2. The non-degenerate hole gas is explicitly shown
in panels b and c. A marvelous discussion on optical emission in GaAS QWs can
be found in Ref. [13].
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Figure 3.15: An example of a zero magnetic field spectrum due to optical emission
from a GaAs QW (width of 300Å and n = 2.9 × 1011cm−2). As discussed in Fig.
3.14, the short wavelength (high energy) cut-off is described by E1, while the long
wavelength cut-off is pegged at E2.

emitted from the top of the Fermi level while panel (c) shows light emitted from the

bottom of the conduction band. The emitted photons have maximum and minimum

energies, E1 and E2 respectively (and a range of intermediate energies not explicitly

shown). The difference in energy, E1 − E2 is equivalent to EF (not accounting for

a correction due to the curvature of the valence band, which is typically ∼ 15%).

Optical emission measurements at zero field allow us to extract the Fermi energy

and consequently the electron density. The density is given by the relation [13]

n =
2m∗c

~

[
1/λ1 − 1/λ2

][
1 +

m∗

mh

]
(3.27)

where λ1 and λ2 are the wavelengths for the energies E1 and E2 as described by

Fig. 3.14 and 3.15. m∗ is the effective electron mass and mh is the hole mass in the

valence band. The term, (1 + m∗

mh
) represents the correction due to the curvature of

the valence band.

An example of zero field luminescence is shown in Fig.3.15 and delimits the

energies E1 and E2 described in Fig. 3.14. The high energy cut off at E1 is known
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Figure 3.16: Spectrum shows optical emission from a 2DES at B = 3.5T (ν = 4.56).
The broad continuum of spectral weight seen in Fig. 3.14 at 0T breaks up into sharp
peaks as energy levels become quantized and spaced by the cyclotron energy and
Zeeman energy. The optical emission from different Landau levels is delimited.

as the Fermi step, because of the step-like onset of the spectral weight at E1. The low

energy cut-off of the optical emission is ideally sharp. However, because our 2DES

lives in real samples, there is broadening due to disorder. The exciton of GaAs is seen

at energy within the energy range of the quantum well optical emission (λ ∼ 819nm

in Fig. 3.15).

Fig. 2.3 showed that a finite magnetic field quantizes the continuum of zero mag-

netic field electron energies. Optical emission can occur from the resulting quantized

levels (provided they are populated with electrons), as illustrated in Fig. 3.16. This

figure shows optical emission from a 2DES that formed Landau levels, three of which

are populated, as indicated by the presence of three sets of peaks at discrete en-

ergies. Each set of peaks is spaced by roughly ωc. The formation of doublets in

luminescence spectra could be due to spin splitting of the Landau levels by B[T ].

There may be additional peak splitting (the formation of triplets for instance), as

seen for the N=1 LL and the N=2 LL in Fig. 3.16, that cannot be explained by spin

splitting alone. An explanation of this behavior lies in other complicated processes,



3.7. OPTICAL EMISSION 75

Figure 3.17: A schematic of Landau levels from which optical transitions occur that
produce optical emission at discrete energies. Spin splitting by the Zeeman energy
is not explicitly shown in the conduction band. In addition, the heavy hole, light
hole and split-off valence band levels are not explicitly shown.

like that of the “shake-up” [100, 101, 102], an in depth discussion of which is beyond

the scope of this thesis. The shake-up is analogous to the Auger effect; electron-hole

recombination will emit a photon and excite an electron to a higher energy level.

The energy debt for the electronic excitation results in a reduced photon emission,

which shows up as an extra “low” energy peak in optical emission spectra. The

optical emission shown in Fig. 3.16 is under magnetic field, B= 3.5T. This mag-

netic field corresponds to a filling factor of ν = 4.56, this value tells us that the

1st and 2nd LLs are fully occupied, and that the 3rd LL is only partially filled. A

schematic of the energy level transitions is shown in Fig. 3.17. The spin splitting

of the Landau levels, along with the heavy hole (hh) and light hole (lh) states are

not explicitly shown, though they impact the allowed transitions due to restrictions

from angular momentum conservation.

Though there is a great deal of information that can be gleaned from optical

emission spectra [103, 100, 104, 101, 105, 106, 107], I will primarily use luminescence

spectra to assist in resonance Raman scattering measurements. Energies of optical
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gaps can be determined from optical emission spectra. I then match the incident

photon energy to the energy of the highest partially occupied or unoccupied state

to boost the intensity of scattered light to within measurable limits via resonance

enhanced Raman scattering.

In the next few chapters I will apply these optical methods to address unanswered

questions and areas of interest in quantum Hall research. Optical studies provide

a unique probe of 2DES’s that will complement the plethora of existing studies in

quantum Hall research. In particular, inelastic light scattering provides a measure of

the energy of an excitation as well as information about its spin and charge degrees

of freedom, that is inaccessible by other means.
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Chapter 4

Measurements of High Energy

Composite Fermion Excitations

4.1 Overview

Studies of collective states of matter have proved enormously important both be-

cause of the fundamental physics they reveal and the role they play in stimulating

technological innovation. The electron liquid that manifests in the fractional quan-

tum Hall effect emerges as a result of interactions between electrons when the dimen-

sionality is reduced to two and the Hilbert space is further restricted by application

of an intense magnetic field [46]. The liquid represents a cooperative behavior that

does not subscribe to concepts such as Bose-Einstein condensation and Landau or-

der parameter. The fractional quantum Hall liquid is the realization of a topological

quantum state of matter, the understanding of which has influenced development

in a wide variety of fields, such as the recent topological insulators, cold atoms,

graphene, generalized particle statistics, quantum cryptography, string theory and

more [108, 32, 109, 110, 111, 112].

This overview, an extension of the discussion of quantum Hall physics in Chap-
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ter 2, continues the introduction to the intriguing properties of fractional quantum

Hall systems. I start by introducing the link between topology and the fractional

quantum Hall systems. Topology is the study of the properties of geometric con-

figurations that are invariant under smooth deformations. The FQHE phases are

topological phases in that at low temperature and energies, and for long wavelengths,

all their observable properties remain invariant under smooth deformations[32, 4].

It is this ability for a topological phase to remain invariant under smooth per-

turbations that make it useful for potential applications in fault-tolerant quantum

computing[32]. In this section we attempt to quantify topological robustness of

composite fermions (CFs) in a light scattering experiment. CF quasiparticles in

the fractional quantum Hall liquid provide a framework to interpret much of the

phenomenology in magneto-transport. It is not yet known up to what energies they

remain intact. In addition, the extent to which CFs can form Landau like energy

levels has not been explored experimentally. This study of CF excitations examines

the structure and robustness of CFs. We probe the high-energy spectrum of the

ν =1/3 fractional quantum Hall (FQH) liquid directly by resonant inelastic light

scattering, and report the observation of a large number of new collective modes[5].

Supported by theoretical calculations[5, 92], we associate these observed excitations

with transitions across two or more CF levels. Formation of quasiparticle levels

up to high energies is direct evidence for the robustness of topological order in the

fractional quantum Hall effect. Topological order is a new kind of organization of

particles that is analogous to but goes beyond the Landau symmetry-breaking de-

scription. Topological order can be described by a new set of quantum numbers

such as quasiparticle fractional statistics[113].
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Figure 4.1: Schematic diagram of composite-fermion excitons accompanied by the-
oretical calculations of their dispersions. (a) The right panel shows pictorially the
spin-conserving excitations |0, ↑〉 → |K, ↑〉 across K Λ levels. The left panel shows
the spin-flip modes |0, ↑〉 → |K, ↓〉 (b) Calculated dispersions of CF excitons for a
35 nm wide GaAs quantum well with an electron density of 5.0 × 1010 cm−2. The
right (left) panel shows the dispersions for SC (SF) modes. The error bar at the end
of each curve represents the typical statistical uncertainty in the energy determined
by Monte Carlo method. Critical points in the dispersion are labeled[5].
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4.2 Background

Neutral excitations (excitations whose net charge remains zero, such as excitons)

provide a unique window into the physics of the FQH liquid. Early theoretical

treatments of the lowest neutral collective mode of the FQH state at ν=1/3 em-

ployed a single mode approximation [114], as well as exact diagonalization studies

on small systems [115], and demonstrated a minimum in the dispersion, which,

following the terminology used in superfluid Helium, is called a “magneto-roton.”

Subsequently, the collective modes at this and other fractions were understood in

terms of composite Fermions (CFs) [52] as described in Chapter 2. Recall that, de-

spite their exceedingly complex collective character, CFs act as almost free particles

(insofar as the low energy behavior is concerned) [46] and form “Λ levels”. The

neutral excitations are described as inter-Λ-level exciton collective modes of CFs

[116, 14, 117, 118], in close analogy to the electronic collective modes of the integral

Hall states. A cartoon depicting Λ level excitons is shown in Fig. 4.1.

Light scattering experiments probe the bulk states of quantum fluids. The ex-

periments we performed that are described here minimize the impact of edge states,

which are an integral part of magnetotransport measurements. Byszewski et al.

[119] report the detection of neutral excitations of CFs in the FQH regime us-

ing optical emission. Optical emission measurements also probe the bulk states of

quantum fluids. Using optical emission, Byszewski et al. observed signatures of the

existence of CF excitons. More precisely, the optical emission from CF energy levels

was detected. We can also detect CF energy levels using light scattering. The light

scattering experiment discussed in this Chapter serves to explore in further detail

the energy level structure of CFs and to probe the topological robustness therein.
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Figure 4.2: Novel high energy excitations at ν = 1/3 plotted in absolute energy units.
The main experimental result is plotted on a scattered photon energy scale. We
confirm that the spectral response is due to inelastic light scattering from excitations
of the quantum fluid at 1/3 filling. The excitations resonate with the singlet (S1) and
triplet (TB) luminescence peaks. The excitations follow the laser peak, identifying
them as inelastic light scattering excitations. The excitations sit on top of a weak
luminescence background. The two-dimensional electron gas at ν = 1/3 is tilted at
θ=30o in a magnetic field, BT= 8.0 T at 70 mK.
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4.3 Results and Discussion

We reported the excitation spectrum of the FQH fluid at ν=1/3 in a previously

unexplored energy range[5]. Our principal finding is the existence of several well

defined collective modes at energies substantially exceeding those of the highest

previously reported spin-conserving (SC) and spin-flip (SF) modes [78, 120, 79].

Further, we provide compelling evidence, supported by a detailed comparison be-

tween theory[5, 92] and experiment, that these neutral modes represent a new family

of excitations involving CF transitions across several Λ levels (ΛL′s). CF ΛL′s pro-

vide a single particle-like interpretation of the complex states of strongly interacting

electrons in the FQH regime whose existence can only be confirmed through ex-

periment. The direct experimental observation of the integrity of ΛL′s at energies

far above the Fermi energy demonstrates that CFs are more robust than previously

thought, bolstering the expectation that the quasiparticles of other topological states

of CFs, such as the proposed nonabelian quasiparticles of the paired Pfaffian state

at 5/2 [32, 121], will also have comparably robust character.

The intensity of the scattered light at ν=1/3 is displayed in Fig. 4.2, which has

an absolute energy scale. The colorplot illustrates the changes in intensity of light

scattering peaks (indicated by changes in color) with respect to scattered photon en-

ergy as the incident photon energy is tuned. Panel (a) shows that when the incident

photon energy is tuned, different FQH modes are excited. The energy of the modes

excited increases with increasing photon energy. The resonance enhancement of the

intensity of excitations in inelastic light scattering experiments depends sensitively

on both the frequency of the incident laser light and on the energy of the FQH

mode. Not all modes are thus visible in a single spectrum and a scan over a range

of incident photon energies is necessary to obtain a more complete picture. Fig. 4.2

(b) shows the optical emission peaks that are used to locate the energy of optical
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Figure 4.3: Inelastic light scattering spectra of excitations at ν=1/3 as a function of
the energy shift (with total magnetic field BT =8.0 T, 33nm wide QW, 5.6×1010cm−2

and a tilt of 30o). The energy is shown in units of e2/εlo on the top scale, where lo
is the magnetic length and ε is the dielectric constant of GaAs. The upper panels
show peaks of several modes for certain selected incident photon energies. The lower
panel contains a color plot of the intensities of both (a) “low energy” and (b),(c)
the novel high energy modes. The vertical lines mark the positions of the collective
modes. The symbols, explained in the text, identify the modes with excitations of
CFs across several ΛL′s, both with and without spin reversal.
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gaps used in resonant enhancement of light scattering. To better identify modes, I

replotted the light scattering data on an energy shift scale, as shown in Fig. 4.3.

Data are shown as raw spectra (top panels) and as a colorplot (bottom panels). The

data displayed are now a function of the energy transfer ω = ωL − ωS. Each peak

indicates the presence of a collective mode. The collective mode energies are marked

by vertical lines and labeled by comparing data with theoretical predictions; I will

describe this in more detail below. The previously observed modes lie at energies

below ∼ 1 meV, as seen in Fig. 4.3a. The most striking feature of the spectra shown

in Fig. 4.3b and 4.3c is the existence of a number of new modes all the way up to

1.6 meV, the largest energy exchange accessed in our experiments.

