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ABSTRACT

Competition between visual stimuli in the monkey parietal cortex
Annegret Falkner

We live in a complicated visual world where stimuli are constantly  clamoring for our 

limited attentional resources.  We use our eyes to explore the world and our brain must 

make moment-to-moment decisions about which points of space contain the most 

information or are associated with likely rewards.  In our neural representation of the 

visual world, stimuli locked in a constant battle for spatial priority and a single winner 

must emerge each time an eye movement is to be made, though the mechanisms by  which 

this winner emerges are unclear.  In this thesis we explore how competition between 

visual stimuli in the parietal cortex may be implemented by  changes in the activity  and 

reliability  of neural signals.  The macaque lateral intraparietal area (LIP) is part of an 

oculomotor attentional network and its activity  represents the relative priority of spatial 

locations.  We demonstrate how neurons in LIP use surround suppressive mechanisms to 

resolve conflict between spatial locations and explore the role of shared variability in the 

priority map network.  We manipulate the cognitive state of the monkey by changing his 

expected reward and show that the activity, reliability, and noise correlation are affected 

by the context of the monkeys’ choice.  Finally, we demonstrate how behavioral variables 

such as the monkeys’ performance and saccade latency are modulated during competitive 

choice.
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Chapter 1:  Introduction

1.1 How does the winner win?

We live in a visually complex world where a myriad of stimuli are constantly  clamoring 

for our attention.  Since our neural resources are limited and some stimuli are more informative 

than others, the brain must select which stimuli are the most relevant and then prepare 

appropriate behaviors in a flexible manor.  In most situations, such as deciding which email to 

open first or which person to attend to at a noisy party, the consequences for these moment-to-

moment choices are trivial.  However in other situations these processes can be vital to survival.  

For example, if when crossing a busy street you become suddenly transfixed by a shiny silver 

dollar on the ground, you run the risk of being run over by  a speeding car.  Since salient stimuli 

can cause shifts in attention and undesired eye movements (Egeth and Yantis, 1997), ignoring the 

silver dollar is imperative so that focus can be appropriately allocated to the steady stream of 

traffic.  But how does the brain decide to prioritize the traffic over the silver dollar?  

To sort out the wheat  from the chaff of the visual scene, the brain is equipped with a 

network dedicated to visual processing and attentional allocation.  In many primates including 

humans, this network includes areas in the frontal and parietal cortices as well as subcortical 

structures such as the superior colliculus.  Since we use our eyes to scan the visual scene for 

information and we often look at what we attend to, these areas also have a known role in the 

production of rapid “saccadic” eye movements (Kustov and Robinson, 1996; Corbetta et al., 

1998; Moore and Fallah, 2001; Ignashchenkova et al., 2004). 
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Within this network, how does the brain flexibly decide where to attend to and where to 

direct the next saccade?  In order for this to occur, several variables must be kept track of in the 

brain.  First, the brain must monitor the spatial locations of potentially interesting events.  Next, 

the brain must assign a relative value or importance to each object.  And last, the neural 

representations of these important and unimportant spatial locations must compete with each 

other in a common neural currency such that there can be a “winning” spatial location. 

Several current models suggest that the representations of visual stimuli compete in a 

priority map, a topographical 2D network where the activity  of cells in the map represents the 

priority or salience of a given spatial location (Koch and Ullman, 1985; Wang, 1999; Itti and 

Koch, 2000).  In these models, salient features of the visual world are combined with top-down 

influences into a general measure of priority  as represented by a “peak” on a spatial map.  

Attention is then allocated dynamically based on a moment-to-moment determination of highest 

peak of the map.  Physiological evidence for priority  maps has been described from several 

different primate brain areas including the lateral intraparietal (Bisley  and Goldberg, 2003a), the 

superior colliculus (McPeek and Keller, 2002), the frontal eye fields (Thompson and Bichot, 

2005), and the pulvinar nucleus of the thalamus (Morris et al., 1997).  According to these 

models, attentional or saccadic selection occurs on the basis of moment-to-moment “winner-

take-all” competition between dynamically changing peaks on this map. Additionally, lateral 

suppression between different locations on this map plays a critical role for resolving 

competition between stimuli, though there is little physiological support for this mechanism as of 

yet.  
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Historically, the parietal cortex has a known role in attentional allocation and saccade 

selection and is a likely candidate to mediate competition between visual stimuli.  In humans, 

patients with unilateral right parietal lobe damage have trouble attending to visual stimuli in the 

left side of their visual field.  Termed “hemi-neglect” syndrome, patients with these attentional 

deficits had no appreciable deficits in visual processing (see Adair and Barrett, 2008 for review).  

Additionally, bilateral lesions of the parietal cortex in humans have been linked with the inability 

to filter distracting stimuli from targets, even when stimuli were widely spaced apart (Friedman-

Hill et al., 2003), though fascinatingly, the patients in this study  had no trouble identifying the 

target when it was presented without distractions.  These deficits demonstrate that while the 

parietal cortex may not be necessary for basic visual processing, it likely  is involved in 

prioritizing spatial information when multiple visual stimuli are in competition.

To explore whether the parietal cortex plays a role in spatial competition, the animal model 

we will use is the awake behaving rhesus macaque (maccaca mulatta).  Monkeys are the ideal 

neuro-ethological system to probe complex questions, especially  those pertaining to visual 

processing and eye movements, because their visual system parallels the human visual system in 

many critical ways.  Monkeys can be trained to sit still and perform complex tasks in exchange 

for liquid rewards, and they will perform thousands of identical “trials” so that we can generate 

accurate estimates of the underlying processes. Using a magnetic eye coil in tandem with 

standard neurophysiological techniques, we can simultaneously  monitor both the monkeys’ 

saccadic behavior and the activity  of single (or multiple) neurons.  On each trial, the eye 

movement offers us a unique window into the cognitive processes that underlie the decision that 
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the monkey makes, and we can rigorously quantify the relationship between the neural activity 

and the monkeys’ behavior across changing task demands.  

In this thesis, I will examine how neural activity  in the monkey  lateral intraparietal area 

(LIP) represents ongoing competition between visual stimuli during a planned saccade task and a 

saccadic choice task. Monkey  LIP receives “bottom-up” visual input from sensory areas and 

“top-down” input from fronto-cortical areas including the frontal eye fields (FEF).  LIP also 

sends a direct input to the superior colliculus (SC), an area known to be involved in saccade 

generation.  Previous studies have suggested that LIP firing rates encode information that 

represents the upcoming decision, and thus may represent a final stop on the cortical path to the 

motor/saccade command.  Saccades also an ideal behavioral readout with which to study 

competitive processes in LIP.  Saccades are ballistic all-or-none events such that there is a 

“winning” spatial location each time an eye movement is made.  Unlike head orienting or reach 

mechanisms, the details of how the muscle commands that generate saccades are well 

understood, leaving us free to concentrate on the functions of more upstream neural structures.  

Additionally, current recording techniques allow us to precisely measure several important 

saccade metrics, including latencies, amplitudes, and endpoints.  Trials where the monkeys make 

saccades that are not correctly timed or targeted are counted as errors and give us additional 

insight into the cognitive processes that underlie saccade generation and attentional allocation.  

In the next section I will outline several neural signals that may reflect competitive processes in 

LIP.
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1.2  Mechanisms of competition

In brain areas that encode a map of the visual world in retinotopic space, each point on 

the map  is determined by the relative firing rates of the neurons that encode the representation of 

that particular spatial location. For competition to occur in the brain, the magnitude of this signal 

and its reliability are of the utmost importance. The magnitude of the signal contributes to the 

encoded priority  of the spatial location, and the amount of spatial accuracy is determined by the 

fidelity  of this representation over repeated trials.  To examine how spatial locations compete in 

LIP, we must also consider how the representations of these locations interact dynamically.  In 

this body  of work I will quantitatively explore three separate mechanisms that contribute to 

competitive processes in monkey LIP:  1) changes in the firing rate of LIP neurons, 2) changes in 

the across-trial variability  of single LIP neurons, and 3) changes in the shared variability  or 

“noise” correlation between pairs of simultaneously recorded neurons.  Within each of these 

three mechanisms I will explore how changes are reflected in the monkeys’ saccadic behavior, 

including saccade latency, errors, and endpoint accuracy.   

1.21 Changes in firing rates

How do changes in the magnitude of the neural response aid in the filtering of distracting 

information?  To return to our example of the traffic and the silver dollar, we see that the car and 

the silver dollar are actively competing for your attention and your upcoming eye movements. 

Since you can’t saccade to both the silver dollar and the car at the same time, one way to solve 

this problem would be to make the response to the car so much higher than the silver dollar so 

that it effectively “wins” the competition.  Another solution would be to make the response to the 
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silver dollar so small that it “loses.”  But which is it?  One optimal neural strategy would be to 

implement both processes simultaneously.  Here I will explore how surround suppressive 

mechanisms work in tandem with top-down enhancement mechanisms to filter irrelevant visual 

information.  

1.22  Changes in across-trial variability

The across-trial variability of neural responses is a potential nuisance to competitive 

mechanisms.  If the silver dollar one day  causes a low neural response on the priority map, but 

the next day a high response, the signal is unreliable and may result in detrimental behaviors.  

For example, few extra spikes at a non-target location could potentially confuse a downstream 

decoding mechanism and cause erroneous saccades.  Here I will examine the relationship of 

saccadic behavior to the across-trial reliability of neural responses in LIP.  I propose that 

surround suppressive mechanisms in LIP (in addition to suppressing irrelevant spatial 

information) can also increase the precision of LIP’s responses by improving the variability at 

non-target locations.  

1.23  Changes in the shared variability between LIP neurons.

How do neurons in LIP interact with each other during a saccadic decision?  Thus far, I 

have only considered the responses of single neurons.  But are these neurons acting 

independently, or do the firing rates depend on each other?  For a complete description of how 

neurons might compete with each other, we can examine whether neural noise is correlated in an 

ongoing decision.  In this study I record the precise responses to 2 competing options and 
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examine how the correlations between these neurons encoding the competing spatial locations 

change as the decision emerges in time.  Since correlations are indicative of shared variability 

between neurons, I propose a mechanism by which shared variability is reduced during an 

ongoing decision.  

In this introduction, I will begin by giving a brief account of the anatomy and 

connectivity of area LIP, followed by a description of previous work that demonstrates how LIP 

encodes several types of cognitive and motor related information.  I will also briefly  describe 

several current models that  describe activity  in LIP, and summarize the current findings that  are 

related to competitive processing in cortex.  

1.3  The Lateral Intraparietal Area

1.31 Anatomy

LIP is part of a macaque fronto-parietal network dedicated to attentional allocation and 

saccade generation.   An intuition of the diverse anatomical connectivity of LIP is a necessary 

precursor to understanding of the signals known to be encoded by  LIP neurons.  LIP is located in 

the lateral bank of the intraparietal sulcus (the human analog to LIP is the intraparietal sulcus), 

and is uniquely situated to have convergent connections with visual, frontal, and oculomotor 

structures (Figure 1.1).  Structures linked to visual processing have historically  been grouped 

into a either the ventral stream, which is responsible for recognition and object identification (the 

so-called “what” pathway), and the dorsal stream which is responsible for using visual 

information to direct action (the “where” stream).  LIP (along with other parietal areas) is 
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classically thought to be part of the dorsal stream, though this segregation of pathways is largely 

a descriptive convenience since there is massive overlap of connectivity  between the structures 

(Van Essen, 2005).  

The intraparietal sulcus is separated into several anatomical areas that have unique 

functional domains.  Areas in the anterior IPS are known to have largely  tactile motor and 

somatic sensation functions, while areas in the posterior IPS are more related to visuomotor 

processing (Grefkes and Fink, 2005).  The ventral intraparietal area (VIP) responds to 

multimodal and especially tactile stimuli (Duhamel et al., 1998; Avillac et al., 2005), vestibular, 

(Bremmer et al., 2002), and body surface information (Schlack et al., 2002).  The medial 

intraparietal area (also known as the parietal reach region, PRR) has been shown to be specific 

for arm reaching (Andersen, 1997; Snyder et al., 1997).  In contrast, areas 7a and LIP receive 

direct projections from several visual areas including V1, V3, V3a, V4, and MT/MST (Blatt et 

al., 1990; Baizer et al., 1991; Colby and Goldberg, 1999).  The specificity of these inputs endows 

LIP with the capacity to selectively respond to salient information in the visual field such as 
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motion in the case of MT, and color or object in the case of V4.  LIP receptive fields (RFs) can 

vary quite considerably.   Stereotypical LIP RFs subtend ~10 visual degrees and while the 

majority  of LIP RFs are located contralaterally  to the recoded hemisphere, RFs can be located 

foveally and to a lesser degree ipsilaterally (Ben Hamed et al., 2001). 

LIP receives direct input from several structures related to top-down control and memory.  

It is reciprocally connected to the frontal eye fields (FEF), a structure known to play a role in 

top-down attention and saccade generation, and also receives input from the prefrontal cortex 

(PFC), a structure with large, often bilateral RFs which is known to flexibly encode information 

based on task demands (Schwartz and Goldman-Rakic, 1984; Andersen et al., 1985).  LIP also 

receives input from structures known to encode memory information, including the perirhinal 

and parahippocampal cortex, and the posterior cingulate (Blatt et al., 1990; Lewis and Van Essen, 

2000).  

LIP is also well situated to provide information to saccade generation structures.  LIP has a 

direct input to the SC, an oculomotor structure with a strict retinotopic topography (Asanuma et 

al., 1985; Lynch et al., 1985).  Microstimulation of the SC evokes saccades to particular regions 

of the visual field (for review see (Gandhi and Katnani, 2010).  The SC also sends a projection 

back up to the FEF via the medial dorsal nucleus of the thalamus (Sommer and Wurtz, 2006).  

This signal is thought to provide an efference copy of motor commands made by the colliculus, 

in essence, reporting back to the oculomotor-attentional network what eye movement has just 

been programmed.  This recurrent feedback effectively closes the loop between sensory  and 

motor commands and provides a potential pathway for online adjustment of eye movements.  
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1.32 The components of the LIP signal

The wealth of connections to and from LIP endows it  with the capability to encode both 

sensory  and cognitive signals.  Though LIP contains cells with a variety  of response properties, 

the canonical LIP cell has several properties that I will describe in detail in the following section.  

First, it responds to an abrupt visual stimulus with a very stereotyped neural latency.  Second, it 

has a saccade-related signal that rises in preparation prior to the eye movement.  And lastly, it  has 

a relatively  unique firing property:  the activity generated by a visual stimulus persists even in 

the absence of the stimulus itself (Figure 1.2).  

Visual onset

LIP cells receive input from visual cortex and have RFs that are coded in retinotopic 

coordinates.  Neurons in LIP respond to abrupt visual stimuli with a short stereotyped neural 

latency, ~42ms, which suggests that this information is travelling only a few synapses before 

reaching LIP (Bisley et al., 2004).  This short-latency response can be thought of a rapid 

orienting response to events that are new and salient.  This view is further reinforced by 

experiments performed by Gottlieb et al in which monkeys brought a stable stimulus into the RF 

with a saccade (Gottlieb et al., 1998).  In contrast to an abrupt  transient response to a flashed 

stimulus, the stable stimulus evoked very little response, suggesting that it  is not simply the 

appearance of a stimulus in the RF that evokes the response, but the novelty of the response 

itself.  However LIP neurons still have vigorous responses to distracting stimuli have no 

information relevant to the task (Robinson and Goldberg, 1978; Powell and Goldberg, 2000; 
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Balan and Gottlieb, 2006), though neurons responded more to stimuli that required a response 

than to stimuli that were ignored (Bushnell et al., 1981).  

LIP neurons also respond to visual stimuli that will appear in the RF after a saccade and 

are thought to perform a function akin to spatial updating.  When monkeys were required to 

make a saccade across the visual field, neurons responded to a flashed stimulus that will appear 

in the RF after the saccade several hundred ms prior to the initiation of the saccade itself 

(Kusunoki and Goldberg, 2003).  

0 500 1000

0

20

40

Time from target onset (ms)

A
ct
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ity

 (s
p/

s)

Figure 1.2  Response of an LIP neuron 

during a memory guided saccade.  

Raster and PSTH of neuron exhibiting 

the hallmarks of the LIP neuron:  the 

visual transient aligned to the target 

onset, the elevated activity during the 

delay period relative to the activity prior 

to the target, and the ramp-up activity 

following the saccade go-cue (at 

1000ms).  

Furthermore, the visual onset responses of LIP neurons carry information about the 

stimuli contained within them.  When tested on a variety of visual search tasks where monkeys 

were required to discriminate a target stimulus from a number of distracting stimuli, neurons 

reliably  encode the location of the target (relative to a distractor response) within 100ms (Ipata et 

al., 2006a).  LIP neurons respond rapidly to a “pop-out” singleton stimulus though this response 

can disappear with training if the stimulus contains no information relevant to the task (Ipata et 

al., 2006b).  
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Saccade generation

 LIP also has strong ties to the oculomotor network and can signal an upcoming 

saccade plan.  Response rates in LIP are modulated by the orbital position of the eye (Andersen 

et al., 1990) and prior to the onset  of a saccade, neurons “ramp up” in preparation to make an eye 

movement to a target in the RF center (Gnadt and Andersen, 1988), leading some to speculate 

that LIP exclusively signaled the so-called “intention” of the saccade plan, a view that has 

become extremely controversial.  As a counter to this, when monkeys were cued to make 

saccades to an untagged location opposite the visual target (an “antisaccade”), rather than 

explicitly coding for the saccade target location most neurons in LIP responded vigorously  to the 

target, but not to the goal of the upcoming saccade (Gottlieb and Goldberg, 1999).  Additionally, 

LIP still shows responses when required to respond to a target with a manual response rather than 

a saccade (Andersen et al., 1998; Oristaglio et al., 2006).  