It is natural to interpret these new modes in terms of excitations of CFs across

K levels, where K is an integer or zero. These excitations are referred to below as

“level-K excitons”. Previous experiments at ν = 1/3 had reported only level-1 SC

excitons and level-0 SF excitons [78, 79, 28, 122]. Level-2 and level-3 CF excitons

were recently investigated theoretically[92] in the context of the splitting of the 1/3

collective mode at small but nonzero wave vectors [122]. Because the modes may

also involve spin reversal, we adopt the notation in which we denote the level-K spin-

conserving modes by ∆α
cK and the level-K spin-flip modes by ∆α

sK . The superscript

indicates the wave vector position of the mode: we have α = 0 for the zero wave

vector mode, α = ∞ for the large wave vector limit, and α =R for a roton mode.

Identifications of the various modes shown on Fig. 4.3 are based on the analysis

below.

4.3.1 Theoretical Considerations

The dispersions of the SC and SF excitons can be obtained by the method of CF

diagonalization (without Landau level mixing and disorder) [123, 92]. CF diagonal-
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ization is the mathematical process in which IQHE wavefunctions are transformed

into FQHE wavefunctions or CF wavefunctions and the eigenenergies of the result-

ing quasiparticles calculated. For a more accurate comparison, two realistic effects

are included: The finite width modification of the interaction is incorporated via

a self-consistent local density approximation. Also, Λ level mixing is allowed by

considering the five lowest energy CF excitons. A combination of these two effects

results in a 20 % reduction of the energy of the level-2 and level-3 excitons, and

a smaller (∼ 10 %) reduction in the energy of the level-1 exciton[92]. Figure 4.1

shows the full theoretical dispersions of the CF exciton branches for SC and SF

modes as taken from Ref. [92]. The calculations were performed for 200 (100)

particles for SC (SF) modes and reflect the thermodynamic behavior (that is, it

embodies the characteristics of a macroscopic system not limited by finite size ef-

fects) [5]. The three dispersion curves indicated in Fig. 4.1b are assigned as level-0,

level-1 and level-2 for SF modes and level-1, level-2 and level-3 for SC modes, in

order of increasing energy. The residual interaction between CFs in principle mixes

the different “unperturbed” level-K excitations; however, the modes do not mix sig-

nificantly at large qlo, which allows the continued use of the level-K nomenclature

even for mixed modes. In the zeroth order approximation, interacting electrons

form non-interacting CFs. Nevertheless, some “left over” interaction is needed to

explain the full breadth of phenomenology of the FQHE, though, most fractions can

be explained using the non-interacting CF approximation discussed in Chapter 2.

Figure 4.4 shows a comparison of the CF excitons with exact diagonalization studies

on a finite system and serves to corroborate the effectiveness of CF theory.

Level-1 SC modes and level-0 SF modes have been identified in previous experi-

ments [122, 78, 79]. The mode at 0.46 meV is a spin texture (ST) mode as already

shown in Refs. [79, 78]. Of interest here are the higher lying modes. We proceed by

sorting the experimental values of the new modes in ascending order and matching
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Figure 4.4: Comparison of CF excitons with exact diagonalization results (in spher-
ical geometry) for eight particles at ν = 1/3. The red stars show the CF exciton
dispersions for the lowest three SC branches for this system as a function of the
total orbital angular momentum L. The exact spectra are taken from Ref.[14]. The
area of each black rectangle is proportional to the normalized spectral weight un-
der the state; larger spectral weight implies greater intensity in Raman scattering.
The level-1 and level-2 CF excitons closely trace lines of high spectral weight; it
is possible that still higher modes will become identifiable in the exact spectra for
larger systems. The other states in the exact spectrum are interpreted as made up
of multiple excitons, which are expected to couple less strongly to light [15].
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Figure 4.5: Raw spectra are compared with theoretical calculations (from Ref. [5])
of charge and spin modes. (a) Shows the theoretical dispersion of charge modes
of composite fermion Λ levels at 1/3 filling. (b) Waterfall spectra are in order of
increasing incident photon energy from top to bottom. These spectra show the
original data used to construct the colorplot in Figs. 4.2 and 4.3. Dashed lines are a
guide to the eye and show that for the lower energy modes, the discrepancy between
experiment and theory is small. Higher energy modes are shifted from experiment
due to disorder, Γ (∼0.22 meV). (c) Shows the theoretical dispersion of spin modes
of composite fermion Λ levels at 1/3 filling [5].
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them up with theoretical values. Fig. 4.5 compares experimental and theoretical

data. Fig. 4.5(b) shows light scattering spectra of low and high energy modes.

Panels (a) and (c) show the calculated dispersions for charge and spin modes re-

spectively [5]. Dashed lines illustrate how critical points in the dispersion (such as

∆R
c1 in panel (a)) delimit the energies of peaks in ILS. The resulting comparison

between theory and experiment is summarized in Fig. 4.6. The theoretical results

for the energies of level-1 excitons are in excellent agreement with the experimental

results. The only exception is the long wavelength collective mode ∆0
c1, for which

the discrepancy is closer to 35 %, but a ∼ 20 % agreement is achieved when screen-

ing of the single exciton by two-roton excitations is taken into account [124]. This

correction, not included in the calculation shown in Fig. 4.1, is incorporated in Fig.

4.6.

4.3.2 Experimental considerations and comparison with cal-

culations

It is significant that mode energies predicted by theory agree to within 0.2-0.3 meV

with measured energies, which translates into a better than 20 % agreement. It

should be stressed that a similar level of deviation between the theoretical and

experimental values of the excitation energies has been found in the past for other

excitations, and attributed to disorder. We judge the overall comparison between

theory and experiment to be quite good, and take it as a strong support of the

identification of the high energy collective modes ranging from about 1.0 meV to

1.6 meV in terms of transitions of composite fermions into higher levels.

Before closing this Section, we note that because of the presence of a large

number of modes, sometimes two or more modes happen to lie at very nearby

energies, and therefore may not be resolved in our experiments. For example, for
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Figure 4.6: Comparison between experimental energies (from Fig. 4.3, red circles)
with theoretical CF exciton energies (from Fig. 4.1, blue stars), organized according
to the level of the excitation. The identification of experimental modes is explained
in the text. The discrepancy between theory and experiment, less than 0.2-0.3 meV,
is presumably caused by disorder. Estimated error bars for the experimental values
are shown, unless smaller than the symbol size [5].
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SC modes, the energy of the level-3 roton overlaps with the small q (ql ∼ 0.6) critical

point of the level-2 exciton (see Fig. 4.1b). As another example, the small q (ql

∼ 0.8) critical point of the level-3 exciton overlaps in energy with the large wave

vector limit of the level-3 exciton. When encountering such a situation, we have, for

simplicity, arbitrarily assigned one of the possible labels to the observed mode (∆R
c3

and ∆∞c3 , respectively, for the above two cases). The assignment remains tentative

in such cases, and more sensitive experiments in the future may reveal further finer

structure.

4.4 Summary

This study describes the first light scattering studies to show that CFs can be excited

across multiple ΛL′s. Moreover, this is the only experimental work that has excellent

agreement with theoretical predictions. This work allows a quantitative estimate for

the robustness of the topological quantum states of the FQHE. Furthermore, the

results reported in this Chapter set the stage for further investigations in other FQH

states in GaAs, and also in other two dimensional systems, such as graphene, where

the FQH physics is in its infancy [109, 110]. I will present in later chapters examples

of other large wavevector, high energy modes in the context of higher Landau level

excitations.
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Chapter 5

Studies of Spin and

Inhomogeneous phases in the

second Landau Level

5.1 Overview

In this chapter, the spin degrees of freedom in quantum phases of the second Landau

level are probed by resonant light scattering. In uniform systems, the long wave-

length spin wave mode, which monitors states of spin polarization, is fixed at the

Zeeman energy in the fully spin polarized state at ν=3. This is a consequence of

Larmor’s theorem and is illustrated in Fig. 5.1. Fig. 5.1a shows the spectral weight

due to the long wavelength spin wave excitation fixed at EZ . Fig. 5.1c shows an

energy level diagram of the spin exciton that gives rise to the spin wave, the long

wavelength dispersion of which is shown in panel (b). Monitoring the SW provides

insights on spin degrees of freedom that seem to us more reliable than other methods

such as the Knight shift [36] or optical emission spectroscopy [125]. Surprisingly,

as we will see in this Chapter, at lower filling factors the intensity of the Zeeman
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Figure 5.1: (a) Inelastic light scattering spectra of the intra-LL SW mode at ν = 3
and BT = 5.3 T taken at different laser photon energies (shown on the left). (b)
Shows the SW dispersion curves calculated within the Hartree-Fock approximation
[12, 16] for a 24 nm wide quantum well. The long-wavelength region of the SW
dispersion is shown. (c) Energy level diagram shows the excited state at ν = 3 that
gives rise to the SW excitation.
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Figure 5.2: Magnetoresistance trace for filling factors 3 > ν > 2. The state at
ν = 5/2 is delimited along with other magic filling factors in the N=1 LL. Reentrant
integer quantum Hall effect phases (RIQHE) are shown with arrows. RIQHE states
are states which have non-integer filling factors yet have Rxy values of neighboring
IQHE states. Taken from Ref. [17]

mode collapses, suggesting the emergence of complex phases and significant loss of

spin polarization. A novel broad continuum of low-lying excitations emerges that

dominates near ν=8/3 and ν=5/2. Resonant Rayleigh scattering, simultaneous to

inelastic light scattering experiments, reveals that the quantum fluids for ν < 3

break up into robust domain structures of distinct phases. Domains for ν < 3 have

smaller size than inhomogeneous regions at ν = 3 [66, 96]. These domains may be

small enough to disrupt the long wavelength SW. While many theoretical studies

consider the state at ν = 5/2 to be fully polarized, our results reveal unprecedented

roles for spin degrees of freedom.



5.1. OVERVIEW 94

Figure 5.3: Magnetoresistance trace (longitudinal resistance, Rxx versus changes
in the perpendicular magnetic field, B[T ]) around ν = 5/2 showing the effect of
varying sample tilt, θ (T = 20 mK). The inset is an enlargement showing the trend
of the minima at ν = 8/3, 5/2 and 7/3. These data are taken from Ref. [18].
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5.2 Background

The study of the quantum Hall effect in the second (N=1) Landau level (LL) is

at the forefront of physics research. In the second LL lies the state at filling factor

ν = 5/2 (shown in Fig. 5.2 and 5.3) [126, 127, 17], the best known even denominator

quantum Hall state - defying the paradigm of odd-denominator fractional quantum

Hall states [49, 52] and leaving a challenge to the understanding of quantum Hall

physics. The 5/2 quantum Hall state is predicted to realize a non-abelian phase

(discussed later in this section) - the Moore-Read Pfaffian [93], an exotic form of

matter, still unconfirmed experimentally. The Moore-Read state may facilitate the

implementation of topological quantum computation [32]. Efforts are being made

to confirm the remarkable properties of the 5/2 state [121].

The discovery of the first even-denominator fractional quantum Hall state at

ν = 5/2 by Willett et al.[126] has engendered a great wealth of scientific interest in

the origin of this enigmatic state. After 24 years of investigation, there still remains

many open questions on the nature of the state at 5/2. Soon after its discovery,

Eisenstein et al. found that the activation gap at 5/2 was reduced with increased

tilt or in-plane magnetic field [33]. At first this seemed to suggest that the state at

5/2 was spin unpolarized. Nevertheless, subsequent to that finding, a great many

theoretical studies garnered strong evidence for a fully spin polarized 5/2 state. For

instance, the work by Morf [30] is accepted as providing numerical evidence for a

spin-polarized state. Subsequently, a great deal more work was done at 5/2, much

of which has focused on its spin degrees of freedom. To date, the debate on whether

or not the state at 5/2 is spin polarized or not continues[128, 36, 66, 38, 37, 125, 30].

As described by Moore and Read, the Pfaffian wave function is a p-wave paired

BCS state of composite fermions at 5/2 filling [93, 29]. The “p-wave” term describes

the even symmetry of the spin part of the wavefunction - it is a spin triplet which
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is even under exchange [72]. Consequently, the state is spin-polarized. The quasi-

particles at 5/2 pair to form a gapped or incompressible state; contrasting with the

compressible Fermi sea at ν = 1/2, where there is no energy gap between the ground

and excited states.

Much of the interest in the state at 5/2 is driven by the prediction that its

excitations should obey non-abelian braiding statistics [32, 121, 129]. What does

it mean to have non-abelian braiding statistics? How is it different from Fermi or

Bose statistics? In mathematics, the term non-abelian refers to the property that

the multiplication of two elements in a group does not commute. In physics, for

abelian particles like bosons of fermions, winding a particle A around a particle

B and vice verse are equivalent processes that will only result in multiplying the

wavefunction by a sign. There is another class of abelian particles called “anyons”

- the exchange of which will result in multiplying the wavefunction by a phase, eiθ.

The special cases, θ=0 and π correspond to bosons and fermions respectively. A

marked difference in the behavior of particles under exchange arises in the case of

non-abelian particles. Exchanging two non-abelian particles does not just multiply

the wavefunction by a phase, instead it takes the system from one ground state to the

other. Another remarkable property of non-abelian particles is that the order of the

exchange of particles defines the properties of its ground state. It is this remarkable

property that lies at the heart of using particles with non-abelian statistics as the

starting point for developing topological quantum computation. As already alluded

to, particles with non-abelian statistics are predicted to be realized in quantum Hall

systems, in particular, in the quantum fluid at ν = 5/2. The excitations from the

ground state at ν = 5/2 form the quasiparticles that braid and obey non-abelian

statistics. An excellent review article that goes into much more detail that can be

allowed here is given by Stern [121]. Even more in depth discussions can be found

in Refs. [32, 129].
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Despite the numerical evidence that the Moore-Read state at ν = 5/2 should be

spin polarized [30]; a definitive experimental verification is still lacking. For instance,

transport measurements [17, 130, 38] suggest that the role of spin for the states at

ν=5/2, 8/3 and 7/3 disagrees with accepted theoretical models. For example, Fig.

5.3 illustrates that the state at ν = 5/2 grows weaker with tilt, whereas a spin

polarized state is expected to grow stronger with tilt [18, 33]. Consequently, these

tilt measurements seem to contradict the prediction that the state at ν = 5/2 is

spin polarized. Nevertheless, great strides towards understanding the 5/2 quantum

Hall state and its spin degrees of freedom have been made with recent experimental

and theoretical work [131, 132, 133, 134, 135, 125, 37, 136]; though a complete

understanding still evades our grasp.

Resolving the “puzzle” of spin states of the 5/2 quantum Hall state has emerged

as an important challenge that would create key insights on the physics of quantum

fluids in the second LL. Read [29] had suggested using the Knight shift to study the

spin polarization of the 5/2 state. Recent Knight shift results, though controversial,

support the idea of spin polarized fluids throughout the second Landau level [36].

Rhone et al. [133] have used inelastic light scattering to study the spin polarization

of states in the second LL and at ν = 5/2 in particular. The work suggests that

quantum fluids observed at 5/2 may not have full spin polarization. However, this

interpretation must be qualified due to the formation of robust domain structures

of sub-micron size. These domain structures could suppress the SW excitation -

our indicator of spin polarization. Further evidence for the loss of spin polarization

at 5/2 has been presented in theoretical work [134] and is reported in an optics

experiment [125]. In addition, recent theoretical evidence supports the existence of

domains for filling factors close to 5/2 [26].

Unlike transport measurements, which have impact of the edge states of the

quantum fluid, light scattering measurements probe the excitations of the bulk states
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of the quantum fluid, albeit there are edge states at the boundaries of distinct

domains. Consequently, light scattering is a unique tool which serves to provide

further insight into the complex behavior of the highly correlated states of quantum

fluids.

Furthermore, there is evidence for competing phases in the second LL, first seen

from magnetotransport measurements [17]. Fig. 5.2 illustrates that the FQHE state

at ν = 5/2 is surrounded by two reentrant integer quantum Hall effect (RIQHE)

states. That is, the quantum Hall fluid at 5/2 is surrounded, at slightly higher and

lower filling factors, by “electron solid” (charge density wave) phases. The presence

of both electron solid phases and fluid phases implies competition between these

phases. Parameswaran et al. [26] describe a mechanism for phase separation at

filling factors close to 5/2. The effect is linked to the claim that the Moore-Read

state is a type-I superconductor in the presence of Coulomb interactions. In analogy

with cooper pairs in conventional BCS superconductivity, the coherence length, ξ

of these paired quasiparticles is much greater than their screening length, λ. The

coherence length, ξ characterizes variations in the superfluid order (i.e. the region

over which Pfaffian order decays). The screening length, λ characterizes the decay

of density deviations. In the limit λ � ξ, the quasiparticle has a peculiar “vortex

structure” - with magnetic flux spanning a region of size λ while the order parameter

is suppressed over a much larger region of size ξ. That is, the charge density is

confined to a much smaller region, λ, than the region over which the Pfaffian order

decays, ξ. According to Parameswaran [26], it is energetically favorable for these

particles to agglomerate in the presence of Coulomb interactions. That is, the energy

gained by overlapping regions of size ξ is greater than the energy cost due to coulomb

interactions from regions of size λ. This agglomeration is linked to frustrated phase

separation of quantum phases [137, 138] which form domains and assemble into

crystalline structures (a triangular lattice of clusters of quasiparticles).
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Figure 5.4: Color plot of optical emission spectra. Changes in peak intensity are
represented by variations in color. The color plot describes how the intensities and
scattered photon energy of optical emission spectra change with total magnetic field.
The splitting of the peaks, to zeroth order, is determined by the eigenenergies of
the harmonic oscillator, EN = ~ωc(N + 1/2), where N is the Landau level index.
Dotted lines delimit sets of peaks due to a particular Landau level index. Dashed
lines delimit integer filling factors identified by certain features of the Landau fan
diagram.

5.3 Results and Discussion

5.3.1 Overview

Determining precisely the magnetic field for ν = 3 (and other filling factors) is im-

portant for the interpretation of our results. One method is to vary the magnetic

field until the maximum spin wave intensity is observed. Alternatively, a simpler

measurement of the optical emission can be made. Figure 5.4 shows how the lu-

minescence peaks fan out with changes in magnetic field. After matching peaks to

emission from occupied Landau levels, one monitors when a certain Landau level

(or its spin branch) becomes unoccupied, with increasing magnetic field, by deter-
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mining at which field its spectral weight vanishes. This vanishing spectral weight

indicates the traversing of an integer filling factor. Optical emission is useful for

determining some features of the 2DES, even though interpretation of luminescence

spectra can be quite challenging. While a detailed analysis of luminescence is be-

yond the scope of this discussion, some studies claim that optical emission reveals

spin properties of FQHE systems [106, 125]. Ref. [125] claims that optical emission

describes the state at ν = 5/2 as being spin unpolarized. It is unclear however how

formation of domains in the quantum fluid would influence luminescence spectra

and the interpretation of the results in Ref. [125].

The optical emission spectra in Fig. 5.4 show the depopulation of Landau levels

with increasing magnetic field. In addition to nicely illustrating the existence of

Landau levels discussed in Chapter 2, analyzing the Landau Fan Diagram (collection

of optical emission spectrum with energy spacing that changes with magnetic field),

allows us to determine the spin orientation of spin split Landau levels by analyzing

left circularly polarized (LCP) and right circularly polarized (RCP) spectra [139].

For instance, Fig. 5.4 shows three peaks that are linked to emission from the N=1

LL. Circular polarization measurements reveal that the two lower energy peaks

originate from energy levels which have the same spin orientation. The highest

energy peak originates from an energy level with reversed spin orientation. The

highest energy peak is linked to the upper spin branch. The two lower energy

emission lines are linked to the lower spin branch. Furthermore, we expect that the

optical emission from the N = 1, ↓ LL (upper spin branch) to be quenched before

the emission of the lower spin branch, as magnetic field is increased. This is just

what we see in Fig. 5.4 as the magnetic field approaches 5.3 T. It is noteworthy

that traversing an IQHE state via sweeping the magnetic field results in a kink in

the N=0 LL emission. This effect is a consequences of many-body effects linked to

charge degrees of freedom [139].
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Optical emission studies help to determine the location of a filling factor with

respect to B[T] and the location of optical gaps used for resonance enhancement of

light scattering. Further to this, the spin degrees of freedom of the N=1 LL can

be addressed by resonance inelastic light scattering (RILS) and resonance Rayleigh

scattering (RRS). RILS data focus on spectral weight with non-zero energy shifts

from the incident laser wavelength, while RRS data comprise only the spectral

weight of elastically scattered light. The optical transitions for RRS are similar to

those of RILS save for the fact that ωL = ωS. Electrons are excited from some

initial state |1〉, to some intermediate state |2〉. Subsequently, a scattered photon

is emitted by the reverse process - from |2〉 to |1〉. There is no energy transfer to

the system[140]. Both RILS and RRS provide unique probes into condensed matter

systems. For instance, the spin degrees of freedom in the N=1 LL are monitored

by changes in the RILS intensity of the long wavelength spin wave (SW) at the

Zeeman energy, EZ [95]. Unexpectedly, the spin wave intensity, an indicator of

spin polarization, collapses rapidly for ν < 3. The RRS effect that, like the collapse

of the mode at EZ , appears below ν = 3, reveals that the quantum fluids in the

partially populated N=1 LL are highly inhomogeneous, breaking up into “puddles”

that have characteristic sub-micron dimensions. Details will be discussed below.

Figure 5.5 shows the collapse of the SW mode at EZ for ν < 3. As we will see in

Fig. 5.6, this is accompanied by the emergence of continua of excitations (below and

above EZ) that can be regarded as low-lying excitations of new quantum phases in

the N=1 LL. As will be discussed below, the similar resonance enhancements of the

low-lying continua and of RRS is evidence that the possible lost spin polarization,

seen as the replacement of the peak at EZ by a low-lying continuum of excitations,

arises from the domains (“puddles”) of quantum fluids that emerge for ν < 3.

Most likely, the emergence of “puddles” are linked to competition between quan-

tum phases reported in other experiments [17, 130, 38, 141, 142]. The present results
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Figure 5.5: Evidence of loss of spin polarization away from ν = 3. (a) Color plot of
resonant inelastic light scattering spectra with varying magnetic field shows the spin
wave (SW) at the Zeeman energy, EZ . The intensity of the SW attenuates away
from ν = 3 (BT=5.32T). The top inset shows the light scattering geometry. The
bottom inset exhibits a spectrum at ν = 3.01. (b) N=1 optical emission involved in
resonance enhancement of light scattering (BT=5.3T,θ=20o, T=40 mK). The left
inset shows the two step inelastic light scattering process for the SW. The right inset
is the energy level diagram for optical emission from the N = 1, ↑ LL.

differ from prior work in revealing a potential loss of full spin polarization and that

this remarkable character persists to temperatures as high as 1K and above. Do-

mains which might be lacking full spin polarization are here a key feature of the

quantum phases of the N=1 LL. We note that further studies of condensation into

the quantum Hall state at ν = 5/2 may still result in an incompressible fluid that

has spin polarization and exhibits a well defined SW excitation.
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5.3.2 Collapse of Spin Wave at EZ for ν < 3

The striking collapse of the scattering intensity of the SW at EZ for ν . 3 is shown

in Fig. 5.5(a). The color plot shows RILS spectra, taken at different magnetic fields

at the resonance value of ωL (the value for ωL that induces resonance enhancement,

ωR, varies with the cyclotron energy and E1,↑). All the features appear predomi-

nantly in the depolarized configuration (VH) which, according to light scattering

selection rules, indicates their spin origin [143]. While Larmor’s theorem requires

that the SW’s energy remains at the bare Zeeman energy, its overall spectral weight

is expected to depend sensitively on the degree of spin polarization [12, 95]. The

collapse of the SW intensity could be interpreted as revealing the reduction of spin

polarization in the N=1 LL from its maximum value at ν = 3. While, a reduced SW

intensity is expected for ν > 3 (both N = 1, ↑ and N = 1, ↓ are populated reduc-

ing the overall spin polarization), the “sudden” attenuation of the SW intensity for

ν < 3 is surprising (N = 1, ↑ depopulates as B increases) and suggests a rapid loss

of spin polarization below ν = 3. This is remarkable because simple mindedly we

expect that the 2DES remains fully spin polarized after N = 1, ↓ is emptied. The

lower spin branch contains electrons of the same spin orientation and consequently,

in a single particle picture, the spin polarization should be constant for 3 > ν > 2.