 Additionally, though low microstimulation of both the FEF and the SC can evoke 

short latency saccades with highly stereotyped endpoints (Robinson and Fuchs, 1969; Robinson, 

1972; Bruce et  al., 1985), the same is not always true for LIP.  Only at relatively  high current can 

saccades be evoked (Thier and Andersen, 1998; Constantin et al., 2007; Constantin et al., 2009), 

leading some to suggest that  stimulation in LIP is generating saccades by activating the FEF, or 

that LIP’s (relatively) loose spatial topography is to blame.  In sum, though LIP has strong ties to 

the saccade generation system and in many cases exhibits saccade-related activity, it is evident 

that the structure cannot clearly be defined as a motor output structure.  
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Persistent activity

Another hallmark of the LIP neuron is the elevated responses to a remembered target 

location.  This is tested using the “memory guided delayed saccade” paradigm (Hikosaka and 

Wurtz, 1983) in which monkeys make saccades to a disappeared saccade target after a fixed 

delay.  In this paradigm, the activity  is increased during this delay period relative to the pre-target 

activity and is thought to presumably represent that memory of the target’s spatial location 

(Colby et al., 1996).  This property  is shared with fronto-cortical areas including the FEF and 

PFC and is a known characteristic of neural networks with recurrent connectivity (Wang, 2001; 

Brunel, 2003). 

1.4  Modulation of LIP neurons by cognitive signals

 In addition to encoding visual and saccade related activity, LIP’s responses can be 

strongly modulated by the demands of the task.  Here I will describe how cognitive signals 

related to attention, reward, and decision making are explicitly encoded in LIP.  

1.41  LIP and attention  

Nearly  40 years ago, neural signals related to visiual attention were discovered in the 

monkey  SC (Goldberg and Wurtz, 1972), and since then, evidence for attentional modulation has 

been found in several cortical and subcortical structures including the pulvinar nucleus of the 

thalamus, the frontal eye fields (FEF), lateral intraparietal area (LIP), and several areas in the 

visual cortex.  Although their contributions to visual attention are clearly different and not well 

understood, it is believed that  these areas form a distributed network, cooperatively  dedicated to 
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the maintenance and allocation of attention.  It has also been suggested that attention represents 

the local selective transfer of information between these brain areas (Assad, 2003).

Attention is typically thought to have a “bottom-up” and a “top-down” component. 

“Bottom-up” exogenous visual attention represents image properties and the intrinsic salience of 

visual objects.  Spotting the one banana in a big bowl full of red apples is easy because the 

banana effectively  “pops” out of the visual field due to its salient color and shape relative to the 

surrounding apples.  The salience of color, orientation, luminance, and motion are stimulus 

properties that may be represented by exogenous attentional processes.  In contrast, “top-down” 

endogenous processes encode signals related to task relevance and goal-driven processes.  “Top-

down” signals like attention or motivation can act by enhancing the neural responses to visual 

stimuli (see Kastner and Ungerleider, 2000 for review).  

Single cell recordings in monkeys trained to covertly  attend to stimuli in or out of the 

cell’s receptive field have shown attentional effects in a range of visual areas including V4 

(Spitzer et al., 1988; McAdams and Maunsell, 1999; Reynolds et al., 2000), MT (Treue and 

Maunsell, 1999; Cook and Maunsell, 2004), and even V1 (McAdams and Reid, 2005).  These 

effects manifest themselves as an increase in the gain of the neural activity  across some relevant 

feature space (for example motion in MT, or orientation in V1).  The hallmark of gain 

modulation is that  neurons change the amplitude of their response properties (i.e. the height of 

the feature tuning curve) without changing their tuning (the width of the tuning curve).  Tuning 

curves that have suppression in the flanks of the tuning curve might be expected to have 

increased gain on the suppression.  Behaviorally, attentional allocation can be probed identifying 

the contrast  sensitivity at the spatial locus of attention, which should be enhanced at  the when 
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spatial attention is deployed (and often this is often accompanied with a decrease of sensitivity at 

non-attended locations).  

  LIP does not typically respond to a particular feature (though see LIP and non-spatial 

modulation), so instead the parameter of interest  for attention is retinotopic space.  Since LIP 

responds to the targets of upcoming saccades, studies that probe attention must decouple the 

locus of attention from the endpoint of a saccade.  When this is achieved, LIP firing rates track 

the locus of covert spatial attention in a perceptually demanding task where they required 

monkeys to monitor a cued spatial location for a small change and responded manually to that 

change (Bisley  and Goldberg, 2003a).  When monkeys were distracted from this goal by a salient 

flashed distractor with no informational value, their performance on this task declined 

precipitously  when the distractor flashed occurred around the time of the target change.  This 

suggested that attention was covertly shifted from the cued location to the distractor location for 

the brief epoch of distraction.  At the time when the distractor response was at its highest, the 

monkeys’ performance was lowest, demonstrating that the lower success rates at detecting the 

change were correlated with reduced firing rates at the location of the target.  

Though attention can be operationally described as a “spotlight” (Posner et al., 1982), a 

“zoom lens” (Eriksen and St James, 1986) or effectively modeled as an increase in response gain, 

it must be remembered that attention itself is a psychophysical construct, not an explanation 

therein.  Studies that describe the effects of attention lack a complete description of the 

implementation of the processes that allow for attentional modulation.  Current models of 

attention such as “divisive normalization” (Reynolds and Heeger, 2009) suggest that this happens 
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through interactions between a stimulus drive and suppressive surround that require interactions 

between spatial locations, but these details have not been explored physiologically.

1.42 LIP and reward

 Monkeys are sensitive to changes in their expected reward and will typically 

modify  their behavior to reflect these changing sensitivities.  For example, trials where monkeys 

expect high rewards relative to low rewards are associated with faster reaction times, increased 

accuracy, and increased frequency  of choice to the high reward targets (Lauwereyns et al., 2002; 

Watanabe et  al., 2003a, b).  In addition to these behavioral changes, LIP responses can reflect 

relevant information about reward states, including reward magnitude, reward probability, and 

information about previous rewards. 

In a now classic experiment, Platt and Glimcher (1999) first discovered the link between 

LIP and reward when they had monkeys make saccadic choices between potential saccade 

targets while adjusting either the magnitude of the reward or the probability of the reward.  They 

found that LIP neuronal responses are correlated with both the magnitude and probability of the 

reward for a given target and speculated that LIP encodes the expected value of a given visual 

stimulus.  They speculated that LIP, an area that lies on the border between sensory and motor 

responses, is instrumental in mapping the value of an action onto the cells that encode the spatial 

location for that action. Following this landmark paper an explosion of work in the booming field 

of “neuroeconomics” attempted to clarify the role of LIP in encoding reward related decision 

variables.  
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In addition to encoding information about upcoming rewards, neurons in LIP can also 

encode information about past rewards.  Using a modified foraging task where monkeys could 

optimally harvest rewards by keeping track of their past choices, Sugrue et al. (2004) found that 

neurons in LIP could reliably track the expected reward or local income associated with a 

particular choice.  In this task, monkeys made free choices between targets with varying relative 

reward probabilities that were each baited with the “flip” of an independent coin.  In this task the 

monkeys allocated their choices to the targets with the same frequency of their relative reward 

probability  of the chosen target (Hernstein, 1961). Astonishingly, they found that LIP neurons 

encoded a measure of the reward history that could predict these upcoming choices.  When 

monkeys planned saccades into the RF of the recorded neuron, the firing rates of LIP neurons 

significantly regressed with a weighted average of the past history of choices to that  particular 

target (a “leaky” integration of past rewards).  Neurons did not track the expected income during 

a single target saccade task, suggesting that information about past choices is most relevant when 

it is necessary to inform the upcoming choice.

But can reward information still modulate LIP responses even if the motor outcome is 

stereotyped?  This was explicitly tested by pairing a delayed saccade with information about the 

upcoming reward for that saccade (Peck et  al., 2009).  In this task, monkeys were instructed by a 

randomly located cue whether the upcoming saccade would be rewarded or not, and following 

the reward cue, a second cue instructed the monkey the required endpoint location of the 

upcoming saccade.  Even though monkeys could not change the saccade for each trial and the 

reward cue only  gave them advance notice about the upcoming reward (and monkeys could not 

skip unrewarded trials), both the firing rates and the monkey’s saccadic accuracy were severely 
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affected by this advance information about the upcoming reward.  Firing rates were suppressed 

by information that indicated no upcoming reward, and these changes were correlated with 

deficits in the monkey’s saccadic behavior.

 These experiments clearly demonstrate how firing rates in LIP are sensitive to 

changes in reward, but a complete framework for these changes influence the monkeys’ 

decisions is lacking. For example, LIP neurons may encode the subjective desirability of a 

particular action (Dorris and Glimcher, 2004), and this information may be used to map the 

likelihood of a particular choice onto neurons that encode the specific action for that choice (i.e. 

a saccade to a particular spatial location, Gottlieb and Balan, 2010).  However, like spatial 

attentional processes, it is unclear how these interactions are implemented.  What is the 

relationship  between the spatial locations that encode desirable actions and spatial locations that 

encode undesirable actions?  When the values of competing actions are equal, are the 

representations of them independent?  How do changing reward expectations affect the reliability 

of the neural signal?  

1.43  LIP and decision making

LIP, which receives direct visual input from several visual sensory areas, has been shown 

to be involved in sensory-based decision-making.  The classic paradigm used to explore this 

relationship  is the “random dot motion” task, in which the monkey views a patch of randomly 

moving dots (where a certain percentage of them are moving coherently) and must use this 

information to make a decision, which is then indicated with an eye movement.  When the patch 
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of dots has a high coherence, the decision is easy, but if the coherence is low, the decision is 

more difficult, decisions take longer and are less accurate.

Shadlen and Newsome first demonstrated that firing rates in LIP explicitly  encoded a 

signal related to the upcoming saccadic choice:  as monkeys viewed the informative stimulus, 

LIP neurons, which directly receive motion information from MT, signal a measure of how much 

evidence has been amassed in favor for a particular decision, and this information is integrated 

over the time window of stimulus viewing (Shadlen and Newsome, 1996, 2001).  These data 

suggest that evidence accumulates to a fixed bound at which point a decision is be made and a 

saccade is generated to the target.  For trials where the coherence of the random dots was high, 

evidence was integrated quickly and response rates were high, and for trials where the coherence 

was low and the trial was difficult, evidence was integrated more slowly and response rates were 

slower (Roitman and Shadlen, 2002).  Further experiments demonstrated that both 

microstimulation of LIP during this task (Hanks et al., 2006) and perturbing the amount of 

sensory  evidence observed by the monkey  (Huk and Shadlen, 2005) biased the monkeys’ choices 

in favor of the stimulated alternative, and effectively contributed to the amount of integrated 

sensory evidence (Mazurek et al., 2003).  

Some models of decision-making in LIP suggest that competing decisions race to the 

threshold independently (Hanes and Schall, 1996; Ratcliff and Rouder, 2000; Smith and Ratcliff, 

2004; Palmer et al., 2005), while others implement the decision process by assuming that LIP has 

wide-ranging mutual inhibition between spatial locations such that when one option is favored, it 

automatically suppresses competing responses (Constantinidis and Wang, 2004; Wong et al., 

2007).  However these predictions have not been tested experimentally.  LIP firing rates have 
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also been shown to be lowered when monkeys chose between 4 competing targets rather than 2 

(Churchland et al., 2008).  On these trials, the response rates during the target onset  epoch were 

reduced, which the authors interpreted as a lowered starting point for the evidence accumulation 

process.    A possible mechanism for the reduction of these responses would be mutual 

suppression by the competing targets, but this also remains to be shown.  

1.44  Spatial vs. non-spatial information

 There appear to be many  commonalities between responses that encode spatial 

attention, reward signals, and sensory evidence during decision-making.    All three types of 

information modulate neural response properties of target and non-target stimuli in a spatially 

selective manner, and then this activity is then mapped on to a corresponding saccade generator.  

One unifying framework for comparing across these differing conditions would be to suggest 

that LIP is representing the priority of spatial locations on an ongoing basis.

Though it is tempting to speculate that LIP exclusively encodes information in the spatial 

domain, many previous studies have demonstrated that LIP responses can respond to information 

that is not tied to a particular spatial location.  Properties such as elapsed time (Janssen and 

Shadlen, 2005), effector specificity (Oristaglio et al., 2006), categorical membership (Freedman 

and Assad, 2006), and shape selectivity (Sereno and Maunsell, 1998) can modulate LIP 

responses and seem at first glance difficult to reconcile with a framework of spatially specific 

responses.  

Through its diffuse connectivity LIP can combine both sensory information from the 

visual system and “top-down” information from the frontal cortex into a unified representation.  
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This representation can then be flexibly  mapped to a particular visuomotor response.  As 

experimenters, we can vary the task parameters (both sensory and cognitive) such that the animal 

learns to prioritize a particular set of associations.   LIP neurons may  then encode the priority  of 

these associations across a particular set of task demands.  

The question then still remains one of competition for priority:  on each trial, how does 

that monkey chose one option (a single peak of the priority map) at the expense of all other 

options and its associated motor output?  In the next section I will review some general strategies 

used by the visual cortex that  demonstrate that neuronal responses are modulated by  adjusting 

the firing rates and the variability associated with competing options and that this processes lead 

to both advantages in perception and action selection.

1.5  Mechanisms of competition in visual cortex

1.51  Surround suppression

  Surround suppression is the mechanism by which a stimulus outside the 

“classical” excitatory  response field can modulate the response in the RF.  Surround suppression 

is a ubiquitous neural strategy, and decades of research have shown evidence of suppression at 

many levels of the visual processing stream including retinal ganglion cells (Kuffler, 1953), the 

lateral geniculate nucleus (Alitto and Usrey, 2008), area V1 (Angelucci and Bressloff, 2006), 

MT, MST (Allman et al., 1985a; Eifuku and Wurtz, 1998; Orban, 2008) and V4 (Desimone et al., 

1985; Desimone et al., 1993).  Prior to this study, surround suppression had not been explored in 
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LIP and its very existence in this area has been somewhat controversial (Churchland et  al., 

2008).  

Across areas of the visual cortex, surround suppression has been supposed to play a 

diverse set of roles in visual processing.  In V1, suppression is seen in nearly all cells (>94%), is 

found in all cortical layers (Jones et al., 2001) and has been proposed to be involved in several 

computations including contrast normalization and divisive normalization (see Graham, 2011 for 

review).  Though “surround” suppression is typically thought of as being symmetrical around a 

cell’s RF, suppression in V1 can be evoked by both annular and point stimuli, so the term 

“surround” suppression is actually  a bit  of a misnomer. Since V1 neurons respond preferentially 

to oriented bars and there is a slight bias for suppression to be maximal at the ends of these bars, 

it has been proposed that suppression might help  encode “end stoppage.” In contrast, surround 

suppression in MT, an area selective for motion processing, has been shown to be maximal when 

the motion of the surround suppressing stimuli is opposite the preferred motion of the RF and 

this difference is presumed to play a role in computing figure ground segmentation.  Though 

these are just  a few examples of the roles of surround suppression, these differences highlight the 

fact that despite having generic similarities at different levels of the visual processing stream, the 

influence of suppression may serve wildly different functions at separate levels of the visual 

cortex.

 Thus far we have only considered the influence of suppression evoked by a visual 

stimulus, but in many cases the magnitude of surround suppression can be modulated by “top-

down” cognitive processes.  In V4, an area known to be modulated by spatial attention, the 

magnitude of the response to a stimulus in the RF is modulated by the locus of spatial attention 
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(Sundberg et al., 2009).  In this task, monkeys were trained to covertly  track a moving stimulus 

without making an eye movement.  In some cases, the attended stimulus flanked the RF, and in 

others, an unattended stimulus was the flanker.  The surround suppression was maximal if the 

flanking stimulus was the attended one, though in both cases, the brain received identical visual 

stimulation from the outside world.  Additionally, this study  found that suppressive modulation 

was reduced when attended stimuli were farther from the RF, suggesting a possible center-

surround mechanism for attentional deployment.

 Similarly, in FEF, visual stimuli appearing within the RF during a visual search 

task have been shown to be filtered by surround suppressive mechanisms.  When target stimuli 

appeared in locations adjacent to the RF, the response to flanking non-target stimuli were 

significantly reduced (Schall et al., 2004).  Interestingly, this reduction was modulated by the 

difficulty of the task:  target stimuli that shared more features with the distractor stimuli elicited a 

greater suppressive response.  These interactions can be fit with a difference of Gaussians model 

(a narrow distribution of excitation and a wider distribution of inhibition) which is strongly 

suggestive of the combined influence of local excitation and long range inhibition.  Indeed many 

psychophysics studies have confirmed that the attentional field exhibits a center surround shape 

(Steinman et al., 1995; Caputo and Guerra, 1998; Muller et al., 2005).

 In another fronto-cortical area, the PFC, task irrelevant  distractors were filtered by 

surround suppressive mechanisms when animals performed a simplified version of the RSVP 

task.  Monkeys were required to respond to a particular visual stimulus and ignore all others after 

being cued to attend to a cued spatial location (DeSouza and Everling, 2004).  Task irrelevant 

stimuli that appeared contralateral to the cued spatial location were suppressed relative to the 
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responses during uncued trials of the task, suggesting that suppressive attentional fields in the 

PFC are large and bilateral.  Interestingly, the onset for suppressive influences in the PFC 

appears at longer latencies than in other areas, making it unlikely that the PFC is the origin of the 

top-down suppressive response in other visual cortical areas.  

 Surround suppressive mechanisms can also have behavioral consequences for 

upcoming eye movements.  Within the oculomotor network, in addition to the FEF, several 

studies have provided evidence for suppression in the SC (Munoz and Istvan, 1998; Li and 

Basso, 2005; Lee and Hall, 2006).   In experiments designed to elucidate the spatial relationship 

between a target and a distractor representations in the SC, a flashed distractor caused more 

saccadic errors when it was flashed close to the target locations, and experimenters observed a 

significant suppression when the target was flashed at a distant location (Dorris et  al., 2007).  

Microstimuluation adjusted the distribution of saccadic errors towards the site of stimulation, but 

since it was not done concurrently with recording, it  is unclear whether these effects were 

accompanied by suppression.  