5.3.3 Coexisting phases

As discussed in Chapter 2, magnetotransport and microwave resonance measure-

ments of the second LL reveal evidence for competing electron solid and fluid phases

via the presence of RIQHE phases and conventional FQHE phases. Light scatter-

ing is an alternative, unique means to probe the competition between FQHE liquid

phases and electron solid phases. The coexistence should appear as the presence of

two modes at the same filling factor. Strikingly, inelastic light scattering spectra
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Figure 5.6: Coexistence of novel quantum phases with the ferromagnetic SW. (a)
Tuning the incident photon energy for excitations at filling factor slightly away
from ν=3 (ν=2.9, BT=5.5 T, T=40mK) induces the collapse of the SW and the
emergence of a continuum of low lying energy excitations. The SW resonance is at
higher photon energy than that of the continuum. (b) We monitor the behavior of
the low-lying excitations while tuning the filling factor [19]. We track two distinct
modes below ν = 3 - the SW and continuum of low-lying excitations. The insets
show the SW collapse while the main panel shows the emergence of the continuum
of low-lying excitations. The continuum is resonant at slightly lower incident photon
energy, ωL(BT ) (ωL is a function of BT ) than the SW.
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Figure 5.7: Temperature dependence measurements at various filling factors of low-
lying modes. The continuum (black lines) melts at elevated temperature. The
SW (red lines) reemerges at elevated temperature for ν '8/3 (BT=6.0 T) and 5/2
(BT=6.42 T, in the red spectrum at 2K there is a glitch at EZ not visible on the
scale shown). The dashed line in the lower left panel is a guide to the eye.
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could be interpreted as revealing coexistence of phases which could manifest evi-

dence for the existence of competing RIQHE and FQHE states. For ν . 3, tuning

the incident photon energy results in striking spectral changes that are due to dif-

ferences in resonance enhancements. This is illustrated in Fig. 5.6(a) which shows

the metamorphosis of the sharp SW at EZ to a broad continuum of lower energy

excitations at ν=2.9 when tuning ωL. The continuum extends from well below EZ

to about 0.3 meV. In Fig. 5.6(b) the evolution of the continuum (main panel) and

SW (inset) intensities is shown as a function of filling factor. Since the intensity of

the SW and continuum resonate at different values of ωL, RILS spectra are shown

for values of ωL corresponding to their maximum resonant enhancement: E1,↑ for the

continuum and E1,↑+δE for the SW (where δE can vary but is roughly 0.4 meV).

While the SW intensity is clearly reduced for ν . 3, the continuum intensity, absent

at ν = 3, gains in strength away from ν = 3 indicating its link with the loss of spin

polarization. Moreover, in contrast to the N=0 LL, where Skyrmions proliferate at

ν ∼ 1 [95], we surmise that the continuum of low-lying excitations at ν . 3 have

a different origin. We speculate that the continuum could be a novel type of spin

excitation associated with reduced SW intensity.

This interpretation is further bolstered by the absence of continua for ν . 3 in

polarized configuration (HH) while still being present in depolarized configuration

(VH). This contrast is lost when ν . 8/3. Figure 5.7 shows the temperature de-

pendence of the RILS spectra at three filling factors reaching to 5/2. At ν=2.85,

the broad continuum seen at 40 mK melts entirely at 1 K, while the SW intensity

at EZ remains or even gains in strength. At ν' 8/3, the continuum dominates at

low temperature, begins to melt at 1 K and is destroyed by 2 K. The sharp SW at

EZ reemerges at 1 K and is fully recovered by 2 K. While the spectral weight of

the continua at ν ∼ 8/3 are greater in VH than in HH, they are the same in both

VH and HH at ν ∼ 5/2 indicating a more complex excitation spectrum at ν=5/2,
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Figure 5.8: Dependence of spectral weight at different filling factors with polarization
selection rules. At ν = 3, the SW is seen at the Zeeman energy. Depolarized spectra
are stronger than polarized spectra, showing the spin polarized nature of the state
at this filling factor. For filling factors less than three, polarized spectral weight
grows stronger relative to depolarized spectral weight. At ν = 5/2, depolarized and
polarized spectral weight are equal suggesting the presence of complex roles for both
spin and charge density excitations for the state at ν = 5/2.
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possibly involving both charge and spin degrees of freedom (data shown in Fig. 5.8).

The temperature dependence for excitations at ν'5/2 is remarkable. As the

temperature is raised to 1.5K, the continuum begins to melt, and is still present,

albeit greatly reduced, at 2K. In addition, a small bump is seen at EZ - hinting at

a reemerging long wavelength SW. We note that the observed continuum does not

seem to be an unique feature of the magic filling factors or gapped quantum Hall

states. However it is a feature of the quantum fluids of the 2nd LL and appears to

grow more robust as ν is tuned below three.

5.3.4 Emergence of Domains: Inhomogeneity in the 2nd LL

The spectra in Figs. 5.6 and 5.7 suggest competing quantum phases. One phase

is associated with a sharp SW at EZ and the other with the continua of low-lying

excitations. To further explore these behaviors we measured RRS spectra. Figure

5.9 reports the results at several filling factors: RRS spectra at ν ∼ 5/2 and 8/3

show marked resonance enhancements at energies that coincide with the maximum

resonance enhancement of the continuum, and contrasts with the unremarkable RRS

profile of the ferromagnetic state at ν ∼ 3.

RRS is linked to spatial inhomogeneities or domains of competing phases, which

are on the order of the photon wavelength (∼ 240nm in GaAs) [20]. The RRS results

clearly demonstrate formation of domains in the quantum fluid at ν . 3, that are

consistent with transport measurements showing the competition between nearly

degenerate quantum phases in the second LL which include spatially inhomogeneous

ones associated with the RIQHE [141, 17]. In addition, domain formation at ν =

5/2 could manifest from relatively large quasiparticles, as suggested in Ref. [144]

which reports quasiparticles of diameter 12lo (or 120 nm at 6.4 T). Though the

ferromagnetic state at ν = 3 is not spatially homogenous, there exists only one
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phase. Furthermore, at ν = 3, electrons localize in space on length scales . 1µm,

greater than the photon wavelength [96]). As a result, RRS is suppressed.

5.3.4.1 Melting of “Quantum Puddles”

The temperature dependence of RRS shown in Fig. 5.10 shows a gradual weaken-

ing of the RRS upon increasing temperature and supports the picture that at low

temperatures an inhomogeneous electron condensate forms at 5/2 and 8/3. We in-

terpret the attenuation of RRS at higher temperatures as the melting of puddles of

quantum phases. The inset to Fig. 5.10 shows that a Langmuir adsorption isotherm

(Eqn. 5.1), that interprets the formation of inhomogeneous integer quantum Hall

fluids [20], also describes results at 5/2 and 8/3. In this framework, we describe nu-

cleation of “quantum puddles” to binding sites - forming domains in the quantum

fluid. The areal intensity of the RRS, IRRS is given by,

IRRS(T ) =
I0RRS

1 + CTexp(−Eb/kT )
(5.1)

Eb is the binding energy of particles to binding sites and C = 2πMkb/Nph
2, where

Np can be viewed as the density of binding sites and M as the mass of the bound

particle. A fit to data shown in the Fig. 5.10 inset yields an estimate of the density

of binding sites, NP ∼5 × 109cm−2, with M as the composite fermion (CF) mass

of about 10 times the effective electron mass [145]. Using NP , we can estimate an

upper limit for the size of the domains ∼ 142nm. The binding energy is Eb∼0.06

meV (600 mK). The presence of domains in the quantum fluid of the N=1 LL

has implications for the spin properties of the system. The formation of domains

has the potential to destroy the long range magnetic order and its associated long

wavelength excitations. Consequently, the sharp SW at EZ might not effectively

monitor local polarization. Thus, within the domains, determining the exact nature



5.3. RESULTS AND DISCUSSION 110

of the spin polarization remains challenging.

It is interesting to compare the RILS results at 8/3 and 5/2 with those for the

states of their analogs in the N=0 LL - ν=2/3 and ν=1/2. At similar magnetic

fields, the states at ν=2/3 and ν=1/2 are characterized by a well-defined SW at EZ

[146, 95]. This indicates spin polarized states at 2/3 and 1/2.

The temperature dependence of the continuum close to 5/2 is reminiscent of

work reported by Willett et al. [147], showing that a CF Fermi sea at ν=5/2 exists

within the temperature range 300mK<T<1100mK. The signature of the CF Fermi

sea becomes weaker with elevated temperatures. It is possible that the continuum

of low-lying excitations at 5/2 might be a signature of a CF Fermi sea.

The above results seem to indicate that the observed collapse of the SW intensity

found in the N=1 LL occurs in domains of characteristic sub-micron length - a length

scale so small the long wavelength SW may not be well defined. It is thus conceivable

that there may be no contradiction among works reporting spin polarized states at

8/3 [38] and at 5/2 [132, 131, 135, 128, 93, 36, 148]. In this scenario, spin polarized

domains could coexist with quantum Hall fluids that have lost spin polarization. The

presence of residual disorder suggests that at 5/2, a new type of Skyrmion structure

may proliferate in the ground state that may be the origin of the spin un-polarized

domains at this filling factor[134]. Furthermore, Wojs et al. predict that long-

range disorder could nucleate puddles of quasiparticles, which could be composed of

Skyrmions or Anti-Skyrmions. At 5/2 the dimension of the spin polarized domains

might be sufficiently small to disrupt completely the long wavelength SW. Therefore

at this filling factor we cannot dismiss the possibility of polarized domains at low

temperature.

Further research is required to determine if un-polarized, together with polarized

domains may be a general feature of the quantum fluids in the 2nd LL (including

at ν = 5/2) - continua being linked to partially polarized or un-polarized domains.
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Figure 5.9: RRS resonance profiles for ν=3.01, 2.9, 2.66 and 2.49. No resonance
enhancement is seen for the ferromagnetic state at ν = 3. At ν = 2.9 some structure
in the resonance profile develops. At ν = 2.66 and ν = 2.49, a resonance is seen
at E1,↑. Black dashed lines represent optical emission while colored peaks represent
elastically scattered light intensity. Diamonds (Stars) represent the spectra in which
the SW (continuum) has a maximum resonance.
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Figure 5.10: Temperature dependence of RRS for ν ∼ 5/2. Optical emission spectra
(continuous lines) along with the laser peak heights (scatter plots) of RRS intensity
are displayed. A peak in the resonance enhancement of the elastically scattered
light coincides with the maximum intensity of the continuum. This enhancement is
attenuated at elevated temperatures. The inset shows the relationship between the
area under the RRS profile and temperature. The solid line represents a fit to the
data using the Langmuir isotherm[20].

Figure 5.11: Cartoon showing the presence of sharp SW modes and broad continuum
modes with changes in both temperature and filling factor.
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A cartoon illustrating the interplay between the SW and the continuum is given in

Fig. 5.11. A possible mechanism for the formation of continua of spin excitations as

reported here could be similar to that of spin-flip excitations in the N=0 LL [146],

whose spectral weight below EZ emerges if the CF Fermi energy is greater than

the CF spin reversal gap energy. In addition, the evidence from light scattering

for coexisting phases near 5/2 could be linked to characteristics associated with the

Moore-Read state. As discussed early in the Chapter, Parameswaran et al. [26]

explain how the Moore-Read state, as a type-I superconductor with ξ � λ will give

rise to frustrated phase separation of phases in the presence of Coulombic interaction,

when ν is tuned slightly away from half filling. The work predicts domain formation

of quantum phases close to 5/2, in agreement with my finding.

5.4 Summary

I have presented the first light scattering studies of quantum Hall states of the N=1

LL, with a focus of better understanding the spin degrees of freedom of the state at

ν = 5/2. A collapse of the long wavelength SW at EZ for ν . 3 may not indicate

in a conclusive fashion the loss of full spin polarization in the N=1 LL from its

maximum at ν = 3. The absence of a mode at EZ for ν ' 8/3 and ν ' 5/2, and the

emergence of quantum phases composed of sub-micron domains seen in RRS pose

striking new challenges for the interpretation of roles of spin degrees of freedom in

the second LL. Novel domain structures could disrupt the long wavelength SW and

be composed of both spin polarized and spin unpolarized regions. This is especially

the case for the quantum fluids around ν = 5/2.
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Chapter 6

Third Landau level and electron

crystallization

6.1 Overview

The spin degrees of freedom of phases in the third Landau level are probed by reso-

nant inelastic light scattering. The long wavelength spin wave mode, which monitors

the degree of spin polarization, is at the Zeeman energy in the ferromagnetic state

at ν=5. For ν < 5 the spin wave intensity remains robust. This is contrary to the

rapid collapse of the SW in the 2nd Landau level (as discussed in the previous chap-

ter), suggesting different roles for spin degrees of freedom in the second and third

Landau levels. The caveat being that the spin wave may not be a good indicator of

spin polarization under certain conditions, such as under the formation of domains

of sufficiently small size. Recall that these considerations were discussed at the end

of Chapter 3 and in Chapter 5. A continuum of low-lying excitations emerges for

ν . 4 + 4/5, and coincides with the emergence of competing electron solid and fluid

phases at that filling factor [7, 23]. Signatures of competing spin wave and contin-

uum modes persist to half-filling (ν = 4 + 1/2). These results could be evidence for
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competing conventional quantum Hall states and charge density waves in the 3rd

Landau level, and manifest intriguing roles of spin degrees of freedom in the N=1

LL and N=2 LL.

6.2 Background

As discussed in the previous chapter, the second LL contains the state at ν =

5/2 [126, 127], a topic of great current interest. For this reason, other phases of

the second Landau level along with those of the third Landau level have attracted

interest. Efforts are being made to better understand how the physics of the states

in the lowest Landau level are different from those of higher Landau levels (N ≥ 1).

Several studies have examined these higher LLs [7, 40, 149] and describe the unusual

features of the states therein. In this chapter I will focus on the N = 2 LL. In this

third LL there exists insulating phases that have the Rxy values of neighboring

integer filling factors but have non-integer filling [150]. The filling factors that

define these insulating phases typically occur at ν = [ν] + 1/4 and ν = [ν] + 3/4,

where [ν] is an integer of four or greater (we define ν = [ν] + ν̄). These phases,

known as re-entrant integer quantum Hall states (RIQHE) or “bubble” phases, also

occur in the N = 1 LL as seen in the previous Chapter. There is also evidence for

anisotropic transport seen at half filling of the N ≥ 2 LL. These anisotropic phases

are known as “stripe” phases. “Bubble” and “stripe” phases, delimited in Fig. 6.1,

are interpreted as charge density waves. “Bubbles” are theorized to consist of

a pinned triangular lattice of clusters of electrons (which explains their insulating

behavior). Each cluster contains M electrons (when M equals one, we recover the

familiar Wigner crystal [56]). Figure 6.2 shows the structure of the triangular lattice

comprising the bubble phase. “Stripe” phases are understood to be unidirectional

charge density waves [22, 67], which are like “lines of charge” running parallel to
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Figure 6.1: (a) Magnetoresistance trace extracted from Ref.[7] shows the longitu-
dinal resistance with respect to magnetic field for filling factors in the N=1 LL
and N=2 LL. (b) Shows a portion of panel a in greater detail. In the N=2 LL, an
anisotropic or “stripe” phase is at ν = 9/2. “Bubble” phases, indicated by ‘RIQHE’,
lie at ν̄ = 1/4 and ν̄ = 3/4.
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Figure 6.2: Schematic of the bubble phase. (a) Shows the triangular lattice of
clusters of M electrons spaced by 3.3 Rc, where Rc=

√
(2N + 1)lo. (b) The enlarged

view of a single cluster. The dark region shows the guiding center of the circulating
charge with width depending on lo and M as indicated. The toroidal section delimits
the charge density distribution around the bubble (half of the charge density is
removed). This charge density is created by electrons moving in the cyclotron orbits
centered inside the bubble. The arc highlights a single electron orbit. Extracted
from Ref. [21].

Figure 6.3: Schematic of the bubble phase and stripe phase. (a) Shows the bubble
phase with M clusters explicitly shown. Each black dot represents the guiding center
of a cyclotron orbit. (c) Clusters of M electrons merge to form the stripe phase.
Extracted from Ref. [22].
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each other. The unidirectional nature explains the anisotropy of the phase - the

phase is conducting parallel to the lines of charge and insulating orthogonal to the

lines of charge. Figure 6.3 shows how electron clusters in a bubble phase could

merge to form a stripe phase. Quantum fluctuations of the stripe phase may give

rise to a quantum nematic phase [63], which is analogous to a liquid crystal phase.

A liquid crystal is a state of matter that has both liquid and crystal properties - for

instance a liquid crystal can flow like a liquid but has constituent molecules which

are crystalline. That is, in a nematic phase, quantum fluctuations of the stripe

order are strong enough to restore full translational symmetry on large length scales

(melting of the CDW or electron lattice), but still small enough to retain the local

orientational order of the stripes. Though quantum fluctuations could play a very

important role in the third LL, we will consider here only the “simplified” (without

quantum fluctuations) version of charge density waves for the sake of simplifying

the discussion.

Evidence for the structural nature of the bubble and stripe phases can be found

in microwave resonance measurements. Figure 6.4 shows that resonances in the con-

ductivity of microwave resonance measurements suggests the presence of an electron

lattice or crystalline structure in the 2DES[23]. Recent work by Kukushkin et

al.[151] uses surface acoustic waves (SAW) to measure the dispersion of the Hall

stripe phases at ν = 9/2. This work confirms that a 2DES can form unidirectional

charge density waves (or nematic phases) at ν = 9/2 and highlights the collective

behavior of these neutral modes. The work also agrees with theoretical predictions

[24, 152]. Figure 6.5 shows the dispersion of the neutral mode at ν = 9/2.

Comparing and contrasting the behavior of different values of ν̄ with changes in

[ν] or Landau level index may provide some clues to understanding the behavior of

5/2 as well as other FQHE states. For instance, we can compare 5/2 (2 + 1/2) to

half filling factors in other LLs such as ν = 1/2 (0 + 1/2) or 9/2 (4 + 1/2), in the
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Figure 6.4: The real part of the diagonal conductivity, Re[σxx], versus magnetic
field, B[T] for several frequencies (50, 150, 300, and 500 MHz). Select filling factors
are shown. The microwave electric field, Em, was polarized along the 〈110〉 easy
direction. The temperature is 50mK. Extracted from Ref. [23]
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Figure 6.5: Dispersion relation of vibrational modes of the modulated stripe phase in
the N = 2 LL for wave vector k along the direction of the stripes. “a” is the period
of the modulations along the stripes. The energy units are e2/εlo and are converted
to meV for BT = 3.69T [ν = 9/2] using a multiplicative factor of ∼ 8.1meV/(e2/εlo)
as shown on the right scale. Extracted from Ref. [24]

N=0 LL and N=2 LL respectively. The second LL lies at the crossroads between

the N=0 LL and the N=2 LL, regimes dominated by conventional quantum Hall

states and charge density wave states respectively. Light scattering studies of the

N=2 LL states should complement existing work on electron solid bubbles phases

and stripe phases. In the previous chapter, motivated by the enigmatic behavior of

states in the N=1 LL, we compared and contrasted the states of the N=1 LL with

those of the N=0 LL. In this chapter, we instead make comparisons among states

in the second and third LL.

The states of the lowest Landau level are dominated by the conventional frac-

tional quantum Hall states as described by the Jain-Laughlin series[52]. To the con-

trary, in higher Landau levels (N≥ 2), quantum Hall states become unstable[153].

This regime is instead dominated by charge density wave phases [67, 63, 23, 7].

I present here for the first time, light scattering studies of phases in this regime.
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Figure 6.6: Evidence of reduced spin polarization for filling factors away from the
ferromagnetic state at ν = 5. (a) Spin wave at filling factors close to ν = 5. The
inset shows the intensities of SW’s from the main panel compared with estimates
of the SW intensity based on γI , as discussed in Chapter 3. (b) Light scattering
for a different range of filling factors starting further from ν = 5, at half filling
(BT=3.32T at ν = 5, θ=20o, T=40 mK).

Light scattering probes the bulk states of electron phases in this regime - comple-

menting magnetotransport measurements (which have impact of edge states). In

addition, light scattering selection rules allows us to distinguish between spin and

charge degrees of freedom.

6.3 Results and Discussion

The physics of the spin degrees of freedom of the electron phases in the N=2 LL

is addressed for the first time by resonance inelastic light scattering (RILS). We

compare filling factors ν = [ν]+ν̄, where [ν] corresponds to integer filling ([ν]=4 here)
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Figure 6.7: At ν = 4 + 4/5 tuning incident photon energy, ωL induces changes in
the light scattering spectra from sharp spin wave (higher ωL) at EZ to a broad
continuum of low-lying excitations (lower ωL).

and ν̄ is analogous to the lowest LL filling. For instance, we will compare several

values of ν̄ (in particular, ν̄= 1/2, 3/4 and 4/5) for [ν]=2 and 4. The spin degrees

of freedom are monitored by changes in the RILS intensity of the long wavelength

spin wave (SW) at EZ [95]. At precisely odd integer filling (ν = [ν] = 1, 3, 5, ...)

this SW intensity is maximized. As we discussed in Chapter 5, the SW intensity

collapses rapidly for ν < 3. Recall from Chapter 3 that the SW may be used as

an indicator of spin polarization, with the caveat that there may be conditions,

such as domain formation, that could alter this property. Nevertheless, a rapid

collapse of the SW is not seen for ν < 5. The SW at the ferromagnetic state at

ν = 5 has a maximum intensity as shown in Fig. 6.6. For ν < 5, the SW intensity

decreases slightly but persists to ν=4+1/2. However, the reduction is faster than

the reduction of phase space from depopulation of the N=2 LL with lowering ν̄. In

the N=2 LL, the continuum of excitations emerges well below ν = 5, at ν ∼ 4+4/5,
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Figure 6.8: Light scattering for the states at ν ∼ 4 + 3/4. Tuning the incident
photon energy, ωL causes changes in the spectral weight of the light scattering from
a sharp spin wave at EZ to a broad continuum of low energy excitations.

as shown in Fig. 6.7. Dissimilarly, in the N=1 LL, the rapid collapse of the SW

mode for ν . 3 is accompanied by the emergence of continua of excitations for

ν . 2.94. The spectra for ν . 5 as shown in Fig. 6.6 and Fig. 6.7 have features

which appear predominantly in the depolarized configuration (VH). According to

light scattering selection rules, this indicates their spin origin[143]. While Larmor’s

theorem requires that the SW’s energy remains at the bare Zeeman energy, its overall

spectral weight is expected to depend sensitively on the degree of spin polarization

[12, 95]. The collapse of the SW intensity is thus interpreted as revealing a reduction

in the number of spin polarized electrons in the N=2 LL from its maximum value

at ν = 5. Nevertheless, there could exist alternative explanations for the reduced

SW intensity for ν < 5, as discussed at the end of Chapter 3 and in Chapter
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Figure 6.9: Light scattering for the states at ν ∼ 4 + 1/2. Tuning the incident
photon energy, ωL causes changes in the spectral weight of the light scattering from
a sharp spin wave at EZ (higher ωL) to a broad continuum of low energy excitations
(lower ωL).
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Figure 6.10: Comparison of low-energy modes at filling factors ν=2+4/5 and 4+4/5.
Sharp SW modes and broad continuum modes are present in both sets of spectra.

5. A reduced SW intensity is expected for ν > 5 (both N = 2, ↑ and N = 2, ↓

are populated reducing the overall spin polarization). The attenuation of the SW

intensity for ν < 5 is expected to scale with the number of electrons available for

light scattering (that is, N = 2, ↑, which depopulates as B increases and ν −→ 2).

That is, even though the 2DES has a net spin polarization, the intensity of the SW

will be reduced as the number of spin polarized electrons is reduced. The phase

space available for electrons to participate in light scattering is reduced.

Tuning the incident photon energy results in striking spectral changes that are

due to differences in resonance enhancements. For ν . 4 + 4/5, the sharp SW mode

at EZ and broad continuum mode of low energy excitations coexist and resonate

at different incident photon energies (the SW resonates at higher incident photon

energy than that of the continuum). Similar behavior is seen down to half filling.

Figure 6.7, Fig. 6.8 and Fig. 6.9 illustrate the coexistence of sharp SW and broad

continuum modes for ν < 5. The coexistence of modes implies the coexistence of

phases which involve varying spin degrees of freedom.
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Figure 6.11: Comparison of low-energy modes at filling factors ν=2+1/2 and 4+1/2

Whereas a continuum of low-lying excitations emerges for ν . 3 (that is, just

below ν = 3) [66], we find different behavior for just below ν = 5. For [ν]=4, a

continuum of low energy excitations arises for ν̄ < 4/5, significantly below integer

filling. Figure 6.10 compares light scattering spectra at ν̄ =4/5 for [ν]=2 and 4

and shows that both sets of spectra are qualitatively similar. However, as shown

in Fig. 6.11, when ν̄ = 1/2, spectra are markedly different. That is, the SW is

absent for [ν]=2 [66] but reemerges in the third LL, when [ν]=4. The difference in

spectral weight at half filling in the N=1 and N=2 LL suggests different roles of

spin degrees of freedom in the N=1 and N=2 LL. The coexistence of the low-energy

continuum and SW is also present at ν = 4+1/2, as well as ν =4+3/4. Remarkably,

the continuum appears to be a general feature of light scattering excitations for the

range 4 + 4/5 ≥ ν ≥ 4 + 1/2.

Gervais et al. [7] show that at ν = 4 + 4/5 there exists evidence for compet-

ing electron solids and fractional quantum Hall fluid phases. Ref. [7] claims that

ν = 4 + 4/5, at low temperature (T<80mK), is characterized by an electron solid
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phase. However, at slightly higher temperature, 80 mK< T < 120 mK, a fractional

quantum Hall state dominates. Since the emergence of electron solid phase coincides

with the appearance of the continuum of low-lying energy excitations, we speculate

that the continuum might be linked to the presence of charge density wave states.

The coexistence of a sharp spin wave and a broad continuum may therefore be con-

nected to the presence of both a fractional quantum Hall fluid and charge density

waves, at the same filling factor, as discussed in Ref. [7]. As seen in Chapter 4

and Chapter 5, we might expect that a FQHL, if spin polarized, to exhibit a SW.