 It is important to remember that in these experiments, suppression is acting via the 

presence of a visual stimulus.  Though attentional mechanisms may act to enhance or reduce the  

visually-evoked response to particular stimuli, the interactions are being mediated by  the 

response to the stimulus itself.  It remains an open question whether the visual stream can 

generate suppression by the mechanistic implementation of attention without the corresponding 

stimulus.
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1.52  Lateral inhibition vs. feedback inhibition

Since by definition, the effects of surround suppression extend well beyond the classic 

receptive field center, a brain area that implements surround suppressive effects must have an 

architecture that supports these interactions.  Surround suppression can be implemented by a 

network that has local excitation and long-range inhibition (and is sensitive to feed-forward 

excitation) though some aspects of suppression can be modulated by inhibitory feedback (Ozeki 

et al., 2009).  Visual areas such as V1 and MT have anatomically robust inhibitory and excitatory 

connections, making it likely that some aspects of suppressive computations are performed 

locally  (Allman et al., 1985b, a).  However the SC, an area shown to have suppression mediated 

by distantly appearing stimuli, appears to lack this architecture (Lee and Hall, 2006).  Using 

photostimulation and whole patch recording, they found that IPSC’s were evoked most often 

from a distance of 200um (and occasionally from 500um).  Since the SC has a very  strict 

topography, this data suggests that suppressive interactions are not being implemented across 

long distances within the SC and instead are being generated elsewhere.  In contrast, LIP, with its 

relatively loose topography would not require inhibitory  connections to be as far ranging to 

derive such responses.  Iontophoresisng bicuculline, a GABA antagonist, into LIP, widens the 

spatial extent of LIP RFs (Zhang et al. unpublished data), demonstrating that LIP has the 

necessary  inhibitory connections, and that they  may in fact  play a role in determining the spatial 

selectivity of a particular neuron.    

Within the oculomotor network, several studies have attempted to clarify  the roles of 

FEF, LIP, and the SC by  pharmacologically manipulating these structures to perform loss of 

function studies.  While chronic lesions of the FEF cause only  minor deficits in saccade 
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generation, inactivating with muscimol, a GABAA agonist, impaired saccade latency  and 

accuracy  to saccades directed into the contralateral hemisphere (Dias and Segraves, 1999).  

Ablation of the SC using this technique abolishes only  very  short latency “express” saccades 

(Schiller and Tehovnik, 2003, 2005).  However, injecting muscimol into LIP affected the goal 

and latency of saccades only  if they were surrounded by distractors, suggesting that inhibition in 

LIP modulates how representation of space compete with each other (Wardak et al., 2002).  

Inactivation on LIP also caused deficits in target selection during a visual search task that scaled 

with task difficult, further reinforcing its role in attentional selection and spatial priority  (Wardak 

et al., 2004).  FEF inactivation during search showed similar deficits, though they were 

unaffected by task difficulty (Wardak et al., 2006).    

Surround suppressive mechanisms may play a role in attention and attentional filtering in 

LIP.  Regardless of where in the oculomotor network suppression is implemented, the net effect 

is dependent  on the type of downstream decoding mechanism reading the LIP responses.  

Suppression may work in tandem with excitation, suppressing the responses to irrelevant stimuli 

while concurrently  increasing the responses to relevant ones.  If, as in signal detection theory, 

stimuli are discriminated by the differences in the distributions of their responses, suppression 

will act to push the means of the distributions farther apart and increase discriminability (Green 

and Swets, 1966).

Lateral inhibition also plays a key  role in “winner-take-all” models of neural competition.  

In these models (which most often employ a layer of recurrent excitatory cells and a second layer 

of broadly connected inhibitory cells), the strength of the inhibition is critical for determining the 

stability of the network (Xie et al., 2002; Moldakarimov et al., 2005; Mao and Massaquoi, 2007).  
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1.53  Across-trial variability in visual cortex

 Surround suppression can act to change the relative firing rates of stimuli in the 

visual processing stream, but a secondary  concern is the reliability of these signals.  If signals are 

highly  variable, they might have significant behavioral consequences.  For example, imagine a 

basketball player poised to make a series of throws.  For each shot to be successful, he must have 

an accurate representation of the stimuli relevant to his action.  On some shots, the net may   be 

represented by a high response rate, and on others by a low response rate.  If we simply  are 

looking at the average response to the net  over many successive throws, it may appear that the 

athlete has a highly accurate representation of the world.  But on each shot the response to the 

net might actually affect the outcome of his shot.  Therefore a complete description of the neural 

variables that contribute to motor outcome will include an analysis of neural reliability.  

Neural variability might also play  a role in spatial competition.  For the basketball player, 

it is vitally important for him to ignore irrelevant information while he is focused on his free 

throw.  The response to a cheering fan might be a distraction and it would be advantageous for 

the player to be able to reliably reduce his neural representation of these potential distractors.  

But how does the brain do this?

 One way  to quantify the reliability of neural signals is to examine the across-trial 

variability:  the amount of variance in a neural signal to an identical stimulus presentation.  A 

decrease in the amount of across-trial variability can result in an increase in the precision of 

neural responses and potentially  improve discriminability (Paradiso, 1988; Vogels, 1990).  The 

amount of variability can be quantified in a neural signal by using the Fano factor (the ratio of 
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the variance of the spike count divided by the mean of the spike count).  A high Fano factor is 

indicative of a high amount of variability in the signal whereas a low Fano factor demonstrates a 

more precise response.  Changes in across-trial variability have been found in premotor cortex, 

where neurons have been found to have decreased variability  prior to an arm movement 

(Churchland et  al., 2006b).  The firing rates of these neurons did not initiate a movement at a 

fixed threshold, but instead converged upon a particular mean firing rate, the “optimal subspace” 

for the neuron.  

 Though many sensory modalities likely  require a precise and reliable neural 

response for perception (for example in audition, see DeWeese et al., 2005), in this introduction I 

will focus on variability in visual processing.  There is some precedent for this as this has been 

explicitly compared across aggregated physiological data from 7 different monkey visual areas, 

including LIP (Churchland et al., 2010).  The authors examined the across-trial variability when 

visual stimuli appeared and found that across all brain areas, the onset of the visual stimulus 

evoked a sustained decrease in the across-trial variability (as measured by  the Fano factor) for 

the duration of the stimulus presentation.  This decrease was true across stimulus conditions, for 

anesthetized as well as the awake behaving monkey, indicating that the variability  reduction is a 

property  of the cortical network, not the cognitive state of the monkey.  Importantly, they 

demonstrated that this increase in neural reliability could occur without concurrent changes in 

the spike rate (a potential confound since an increase in Fano factors can result from either an 

increase in spike count variance or a decrease in mean spike count).  By rigorously mean 

matching and recalculated Fano factors for trials in which the average spike counts were 

unchanged by the stimulus presentation, they confirmed this result for a static neural response.  
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The authors propose that the onset of the stimulus stabilizes the activity  in cortex by reducing the 

amount of noise in the ongoing spontaneous activity.  This suggestion is consistent with 

theoretical work showing that in a dynamical system, inputs can move networks out of chaotic 

regimes (Rajan et al., 2010).

 In addition to sensory input, changes in the cognitive state of the monkey  can also 

affect levels of across-trial variability. Top-down processes such as attention or reward 

expectation could have effects on neural variability that would be then associated with improved 

behavioral outcomes.  Changes in the variability were found in the responses of V4 neurons 

while monkeys performed an attentionally demanding task (Mitchell et al., 2007, 2009).  The  

authors found that when monkeys attended stimuli located at the RF center, the response to the 

stimuli exhibited a modest increase in firing rate, but a large decrease in across-trial variability, 

suggesting that a secondary  role of attention is to increase the reliability of the attended stimulus.  

Changes in across-trial variability in V4 were also associated with improved behavioral 

performance in a saccade targeting task (Steinmetz and Moore, 2010).  When monkeys were 

required to make saccades to targets at the RF center, monkeys made faster saccades when 

variability was more reduced.  

 Changes in the neural variability  in visual cortex provide a unique signature for 

understanding cognitive processes such that examining the across-trial variability can give clues 

to the underlying neural processes.  For example, several models have been suggested to underlie 

the rise in firing rate during a sensory evidence decision-making task.  The models make 

identical predictions about the firing rates, but have different predictions about what the 

dynamics of the variability  will be across the decision.  For example, a “variable rate of rise 
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model” (Carpenter and Williams, 1995; Hanes and Schall, 1996) predicts that variability should 

be correlated across the trial, while drift diffusion models (Ratcliff and McKoon, 2008) propose 

that this co-variation will decrease for time epochs that are widely separated.  Using the law of 

total variance which is derived by subtracting the amount of variability due to spiking from the 

total measured variance, an analysis of LIP data during a decision making task supports the 

evidence accumulation hypothesis (Churchland et al., 2011).  

 What is the relationship between neural variability and attentional priority?  

Previous experiments have sufficiently demonstrated that variability can be reduced in a visual 

cortical area at the location of the target, but in a brain area such as LIP that represents locations 

of events in retinotopic space, does this benefit  extend to non-target locations?  Additionally, 

how do the different locations on the map interact with each other to produce a stable 

representation of the visual world and how does the brain use these representations do generate 

spatially  accurate eye movements?  We can examine these interactions and also explore the 

relationship  between changes in neural variability and the monkeys’ saccadic behavior, 

particularly in cases where the demands of the task are variable.

1.54  Changes in shared variability in visual cortical areas

 Since the state of the LIP map represents an ongoing competition between spatial 

locations in the visual field, studying the responses of single neurons has obvious limitations.  If 

interactions between neurons play a role in the competition process, we are missing this aspect of 

the story  by recording neurons one at a time. A description of the correlations between neurons 

recorded simultaneously gives us an estimate of the shared variability between those neurons:  a 
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significant correlation suggests that  2 neurons share input and the sign of the correlation gives us 

information about the nature of the interaction (Moore et al., 1970; Lytton and Sejnowski, 1991).  

Positive correlations suggest that neurons share a common input, negative correlations suggest a 

negative input such as mutual inhibition, and a lack of correlation suggests that spatial 

representations in LIP are independent. When neurons share spatial RFs or have similar tuning 

properties, correlations can be due to changes in the visual stimulation, but if neurons share 

variability independent of the stimulus, these correlations are thought to be a function of shared 

fluctuations in firing rates (so-called “noise” correlations).  

 Low levels of correlations have been found between neurons in V1 in both the 

spontaneous and stimulus driven activity (Smith and Kohn, 2008; Kohn et al., 2009).  

Unsurprisingly, these correlations are strongest  for neurons that share tuning properties and for 

neurons that are physically closest  in cortex.  The magnitude of the correlation decreases as a 

function of distance between neurons, but remains significantly higher than 0 for distances as 

much as 10 mm cortical separation indicating that neurons share variability  through wide swaths 

of cortex.  In the parietal cortex, the amount of noise is correlated with the amount of signal in a 

reaching task, though primarily for close inter-neuronal distances (Lee et al., 1998). 

 If neurons in cortex have independent  amounts of variability, averaging across a 

population of neurons will eliminate the downstream effects of that variability.  However if 

neurons share variability, that noise can never be averaged out.  In MT, neurons have been found 

to have very fine behavioral sensitivity such that correlations between neurons could impose 

limits to the amount of information that a population of neurons can encode (Zohary  et al., 1994; 

Shadlen and Newsome, 1998). However, the exact implications of correlations are unknown will 
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depend on downstream decoding mechanisms (Abbott and Dayan, 1999; Averbeck et al., 2006). 

The relevant timescale to look for these correlations is hundreds of milliseconds:  correlations are 

maximal at increasing bin size until they  plateau (Mitchell et al., 2009), though correlations on 

shorter timescales (<5 ms) which primarily quantify the number of synchronous spikes in an 

epoch may have other behavioral relevance (Fries et al., 2001).  

 Several studies have shown that correlations in cortex can change as a function of 

the cognitive demands of the task.  In a random dot motion decision task, neurons in MT that 

represent the motion stimulus have higher correlations when the direction to be discriminated 

required that information from the neurons be pooled than if the discriminated motion direction 

is orthogonal to the preferred directions of the cells (Cohen and Newsome, 2008).  This indicates 

that functional connectivity between neurons representing visual information is not static and can 

change trial-to-trial depending on the demands of the decision.  

Noise correlations can also be modulated by attentional allocation.  In V4, when spatial 

attention was deployed to a particular spatial location, the attended location is associated with a 

small increase in firing rate, a small decrease in across-trial variability, and correlations between 

attended and unattended targets are significantly  decreased (Mitchell et al., 2009).  Indeed when 

the effects of attention were quantified on a trial-by-trial basis, the contributions of correlation 

reduction far outstripped the benefits of both increases in firing rate and reduction in across-trial 

variability (Cohen and Maunsell, 2009).  

 Changes in the magnitude of correlations across time may give us clues to the 

competitive processes in a brain region.  During a visual search task, correlations are maximally 

positive when the target to be discriminated lies in the receptive field of both neurons, and less 
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when the target excites neither RF (Cohen et al., 2010).  It is completely unknown however, how 

neurons in the oculomotor network who do not share RFs interact during a competitive saccadic 

decision.  If, as in V4, attention is allocated to a particular choice target, we may expect to see a 

similar reduction in correlation during the choice.  Alternatively, if neurons in LIP behave 

independently as would be predicted by an independent race to threshold model, we should see 

no change in the correlation over the course of the trial.  Furthermore, it is unknown whether 

correlations are affected by  top-down information in LIP that could encode information that is 

vital to the upcoming choice.  

 In this thesis I will explore how oculomotor competition in LIP is implemented in 

three distinct ways:  1)  Neurons compete by suppressing the firing rates of irrelevant 

information. 2) Neurons increase their coding precision through decreases in the across-trial 

variability, and 3) Populations of neurons in LIP decorrelate during a saccadic competition.  In 

all three of these cases I will explore how top-down variables such as the expectation of reward 

affects these competitive processes and I will discuss how these processes are intimately linked 

to the actions of the monkey, including his saccadic behavior.  
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Chapter 2:  Surround suppression sharpens the priority map in the 

lateral intraparietal area.

2.1 Abstract

In the visual world, stimuli compete with each other for allocation of the brain’s limited 

processing resources. Computational models routinely invoke wide-ranging mutually 

suppressive interactions in spatial priority maps to implement  active competition for attentional 

and saccadic allocation, but such suppressive interactions have not been physiologically 

described and their existence is controversial. Much evidence implicates the lateral intraparietal 

area as a candidate priority map in the macaque (Macaca mulatta). Here, we demonstrate that the 

responses of neurons in LIP to a task-irrelevant distractor are strongly  suppressed when the 

monkey  plans saccades to locations outside their receptive fields. Suppression can be evoked 

both by flashed visual stimuli and by  a memorized saccade plan.  The suppressive surrounds of 

LIP neurons are spatially tuned and wide-ranging. Increasing the monkey’s motivation enhances 

target-distractor discriminability  by  enhancing both distractor suppression and the saccade goal 

representation; these changes are accompanied by  correlated improvements in behavioral 

performance.
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2.2  Introduction

In the visual world, stimuli are in constant competition for allocation of the brain’s 

limited processing resources. Salient stimuli are often not  relevant to the task at  hand, but can 

nevertheless transiently capture attention and result in disadvantageous behaviors (Egeth and 

Yantis, 1997; Bisley and Goldberg, 2003b; Peck et al., 2009). For example, a jungle predator 

may have difficulty monitoring his elusive prey when there is a distracting insect flying in his 

field of view. It would be disadvantageous for this predator to lose focus on the location of the 

prey, either through an eye movement or a shift of attention to the location of the insect. Human 

subjects can reduce the capture of attention by an abruptly appearing, task-irrelevant stimulus by 

attending to a different, task-relevant location before the distractor appears (Egeth and Yantis, 

1997). This reduction in attentional capture could be achieved in the brain by enhancing the 

neural activity encoding the location of the task-relevant stimulus or by suppressing the neural 

activity associated with the location of the task-irrelevant stimulus. In principle, an efficient 

neural strategy might incorporate both mechanisms simultaneously, though how such 

interactions occur is not yet understood. 

Many models of attentional and saccadic processing posit that the allocation of visual 

attention and the selection of saccade targets are both based on the dynamically  evolving peak of 

activity in a map-like representation of spatial priority (Schall, 1995; Gold and Shadlen, 2000; 

Itti and Koch, 2000; Fecteau and Munoz, 2006; Goldberg et al., 2006; Serences and Yantis, 2007; 

Armstrong et al., 2009). Current evidence suggests that such priority-map representations exist in 
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several interconnected brain regions including the lateral intraparietal area (LIP), the frontal eye 

fields (FEF) and the superior colliculus (SC) (Keller and McPeek, 2002; Thompson and Bichot, 

2005; Goldberg et al., 2006). It is commonly theorized that different spatial locations on this map 

mutually  suppress each other over large distances in order to facilitate the evolution of a clear 

peak of activity which can serve as the focus of visual attention and select the target for saccadic 

eye movements (Koch and Ullman, 1985; Itti and Koch, 2001; Deco et al., 2002; Constantinidis 

and Wang, 2004). Such mutual suppression is also considered crucial for maintaining a localized 

and persistent focus of attention that is resistant to abruptly appearing distractors (Constantinidis 

and Wang, 2004; Wong et al., 2007), and for the programming of sequential saccades (Xing and 

Andersen, 2000). Long-ranging interactions across the priority map may also be necessary  for 

the global computations of relative reward value that are known to affect the priority map in LIP 

(Dorris and Glimcher, 2004; Sugrue et al., 2004).

Despite this theoretical interest, suppression has never been explicitly studied in LIP (or any 

other priority  map area), and its very existence is controversial. Surround suppression has been 

postulated to explain the decrease in activity with increasing set size in a visual search task 

(Balan et  al., 2008), but it has also been recently argued that LIP has no surround suppression 

(Churchland et al., 2008). In this study we demonstrate that the priority map in LIP is, in fact, 

powerfully  influenced by surround suppression. Surround suppression in LIP possesses novel 

properties that have not been demonstrated before in other visual areas. 
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2.3  Materials and Methods

We used three male rhesus monkeys (Macaca mulatta) weighing 8–12 kg in this 

experiment. All experimental protocols were approved by the Animal Care and Use Committees 

at Columbia University  and the New York State Psychiatric Institute, and complied with the 

guidelines established by the Public Health Service Guide for the Care and Use of Laboratory 

Animals. We located the intraparietal sulcus in each monkey using a T1 volume scan obtained on 

a GE Signa 1.5 T magnet. Using standard sterile surgical techniques and endotracheal 

isofluorane general anesthesia we made a 2 cm trephine hole over the intraparietal sulcus and 

implanted 12-16 titanium screws in the monkey’s skull and used them to anchor an acrylic cap  in 

which we placed a head holding device, the recording chamber, and the plug for subconjunctival 

search coils for eye position recording. We used three recording cylinders: (Monkey  D, left 

hemisphere, Monkey I, right hemisphere, Monkey Z, right hemisphere). 

2.31 Data collection and task design

We used the REX/MEX/VEX system developed at the National Eye Institute’s 

Laboratory for Sensorimotor Research for behavioral control, visual stimulus display and data 

collection using Dell Optiplex PC’s running QNX (REX and MEX) and Windows 2000 (VEX). 

The monkeys sat in a dimly illuminated room with their head fixed and viewed a screen that 

stood 75 cm away. Visual stimuli were back-projected onto the screen using a LCD projector 

(Hitachi CP-X275) with a refresh rate of 75 Hz. We used a photodiode to register the actual 

times for stimulus onsets and offsets. Fixation point and saccade target stimuli were 0.3 degree 
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wide colored squares and distractors were 1.5 degree wide white squares. We introduced the 

electrodes through a guide tube positioned in a 1 mm grid (Crist Instruments). We recorded 

single units from area LIP with glass-insulated tungsten electrodes (Alpha Omega Engineering, 

Nazareth, Israel). while the monkeys performed a passive fixation task as white spots flashed 

sequentially at different locations in the visual field. We amplified, filtered and discriminated 

action potentials using an amplitude window discriminator (MEX software). Only well-isolated 

single neurons were studied. 

We considered neurons to be in LIP if they showed consistent visual, delay-period and/or 

saccade related response during the memory-guided saccade task or were located between such 

neurons in that electrode penetration. 52/98 (53.06%) neurons tested responded significantly 

more during the delay  period of a memory-guided delayed saccade task (t-test, one-tailed p<0.05, 

average of 49.84 trials per neuron) during the delay period compared to baseline. Every neuron 

responded to the abrupt onset of a visual stimulus in its RF. 

2.32  Task details

 For each neuron we isolated, we identified the center of the RF using flashed spots at 

400ms intervals (4 per trial, located on a 40 x 40 degree grid with 5 degree spacing, less than 50 

ms duration) during passive fixation (Figure 2.1C). We defined the center of the RF as the spatial 

location of the flashed spot that elicited the maximum activity.  We then ran a No-Saccade 

control, where the monkeys fixated a central red fixation spot for 2050 ms. 1000 ms after the 

monkey  achieved fixation, a brief white spot flashed for less than 50 ms (2-3 video frames in 90 
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% of trials; 1 video frame on the remaining trials) in the center of the RF. The duration of the 

distractor was independent of all other task parameters including stimulus locations, timing and 

reward size. The No-Saccade control was identical to the Target Mapping Task (below), except 

that no saccade target appeared and the monkey had to maintain fixation throughout the trial to 

get his reward. After about 50 trials of the No-Saccade control task, we had the monkey perform 

several variants of the delayed saccade paradigm.  We ran each task only on a subset of neurons, 

depending on the neuron’s isolation quality and the monkey’s satiety. 

The Target Mapping Task began with the appearance of a central red fixation spot; 500 

ms after the monkey fixated the central spot, a saccade target appeared at a location randomly 

chosen from 80 possibilities (on a 40 x 40 degree grid with 5 degree spacing). Occasionally, for 

some neurons, we sampled from a slightly different  set of locations, varying either the sampling 

or the spatial extent of the grid in order to more closely  sample particular regions of space or to 

ensure sufficient data collection within the limited recording time available. A distractor flashed 

briefly for less than 50 ms (two or three video frames in about 90% of trials) at the center of the 

RF 500 ms after the saccade target appeared. When the center of the RF coincided with one of 

the 80 target locations, the distractor flashed on top of the (much smaller) saccade target. The 

fixation spot disappeared 550 ms after distractor onset; this was the cue for the monkey to make 

the saccade (go-cue). Monkeys had to keep their eyes within a 3x3 degree window until the cue 

to make the saccade appeared. The mean standard-deviation of eye-position during the fixation 

period was less than 0.25 degrees for all sessions.  Monkeys had 400 ms after the go-cue to make 

a saccade to a 4.5x4.5 degree window around the saccade goal. If the monkey’s eye was in the 
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window for 100 ms from 400 ms to 500 ms after the go-cue, he received a drop of water or juice 

as reward. In less than 5 % of randomly  interleaved trials on this task, no saccade target appeared 

and the monkey was rewarded for maintaining fixation throughout the trial (interleaved No-

Saccade control). The Distractor Mapping Task was similar to the Target Mapping Task, except 

that the saccade target location was fixed at the RF center while the distractor location was 

varied over a 40x40 degree grid. In another task variant of the Target Mapping Task, we also had 

the monkey  make a memory-guided saccade to an effective location in the suppressive surround, 

while the distractor appeared at the RF center (approximately 75 trials).  We typically used this 

task after about 500 trials on the Target Mapping Task, after which an effective location could be 

identified.  Finally, we measured neuronal properties on the Cued Reward Task, where we cued 

either a large or a small reward randomly on each trial by the saccade target color. For most 

neurons, we first ran a control task where the saccade target could be one of two different colors, 

but each was associated with the same reward (approximately 50 trials with distractor at RF 

center and saccade to suppressive surround, and approximately 50 trials with saccade to RF 

center and distractor in the suppressive surround).  Next, the monkeys performed the Cued 

Reward Task, where the two chosen saccade target colors was associated with different reward 

sizes. In the first block, the distractor appeared at the RF center and the saccade was made to the 

suppressive surround (approximately  200 trials) and in the second block, the saccade was made 

to the RF center and the distractor appeared in the suppressive surround (approximately  50 

trials). Actual reward magnitudes were chosen daily based on the monkey’s satiety  level and his 

behavioral sensitivity to the difference in reward sizes. The reward ratio between small and large 

rewards was approximately 1:6 on average, and ranged from 1:3 to 1:10 for all but  2 neurons (for 
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which we used higher ratios of 1:20 and 1:50 respectively). The apparently  large range of reward 

ratios is explained by the fact that ratios are very sensitive to changes in the denominator when 

the denominator is small. 

On a given trial, the monkey’s eye had to remain within a 4.5x4.5 degree window around 

the saccade goal from 400 ms to 500 ms after the go-cue for reward delivery. The monkey’s eye 

usually  entered this window with the first saccade after the go-cue: for example, in the Cued 

Reward Task, in 96.5 % of trials, the first saccade after the go-cue landed within this window. 

Counting only saccades at least 1.5 degrees in amplitude, the monkeys usually made only one 

(92.9 %) or two (6.8 %) saccades during the period between the go-cue and the reward. 

2.33  Data analysis

All data analysis programs were written in MATLAB (Mathworks Inc, Natick, MA). For 

the Target Mapping Task we verified that a given saccade target location lay outside the RF by 

comparing the response to the onset of the saccade target to the pre-target response (response 30 

to 230 ms after target onset compared to response -170 to 30 ms relative to target onset; t-test, 

one-tailed P<0.05). This insured that the suppression of the distractor response as a result of the 

saccade plan could not be simply  attributed to response adaptation as the result of an excitatory 

response to the target. We computed population-averaged PSTHs by first obtaining PSTHs from 

each neuron and then finding the mean of these PSTHs. We used ANOVAs to quantify the spatial 

properties of the surround. In order to have a sufficient number of trials for these analyses we 

first pooled the saccade target locations into 9 10x10 degree clusters before performing the 

ANOVA. When we computed the Smax (defined as the 10x10 degree cluster of saccade targets 
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associated with the minimum distractor response), we found that in 2/72 neurons there were two 

such clusters that  were associated with the minimum distractor response. In these two ambiguous 

cases, we picked one cluster at random as the Smax. In the remaining 70 neurons, our algorithm 

identified a unique Smax and there was no ambiguity. We defined the angular position of the target 

with respect to the RF as the angle between a line connecting the saccade target to the RF center 

and a horizontal line passing through the RF center. We used t-tests wherever applicable rather 

than alternatives like the Wilcoxon signed-rank test  or the rank sum test because we consistently 

observed that whenever there was an occasional discrepancy between the t-test and the 

alternatives (which do assume that the underlying distribution is symmetrical), it was the t-test 

that agreed with the results of permutation tests based on repeated simulations. For the analyses 

of proportions and latencies, the underlying distributions were very skewed and we therefore 

used a permutation test that compared the z-statistic for the paired difference between large and 

small-reward trials with the null distribution for the paired difference obtained by 10,000 random 

shuffles of the two distributions being compared. 

2.34  Error Classification

On error trials, the monkeys usually  made one (70.5 %) or two (20.8 %) or three (5.7 %) 

saccades from a time beginning 350 ms after distractor appearance. For categorizing error trials, 

we first  classified saccades in these trials as either a) target-directed (if its endpoint lay within 5 

degrees of the saccade goal) b) distractor-directed (if its endpoint lay within 5 degrees of the 

distractor goal) or c) elsewhere-directed, if it was neither target-directed nor distractor-directed. 

We then used the following scheme to categorize a given error trial: If there were no target-
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directed or distractor-directed saccades, it was classified as an elsewhere-directed error trial. If 

only target-directed saccades were present, it was a target-directed error trial and similarly, if 

only distractor-directed saccades were present, it was a distractor-directed error trial. If both 

target-directed and distractor-directed saccades were present, then we classified the trial as target 

or distractor-directed depending on which saccade was earlier. 

In 24.5 % of error trials, REX truncated data collection of the eye position signal before 

the end of the final saccade and so the saccade endpoint could not be determined directly; in 

these cases, we classified saccades whose mean direction was within 0.35 radians (20 degrees) of 

the line joining the fixation point to the saccade target as target-directed saccades, and saccades 

that were not target-directed and whose mean direction was within 0.35 radians of the line 

joining the fixation point to the distractor location as distractor-directed saccades.

43



C

RF 
 

 

 

 

500ms
500ms 

<50ms

550ms 

0-400ms 

A

saccade

RF 
 

 

 

 

 

0 

0 

20 

20 

-20 

-20 

degrees 

B

no saccade

Figure 2.1  Task design. 

A) Target Mapping Task: monkeys fixated for 500 ms, after which a target appeared at a loca-

tion randomly chosen from a 40x40 degree grid of locations in the visual field, with 5 degree 

spacing in most cases (1C). After 500 ms, a distractor was flashed briefly (<50ms) at the RF 

center. After a 550ms delay, the fixation spot was turned off, and the monkey made a saccade 

to the target to obtain the reward. B) The No-Saccade control task was otherwise identical, 

except that the fixation spot was never turned off, and monkeys maintained fixation through-

out the trial to obtain the reward. C) Grid of potential target locations. 

2.4  Results

 

We studied the effect of surround suppression on the visual responses of a total of 105 LIP 

neurons LIP in 3 monkeys (43 in monkey Z, 26 in monkey D, 36 in monkey I). Our dataset 

consists of LIP neurons with systematically mapped receptive fields (RFs) based on their clear 

visual response to a briefly  flashed spot (Methods). We considered neurons to be in LIP if they 

showed consistent visual, delay-period and/or saccade-related responses during the memory-

guided saccade task or were located between such neurons in that electrode penetration. 
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2.41  LIP neurons show clear surround suppression by a planned saccade.  

We looked for evidence of surround suppression of LIP neural responses by systematically 

mapping the effect of a visually guided delayed saccade plan on the response to a task-irrelevant 

distractor in a subset of 72 neurons. In this task (the Target Mapping Task, Figure 2.1A), the 

monkey  fixated the central fixation point and a small red target appeared at a location chosen 

randomly on each trial from the grid (Figure 2.1C). 500 ms later, a large, white, salient but task-

irrelevant distractor flashed in the center of the RF for less than 50 ms The fixation point 

disappeared 550 ms later, which served as a cue for the monkey to make a saccade to the target 

within 400 ms to earn a reward. We compared the neuronal response in the Target Mapping Task 

to the response in a control task (the No-Saccade control Task, Figure 2.1B) run in a separate 

block, in which the monkey was rewarded for maintaining fixation and no saccade target 

appeared. The No-Saccade control task was otherwise identical to the Target Mapping Task. We 

also ran a small proportion of No-Saccade control trials interleaved within the Target Mapping 

Task: the distractor response in this condition was not significantly different from that in the 

blocked version (mean difference ± SEM = 1.16 ± 1.73 spikes/second, t-test  p=0.5027, n=72 

neurons, Figure 2.2). 

In the Target Mapping Task, a saccade plan to locations in the visual field outside the RF 

suppressed the response to the distractor flashed at the RF center relative to the distractor 

response in the No-Saccade control Task (Figure 2.3). Suppression could be evoked from a range 

of spatial locations. The degree of suppression varied markedly as a function of saccade target 

location (example response map in Figure 2.3). To quantify the maximal amount of suppression 
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for each neuron, we identified a 10°x10° region outside the RF (Smax, red square in Figure 2.3A) 

from which the saccade plan maximally suppressed the distractor response. We used a randomly 

selected two-thirds of trials to define the location of the Smax for each neuron. Locations were 

considered to be outside the RF if the appearance of the saccade target did not elicit a significant 

response from the neuron (Methods). We then cross-validated, using the remaining one-third of 

trials to estimate the magnitude of the suppression evoked by the saccade plan to locations within 

Smax. When the monkey  planned a saccade to regions within Smax, the distractor response was 

reduced compared to the No-Saccade control (see example neuron, Figure 2.3B). This reduction 

was strongly present in our LIP population: in 66 of 72 neurons (91.7%), planning a saccade to 

locations within Smax reduced the neuron’s response to the distractor relative to the No-Saccade 

control (Figure 2B; two-sample t-test, one-tailed p<0.05, n=number of trials in the session). 

Across the population, the distractor response was strongly  reduced compared to the No-Saccade 

control task when planning a saccade to locations within Smax (mean reduction ± SEM  = 14.14 ± 

1.46 spikes/second, p<0.0001, n=72 neurons). In addition, the net  distractor response (calculated 

by subtracting the pre-distractor firing rate 240 ms before to 30 ms after distractor onset) was 

also significantly suppressed when the monkey planned a saccade to locations within Smax 

compared to the No-Saccade control task (mean reduction ± SEM = 8.27 ± 1.19 spikes/second, 

p<0.0001, n=72 neurons).
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A,B) No-Saccade Control response is similar 

whether run in a separate block (blue PSTH in 

A, abscissa in B) or interleaved with Target 

Mapping trials (red PSTH in A, ordinate in B) 

Mean difference between blocked and inter-

leaved control responses = 1.16 ±1.73 sp/s, 

p=0.5027, n=72 neurons.
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Suppression emerged in the background activity even before the distractor appeared, 

beginning 100 ms after the appearance of the saccade target, and continuing through the trial 

until the go-cue (Figure 2.4A, n=72 neurons). The pre-distractor baseline response (-500 to 30 

ms around distractor onset) when the monkey planned a saccade to locations within Smax was 

significantly reduced compared to the No-Saccade control task (mean reduction ± SEM = 3.43 ± 

1.15 spikes/second; p=0.0037, n=72 neurons). When we recalculated the Smax based on the pre-

distractor baseline response itself, rather than basing it on the distractor response, an even larger 

effect on the pre-distractor baseline response was visible (mean reduction ± SEM = 7.09 ± 1.07 

spikes/second, p<0.0001, n=72 neurons). 
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Figure 2.3  Single cell response during target mapping task.

A) Suppression of example LIP neuron by a saccade plan to the surround. Grayscale map of response to 

the distractor (average firing rate from 30-300 ms after distractor onset) as a function of saccade target 

location with respect to the central fixation point. Target locations with yellow/cyan dots are significantly 

suppressed (yellow) or enhanced (cyan) relative to the No-Saccade Control (p<0.05, t-test with Bonfer-

roni correction for 80 simultaneous comparisons). Boxed locations indicate saccade target locations 

defined as the RF (magenta) and Smax (red) for the rasters and PSTHs in E. X at -20,20 indicates distrac-

tor location. B) PSTHs and rasters from the example neuron, aligned to distractor onset: saccade plan to 

the Smax leads to a reduced distractor response (red) compared to both the No-Saccade control response 

(blue) and to response when saccade is planned to the RF (magenta). Rasters are sorted by trial type. 

Dashed vertical lines indicate time of saccade target onset (left), distractor onset (middle) and time of 

saccade go-cue (right). C) Distractor response varies with distance of saccade target from the RF center. 

Example neuron’s distractor response during the Target Mapping Task (minus the response during the 

No-Saccade control, horizontal dashed line at 0) plotted as a function of the distance between the saccade 

target and the RF center. Error bars show SEMs (n=number of locations contributing to each data point).
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2.42  Surround suppression is long-ranging and radially symmetric in the population.

Suppressive surrounds from individual neurons in LIP had a wide variety of shapes, similar 

to reports of surround suppression from lower visual areas (Orban 2008). The amount of 

suppression elicited by a saccade target varied significantly  with its spatial location in 57/72 

neurons (Kruskal-Wallis ANOVA, p<0.05). Surround suppression extends over long distances: 

the farthest  location from which significant suppression could be elicited lay greater than 21.2 

degrees from the excitatory  receptive field center in all 66 neurons that showed significant 

surround suppression. The mean farthest location was 35 degrees. Smax lay further than 10 

degrees from the RF center in 65/72 neurons (90.3 %). 

Although individual neurons showed diverse surround shapes, surround suppression 

averaged across the population was radially symmetric and showed a systematic dependence 

upon the distance of the saccade target from the RF center (Figure 2.4). For each neuron, we 

plotted the average activity from the Target Mapping Task for each target location (minus the 

activity in the No-Saccade control task) as a function of the distance between the distractor and 

target locations (example neuron in Figure 2.3). On average, suppression reached a maximum 

between 12° and 35° from the RF center, and remained significant up to 40 degrees away from 

the RF center. A similar distance dependence was seen for the baseline response (Figure 2.5). To 

evaluate the radial symmetry of the surround around the excitatory receptive field center, we 

plotted the average activity  from the Target  Mapping Task at each location outside the RF (minus 

the activity in the No-Saccade control task) as a function of the angular locations of the target 

48



with respect to the RF center (Figure 2.4D, black). The population-averaged surround was 
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Figure 2.4 Population responses during target mapping task.