The dispersion of the stripe phase in Fig. 6.5 has energy that approaches zero as

k → 0. Since light scattering detects the critical points of the dispersion, we might

expect to find spectral weight at zero or close to zero energy. Zero energy spectral

weight may be a general feature charge density waves in the 2nd LL. The spectral

weight we observe approaching zero energy shift, in Fig. 6.9, might be due to the

dispersion of the stripe phase. Consequently, our results could be interpreted as

revealing the competition between charge density waves and conventional fractional

quantum Hall states in the third LL. Nevertheless, further work needs to be done to

verify this hypothesis. For instance, temperature dependence measurements could

be conducted that would probe the melting transition of these electron solid bub-

ble phases and stripe phases [35]. In addition, as discussed in Chapter 5, resonant

Rayleigh scattering measurements could probe the domain structure of the 2DES

in the third LLs [20, 66].

In addition, Lewis et al. [23] show that filling factors 4+1/4 and 4+3/4 are

dominated by electron solid phases with evidence for electron crystallization also at

ν = 4 + 1/5 and ν = 4 + 4/5. Theoretical studies suggest that the state at 4 + 1/2 is

dominated by a stripe phase [67]. I speculate that these charge density wave phases

are linked to the continuum mode seen by light scattering.

Furthermore, data in Fig. 6.12 tentatively suggest the existence of high energy
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Figure 6.12: Spectra showing the possible existence of two high energy modes at
filling factor ν=4+1/2. Slanted lines indicate the presence of optical emission that
shifts to the right with increasing incident photon energy. Vertical lines delimit
peaks that do not behave like optical emission and are likely Raman scattering
modes resulting from critical points in the dispersion of neutral mode excitations of
ν = 9/2.
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modes detected by light scattering. In particular, Fig. 6.12 shows spectra at ν = 9/2

which might reveal the detection of critical points in the dispersion (at large wave

vectors) of neutral modes at this filling. The ability to detect large wave vector

modes was discussed in Chapter 4. Break-down of wave vector conservation allowed

the detection of high energy modes via RILS. Spectra in Fig. 6.12 show a SW, lu-

minescence which shifts with increasing ωL (bottom spectrum to top spectrum) and

spectral weight which is RILS that could be due to neutral modes of the 2DES. The

high energy mode from RILS data at 0.32meV can be compared with theoretical

estimates of 0.39meV [24] (Fig. 6.5) and other experimental SAW measurements of

0.016meV [151]. The mode energy from SAW measurement, albeit it much lower

than that of RILS is not alarmingly so, as similar a study of FQHE high energy

modes, as discussed in Chapter 4, suggests that SAW measurements [154] underes-

timate the energies of dispersive modes when compared with RILS measurements

[5].

6.4 Summary

I probe electron phases in the third Landau level by inelastic light scattering. The

low-lying excitations of bulk states are analyzed with an emphasis on spin degrees of

freedom. I find RILS evidence that indicates marked differences between the second

and third Landau levels, in particular their spin degrees of freedom. I speculate that

light scattering spectra showing continua of low-lying excitations in this regime could

constitute evidence for charge density waves. In addition, the presence of these low-

lying continuum modes might manifest the possibility to detect vibrational modes

(see Fig. 6.5) of a triangular lattice of electrons via light scattering. I present

these preliminary results in the hope that they will encourage investigation to gain

further insight into charge density wave phases and their competition with electron
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fluid phases in the N=2 LL.
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Chapter 7

Ferromagnetic state at ν = 3:

distinctive spin wave dispersion

and inter-LL excitations

7.1 Overview

In Chapter 4, we studied light scattering signatures arising from features of the

dispersion curve of composite fermions at finite wavevector. I highlighted that crit-

ical points and inflection points in the dispersion curve of Λ level excitons can be

detected via light scattering. Moreover, I described measurements of CF excitons

traversing multiple Λ levels. In this chapter, I discuss studies involving Landau lev-

els at ν = 3. I report, for the first time, a kink in the dispersion curve for the spin

wave at finite wavevector [25]. Larmor’s theorem dictates that the long wavelength

SW has excitation energy fixed at the bare Zeeman energy. In the large wavevector

limit, the excitation energy becomes largely equivalent to the Coulomb exchange

energy. Similar modes have previously been measured by light scattering in the

N = 0 LL for ν = 1 [95] and ν = 1/3 [155]. The inflection point in the dispersion of
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the spin wave at ν = 3 is seen at neither ν = 1 nor ν = 1/3. In addition, I discuss

measurements of inter-Landau level excitations [16] at ν = 3. From the measure-

ments of spin-flip modes (inter-Landau level excitations involving changes in spin

degrees of freedom) we can estimate Coulomb exchange interactions in the 2DES.

The appearance of spin-flip modes is tied to the ferromagnetic state at ν = 3 and

might be useful as a probe of spin degrees of freedom at other filling factors.

7.2 Introduction

There is great current interest in the role of the spin degree of freedom in the

remarkable quantum Hall phases in the N=1 Landau level [34, 18, 156]. Studies

reported here at ν = 3 might help build the foundation for future investigation of

fractional quantum Hall states of the N = 1 LL, such as ν=7/3, 8/3 and 5/2. That

is, it might serve as an alternative probe of spin degrees of freedom to that described

in Chapter 5. Measurements at ν = 3 discussed in this section exploit excitations

between different Landau levels which appear to be sensitive to the ferromagnetic

state at ν = 3. It is this sensitivity to spin polarization which might be exploited

for other quantum Hall states.

In addition, in this thesis I explore how the behavior of quantum fluids changes

with Landau level index. A major difference between the lowest and second LL

is that the latter possess nodes in their wavefunctions while the former does not

[40]. The nodes reduce the short-range Coulomb repulsion between electrons and

allow the 2DES to phase separate via the exchange effect. The differences in the

wavefunctions are expected to engender differences in the dispersion of modes, such

as the spin wave. In this Chapter, I present some light scattering studies of the

integer quantum Hall state, ν = 3, and examine it’s intra-Landau and inter-Landau

level excitations. We examine how the dispersion of the spin wave is altered with
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Figure 7.1: Landau level diagram at ν = 3 showing transition for intra-Landau level
and inter-Landau level excitations. The spin wave (SW) is the only intra-Landau
level excitation. The magnetoplasmon like excitations involve transitions across the
cyclotron gap that do not change spin orientation. Spin flip excitations are those
that involve both a change in Landau level index and orientation of spin. The
two magnetoplasmon like excitations are coupled to each other. The two spin flip
excitations are also coupled to each other.
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changes in Landau level index. In addition, we discuss how the energy in inter-LL

excitations are modified by many body effects. Figure 7.1 shows a schematic of the

intra-Landau level and inter-Landau level excitations that are present at ν = 3. The

dispersions of these excitations have been calculated for ν = 1, in the seminal work

by Kallin and Halperin [12], and more recently for ν = 3 in Ref. [16].

In the case of the spin wave, a distinctive kink at finite wavevector in the dis-

persion is found from Hartree Fock calculations [25]. As we have seen in Chapter

4, light scattering methods can detect the critical points and inflection points in

dispersion curves due to van Hove singularities in the density of states. At integer

filling factors, Hartree Fock calculations serve as a powerful predictive tool to study

the dispersion of intra-Landau level and inter-Landau level excitations. We compare

experimental results with our theoretical framework and provide commentary and

insights on the differences of the lowest LL and the second LL.

7.2.1 Collective excitations in the ν = 3 quantum Hall fer-

romagnet

Figure 7.2a shows the schematic representation of five lowest energy collective ex-

citations in the case of filling factor ν=3 – one intra-Landau level (LL) and four

excitations across the cyclotron gap. They are shown as magnetoexcitons consisting

of an electron promoted from a filled Landau level and bound to an effective hole

left in the “initial” LL. This representation is exact in the limit of strong magnetic

field where the parameter rc = Ec/~ωc is small [157, 158, 12]. Ec is the Coulomb

energy and ~ωc is the cyclotron energy.

The set of dispersion curves of the collective modes can be described in the



7.2. INTRODUCTION 135

Figure 7.2: (a): Schematic representation of the formation of collective modes at
ν = 3 from single-electron transitions. The spin wave (SW) is described as a single
spin-flip transition within half-filled N = 1 LL. MP and AP are formed as inphase
and antiphase combinations of two inter-LL transitions with δSz = 0 (shown in
green). Cyclotron spin-flip modes SF1 and SF2 arise from analogous combinations
of inter-LL transitions with δSz = −1 (shown in red). (b): Dispersion curves of
inter-LL excitations calculated for BT = 5.3 T within the first-order Hartree-Fock
approximation are shown. Here the finite thickness of the 2D electron system is
taken into account via the geometric form-factor. The dashed line represents the
dispersion of the cyclotron spin-flip mode at ν = 1 at the same magnetic field.
(c): The zoomed-in image of the long-wavelength region of Fig. 7.2b shaded in
light grey. The dashed vertical line indicates the experimental in-plane momentum
k∗ = 5.3× 104 cm−1. Open circles represent the experimental data. Extracted from
Ref. [16].
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following way [12]:

Em,δSz(k) = m~ωc + gµBBδSz + ∆Em,δSz(k), (7.1)

where m is the change in the LL index and gµBBδSz is the bare Zeeman energy

associated with the spin-flip mode. The last term, ∆Em,δSz(k) is responsible for

the dispersion and comprises contributions from the many-body Coulomb interac-

tion and exchange energies in the initial and the excited states. We focus on the

excitation spectra with m = 0 and m = 1.

At ν = 3 the four inter-LL transitions with m = 1 shown in Fig. 7.2a are not

independent. They couple via the Coulomb interaction to yield two pairs of exci-

tations. The two inter-LL excitations with no change in the spin degree of freedom

(δSz = 0) are the in-phase magnetoplasmon (MP) mode and the antiphase magne-

toplasmon (AP) mode [16]. The two excitations (coupled modes) with changes in

the spin degree of freedom (δSz = −1) are the cyclotron spin-flip excitations SF1

and SF2 [16].

In first-order perturbation theory, the dispersion curves of the two pairs of cou-

pled modes (either δSz = 0 or δSz = −1 modes) are defined as follows [16]:

E1,2(k) =
E1(k) + E2(k)

2

±

√(
E1(k)− E2(k)

2

)2

+ ∆12(k)2 (7.2)

where E1,2(k) are the energies of single-particle transitions either with or without

spin-flip, ∆12(k) is responsible for coupling. For the δSz = 0 modes (MP and

AP excitations), this theory yields a vanishing Coulomb term ∆E(k) in the long

wavelength limit [16]. The MP (AP) mode can be derived from Eqn. 7.2 using the

positive (negative) sign therein.
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The dispersion of SF1 and SF2 at ν = 3 was calculated [16] in terms of matrix

elements Ṽ
(1)
αβγδ(k) introduced in Ref. [12]:

E1(k) = ~ωc + |gµBB|+ Σ0 ↑,1 ↓ − Ṽ (1)
1001(k) (7.3)

E2(k) = ~ωc + |gµBB|+ Σ1 ↑,2 ↓ − Ṽ (1)
2112(k)

∆12(k) = Ṽ
(1)
1102(k)

where Σ0 ↑,1 ↓ = Ṽ
(1)
0000(0)+Ṽ

(1)
0101(0)−Ṽ (1)

1010(0) and Σ1 ↑,2 ↓ = Ṽ
(1)
1010(0)+Ṽ

(1)
1111(0)−Ṽ (1)

2020(0)

are the differences of exchange self-energies in the excited and ground states for the

two single spin-flip transitions between adjacent LLs depicted in Fig. 7.2a. The

calculated dispersion curves for all four inter-Landau level excitations with B =

5.3 T taken from Ref. [16] and reproduced in Fig. 7.2b. For comparison with

experiment, the finite thickness of the 2D-electron system was taken into account.

7.3 Experimental Technique

The experimental methods in this Chapter vary only slightly from those presented in

Chapter 3. Inelastic light scattering measurements were performed on a high quality

GaAs/Al0.3Ga0.7As heterostructure. A 24 nm-wide single quantum well (SQW) with

n = 3.85×1011 cm−2 and low temperature mobility µ & 17×106 cm2/V· s at T=300

mK. Recall, that the wave vector transferred from the photons to the 2D system

is q = (2ωL/c) sin θ, much smaller than 1/lo, where lo =
√

~c/eB is the magnetic

length. Measurements for excitations across the cyclotron gap were conducted at

1.7K, compared with those on the SW at 40mK. This elevated temperature of 1.7K

increased the effective electron density. The filling factor was adjusted accordingly

by slightly increasing the magnetic field to BT = 5.6T to maintain ν = 3. Spectral

weight from inelastic light scattering and luminescence were distinguished in the
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Figure 7.3: Inelastic light scattering spectra of the intra-LL SW mode at ν = 3 and
BT = 5.3 T taken at different laser photon energies (shown on the left). The inset
shows the SW dispersion curve calculated within the Hartree-Fock approximation,
for a 24nm wide quantum well. At the experimental in-plane momentum, the energy
of SW is indistinguishable from EZ. Extracted from Ref. [16, 25].
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Figure 7.4: (a) Left panel shows the SW and right panel shows spectral weight due
to a kink in dispersion. (b) color plot both the SW and the spectral weight due
to the kink in the dispersion. (c) the dispersion of the SW is shown alongside the
density of states.
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manner described in Chapter 4: on an energy shift scale, inelastic light scattering

peaks are fixed while luminescence peaks move with changes in incident photon

energy.

7.4 Results and Discussion

7.4.1 Ferromagnetic state at ν = 3 and its distinctive dis-

persion spin wave: intra-LL excitations

The resonant enhancement of the intensities of light scattering spectra of the spin

wave at ν = 3 is displayed in Fig. 7.3. This intra-Landau level excitation has m=0

(no change in LL index). The SW energy corresponds to the leftmost part of the

dispersion shown in the inset in Fig. 7.3. Very small changes in the laser photon

energy (∼ 0.5 meV) dramatically affect the line intensity, indicating the importance

of resonance enhancement. The strong SW seen in Fig. 7.3 is consistent with the

ferromagnetic character of the quantum Hall state at ν = 3[66] as discussed in

Chapter 5. The dispersion in the inset of Fig. 7.3[16] shows a marked kink at

finite wavevector. Figure 7.4 depicts the spectral weight resulting from this kink

(at k∼1.5×106cm−1). Experimental evidence for the distinctive dispersion at ν = 3

is reported here for the first time. Fig. 7.4a shows the SW at EZ in the left

panel. In the right panel is displayed the spectral weight due to the kink in the

dispersion (shown in Fig. 7.4c). Fig. 7.4c comprises the dispersion of the SW

mode and the corresponding density of states. Fig. 7.4b is a color plot showing

scattered photon energy and intensity of SW spectra with varying incident photon

energy. Both the SW and the spectral weight at 2 meV is seen to exhibit the

effect of resonant enhancement of the light scattering cross-section. The breakdown

of wavevector conservation due to the presence of residual disorder, even in the
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Figure 7.5: Inelastic light scattering spectra of inter-LL excitations at ν = 3 and
B = 5.3 T taken at different incident photon energies (indicated at the right side of
the spectra). The three upper spectra correspond to the resonant incident photon
energies when electrons are promoted from the valence band to the second Landau
level. Lower spectra are taken at resonant conditions when electrons are excited
to the third Landau level. Grey vertical columns mark inelastic light scattering
lines. The rest of the spectrum is composed of the luminescence bands, marked
by dashed slanted lines. PL labels the photoluminescence. AP and MP are the
antiphase magnetoplasmon and the magnetoplasmon respectively. SF1 and SF2 are
the coupled spin-flip excitations. Extracted from Ref. [16].
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highest quality samples available, provides the ability to detect the finite wavevector

inflection point using light scattering, as discussed in Chapter 4. The kink in the

calculated dispersion of the SW at ν = 3, which does not occur at ν = 1, is due to

the difference in the wavefunctions of states in the lowest LL and higher LL’s[40].

7.4.2 Inter-Landau Level excitations

Ref. [16] reports resonance enhancement of inter-Landau level excitations at ν = 3.

Fig. 7.5 displays a sequence of typical spectra measured at several laser photon

energies. Inelastic light scattering lines from all four inter-Landau level excitations

are present in the spectra. The three upper spectra were taken at resonant conditions

such that incident photons excite electrons from the valence band to the states in

the N = 2 LL. At these conditions raman lines from AP, MP and SF2 were all

observed. Lines corresponding to AP and SF2 were seen separately, though the MP

line overlaps the luminescence band and is therefore strongly enhanced in intensity

and somewhat broadened. The three lower spectra were measured at other resonant

conditions - electrons were promoted from the valence band to the N = 3 LL. In

this case, AP and SF1 Raman lines were observed.

The magnetoplasmon (MP) and antiphase plasmon (AP) are seen shifted from

the cyclotron energy (depicted by an arrow in Fig. 7.5) by 0.61 meV and -0.19 meV

respectively. The blue shift of the MP results from the 2D-plasma energy at the

non-zero in-plane momentum used in the experiment. In fact, the MP is the only

dispersive mode in the range of experimentally accessible momenta within the as-

sumption of wavevector conservation (see Fig. 7.2). The energy of AP is below ~ωc

by 0.19 meV. Theory developed in Ref. [159], gives ∆EAP(0) ≈ −0.25 meV for this

magnetic field and quantum well width.

In the case of the two cyclotron spin-flip modes SF1 and SF2 which are blue-
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Figure 7.6: The magnetic field evolution of the inelastic light scattering spec-
trum of SF2 in the vicinity of ν = 3, taken at the fixed incident photon energy
~ωL=1538.33 meV. At |∆B| ∼ 0.15 T the line nearly vanishes from the spectrum.
The strong peak in the left most part of the spectrum originates from photolumi-
nescence. Extracted from Ref. [16].
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Figure 7.7: Color plot shows that the break-down of wavevector conservation ac-
cesses critical points of the dispersion curve for inter-LL excitations at ν = 3. The
spectral weight due to the critical points of SF1 and SF2 modes at k ∼ 2× 106cm−1

shifted from ~ωc, we compare the experimental energy shifts with those calculated

theoretically [16] (within the first-order Hartree-Fock approximation, taking into

account the quantum well width [see Fig. 7.2c]). The shift of SF2 energy from ~ωc

from theory is 5.0 meV, while experiment yields 4.3 meV [16]. The experimental

and theoretical values agree quite well, provided the actual width of the quantum

well is taken into account.

We also find a marked dependence on magnetic field in which SF1 and SF2 modes

are observed only in the narrow interval ∆B ' 0.15 T around ν = 3 (see Fig. 7.6).

Outside this field range, the lines disappear from the spectrum. We conclude that

the stability of spin-flip excitations is inherent of the ferromagnetic state ν = 3. The

Coulomb energy of SF2 is close to the estimated full exchange energy of electrons

in the N = 1 LL. The latter is represented by the short wavelength energy limit of

the SW at ν = 3. This value is about three-fourths of the analogous quantity for

the fully spin polarized state at ν = 1.
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The results in Fig. 7.7 show resonance enhancement revealing breakdown of wave

vector conservation in light scattering from inter-Landau level excitations. The color

plot shows the energy shift and intensity of peaks as incident photon energy is tuned.

The peaks at about 11.5meV could be due to the critical points of the dispersion

of the SF1 and SF2 modes at k ∼ 2× 106cm−1. Theoretical values of these critical

points are around 12.5meV. Furthermore, it’s possible that spectral weight from the

long wavelength MP mode delimited in Fig. 7.7 also overlaps with critical points of

the MP and AP at k ∼ 1.8× 106cm−1.

7.5 Summary

We have studied the dispersion of the intra-Landau level spin wave excitation, the

inter-Landau level spin-flip excitations and the inter-Landau level plasmons. We

report, for the first time, spectral weight in light scattering spectra which reveals

a critical point (at finite wavevectors) in the SW dispersion at ν = 3. Hartree

Fock calculations indicate a kink in the SW dispersion at an energy matching light

scattering results. The distinctive dispersion for the SW at ν = 3 is not observed

at ν = 1. We interpret its origin as arising from a difference in the character of the

second LL. In addition, we discussed four inter-Landau level collective excitations.

Among these excitations are two inter-Landau level spin-flip modes which interact

repulsively in the long wavelength limit. As a result, the more energetic SF2 acquires

an enhanced exchange contribution to the energy. The experimentally measured

energies of all the critical points in the SW dispersion and inter-LL excitations and

are in good agreement with the Hartree-Fock calculations in Ref. [16].
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Chapter 8

Future Studies

In this chapter I outline some preliminary results that seem promising for building a

deeper understanding of the physics of exotic electron phases in high magnetic fields.

I will focus on the 2nd LL, especially on ν = 5/2. When preliminary results are

not available, I will propose some experiments that have the potential for advancing

scientific pursuits in quantum Hall studies of higher Landau levels.

8.1 Coexistence and competition of phases in the

2nd Landau level and beyond

One interesting result in Chapter 5 deals with the emergence of phase separation

in the 2nd LL. We use resonance Rayleigh scattering (RRS) to probe the formation

of domains arising from this phase separation. Here I report some intriguing RRS

data for filling factors around ν = 5/2 and speculate on a plausible interpretation

of these data. Further to this I will highlight some additional measurements that

might be useful for understanding more about domains in the second LL.

I have shown that domains of distinct electron phases form in the 2nd LL, in

particular at ν ∼ 5/2. The domain formation is manifested through a resonance in
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Figure 8.1: RRS profiles at several magnetic fields around ν = 5/2 (BT ∼ 6.42T ).
The three arrows delimit the energies for three possible resonances. The difference
in energy between the first and the last two arrows is roughly equivalent to the
change in the cyclotron energy over the range of fields used (∆B=0.06 T). The sum
of the spectral weight of the three peaks is skewed towards lower energy at lower
fields and skewed towards higher energy at higher fields.
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Figure 8.2: Energy splitting of the N = 1, ↑ optical emission. The optical emission is
fit using two Lorentzian functions. The difference in the peak positions are plotted
in the main panel. The inset shows the optical emission spectrum at BT = 6.42T.

Rayleigh scattering when the incident photon energy matches some characteristic

energy of the system. Figure 8.1 shows how the RRS profile close to ν = 5/2

changes with small steps in magnetic field. There appears to be some resonance

enhancement in Rayleigh scattering due to optical gaps at two separate energies (at

least). Resonance enhancement from the higher energies increases with increasing

magnetic field. An interpretation of this behavior is that “sub-levels” form within

the Landau level which facilitate the enhancement at these energies. Moller et

al.[39] predict the existence of two excitonic states at ν = 5/2 which would manifest

as two peaks in optical emission. Evidence for splitting of the N = 1, ↑ luminescence

peak is shown in Fig. 8.2; the magnitude of this splitting varies with filling factor.

Consequently, optical emission bolsters the evidence for more than one optical gap

at ν ∼ 5/2.

Recall from Chapter 5 that Wojs et al.[134] describe how Skyrmions (from
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Figure 8.3: Schematic phase diagram of the Pfaffian phases with Coulomb inter-
actions as a function of density deviation from ν = 5/2 and the parameter λ/ξ.
Possible configurations of the various domain structures are shown, with Pfaffian
(red) and metallic (white) phases. If the quasiparticle coupling strength is increased,
a type-II superconductor is recovered, that is not unstable to agglomeration. Ex-
tracted from Ref. [26].

quasielectron pairing) and Anti-Skyrmions (from quasihole pairing) have lower and

higher energy, respectively, than their quasiparticle constituents. Evidence for this

Skyrmion-Anti-Skyrmion asymmetry could be present in Fig. 8.1. Elements of the

work by Wojs et al.[134], namely predictions for long-range disorder causing quasi-

particles to nucleate into puddles, can also be seen by Parameswaran et al.[26].

Parameswaran et al. claim frustrated phase separation emerges close to ν = 5/2. I

speculate that the formation of domains of these phases causes an effective splitting

in the N = 1, ↑ Landau level. Fig. 8.3 illustrates the formation of domains, com-

prised of Pfaffian (red) and metallic (white) phases. The domains can form bubbles,

stripes or droplets (anti-bubbles) as shown in the figure. Figure 8.4 emphasizes

some important features in Fig. 8.3: exactly at ν = 5/2, the Pfaffian phase (shown

in magenta) is expected to dominate while the metallic phase (shown in white) is

absent. As the filling factor is tuned away from 5/2, the density of the Pfaffian phase

decreases [26]. We can define δn = n̄ − nPf , the difference between the density of
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the positive background and the Pfaffian phase, which increases as ν is tuned away

from 5/2. The transition from panel (a) to (c) illustrates the effects of increasing δn.

The Pfaffian phase density decreases while the density of metallic phase increases.

The left panel describes the case of short-range interaction (no Coulomb interaction)

while the right panel includes long-range interactions. In the latter case, the phases

agglomerate in order to lower their energy cost. Fig. 8.4a shows the case where δn

is small and bubbles of metallic phase form a triangular lattice. As the density of

the Pfaffian phase is lowered, a stripe phase is formed, shown in Fig. 8.4(b). As the

density of the Pfaffian phase is lowered even further, “droplets” of Pfaffian phase

form in a percolating metallic phase. That is, the morphology of the 2DES changes

as ν is tuned slightly away from 5/2 [26]. I expect that it is possible to monitor these

changes using RRS, since RRS can be used to measure inhomogeneity. I speculate

that Fig. 8.1 is indicative of how inhomogeneity changes with filling factor. That

is, the change in the shape of the resonance profile might be linked to the changing

morphology of the mixed phases close to 5/2. Nevertheless, further work must be

done to verify this hypothesis.

RRS should not be limited to monitoring changes in δn, it should also be able

to track changes in the coupling parameter, λ/ξ. Recall from Chapter 5 that λ/ξ

represents the strength of the quasiparticle coupling, analogous to the coupling of

cooper pairs (where ξ is the coherence length and λ is the penetration depth). In the

strong (weak) coupling regime, we expect to see the behavior of a type-II (type-I)

superconductor. Tuning the coupling strength might be achieved by varying the

width of the quantum well. This hypothesis is supported by the work by Peterson

et al. [31] which predicts that the Pfaffian state is strengthened by finite layer

thickness. I assume that our experimental realization of the phases around 5/2

exists in the weak coupling limit.