A) Population average PSTH reveals significant suppression of both baseline and distractor 

response when a saccade is planned to the Smax (red) compared to the No-Saccade control 

(blue). Only the 1/3rd of trials that were not used to calculate the Smax contribute to the 

response in red. Black crosses mark the centers of non-overlapping 100 ms time bins with a 

significant difference between responses (paired t-test, p<0.05, n=72 neurons). B) Scatter plot 

of each neuron’s response to the distractor (30-300 ms after distractor onset, grey bar 2C) during 

the No-Saccade control (abscissa) and the saccade plan to Smax condition (ordinate). Paired 

t-test: p<0.0001, n=72. Green, black and magenta circles indicate neurons from monkeys I, D 

and Z respectively. C) Distractor response varies with distance of saccade target from the RF 

center. Population averaged distractor response during the Target Mapping Task (minus the 

response during the No-Saccade control, horizontal dashed line at 0) plotted as a function of the 

distance between the saccade target and the RF center. Averaged tuning curves were first calcu-

lated for each neuron and then averaged together to produce the population average. Error bars 

show SEMs. (n=number of neurons contributing to each data point.) D) Population-averaged 

suppression extends in all directions from the RF. Polar plot showing average level of suppres-

sion in 8 binned angular directions (bin size=45 degrees) around the RF center. Polar tuning 

plots were first computed for each neuron and then averaged together. Error bars as in C. The 

magnitude of suppression (spikes/s) is plotted as a function of absolute direction around the RF 

center (black), and after rotating all target angles so that the center of Smax lies at 0 degrees 

(grey). The 4 circles in the polar plot lie at -15, -10, -5 and 0 spikes/s.
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radially  symmetric around the RF center, and showed no significant dependence upon the 

angular location of the saccade target with respect  to the RF center (Kruskal-Wallis ANOVA, p= 

0.8732). 
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Figure 2.5  Spatial tuning of baseline response.

A) Since suppression is not radially symmetric (Figure 2D), we 

re-evaluated the dependence of the degree of suppression upon the 

distance of the saccade target from the RF center. Identical to Figure 2C, 

except that instead of averaging data from all saccade target locations, we 

averaged data from saccade targets that were outside the RF and lay 

within 10 degrees of a line running from the RF center to the  Smax. 

Suppression is clearly visible and dependent on the distance of the 

saccade target from the RF center. B) Identical to Figure 2C, except that 

the baseline response is used instead of the distractor response. The base-

line response (-500 to 30 ms following distractor onset) also shows a clear 

dependence upon the distance of the saccade target from the RF center.

Individual neurons, however, did not in general have circularly symmetric surrounds. When 

we re-plotted the data in the blue trace in Figure 2.4D after rotating the location of Smax so that it 

always lay at 0°, thereby aligning the locations with the maximum amount of suppression, the 

average response showed a clear dependence upon angular location of the saccade target with 

respect to the excitatory receptive field center (grey trace, Kruskal-Wallis ANOVA, p<0.0001). 

In accordance with this result, the degree of suppression in individual neurons along a ring 

passing through Smax  (with the RF as center) depended significantly upon the angular location of 
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the saccade target in 33/72 neurons (45.8 %, Kruskal-Wallis ANOVA, p<0.05). Finally, though 

the RF centers were all in the contralateral visual field or along the midline, the locations of the 

Smax for each cell showed only a small tendency to lie in the contralateral hemifield: 18/25 

neurons (72.0 %) in monkey Z and 15/22 neurons (68.2 %) in monkey D lay  in the contralateral 

hemifield (p=0.0455 and p=0.1356 respectively, test  of proportions), but only 9/19 (47.4 %) 

neurons in monkey I did (p~1, test of proportions).

 2.43  Suppression can be maintained without the presence of the visual target.

LIP neurons show enhanced activity  throughout the delay  period of the memory-guided 

delayed saccade task (Gnadt and Andersen, 1988). We tested whether this was also true for 

surround suppression in a subset of 48 neurons by modifying the Target Mapping Task. Instead 

of a visually-guided delayed saccade, we asked the monkey to make a memory-guided delayed 

saccade to a saccade target which flashed briefly for 50 ms at a single location within the 

suppressive surround. The task was otherwise identical to the Target Mapping Task (Figure 

2.1A). We briefly flashed a distractor in the RF center 500 ms after the saccade target appeared. 

The fixation point  disappeared 550 ms after the distractor disappeared, and the monkey was 

rewarded for making a saccade to the spatial location of the vanished stimulus. For 40 of the 48 

neurons the neuronal response to the distractor that appeared during the delay period was 

significantly suppressed relative to the No-Saccade control (83.3 %; two-sample t-test, one-tailed 

p<0.05; Figure 2.6B). Suppression was strongly  significant across the population of sampled 

neurons (mean reduction ± SEM = 16.09 ± 2.33 spikes/second, p<0.0001, n=48 neurons, Figure 

51



2.6C). Suppression by  a memory-guided saccade, like suppression by a visually-guided saccade, 

began 100 ms after the saccade target appeared and continued until the go-cue (Figure 2.6B, 

n=48 neurons).
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Figure 2.6  Suppression can be maintained without the presence of the saccade target. 

A) Task design: Identical to the Target Mapping Task, except that monkeys planned a memory-

guided saccade to a single fixed location within the surround. The distractor was flashed at the RF 

center. B) Population average PSTH reveals significant suppression of both baseline and distrac-

tor response when a memory-guided saccade is planned to the surround (red) compared to the 

No-Saccade control (blue). Binwidth=15 ms. C) Scatter plot of each neuron’s response to the 

distractor (grey bar: 3B) during the No-Saccade control (abscissa) compared to the saccade plan 

to the surround (ordinate). One point (control response =131.70, saccade plan=59.64) omitted for 

visibility. Paired t-test: p<0.0001, n=48. Figure format for B and C otherwise identical to Figs. 

2.4A and 2.4B respectively. 

2.44 A distractor in the surround transiently suppresses the response to the saccade target. 

In a subset of neurons (n=37), we looked to see whether a flashed distractor in the surround 

would have a suppressive effect on the maintained activity during a planned saccade to the 

excitatory receptive field (Figure 2.7A). In this task (the Distractor Mapping Task), a variant of 

the Target Mapping Task, the saccade target always appeared at the RF center while the spatial 

location of the distractor (rather than the saccade target) was randomized. The Distractor 
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Mapping Task was otherwise identical to the Target Mapping Task. As a control, during a small 

number of interleaved trials, no distractor appeared during the delay period (the No-Distractor 

Control). Again we used half the trials to determine the 10x10 degree region where the distractor 

evoked maximal suppression (DSmax) and then used the remaining trials to estimate the effect of 

a distractor flashed within DSmax. 
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Figure 2.7  A flashed distractor elicits suppression. 

A) Distractor Mapping Task: Identical to the Target Mapping Task (Fig. 1A), except that 

the saccade target location was fixed at the RF center, and the distractor location was 

chosen randomly on each trial from the 40x40 degree grid of locations (Fig 1C). In 

interleaved No-Distractor Controls, the distractor was not flashed. B) Distractor-onset 

in the surround evokes transient suppression. Population average PSTHs show the 

No-Distractor Control (blue) and the population average response when the distractor 

was flashed within DSmax calculated from the bottom-up response map (red). Trials 

used to calculate DSmax not included in the PSTH. PSTHs aligned to saccade target 

onset. Black crosses as in Fig.2A. Binwidth=25 ms. C) Scatter plot of each neuron’s 

response to the distractor during the No-Distractor Control (abscissa) compared to the 

response with the distractor within DSmax (ordinate). Paired t-test: p=0.007, n=37. Two 

points at (control response =176.02, 134.35 and saccade plan=189.92, 123.28) omitted 

for visibility. D) Distractor appearance leads to slowed saccadic latencies: scatter plot of 

mean saccadic latency during the No-Distractor Control (abscissa) vs. the mean sacca-

dic latency with the distractor flashed either within DSmax (ordinate, filled circles) or 

anywhere in the visual field (ordinate, plus signs). Each point represents data from the 

recording of one neuron. Paired t-tests for both comparisons: p<0.0001, n=37. Figure 

format for B and C otherwise identical to Figs. 2A and 2B respectively.
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A distractor flashed within DSmax caused a significant transient suppression of the 

maintained delay-period response of the neuron. This effect was significant for two consecutive 

100 ms bins following distractor onset (Figure 2.7B for the population average; n=37 neurons). 

The response 30-300 ms following the distractor flashed within Smax was significantly lower than 

the response in the same period in the No-Distractor Control (Figure 2.7C, mean decrease ± 

SEM = 3.00 ± 1.07 spikes/second, p=0.0075, n=37). In addition, the saccadic latency on these 

trials (where distractor appeared within DSmax) was significantly  longer compared to the 

interleaved No-Distractor Control trials, despite the fact that  the distractor appeared 550 ms 

before the go signal (Figure 2.7D, mean increase ± SEM = 13.07 ± 2.85 ms, p<0.0001, n=37), 

confirming that the distractor had a disrupting effect on the monkey’s saccade plan.  Saccade 

latencies are also longer when averaged across all possible distractor locations (not just  the 

DSmax: Figure 2.7D, mean increase ± SEM = 12.35 ± 3.42 ms, p<0.0001, n=37).  

2.45  Increasing expected reward increases the response to the target and decreases the 

response to the distractor.

We studied the effect of motivation on surround suppression on a subset of neurons in 

LIP (n=48) using a variant of the Target Mapping Task. We cued the monkey to expect a large or 

a small reward using the color of the saccade target  to indicate the upcoming reward (Cued 

Reward Task). We used two specific spatial configurations (always in separate blocks): to 

measure the distractor response, we presented the distractor at the RF center (and the saccade 

target at a fixed location in the suppressive surround), and to measure the target response, we 
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presented the saccade target at the RF center (and the distractor at a fixed location within the 

suppressive surround). The Cued Reward Task was otherwise identical to the Target Mapping 

Task. We randomly assigned color pairings with large and small rewards during each recording 

session. Large and small reward targets were interleaved within each block of trials. The 

monkeys learned the reward contingencies associated with the color of the saccade target within 

a few trials, as indicated by significantly faster saccade latencies and significantly fewer 

distractor-directed saccades on the large-reward trials compared to the small-reward trials 

(Roesch and Olson, 2003; Hikosaka et al., 2006). 
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Figure 2.8 Behavior during cued reward task.

A, B and C shows the difference in 3 psychophysical measures between small and large-reward 

trials for the 3 monkeys. Error-bars are SEMs (21, 19 and 8 sessions for monkeys I, D and Z 

respectively). 1, 2, 3 and 4 asterisks indicate significance at the 0.05, 0.01, 0.001 and 0.0001 

levels respectively using a permutation test based on the z-statistic. A) Monkeys made propor-

tionally more errors during small-reward trials than during large-reward trials. B) Monkeys made 

proportionally more erroneous distractor-directed saccades during small-reward trials. C) Mon-

keys made slower saccades to the target during small-reward trials compared to large-reward 

trials.  

On large-reward trials, the three monkeys never made an error-saccade directed towards 

the distractor. However, on small-reward trials, all three monkeys made a very small, but 

significant proportion of error-saccades directed towards the distractor (permutation p<0.0001 in 
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each monkey, mean proportion ± SEM in monkey: Z, 2.08 ± 1.07 %, n=8; D, 1.77 ± 0.41 %, 

n=19; I, 2.82 ± 0.76 %, n=21). Monkeys Z and I also made significantly shorter latency saccades 

to the saccade targets associated with the large reward than to those associated with the small 

reward (Mean decrease ± SEM in monkey: Z, 83.46 ± 12.86 ms, p=0.0002, n=8; D, 10.21 ± 7.54 

ms, p=0.1813, n=19; I, 22.80 ± 9.70 ms, p=0.0258, n=21). These results indicate that the 

monkeys could assess the reward value of the trial based on the saccade target color and were 

more highly motivated during large-reward trials (Figure 2.8).  

The relative magnitude of the cued reward affected the responses to both the distractor 

(when the monkey planned a saccade to the surround and the distractor appeared at the RF 

center) and the target (when the target  and distractor locations were reversed). The neuronal 

response to the distractor flashed at the RF center on large-reward trials was significantly lower 

than the response on small-reward trials in three consecutive 100 ms periods following distractor 

onset (Figure 2.9A, n=46 neurons). This reduction was significant in 31 of the 46 neurons taken 

individually (67.4 %; two-sample t test, one-tailed p<0.05). In the population, the reduced 

distractor response on large-reward trials was highly significant (Figure 2.9B, mean decrease ± 

SEM = 10.36 ± 1.83 spikes/second, p<0.0001, n=46 neurons). 

The neuronal response to the saccade target appearing at the RF center was greater when 

the monkey expected a large reward instead of a small reward. In the population, the enhanced 

target response (400 ms before distractor onset to 30 ms after distractor onset) on large-reward 

trials was highly significant  (Figure 2.9C, mean increase ± SEM = 11.15 ± 2.27 spikes/second, 

p<0.0001, n=38 neurons). The target response was significantly  higher on large-reward trials in 

22 of the 38 neurons taken individually (57.9 %; two-sample t test, one-tailed p<0.05). The
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Figure 2.9  Increasing motivation enhances suppression. 

A) Distractor response is lower during large-reward trials: With distractor in RF 

and target in the suppressive surround, population average PSTH shows reduced 

distractor response in large-reward trials (red), compared to small-reward trials 

(blue). Black crosses as in Fig.2A. B) Scatter plot of each neuron’s response to the 

distractor during small-reward (abscissa) and large-reward (ordinate) trials. Paired 

t-test: p<0.0001, n=46. One point (small-reward: 105.63, large-reward: 79.00) 

omitted for visibility. C) Target response is larger during large-reward trials: With 

target in RF and distractor in the suppressive surround, population average PSTH 

shows enhanced target response in large-reward trials (red), compared to small-

reward trials (blue). Black crosses as in Fig.2A. D) Scatter plot of each neuron’s 

response to the target (-400 to 30 ms after distractor onset, grey bar 5C) during 

small-reward (abscissa) and large-reward (ordinate) trials. Paired t-test: p<0.0001, 

n=38. PSTH binwidths: 15 ms. Two points (small-reward: 150.26 and 153.30, 

large-reward: 184.38, 149.44) omitted for visibility. Figure format for PSTHs and 

scatter plots as in Fig.2.4. 

enhanced target response, averaged across monkeys, was significant throughout the trial from 

100 ms after saccade target onset until the go-cue (Figure 2.9D, n=38 neurons). The duration of 

the enhanced target response was variable across monkeys. Monkey D showed an enhanced 
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target response only  during the early part of the trial, while the other two monkeys showed an 

enhanced response throughout the trial until the go-cue (Figure 2.10). 
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Figure 2.10 Cued reward task 

for all monkeys.

Same data and format as in Figure 

2.9C, but separately for the 3 mon-

keys Z (in A), D (in C) and I (in E). 

All 3 monkeys show greater 

responses to the target in large-

reward trials during the early part 

of the trial. However, from about 

100 ms before distractor onset, 

monkey D no longer shows an 

enhanced target response. B,D,F) 

Same format as in A,C and E, 

except the PSTH is aligned to 

saccade onset. The difference 

between monkeys in the effect of 

absolute reward on the late delay 

response is  visible. The absence of 

statisticalsignifcance for the 

effects in monkey Z is likely due to 

the small number of neurons 

recorded from this monkey (N=8).

To ensure that the effects of varying expected reward were not due simply to a systematic 

(though unlikely) overlap of the chosen reward associations with LIP color selectivity, we 

performed a control experiment in a subset of the neurons recorded in the Cued Reward Task 

(Figure 2.11). Before associating different reward sizes with different colors, we recorded the 

responses of LIP neurons with both target colors associated with the same reward size, sampling 
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both spatial configurations (distractor at  RF center and target in suppressive surround in one 

block and target at RF center and distractor in suppressive surround in another block). We found 

no significant behavioral differences (n=38 neurons) between trials with the two saccade target 

colors in the total percentage of errors (mean difference ± SEM  = 0.37 ± 0.67 %, p=0.58), the 

percentage of distractor-directed error saccades (mean difference ± SEM  = 0.036 ± 0.060 %, 

p=0.50), and in saccadic latency (mean difference ± SEM   = 1.44 ± 2.24 ms, p=0.53). Prior to 

reward association, we also found no significant differences between the two colors in either the 

distractor response (mean difference ± SEM   = 0.22 ± 0.67 spikes/second, p=0.74, n=35), or the 

target response (mean difference ± SEM  = 2.12 ± 2.32 spikes/second, p=0.36, n=31). 
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Figure 2.11  Effects of saccade target color 

are not significant before reward associa-

tion. 

Both the distractor response (A, distractor at 

RF center) and the target response (B, target 

at RF center) are not significantly different 

when the saccade target has the future 

small-reward color (abscissa) or large 

reward color (ordinate). A: mean difference 

± SEM = 0.22 ± 0.67 sp/s, p=0.7423, n=35 

neurons. B: mean difference ± SEM = 2.12 ± 

2.32 sp/s, p=0.36, n=31 neurons. The effects 

of saccade color were not explicitly 

measured prior to reward association in the 

remaining neurons.  One point in B at 

(small-reward color response = 155.57, 

large-reward color response = 94.09) omit-

ted for visibility.

2.46  Distractor and saccade target responses are correlated with saccade latency.

We looked for correlations between the neuronal response and the monkeys’ saccade 

latency  in the Cued Reward Task. For small-reward trials, the distractor response was positively 
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correlated with saccade latency on a trial-by-trial basis: increased distractor responses were 

associated with longer-latency saccades when the distractor was flashed at the RF center. The 

average correlation coefficient (Spearman’s rho) between trial-by-trial neuronal activity  30 to 

300 ms after distractor onset and saccadic latency was significantly greater than zero (Figure 

2.12, mean ± SEM =0.088 ± 0.024, p=0.0006, n=46). Conversely, the target response was 

negatively correlated with saccade latency on a trial-by-trial basis: increased target responses 

were associated with shorter-latency saccades when the target appeared at the RF center. The 

average correlation coefficient between trial-by-trial neuronal activity 300 to 500 ms after 

distractor response and saccadic latency  was significantly negative (mean ± SEM = -0.14 ± 0.04 

ms/Hz, p=0.0005, n=38). 
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Figure 2.12  Correlates of LIP neurons with 

saccadic behavior in the cued-reward task: 

Larger LIP neuronal responses are associated 

with faster saccades to the RF and slower 

saccades to the surround. In the small-reward 

condition (blue bars), correlation coefficients 

were significantly negative (Paired t-test: 

p=0.0005, n=38) with target in RF and distrac-

tor in the surround, while slopes were signifi-

cantly positive with distractor in RF and target 

in the surround (Paired t-test: p=0.0006, 

n=46). Effect-sizes were smaller in the large-

reward condition (red bars) and only signifi-

cant with the target in RF (Paired t-test: 

p=0.0132, n=38) and not with the distractor in 

the RF (Paired t-test: p=0.2266, n=46).  

In large-reward trials, there was a similar negative correlation coefficient when the target 

lay  at the RF center (mean ± SEM  = -0.069 ± 0.027 ms/Hz, p=0.0132, n=38), but not  when the 

distractor was flashed at the RF center (mean ± SEM = 0.033 ± 0.027 ms/Hz, p=0.2266, n=46). 

Since the reduced distractor response on large-reward trials is accompanied by a reduced 
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variance (mean ± SEM = 8.59 ± 2.43 Hz2, p=0.0002, n=46), we interpret this result as reflecting 

that once distractor responses are highly suppressed (as in the large-reward trials), their reduced 

residual trial-by-trial variability contributes less to the overall variation in saccadic latency

2.47  The distractor response in LIP predicts erroneous saccades. 

The monkeys had an error-rate of only 5.0 % on average during large-reward trials. But 

because they usually  made far more errors on small-reward trials (mean error-rate=31.5%), we 

were able to use the small-reward trials to test  whether there was any correlation between the 

distractor response in LIP and the monkey’s saccadic behavior. To eliminate any contamination 

of the distractor response (30 to 300 ms following distractor onset) from saccade-related signals, 

we included only error trials where the monkey made an erroneous saccade after 350 ms 

following the distractor onset. We divided error trials into three types depending on whether the 

erroneous saccade was directed towards the distractor (distractor-directed error trials), 

preemptively towards the target (target-directed error trials) or towards neither the distractor nor 

the target (elsewhere-directed error trials). The distractor response in LIP was significantly 

enhanced on distractor-directed error trials compared to correct trials (Figure 2.13C, mean 

increase ± SEM = 15.80 ± 3.54 spikes/second, p=0.0003, n=18 neurons). The population average 

PSTH on distractor-directed error trials (Figure 2.13: red PSTH) was significantly different from 

the PSTH on correct trials (Figure 6B: blue PSTH) from 100 to 300 ms following distractor onset 

(n=18 neurons). The enhancement of the distractor response was specific to distractor-directed 

error trials and was not present for the other two types of error trials. There was no significant 
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Figure 2.13 Target and distractor responses predict saccadic targeting during small-reward 

error trials. 

A lower target response predicts saccades away from the target. A higher distractor response on such 

trials predicts a distractor-directed saccade. A) Schematic depicting distractor-directed error trials. B) 

Population average PSTH shows larger distractor responses on distractor-directed error trials (red) 

compared to correct trials (blue). C) Scatter plot of each neuron’s response to the distractor during 

correct trials (abscissa) and distractor-directed error trials (ordinate). Paired t-test: p=0.0003, n=18 

neurons. D) Schematic depicting small-reward error trials where monkey saccades away from the 

target. E) Population average PSTH shows reduced target responses on these error trials (red) com-

pared to correct trials (blue). Black crosses as in Fig. 2A. F) Scatter plot of each neuron’s response to 

the target (-400 to 300 ms relative to distractor onset, grey bar 6E) during correct trials (abscissa) and 

error trials (ordinate). Paired t-test: p<0.0001, n=31 neurons. PSTH binwidths=25 ms. Only errors 

made at least 350 ms after distractor onset included. Figure format for PSTHs and scatter plots as in 

Fig.2.

difference between the distractor response on elsewhere-directed error trials and correct trials 

(mean difference ± SEM = 2.75 ± 1.99 spikes/second, p=0.1691, n=35 neurons). Similarly, the 

distractor response on target-directed error trials was actually significantly lower than that on 

correct trials (mean decrease ± SEM  = 4.60 ± 2.48 spikes/second, p=0.0270, n=35 neurons). The 
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enhanced distractor response therefore predicted the impending erroneous saccade towards the 

distractor.

There was no significant difference in the target response (from 400 ms before to 300 ms 

after distractor onset) between distractor-directed error trials and elsewhere-directed error trials 

(mean difference ± SEM  = 2.29 ± 3.81 spikes/second, p=0.5405, n=9 neurons); we therefore 

pooled these two types of trials together as error trials with saccades directed away from the 

target. The target response on these trials (Figure 2.13E: red PSTH) was significantly higher than 

that on correct trials (Figure 2.13E: blue PSTH; mean increase ± SEM = 10.03 ± 1.55 spikes/

second, p<0.0001, n=31 neurons, Figure 2.13F). Thus, a lower target response predicts error 

trials where the monkey  saccades away from the target. On these error trials, a higher distractor 

response predicts a distractor-directed saccade.

2.5 Discussion 

Our results show, for the first time, that LIP neurons have strong suppressive surrounds 

that influence and sharpen the LIP priority map. By systematically characterizing these effects, 

we find that suppression of LIP responses is wide-ranging and can therefore link the 

representations of stimuli that are distant from each other in physical space. 

2.51  Surround suppression in LIP is affected by cognitive influences.

Surround suppression evoked by visual stimuli is a ubiquitous neural strategy and has been 

reported in many visual areas including the retina, lateral geniculate nucleus (Alitto and Usrey, 
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2008), area V1 (Angelucci and Bressloff, 2006), MT, MST (Allman et al., 1985a; Eifuku and 

Wurtz, 1998; Orban, 2008) and V4 (Desimone et al., 1985; Desimone et al., 1993). However the 

surround suppression we report here in LIP has several unique properties not seen in other visual 

areas. Most importantly, surround suppression observed in LIP is affected by cognitive processes 

that are not dependent upon the presence of a particular visual stimulus. We demonstrated this in 

two ways: first, suppression of LIP responses can be maintained by the memory  of a visual 

stimulus which will guide a future saccade, whereas the surround suppression demonstrated in 

lower visual areas was evoked and maintained by a visual stimulus itself. Second, suppression of 

LIP responses is enhanced when the monkey expects a larger reward as a result of a learned 

association with a visual stimulus. Increased motivation enhanced the representation of the 

saccade goal and suppressed the representation of the distractor. The enhancement of the target 

response in our single-target task conflicts with prior claims based on data from game-based 

choice tasks (Dorris and Glimcher, 2004), but is entirely consistent with reports from various 

other parts of the brain including the dorsolateral prefrontal cortex, frontal and supplementary 

eye fields, the basal ganglia and the SC (Ikeda and Hikosaka, 2003; McCoy and Platt, 2005; 

Hikosaka et al., 2006; Watanabe, 2007).  

Spatial attention has been shown to suppress distractor responses through center-surround 

interactions in the near-surround of V4 neurons (Sundberg et al., 2009) and from locations far 

outside the RF in V1 neurons, especially at higher task difficulties (Chen et al., 2008). We 

suggest based on our results that  the center-surround interactions measured in V1 reflect long-

range suppressive effects established in another cortical area like LIP, especially if enhancement 
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of surround suppression by higher task difficulty  is based on the same circuitry as the 

enhancement of surround suppression by higher reward expectation (Maunsell, 2004).  

2.52  Surround suppression in priority maps

Given the ubiquity  of surround suppression in the visual system, it is surprising that the 

existence of surround suppression in LIP has been controversial (Churchland et al., 2008). Data 

from other putative priority map areas in the brain has also been inconclusive. Data from FEF 

during a visual search task indicate only spatially  local suppressive effects in less than a third of 

neurons that extend on average up to four to six degrees outside the RF at ten degrees 

eccentricity (Schall et al., 1995; Schall et  al., 2004). In the SC, distractors flashed at locations 

distant from the excitatory  RF evoke short-latency suppression of pre-target  activity in a gap-

saccade task in some neurons (Dorris et al., 2007). In DLPFC, a memory-guided saccade plan 

has been shown to slightly suppress baseline neuronal responses opposite to the saccade goal 

(Constantinidis et al., 2002). Our characterization of surround suppression goes well beyond 

these prior descriptions by unequivocally demonstrating the spatially  wide-ranging, strong and 

ubiquitous influence of surround suppression of LIP responses and by  illustrating several 

important and novel properties that have not been previously reported from other areas (using 

tasks that were not explicitly designed to study surround suppression).

The suppressive effects we have measured in LIP may not necessarily be mediated by 

direct suppressive effects upon LIP neurons, and could instead reflect suppressive interactions in 
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other areas that are then relayed to LIP. This is of course also true for every other response 

property  measured from LIP neurons to date: there is not a single known response property  of 

LIP neurons that is known to be definitively  established within LIP itself. However, we do know 

that inhibitory inputs exert a strong influence on LIP neurons, since the majority  of LIP neurons 

respond with dramatically increased firing after iontophoretic injection of bicucculine 

hydrochloride, a GABA-A receptor antagonist and decreased responses after injection of GABA 

(Zhang, Wang, and Goldberg, 2007). Because LIP surround suppression can be maintained by a 

memory-guided saccade plan, it is likely  to emerge from one or more “priority-map” brain areas 

active during the delay period of the memory-guided saccade task like LIP itself (Sereno and 

Amador, 2006) FEF, DLPFC, and SC. These areas also contain neurons whose activity is 

enhanced when a larger reward is expected following a saccade into the neuron’s RF (Watanabe, 

2007), in turn leading to enhanced suppression of neurons representing competing locations. The 

reward-cue signal that mediates the effects of motivation on surround suppression could emerge 

from a range of areas including the amgydala, striatum and the perirhinal, entorhinal, 

orbitofrontal and insular cortices (Salzman et al., 2005; Simmons et al., 2007).

2.53  Implications of LIP surround suppression for behavior

LIP represents a priority map whose peak can be used by the visual system for the 

allocation of visual attention (Bisley and Goldberg, 2003a) and the oculomotor system for the 

generation of saccades when saccades are appropriate (Ipata et al., 2006a). Network models of 

priority maps often posit that global inhibitory interactions enable the emergence of a peak of 
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activity on the priority map (Koch and Ullman, 1985; Itti and Koch, 2001) and are critical for the 

maintenance of stable, localized persistent activity  that is resistant to perturbation from external 

distractors (Constantinidis and Wang, 2004). Mutually  suppressive push-pull interactions in LIP 

have also been postulated to be critical for the programming of sequential saccades (Xing and 

Andersen, 2000). 

Studies of perceptual decision making in LIP often model the decision process as a race 

to a threshold between competing alternatives (Gold and Shadlen, 2007). Our data supports 

models of perceptual decision making that incorporate mutual inhibition between competing 

choices (Usher and McClelland, 2001) and argues against models of the decision process as 

independent random walks towards a threshold. Specifically, our finding that surround 

suppression can strongly  suppress visually-driven LIP responses suggests that  surround 

suppression could explain the recently  reported large reductions in LIP responses to stimulus 

onset in a four-choice task compared to a two-choice task (Churchland et al., 2008).  Surround 

suppression of LIP responses also provides a mechanism for the baseline-resetting that is part of 

models for evidence accumulation towards a saccadic decision in LIP (Seung et al., 2000; 

Roitman and Shadlen, 2002; Churchland et  al., 2008)). The reward-modulation of surround 

suppression immediately provides a possible mechanism for the global computations of 

normalized reward value that have been hypothesized to underlie saccadic choice decisions in 

LIP (Sugrue et al., 2004). 
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Converging physiological evidence indicates that the firing-rate of neurons in priority 

maps in FEF, LIP and SC are tightly  linked to attentional allocation (Bisley and Goldberg, 

2003b; Armstrong et al., 2009). Our findings provide a mechanism by  which spatial locations 

can compete with each other for attentional priority:  the higher firing-rates associated with LIP 

neurons representing a particular location (in this case, the saccade goal) lead to lower firing 

rates in neurons representing other competing locations. Consistent with the tight linkage 

between LIP activity and spatial attention, this mechanism correlates with a reduction of 

attentional allocation to the RF when the RF location competes with the saccade goal outside the 

RF for attentional priority. 

It could be argued that attention is the cause of the reduced responses to the distractor in 

LIP in the presence of the saccade plan to a competing spatial location.  This argument posits that 

the distractor response is lower in the presence of a saccade plan because the distractor is less 

likely to capture attention compared to the distractor in No-saccade control condition. However, 

attention is a psychophysical construct and cannot cause neural effects.  Instead, it is the neural 

implementation of attention that must cause the measured effects in LIP, not attention itself. 

Therefore, this argument is identical to one discussed above where the suppressive effects 

measured in LIP reflect suppressive interactions in other areas that are then relayed to LIP. The 

surround suppression we measure in LIP, whether it is implemented in LIP or elsewhere, 

provides a mechanism that could underlie the ability of focused attention to modulate attentional 

capture by  an abruptly appearing irrelevant stimulus in human subjects (Egeth and Yantis, 1997). 

In keeping with the broad extent of the suppressive surrounds we find in LIP, a human patient 
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with bilateral parietal lesions had difficulty filtering distractors even over large distances 

(Friedman-Hill et  al., 2003). The increased suppression of distractor responses in LIP when a 

higher reward is cued provides a physiological basis for possible improvements in attentional 

focusing and distractor suppression as a function of the cognitive demands of the task.
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Chapter 3: Surround suppression improves across trial variability in 

LIP.

3.1 Abstract

The receptive fields (RFs) of most macaque LIP neurons possess extensive suppressive 

surrounds (Falkner, Krishna and Goldberg, 2010).  Neuronal responses to a distractor are 

substantially  reduced when monkeys plan saccades to targets outside the excitatory RF in their 

suppressive “surround.”  Here, we show that saccades to the surround also induce systematic and 

strong variations in the across-trial variability  of LIP neurons during the pre-distractor epoch, as 

quantified by the Fano factor. For saccade targets outside the RF that do not evoke excitatory 

responses, lower neuronal firing-rates are accompanied by  lower Fano factors. This relationship 

between mean firing-rate and Fano factor becomes stronger as the distance of the saccade target 

from the RF center increases. Thus, the reduction of firing-rate of distractors by surround 

suppression in LIP is accompanied by reduced across-trial variability.  Changes in across-trial 

variability can be modulated by  the cognitive demands of the task.  When the monkey’s 

motivation is increased (by  increasing reward expectation), the neural variability of both target 

and distractor responses is reduced, irrespective of the fact that  this modulation causes opposite 

effects on the firing rates of the 2 responses (i.e. increasing the target  response and decreasing 

the distractor response).  We also find significant differences in across-trial variability when 

saccades are sorted by the accuracy of the saccadic endpoint.  When saccades were prepared to 

remembered locations in a neuron’s surround, the variability of the response in the pre-saccadic 

epoch was reduced if saccadic endpoints were more accurate.  The effect of surround stimulation 
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on variability can potentially further improve the precision of the LIP priority map, working in 

concert with the improvement induced by the suppressive effects on mean firing-rate (Paradiso, 

1988).  These duel processes may have implications for saccadic and attentional selection 

mechanisms.

3.2  Introduction

Kicking a goal in soccer presents a problem for both the visual and motor systems.  Not 

only does the kick itself require a high degree of athletic skill, the kicker must have an accurate 

representation of the spatial location of the goalposts in his brain in order to correctly target the 

kick.  Distracting events in his environment, or a representation of the world that is not static 

could threaten his focus on the goal and the kick could end up wide of its intended target.    On 

top of it all, the kicker must do this repeatedly in every game, throughout the duration of his 

career.  In a situation where a repeated motor command depends on a high degree of spatial 

accuracy, even small amounts of variability in the representation of the intended goal could be 

the difference between a score and a zero.  How then, does the kicker reduce the amount of 

variability in his internal representation of the world?  

 One of primary jobs of the visual system is to select relevant information and 

ignore unnecessary or distracting stimuli.  In the visual system, areas in an occulomotor-

attentional network (including the frontal eye fields, the lateral intraparietal area, and the 

superior colliculus) receive incoming sensory information and represent that information in 

spatially  accurate coordinates.  The monkey lateral intraparietal area (LIP) encodes the priority 
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of spatial locations and the activity of LIP neurons can predict the locus of attention (Bisley and 

Goldberg, 2003a, 2006) or the target of an upcoming saccade if a saccade is appropriate (Ipata et 

al., 2006a).  Changes in the mean spike rate of LIP neurons can affect the relative salience of 

peaks on LIP’s priority map and a “winning” spatial location can be determined on a moment-

by-moment basis.  

We have recently demonstrated that LIP neurons also have extensive spatially  tuned 

suppressive surrounds, such that a planned saccade to a spatial location outside the neuron’s 

excitatory receptive field can suppress both the spontaneous activity and the responses to visual 

stimuli appearing at the receptive field center (Falkner et al., 2010).  These interactions can be 

modulated by  cognitive variables such as reward expectation which links the representations of 

competing stimuli at distant locations by adjusting their firing rates in opposite directions.   

In addition to changes in the mean activity, the precision of a neural representation can be 

improved by reducing the variability of its neuronal responses (Paradiso, 1988; Vogels, 1990), 

though the mechanism for reducing this variability  is unclear.  It is now well established that the 

onset of visual and non-visual stimuli can cause a cortex-wide (including area LIP) reduction in 

the amount of across trial variability as measured by the Fano factor, a ratio of the spike count 

variance divided by  the spike count mean (Churchland et al., 2010). This reduction can take 

place even without a concurrent increase in the mean firing rate evoked by the stimulus in the 

receptive field.  This is an important consideration since the Fano factor will decrease if the 

variance is dropping, or if the mean firing rate is rising and cannot disambiguate between these 

cases.  
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A reduction in the variability of the representation of a visual stimulus amounts to an 

increase in the signal-to-noise ratio of a particular pattern of spikes and could increase the 

behavioral sensitivity  to a sensory  stimulus (Scobey and Gabor, 1989; Zohary et  al., 1994; Bair 

et al., 2001).  Changes in the variability of the spontaneous rates in visual areas have been 

attributed to changes in the cortical state, rather than in changes in the stimulus itself (Arieli et 

al., 1996; Kenet et al., 2003) which suggests direct links between neural variability and behavior.  