It would be useful to perform RRS measurements at other filling factors in the
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Figure 8.4: Two phases - type A and type B (Pfaffian and metallic phases re-
spectively) - that comprise the 2DES around ν = 5/2, based on the discussion in
Ref.[26]. As the filling factor is tuned away from ν = 5/2, the density of the Pfaffian
phase decreases. (a), (b) and (c) show the relative amounts of type A to type B
as δn=n̄ − nPf increases. The left panel shows the case where only short-range
interactions are considered (no Coulomb interactions) while the right panel incorpo-
rates the effects of long-range (Coulomb) interactions - frustrated phase separation
emerges [26].
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second and third LL’s. These measurements would include temperature dependence

studies. Lewis [35] studies the temperature dependence of charge density wave

phases using microwave resonance measurements and reports a depinning of the

bubbles phase at elevated temperature. A comparison of temperature dependent

RRS measurements with the work by Lewis, would not only bolster our work but

also provide a more complete picture of charge density wave behavior in the 2nd

and 3rd LL’s. Furthermore, Langmuir isotherm analyses, as discussed in Chapter

5, would allow us to compare the sizes and binding energies of domains of phases at

different filling factors.

In addition, a tilt-dependence study of RRS measurements in the 2nd LL, and

especially at 5/2, would explore how the formation of domains might be linked to the

destruction of the quantum Hall state at 5/2 [33]. Tilt-dependence measurements

are a useful probe of the spin degrees of freedom [146], examining in particular how

the ratio of the Zeeman energy to the Coulomb energy affects electron phases. The

measurements described in this thesis are limited to a fixed tilt angle.

8.2 Further exploration of the N=0,1 and 2 LL

phases

In addition to RRS measurements, a study of RILS could be elucidating: one could

monitor how low-lying excitations at ν = 5/2 change with small changes in filling

factor. Furthermore, as discussed in the previous section, tilt-dependence measure-

ments provide another means of exploring exotic phases in the 2nd and 3rd LL’s.

These measurements could also be applied to studying low-lying modes using RILS.

That is, one could monitor how low-lying excitations change with tilt. One hypothe-

sis is that the state of 5/2 might recover a spin wave at slightly larger tilt, in analogy
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to the work by Dujovne et al. at ν = 1/2 [146], where a well defined SW in induced

by increasing the tilt of the sample (increasing the ratio of the Zeeman energy to

the Coulomb energy). The states at ν = 8/3 and 7/3 could also be included in this

kind of measurement, for similar reasons.

Additionally, a comparison between 5/2 and 7/2 should be made - the behavior

of these states is expected to be the same in the absence of Landau level mixing [160].

It could be enlightening to discover how the low-lying excitations of the states at

ν = 7/2 and 5/2 differ. A comparison between these states could provide a means

of determining the effect of Landau level mixing at 5/2 and 7/2. Moreover, tuning

electron density, thereby tuning the magnetic field at which 5/2 or 7/2 is accessed,

could provide a means to systematically probe the impact of Landau level mixing

on these states.

8.3 Exploration of high energy excitations at

other filling factors

Chapter 4 discussed high energy CF excitations at ν = 1/3. I find that there

is evidence for high energy modes at filling factors beyond the lowest LL (N =

0, ↑). Preliminary results from RILS data reveal high energy modes, at energies

significantly greater than EZ , at filling factors in the upper spin branch of the

N = 0 LL (N = 0, ↓) and also in the N = 1 LL. The interpretation of these

high energy modes is unclear. Work by Scarola et al. describes the collapse of

CF excitons in the higher LLs (N > 1 LL) [153]. Thus, the high energy modes

we find using RILS may be linked to Λ level structure, or could perhaps find an

interpretation in other venues. Figure 8.5 and 8.6 show RILS data delimiting “high

energy” excitations at ν = 4/3 and ν = 5/3 respectively. Similar data are shown in

Fig. 8.7 for ν = 3/2. It is likely that the former could be readily explained in the
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context of excitations across multiple Λ levels. Contrastingly, we expect a CF Fermi

sea at ν = 3/2, with infinitely closely spaced energy levels. Presently, details of the

mechanism of these excitations are unknown. I speculate that they are linked to

excitations of the CF sea, analogous to the SDE and CDE modes at zero field from

Chapter 3. Figure 8.8 shows spectral weight, albeit weak, delimiting a high energy

mode at ν = 8/3; the origin of which could stem from excitations across several Λ

levels. Figure 8.9 shows intriguing RILS spectra in the polarized configuration of

a charge density mode with energy less than EZ at ν = 4/3. Though the origin of

this mode is uncertain, the inset in Fig. 8.9 describes a plausible mechanism for

the excitation. Further measurements involving tuning magnetic field, sample tilt,

polarization selection rules and temperature dependence need to be performed in

order to better characterize the nature of these modes.

Remarkably, preliminary data displayed in Fig. 8.10 highlight a “high” energy

excitation at ν ∼ 5/2. Moller et al. [39] predict a dispersive mode of unpaired CFs

at ν = 5/2. It is conceivable that the critical points in the dispersion have been

detected by light scattering. Further work needs to be done to confirm the origin of

this excitation.

Other exciting venues for research involve revisiting the work done in Chapter

7 on cyclotron spin flip modes at temperatures low enough to probe additional

many body effects, if any. An interesting comparison could be made between low

temperature data (∼ 40mK) and the work presented in Chapter 7, measured at

T > 1K.

Another research path uses light scattering to monitor the effect quantum well

structure has on quantum Hall states. Peterson et al. [31] predict that wide quantum

wells (∼ 400Å) stabilize the 5/2 state. It is therefore conceivable, that with 5/2

stabilized by a wide quantum well, a spin wave excitation could be detected by

light scattering. Of course, other tunable parameters exist such as density[37] and
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Figure 8.5: Colorplot of excitations in the quantum fluid at ν = 4/3 (BT=11.9T).
Excitations up to 1.3meV are detected. All excitations are delimited by dotted lines
shown in the figure. The upper and lower panel differ in the range of incident photon
energies used in the RILS measurement.

Figure 8.6: Colorplot showing some evidence for inelastic light scattering at ν = 5/3.
The plot is on an absolute energy scale; inelastic light scattering spectra shift with
increasing incident photon energy. The highest excitation shown has energy shift
∼ 1.4meV .
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Figure 8.7: Colorplot of excitations in the quantum fluid at ν = 3/2 (BT=10.5T).
Excitations up to 1.3meV are detected. Well defined excitations are delimited by
dotted lines shown in the figure.

Figure 8.8: Colorplot showing some evidence for inelastic light scattering at ν = 8/3
(BT=6.0T). The highest excitation shown has energy shift ∼ 2.2meV .
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Figure 8.9: Spectra of charge density excitations in the quantum fluid at ν = 4/3
(BT=11.9T). The charge density excitation from polarized spectra is seen at
0.22meV. The excitation is delimited by a dotted line and labeled ∆c. The SW
is absent in both polarized and depolarized spectra. The inset shows the energy
level diagram for a spin unpolarized 4/3 state[27]. The diagram delimits a possible
origin for the excitation shown in the main panel. Notice that ∆c is larger than EZ
in the diagram but smaller than EZ in the spectra. Presumably, the lower value for
∆c is due to the Coulomb exchange energy (like an exciton binding energy).

Figure 8.10: Colorplot of excitations in the quantum fluid at ν ∼ 5/2 (BT=6.35T).
Excitations up to 2.4meV are detected. Well defined excitations are delimited by
dotted lines shown in the figure.
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Al concentration [161], both of which have some effect on the activation gap of

the state at 5/2. A higher density sample allows the state at 5/2 to be accessed

at a higher magnetic field (ν ∝ n/B) and consequently with a higher Zeeman

energy. It is conceivable that the value of EZ could affect the spin properties of the

state at 5/2. The Al concentration in the AlGaAs/GaAs heterostructure affects the

remote impurity (RI) donors in the quantum well (that is, the impurities outside

the quantum well)[161]. Varying the Al concentration varies the amount of disorder

due to RI donors, which has been shown to affect the quality of the state at ν = 5/2

[161].
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Chapter 9

Concluding Remarks

I present this work at a time of great interest in the state at ν = 5/2 and other

states in the higher Landau levels. The promise of advances in topological quantum

computing fans the flame of scientific curiosity and brings us closer to understanding

all the complex phases emerging from electron-electron interactions in high magnetic

fields. The work presented in this dissertation represents some of the advances made

in characterizing electron phases, especially at ν ∼ 5/2, and suggests the next steps

in deepening the understanding of 5/2 physics and of quantum Hall physics in

general.

Chapters 2 and 3 provide an overview of the physics of electrons in high magnetic

field and of optical spectroscopy, the method by which we study these electron

systems. In particular, we use resonance light scattering to probe low energy modes

of quantum phases with sensitivity to spin and charge degrees of freedom, as well

as spatial inhomogeneity. This multifaceted tool provides a new perspective in a

field with a great deal many studies using magnetotransport. In Chapter 4, I show

that composite fermions at ν = 1/3 are robust topological quasiparticles which have

well defined energy level structure up to “high” energies. This study introduces the

possibility of doing similar work at ν = 5/2 as a means of exploring the topological
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robustness of the state at 5/2.

The low energy modes of states at 3 ≥ ν ≥ 5/2 are examined in Chapter 5. The

collapse of the SW suggests the loss of spin polarization for 3 & ν & 5/2; while

the emergence of a continuum of low energy excitations alongside the SW implies

phase coexistence, in the form of novel domain structures, arises in the 2nd LL. One

interpretation of these results contradicts the widely held belief of a spin polarized

state at 5/2. Another highlights that sub-micron sized “puddles” of spin polarized

5/2 fluid could exist that destroy the long range order of SW excitations.

To learn more about how the behavior of half-filling fractions varies with Landau

level, I compare and contrast the low energy excitations of states in the second and

third LL. I find remarkable behavior in the spin degrees of freedom - the SW persists

to half-filling in the third LL whereas it collapses in the second LL; this suggests

intriguing roles of spin degrees of freedom in the 2nd and 3rd LL. In addition,

the conventional wisdom of the physics of the third LL, leads us to believe that it

comprises mostly charge density waves. I propose some experiments to corroborate

this interpretation and to complement existing studies.

Chapter 7 reports new features in the dispersion of the SW at large wavevector,

which is seen at ν = 3, but not reported at the analogous N = 0 LL state of ν = 1.

I speculate that could arise from a difference between wavefunctions of the first and

second LL; which results in disparate behavior of the respective SW dispersions.

In addition, I present measurements of inter-LL excitations and propose that these

measurement could serve as another means of monitoring spin degrees of freedom.

This foray into the electron systems of the first, second and third LL ends with

suggestions of venues for future research. This stitch in the vast quantum Hall

research effort has the promise of weaving a great fabric of understanding - eluci-

dating both the nature of and the transition from conventional quantum Hall states,

to even-denominator quantum Hall states with exotic non-abelian braiding statis-



161

tics, to the charge density wave phases of higher LLs. The knowledge to be gained

may not only gratify a great many academic pursuits, but could also usher in a new

era of technological innovation.
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variable value definition

e 4×1010 esu magnitude of electron charge

~ 1.055× 10−27erg s Planck’s constant

c 2.99× 1010cm/s speed of light

~c 1973.26960eV Å

me 9.1× 10−28g free electron mass

µB e~/2me = 0.05788meV/T Bohr magneton

kB 0.08617meV/K Boltzmanns constant

T temperature

q excitation wavevector

k light scattering wavevector

n 2D areal density

ωL incoming photon frequency

λL incoming photon wavelength

ωS outgoing (scattered) photon frequency

B perpendicular magnetic field

BT total magnetic field

φ even number of vortices

p, ν∗ composite fermion filling factor

lo
√

~c/eB magnetic length

EF ~2πn/m∗ Fermi energy of 2D electron system

Ec e2
√
πnε Coulomb energy

ν hcn/eB electron Landau level filling factor

m∗ 0.063me electron conduction band mass in GaAs

ε 13 dielectric constant in GaAs

g −0.44 Lande factor in GaAs

Table A.1: Summary of variables and constants along with their values.
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variable definition

2D two dimensional

AP antiphase magnetoplasmon

CB conduction band

CDE charge density excitation

CDW charge density wave

CF composite fermion

FQH fractional quantum Hall

FWHM full width at half maximum

IQH integer quantum Hall

LL Landau level

ΛL composite fermion energy level

MBE molecular beam epitaxy

MP magnetoplasmon

PL photoluminescence

QW quantum well

SDE spin density excitation

SF spin flip

SW spin wave

VB valence band

WC Wigner Crystal

Table A.2: Summary of abbreviations and their definitions