Several converging lines of evidence suggest that variability reduction in visual cortex 

may have important links to perception and saccadic behavior.  In V4, a visual area known to be 

involved in attentional allocation (Moran and Desimone, 1985; Spitzer et al., 1988; Reynolds et 

al., 2000), a reduction of across-trial variability  was associated with spatial attention (Mitchell et 

al., 2007, 2009) and correlated with saccade latency  to a target presented in the RF of a V4 

neuron (Steinmetz and Moore, 2010).  The reduction of across trial variability has been proposed 

to represent a cortex-wide “stabilization” due to sensory input, though it is unclear how this 

would be implemented across brain areas or even within a single brain area.  

Surround suppressive mechanisms, which link neurons with widely  separated RFs could 

play  a potential role in the reduction of variability  and could result  in an increase in the precision 

of signals that carry information about spatial priority. It is known that variability  is reduced at 

the locus of the visual stimulus itself, even when that stimulus is not the preferred stimulus to 

drive the cell, but it is unclear how these effects are modulated in the spatial domain.  Spatial 

locations that have a physiological link to the target location due to surround suppressive effects 

may be equally affected by mechanisms that reduce variability.    
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Figure 3.1 Across-trial variability predictions. 

A-D)  Schematic depicting changes in neural activity and variability as a function of target position.  Prior 

to target onset, LIP has no changes in mean across space and a high amount of variability at each location.  

Black line represents mean activity and grey represent error bars around that mean (A). Target onset causes 

an increase in mean activity and decrease in variability at the location of the target and a decrease in mean 

in the surround (B-D).  This could be associated with no change in variability in the surround (B), a uniform 

change in variability in the surround (C), or a change that is dependent on the distance from the target (D). 

The effects of reducing neural variability can be conceptualized as the shrinking of an 

error bar around the mean response to repeated presentations of the same visual stimulus, for 

example, a saccade target (Figure 3.1).  In this model, the onset of the saccade target is 

accompanied by strong suppressive surround responses that decrease the spontaneous activity  at 

non-target locations.  If the reduction of across trial variability  is constrained only to the neurons 

encoding the location of the target, we should not see a change in across trial variability for 

neurons that  encode spatial locations in the surround (Fig 3.1B).  Alternatively, if variability 
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reduction is implemented by a non-spatial mechanism, we may see a uniform decrease in the 

Fano factor (a shrinking of the error bar around a mean response) irrespective of the location of 

the target, which would suggest  that decreases in variability are a LIP map-wide phenomenon 

(Fig 3.1C).  A third option is that we may observe a more complicated relationship between the 

spatial location of the target, the neural response, and the saccade target location (Fig 3.1D).  

This would strongly suggest the involvement of a mechanism that modulates LIP responses in a 

spatially dependent manner.  

A further question is how LIP-wide changes in variability are related to the monkeys’ 

behavior.  The firing rates of distracting events at non-target spatial locations are correlated with 

the saccade latencies and error rates, how are changes in the variability  related to behavioral 

differences in saccade latency and accuracy? 

We explicitly tested the relationship between variability reduction and the spatial 

relationship  of target and non-target locations by examining the across-trial variability  of LIP 

neurons while varying the location of a saccade target with respect to a given spatial RF and 

having monkeys plan a delayed saccade to that target.  We examined whether planning a saccade 

to a location outside the excitatory receptive field affects the variability of an LIP neuron 

encoding a non-target location, and whether this variability is correlated with the monkeys’ 

saccadic behavior.  We found that across trial variability  is strongly  modulated by the location of 

the target  such that Fano factor is reduced when monkeys plan saccades to targets in the 

suppressive surround, the location where the spike rate is also the most  reduced.  The 

relationship  between the spike rate and variability  increases as the distance between the target 

and the RF center increases, suggesting that variability  reduction is not uniform across spatial 
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locations.  Surprisingly, the reduction in variability  at non-target locations also correlates with 

several behaviors, including higher expected reward, decreased saccade latency, and increased 

saccade endpoint accuracy.  The reduction in both mean firing rate and variability of neurons 

encoding the suppressive surround of a saccade target suggests the use of a duel strategy  to 

improve the precision of LIP’s spatial coding.

3.3  Materials and methods

Full methods for recording and surgical procedures are detailed in Falkner et al. (2010).  

For detailed analysis of all tasks, see Methods chapter 2.  

3.31 Neural variability analyses 

All analyses were computed using Matlab (Natwick, MA).  For the target into RF task, we 

calculated neural activity and across-trial variability in 100 ms bins stepped every  25 ms.  Neural 

activity is shown either by the population average firing rate across each bin, or by the average 

spike count across each bin (number of spikes per 100 ms).  Neural variability  is calculated via 

the Fano factor, which is the spike count variance over the spike count mean calculated for each 

100 ms bin independently.  Significance tests across trials were done within trials by comparing 

spike rates and Fano factors in the spontaneous activity  (100 ms prior to target onset) with spike 

counts and Fano factors at each bin independently with a paired t-test.  Significance tests across 

trials were done using the non-parametric Wilcoxon signed-rank test, and were computed on 

appropriately paired epochs.  

76



For the target-mapping task, we analyzed the variability by  calculating the Fano factor (and 

spike count) independently for each spatial location as determined by target position on that trial.  

Measure of spike count and variability were subsequently averaged for target locations by the 

distance between the RF center and the target location (the “target-RF distance”).  Across cells, 

the spike counts and Fano factors were grouped into bins according to the target-RF distance and 

significance was tested across bins using Wilcoxon signed rank test (for each bin separately).  To 

ensure sufficient numbers of spikes for the population comparison, average spike count and Fano 

factor were extracted for the entire pre-distractor epoch (500ms prior to distractor onset).  

Comparisons between “near surround”, ‘’far surround”, and “in RF” bins were calculated across 

the population using a Wilcoxon signed rank test.  

For the comparison of spike count to variability, spike count and Fano factor were again 

computed for each saccade target location across the entire pre-distractor epoch.  The values for 

each cell were then placed into bins according to their spike count such that bins contained equal 

numbers of spatial locations.  Bins then encoded spike rates with “high,” “medium,” and “low” 

spike counts.  The corresponding Fano factors for those spatial locations were then averaged and 

plotted as a function of time.  Significance comparisons between spike count determined bins 

were computed using a Wilcoxon signed rank test.  

To determine the relationship  between target-RF distance, spike count, and variability, we 

binned the values of spike counts and Fano factor by  target-RF distance and regressed these 

values within each cell for each target-RF distance.  We extracted the slopes of these regressions 

for each cell and averaged the slopes as a function of target-RF distance for each cell.   
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For the cued-reward task, we calculated spike counts and Fano factors for each cell at each 

reward condition (small reward vs. large reward expected).  Spike counts and Fano factors were 

again calculated for each 100ms stepping each 25ms.  To ensure significant number of spikes 

within the trials, significance tests were computed by  taking the total number of spikes in the 

trial after target onset and compared using Wilcoxon signed rank test.  

For analysis of memory-guided saccade behavior, trials were groups according to the 

median saccade latency  so that they contained equal numbers of trials.  For accuracy analysis, 

trials were considered accurate if their endpoint lay  within 1.5 visual degrees of the location of 

the disappeared saccade target.  Inaccurate saccades were correct saccades that were further than 

1.5 degrees from target  location.  Since bins did not contain equal numbers of trials, significance 

between groups of accurate and inaccurate saccades was validated by recalculating spike counts 

and spike rates using resampling statistics (without replacement) so that each bin contained the 

same number of trials.  These analyses did not qualitatively change our analyses.

3.4  Results

 

 Monkeys performed several variants of the standard delayed saccade paradigm (see 

methods chapter 2).  During the most  basic variation of the task, monkeys were required to 

maintain fixation on a central red cue for a brief period of time, after which a saccade target 

would appear. After a delay of 1050 ms the fixation point disappeared and the monkey had to 

make a saccade to the target.  During most trials, a distractor would be briefly flashed for <50ms 

at a time 500ms following the onset of the saccade target.  The task timing is constant across task 
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variants, though the spatial locations of the target and distractor were modified between 

variations.  We present  here results separately  from each task variant. The variable number of 

cells in each variant represents not a sub-selection of the data, but the fact that is some cases we 

were unable to hold each cell through all task variations.  

3.41  Stimulus onset causes a drop in variability.

In the simple delayed saccade task (Figure 3.2A) the appearance of the target at the 

receptive  field center evoked a statistically significant  (p  < 0.05 by Wilcoxon for each 100 ms 

bin after the stimulus onset as compared to the 100 ms bin before stimulus onset, n= 40 cells) 

visual response which continued until the monkey made the saccade (Figure 3.2B). We used 

these spike counts to compute the Fano factor in each bin and plotted it as a function of time 

aligned to the target onset  and the saccade.  In accordance with previous findings (Churchland et 

al., 2010), the onset of the target was also associated with a sharp decrease in the amount of 

variability across trials (Figure 3.2C).  The Fano factor prior to the target onset was relatively 

high (2.40+0.16 SEM), and was significantly quenched in each subsequent non-overlapping 

100ms time bin following target onset (p<0.05 Wilcoxon signed-rank test, tested independently 

for each bin, n=40 cells).  In the 100ms bin prior to the saccade, the Fano factor had dropped to 

1.96+0.18 SEM.  Though we cannot rule out an effect of rising mean spike rate on the decrease 

in Fano factor, if this effect were due purely to changes in mean, the ratio of the spike rate over 

the course of the trial (spike counts in pre-saccadic epoch / spike count in pre-target epoch) 

should be equal to the ratio of the raw variance between the same 2 epochs but this is not the 
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case (Figure 3.2D).    Instead, the increase in raw variance is less than would be expected if 

variance scaled directly with activity.  
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Figure 3.2 Spike counts and 

across-trial variability for sacca-

des into RF center.

A) Monkeys made visually guided 

saccades to targets at the RF center.  

Timing as in figure 2.1.  B)  Aver-

age spike count aligned to target 

onset calculated in 100ms bins 

stepped every 25ms aligned to 

target onset (left) and saccade 

(right).  Error bars show +SEM. C)  

Average Fano factor calculated 

from the spike counts shown in B 

aligned to the onset of the target 

Spike count (blue) and raw 

varaince (red) normalized at 

each bin by spike count and vari-

ance values from spontaneous 

activity (-400ms prior to target 

onset).  Spike counts and vari-

ance computed in 100ms bins 

stepped every 25ms (n=40 cells).  

3.42  Across trial variability is modulated by target location.

Previous studies have shown that the onset  of a target in the RF causes a decrease in across 

trial variability when the target appears in the RF center, but  is unclear whether this decrease in 
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variability extends to spatial locations beyond the excitatory receptive field in LIP.  To test this 

we had the monkey make visually guided saccades to targets with randomly chosen locations (80 

possible locations, on a grid with 5 degree spacing, see Figure 2.1C).  In some cases, targets 

appeared in the excitatory  receptive field, evoking an onset response, and in others, the target 

appeared outside the receptive field, evoking no excitatory response.  When the target appeared 

in the neuron’s suppressive surround, its onset was associated with a decrease in both 

“baseline” (pre-distractor) and distractor responses (Falkner et al., 2010).  We probed how 

changes in the target location affected the across trial variability of these responses at non-target 

locations.  As monkeys planned delayed saccades to various locations in the visual field, as 

expected, we observed a sharp  decrease in Fano factor following the onset of the distractor 

(Figure 3.3B).  Since this decrease could be caused by a rise in spike regularity generated 

primarily  by refractoriness after fast volleys of spikes (Maimon and Assad, 2009), we have 

chosen to focus our analysis in the spatial domain on the pre-distractor period, where the effects 

can be attributed with the onset of the target (not the distractor).

 We found systematic changes in the Fano factor depending upon the distance of 

the saccade target from the RF center and the mean firing-rate of the neuron.  Although the 

saccade target caused the greatest decrease in Fano factor when it evoked an excitatory  response 

(Figures 3.3B,C), the Fano factor in the pre-distractor epoch (470 ms before to 30 ms after 

distractor appearance) systematically increased with the distance of the saccade target from the 

RF center  even when there was no systematic effect of the saccade target on the spike count 

(Figure 3.3C; p-value for all 3 pairwise comparisons of distances greater than 20 degrees > 0.28). 

For all target-RF distances, distractor onset at the RF center led to a marked reduction in 
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variability to a value close to 1, which is the expected variability for a Poisson process with no 

across-trial rate variability. This reduction in variability following distractor onset was transient 

and considerably reduced by the time of the saccade go-cue. 
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Figure 3.3 Fano factor increases with saccade target-RF distance. 

A) Monkeys were required to make saccades to variable target locations and data was binned according to 

the visual distance between the variable saccade target location and the location of the RF center (top).  

Locations were sub-grouped into areas in the receptive field (inRF), in the “near” surround and the “far” 

surround (bottom).  Colors correspond to plotted locations.  B) Population average PSTH of the Fano 

factor (calculated in 100 ms bins, stepping every 25 ms) shows higher variability in the epoch between 

target and distractor appearance for higher target-RF distances (indicated in box to the right). Crosses mark 

centers of non-overlapping 100 ms time bins with a significant difference of the green PSTH compared to 

blue (blue cross) and black PSTHs (black cross) respectively (paired t-test, p<0.05, n=72 neurons for blue 

cross and 45 for black). C) Population average PSTHs of the corresponding mean spike-count for the 

PSTHs plotted in B. Black crosses as in B; none of the blue vs. green comparisons reached significance. 

D) Scatter plot of each neuron’s Fano factor (5 non-overlapping 100ms bins, -470 to 30 ms relative to 

distractor onset, grey bar in B) during saccades to the near surround (abscissa) and the far surround 

(ordinate). Paired t-test: p=0.0093, n=45 neurons measured with targets in the far surround. E) Scatter plot 

of each neuron’s Fano factor (same epoch as D) during saccades to the near surround (abscissa) and to the 

RF (ordinate). Paired t-test: p=0.0007, n=72 neurons. 
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Across the population in the pre-distractor epoch, the Fano factor for targets 20 to 25 

degrees from the RF center (the “near” surround) was significantly lower than that for targets 

greater than 35 degrees from the RF center (the “far” surround; Figure 3.3D, mean decrease ± 

SEM = 0.22 ± 0.08 spikes/second, p=0.0093, n=45 neurons), even though the spike counts in 

these epochs were not significantly different. When the saccade goal was within 10 degrees of 

the RF center, the Fano factor was even lower than that in the near surround (Figure 3.3E, mean 

decrease ± SEM = 0.18 ± 0.05 spikes/second, p=0.0007, n=72 neurons). 

3.43  The relationship of spike count and Fano factor

 We next explored the relationship  of the Fano factor to the mean spike count.  If 

decreases in Fano factor are purely  driven by increasing in the mean spike count of the neuon 

across the pre-distractor epoch, then the highest mean spike counts should be associated with the 

lowest Fano factors.  Instead we found the opposite relationship was true:  Fano factors affected 

by stimulation of the surround decreased with mean spike-count. We examined this by isolating 

locations with target-RF distances greater than 25 degrees and then dividing them equally into 3 

classes based on their rank-ordered mean spike-count within the pre-distractor epoch (see 

methods). Instead, we found the opposite relationship was true.  Within this epoch, locations with 

the lowest firing-rates (Figure 3.4B) were associated with the lowest across-trial variability 

(Figure 3.4A), and locations with the highest firing-rates with the highest across-trial variability. 

The average variability  in the low-firing rate class was significantly lower than that in the 

middle-firing rate class (Figure 3.4C; mean decrease ± SEM = 0.240 ± 0.044, p<0.0001, n=72 

83



neurons), which in turn was significantly lower than that in the high-firing rate class (Figure 

3.4D; mean decrease ± SEM = 0.307 ± 0.068, p<0.0001, n=72 neurons). 

-500 0 500

1

1.5

2

2.5

-500 0 500

0

2

4

6

8

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Time from distractor onset (ms) Time from distractor onset (ms)

Monkey D
Monkey I

Monkey Z
Monkey D
Monkey I

Monkey Z

         Fano factor:  medium spike count          Fano factor:  medium spike count   
   

   
Fa

no
 fa

ct
or

: l
ow

 sp
ik

e 
co

un
t

   
   

   
Fa

no
 fa

ct
or

:  h
ig

h 
sp

ik
e 

co
un

t

Fa
no

 fa
ct

or

Sp
ik

e 
co

un
t

A B

C D

High spike count
Medium spike count
Low spike count

Figure 3.4. LIP neuronal Fano Factor increases with mean spike-count. 

A) Population average PSTH of the Fano factor (100 ms bins, stepping 

every 25 ms) shows higher variability in the epoch between target and 

distractor appearance for higher mean spike-counts. Target locations 

greater than 25 degrees from the RF center were rank-ordered and then split 

into three equal classes for each neuron prior to averaging. Lowest-third of 

spike-counts shown in blue, middle-third in red and highest-third in 

magenta PSTH. Colored crosses mark centers of non-overlapping 100 ms 

time bins with a significant difference for the corresponding PSTH com-

pared to the red PSTH (paired t-test, p<0.05, n=72 neurons). B) Population 

average PSTHs of the corresponding mean spike-count for the PSTHs 

plotted in A. C) Scatter plot of each neuron’s Fano factor (5 non-

overlapping 100ms bins, -470 to 30 ms relative to distractor onset, grey bar 

in A) for saccades corresponding to the middle-third of spike-counts 

(abscissa) and lowest third of spike-counts (ordinate). Paired t-test: 

p<0.0001, n=72 neurons. D) Scatter plot of each neuron’s Fano factor 

(same epoch as C) for saccades corresponding to the middle-third of spike-

counts (abscissa) and highest-third of spike-counts (ordinate). Paired t-test: 

p<0.0001, n=72 neurons. 
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To explore the joint effect  of target-RF distance and mean spike-count, we regressed the 

Fano factor computed for each saccade target location against the mean spike-count and the 

target-RF distance for that location (Figure 3.5). Across the population, the slopes relating 

variability to the mean spike-count (mean slope ± SEM  = 0.20 ± 0.05, p < 0.0001, n=72 neurons) 

and to the target-RF distance (mean slope ± SEM = 0.018 ± 0.003, p < 0.0001, n=72 neurons) 

were both significantly  greater than zero. To examine whether the spike-count vs. variability 

relationship  varied with distance from the RF center, we repeated the multiple regression 

analysis for 10 degree target-RF distance windows centered 5 to 35 degrees from the RF center. 

The slope relating spike-count to variability systematically increased at  higher target-RF 

distances (ANOVA, F(6,466)=7.86, p<0.0001).  No such relationship  was found for the slope 

relating target-RF distance to variability (ANOVA, F(6,466)=0.82, p=0.5578). Thus, on average, 

variability increases systematically with mean spike-count in LIP neurons and this effect is much 

stronger in the surround. The reduction of firing-rate by surround suppression in LIP is 

accompanied by reduced across-trial variability and potentially improved LIP map precision. 

3.44  Across trial variability is modulated by the cognitive demands of the task.

The firing rates of LIP neurons are modulated by  expected reward (Platt and Glimcher, 

1999; Sugrue et  al., 2004).  Previously we have reported that the response to a distracting 

stimulus is oppositely modulated by increasing expected reward such that trials where the 

monkey  made saccades to high reward targets are associated with an increased response to the 

target and a simultaneously  decreased response to the distractor.  However is it is unclear 
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whether across trial variability  will also be modulated by changes in expected reward.  To test 

this we required the monkeys to make visually guided saccades to targets appearing in the RF 

center or in a single location in the suppressive surround (for details on location selection see 

Falkner et al. 2010).  Trials sorted by location were performed in blocks and the color of the 

saccade target instructed the monkey to expect a small reward or a large reward on that trial (Fig 

3.6A).  

0 10 20 30 40

0

0.2

0.4

0.6

0.8

Distance from target to distractor (degrees)

Sl
op

e 
of

 re
gr

es
sio

n 
of

 F
F 

w
ith

 F
R

Figure 3.5  Results of regressing the Fano 

factor upon spike count and target RF 

distance.  Computed for overlapping 10 

degree target RF distance windows, centered 

at 5 degree intervals from 5 to 30 degrees 

away from the RF center. A final window 

included only locations greater than 35 

degrees from the RF center. The slope relat-

ing mean spike count to the Fano factor 

increases with target-RF distance. Saccade 

target-RF distance on abscissa and the slope 

relating mean spike count to Fano factor on 

the ordinate. Error bars represent SEM. 

ANOVA, F(6,466)=7.86, p<0.0001. In 

individual neurons, regressing the slope 

relating Fano factor to spike count (in differ-

ent target-RF distance windows) upon the 

target-RF distance and the mean spike count 

within that window yielded a significant 

effect for target-RF distance (mean slope 

±SEM=0.04 ± 0.008, p<0.0001, n=72), but 

not for mean spike count.

As previously  published, planning a saccade to a high reward target at the center of the 

response field evoked a greater visual response than the response to a low reward target, and 

planning a saccade to a high reward target located in the suppressive surround evoked more 

suppression than planning a saccade to a low reward target.   We next  examined the associated 

variability for these reward conditions by calculating the Fano factor for high and low reward 

trials.  
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Figure 3.6  Increased reward expectation decreases across trial variability.  

A) The monkey made saccades to targets in the RF or to targets in the suppressive surround.  On each trial, the 

color of the saccade target indicated to the monkey to expect a small reward or a large reward.  B)  Average neural 

activity when the target was in the RF plotted in 100ms bins stepped every 25ms for trials where the target 

signaled a small reward (green) compared to trials where the target color signaled a large reward (blue).  Neural 

activity was significantly larger for large reward trials (p<<0.0001, Wilcoxon signed-rank test, -400 to 500ms 

around distractor onset. n=38).  C)  Average neural activity when the target was in the surround and distractor was 

in the RF.  Conventions as above.  Neural activity was significantly reduced for large reward trials (p<0.005, 

Wilcoxon signed rank test, n=46).   D)  Fano factor for associated neural activity shown in B.  Conventions as 

above.  Variability was significantly reduced for large reward trials (p<0.05, Wilcoxon signed-rank test).  E)  

Fano factor for associated neural activity shown in C.  Conventions as above.  (p<0.05, Wilcoxon signed-rank 

test).  

Despite the fact that in one case (saccade to RF) average spike count increases, and in the 

other (saccade to surround) average spike count decreases across the trial, we see concurrent 

drops in the across trial variability at both the target and distractor location when he expects a 

large reward relative to when he expects a small reward.  This effect  is significant in a bin taken 

across the whole trial in each case (Figure 3.6B,D;  p<0.05, Wilcoxon signed-rank test, n=38 for 

saccade to target  in RF, n=46 for saccade to target in surround).  This indicates that  an increase in 
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reward expectation causes a drop in Fano factor not only at  the target location, but at across 

distant locations on LIP’s map (e.g. within the suppressive surround).  Importantly, the difference 

in Fano factor between small reward trials and large reward trials is significant (p=0.002, 

Wilcoxon signed-rank test) in the bin prior to the distractor onset (-500 to 0ms before distractor), 

which indicates that  is it the presence of the high reward target outside the RF, not the distractor 

response in the RF that is associated with the drop in variability.  

3.45  Decreased across trial variability at non-saccade endpoint locations is associated with 

improved saccade accuracy.

If decreases in variability improve the precision of the representation of visual stimuli on 

LIP’s map, a highly variable neural representation might be detrimental to the speed and 

accuracy  of an intended saccade.  Since visually  guided saccades have more stereotyped saccade 

latencies and less scatter in endpoint, we used a standard memory-guided delayed saccade task to 

produce saccades with a broader scatter of both endpoints and latencies. In this task the target 

flashed for < 50 ms, and when the fixation point disappeared the monkey had to make his 

saccades to the spatial location of the vanished stimulus.  The distractor appeared for 50 ms 500 

ms after fixation began, just as in the visually-guided saccade task described above. We 

compared the responses in this task to those fixation control trials in which no saccade target 

appeared and the monkeys had to ignore the distractor and continue to fixate for the duration of 

the trial.
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Figure 3.7  Decreased variability is 

associated with increased saccadic 

accuracy.  

A)  Average neural activity for the trials 

in which monkeys performed a 

memory guided saccade to a target in 

the suppressive surround split by 

saccade endpoint accuracy.  Shown are 

accurate saccades (red), inaccurate 

saccades (blue), and responses to the 

no-target control (black).  Activity is 

shown aligned to distractor onset (left 

panel) and saccade (right).  Block 

control trials are not shown aligned to 

saccade since there are no saccades in 

these trials.  B)  Average Fano factor for 

trials show in A.  C)  Comparison of 

spike counts between early (300ms 

after target on),  late (300ms prior to 

go-cue), and saccade (300ms prior to 

saccade) bins from the neural activity 

shown in A.  Error bars shown are 

+SEM.  No statistical differences were 

found between these epochs (p=0.12, 

accurate saccades, p=0.71, inaccurate 

saccades, p=0.16, no-target control 

trials, Wilcoxon signed-rank test, n=54) 

or between accurate and inaccurate 

saccades (p=.  D) Comparison of asso-

ciated Fano factors between late and 

early bins from the neural activity 

shown in C.  Error bars shown are 

+SEM.  Differences between accurate 

and inaccurate saccades are only 

significant in the late bin (p=0.06, accu-

rate vs. inaccurate, early bin; p=0.0015, 

accurate vs. inaccurate, late bin, n=54).  

 If neural variability  in the LIP map is related to the targeting accuracy of the 

saccade, we might expect to see a relationship  between the Fano factor and the endpoint of the 
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saccade, even at locations that do not encode the remembered location of the target.   To 

determine the relationship between neural variability at a non-target location and saccadic 

accuracy, monkeys made memory-guided saccades to a single location in the suppressive 

surround of each neuron.  For each session of memory-guided saccade trials we first divided all 

correct trials based on the accuracy of the saccadic endpoint.  We determined saccadic accuracy 

by an absolute measure of the error of the endpoint. Since saccades were not counted as 

“correct” unless they fell within a 5x5 degree window of the remembered target location, this 

placed an upper bound on this distribution of endpoint errors.  Since distributions of endpoint 

depended critically on the distance of the saccade target from the fixation point, we adopted an 

absolute cutoff for “accurate” saccades.  Correct saccades were considered “accurate” if their 

endpoints fell less than 1.5 degrees away from the location of the vanished stimulus.  Saccades 

were considered “inaccurate” if they were correct, yet whose endpoints were greater than 1.5 

degrees from the stimulus location.  

 

We plotted the mean spike count and Fano factor for both accurate (blue) and inaccurate 

(red) saccades aligned to the distractor onset and the saccade.  We also show the response to the 

distractor in those cells when monkeys planned no saccade (the “no-saccade control”) and these 

responses are absent in the saccade-aligned panel since there was no eye movement in these 

trials.  

We calculated the average spike count and Fano factor in 3 separate epochs during the trial:  

the early bin (300ms after target onset), the late bin (300ms prior to saccade go cue), and the 

saccade bin (300ms prior to eye movement) and plotted the average across neurons for each 
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epoch (Figure 3.7).  As expected, we saw a suppression of the spike count in the late and early 

bins relative to the no-saccade control, since in these trials, a saccade target appeared in the 

suppressive surround of the neurons (p=0.002 for no-saccade control vs. accurate saccade, 

p=0.0002 for no-saccade control vs. inaccurate saccades, early  bin, p<<0.0001 for both 

comparisons, late bin, Wilcoxon signed rank test).  However there was no difference in the 

neural activity associated with the accurate and inaccurate saccades in either the early or the late 

bin (p=0.14 for early bin, p=0.88, late bin).  

 In contrast, the across-trial variability  as measured by the Fano factor showed 

marked differences between the early and late bins.  Across-trial variability was markedly 

reduced in both saccade conditions relative to the no-saccade control in the early  bin, presumably 

due to the presence of the saccade target (p<0.05 for accurate, p<<0.005 for inaccurate) and 

variability between the accurate and inaccurate saccades was only slightly  different (p=0.06, 

early bin, Wilcoxon signed rank test).  Interestingly, in the period prior to the go-cue, the 

variability between the accurate and inaccurate saccade trials changed markedly, with the 

inaccurate saccade trials having significantly  more across-trial variability  (p<0.0005, late bin), a 

difference that  occurred without a concurrent difference in spike count in this same epoch.  This 

difference in variability  disappeared prior to the saccade itself (p=0.45, inaccurate vs. accurate 

saccade Fano factor, saccade bin, Wilcoxon signed rank test), suggesting that the behavioral 

effects of increased variability are restricted to the time of the go-cue.  
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Figure 3.8.  Decreased variability is 

associated with reduced saccadic 

latency. 

A)  Average neural activity for the trials 

in which monkeys performed a 

memory guided saccade to a target in 

the suppressive surround split by 

saccade saccade latency.  Shown are 

fast saccades (red), slow saccades 

(blue), and responses to the no-target 

control (black).  Plotting conventions 

as in figure 3.7.  B)  Average Fano 

factor for trials show in A.  C)  Com-

parison of spike counts between late 

and early bins from the neural activity 

shown in A.  Error bars shown are 

+SEM.  No statistical differences were 

found between these epochs (p=0.42, 

fast saccades, p=0.35, slow saccades, 

Wilcoxon signed-rank test, n=54)  D) 

Comparison of associated Fano factors 

between late and early bins from the 

neural activity shown in C.  Error bars 

shown are +SEM.  Differences 

between fast and slow saccades are 

only significant in the late bin (p=0.33, 

fast vs. slow, early bin; p=0.044, fast 

vs. slow, late bin, n=54). 
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3.45  Decreased across trial variability at non-saccade endpoint locations is associated with 

long saccade latencies.

The Fano factor also predicted saccade latency.  We divided the data from each cell into 

two equal populations, above and below the median saccade latency for all correct trials. The 

average spike counts were not significantly  different between saccade trials where latencies were 

short compared to saccade trials where latencies were long at any epoch (Figure 3.8A,C see 

figure for corresponding p-values).  In contrast, significant differences between the Fano factor 

during the late bin prior to the go-cue (p = 0.04, Wilcoxon signed rank test, n=54 neurons) but 

not in the early bin after the onset of the target (p = 0.34, n = 54 neurons) or in the presaccadic 

epoch (p=0.73).  These results indicate that reduced variability  in the pre-saccadic epoch even at 

spatial locations that do not represent  the target location, and that this variability is associated 

with both shorter latency saccades and more accurate saccadic endpoints without corresponding 

changes in the spike count of the neurons.  

3.5  Discussion

Lower neuronal variability  can improve the precision of LIP’s map representation 

(Paradiso, 1988) and a reduction in variability  following stimulus onset at the RF center has been 

recently  reported from multiple cortical areas (Mitchell et al., 2009; Churchland et al., 2010; 

Steinmetz and Moore, 2010).  Our data show that LIP neuronal variability drops systematically 

both when the neuronal firing-rate decreases and when the saccade target  gets closer to the RF, 

and the effect of firing-rate on variability  is greater in the surround.  The reduced firing-rates 

93



produced by  surround stimulation are thus also accompanied by  a reduction in across-trial 

variability. This decrease could result from a true reduction in the input variability across trials to 

these neurons when a saccade is planned to the surround. 

It is important to note that though firing-rate is known to influence response variability via 

the refractory period (Mitchell et  al., 2009) this effect leads to an increase in response variability 

for lower firing-rates, the opposite of the effect we describe. This result can emerge from a 

simple Poisson process model whose firing-rate varies across trials (a Cox process, (Lansky and 

Vaillant, 2000): if the across-trial variance of the firing-rate remains constant, then decreasing the 

mean firing-rate will increase the Fano factor. Therefore the relationship that we observe 

between mean spike-count and variability is not the result of these previously known 

relationships.  Finally, the reduction in variability when saccade target-RF distance increases, 

even when the mean firing-rate is constant, indicates that neuronal firing can be affected by 

saccade plans to the surround even when mean firing-rate is not.  The sharp drop in Fano factor 

following the onset of the distractor in the RF center may be the result of a sharp rise in mean 

firing rate, or result from that fact that at high firing rates, the mean interspike interval 

approaches the short timescale of a refractory period, such that the variability  appears to become 

more regular (Softky and Koch, 1993).  

We suggest that decreasing the across trial variability  represents a second mechanism that 

acts, along with decreasing mean spiking through surround suppression, by which neurons in 

LIP can reliably improve discrimination between signals related to spatial accuracy.  LIP neurons 

are statistically noisy relative to other parietal regions such as area 5 (though more regular that 
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areas MT/MST;(Maimon and Assad, 2009) and this extra jitter could mean the difference 

between a target location encoded in one region of space, and one that is slightly mislocalized.  

Signals are least variable when target stimuli are in the RF center and most variable when they 

are furthest from the RF.  A spatially tuned surround suppressive mechanism that stretches 

beyond the bounds of the “classic” excitatory RF could mediate such an effect, reducing 

variability both in the RF and at intermediate distances outside the excitatory RF bound.  Such an 

idea is consistent with models of cortical normalization that include both a “stimulus drive” and 

a “suppressive drive” that act simultaneously on neural responses although these models do not 

explicitly predict any changes in the neural variability after normalization (Reynolds and Heeger, 

2009).  

Surround suppression in other visual areas has been shown to act via shunting inhibition, a 

mechanism that reduces neural activity  by clamping down on noisy inputs to a brain area (Ayaz 

and Chance, 2009).  Along with reducing the mean neural response, such a mechanism could 

also do double duty, decreasing the across-trial variability by increasing the threshold necessary 

to evoke spikes in those same neurons.  In several visual areas including V1 and MT, neural 

variability has been shown to increase with age, an effect that has been attributed to synaptic 

degradation over time (Yang et al., 2009).    

The degree of variability reduction also correlates with several cognitive and behavioral 

variables, including increased reward expectation, faster saccade latencies, and increased saccade 

endpoint accuracy.  It is important  to note that  with both benefits in saccadic behavior, the benefit 

arises not with the reduction of the variability over time (in the case of the short  latency and 
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more accurate saccades), but with the increase in across-trial variability of the slower, less 

accurate saccades.  This suggests that the state of the neural variability  at  the time of the go-cue, 

not the epoch just prior to the saccade itself, is associated with the speed and accuracy of the eye 

movement.  This is consistent with results from motor and pre-motor cortices, in which the 

variability of neurons associated with reach have been found to converge on a specific mean with 

maximally reduced variability  (the “optimal subspace”) prior to movement initiation 

(Churchland et al., 2006a; Churchland et al., 2006b).  Though the dynamics of saccade initiation 

differ from reaching, the increased saccade latencies for neurons with increased variability may 

indicate that variability even at  non-target locations must reach a particular subspace before an 

eye movement can be initiated.  

Additionally, although it  has been demonstrated that variability is reduced by the presence 

of the stimulus both in the cortex of anesthetized as well as awake, we have demonstrated that 

cognitive and behavioral factors can influence variability, a result that  is unlikely to arise from 

external factors alone.  It is likely that both stimulus onset and “top-down” factors tap  into the 

same mechanism, and recent theoretical work has suggested that large networks with recurrent 

connectivity have reduced variability with increased input, regardless of the source of that input 

(Rajan et al., 2010).  

Taken together, these data demand a refinement of the hypothesis that reduced neural 

variability represents a cortex-wide phenomenon.  Instead, there is a tight relationship between 

the amount of variability reduction and the spike rate at those locations such that locations are 

not uniformly  affected by these changes.  Many areas shown to have this property, including V1, 

MT, and V4, have extensive suppressive surround mechanisms that have been shown to 
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modulate activity across spatial locations (Angelucci and Bressloff, 2006; Alitto and Usrey, 

2008; Ozeki et al., 2009; Sundberg et al., 2009).  Further study  needs to be done to establish the 

links between surround suppression and the spatial extent of variability reduction in these areas. 
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Chapter 4:  Changes in correlation reflect competition between 

visual stimuli in LIP.

4.1  Abstract

Activity in the monkey lateral intraparietal area (LIP) encodes the relative salience of locations 

in visual space.  When multiple stimuli compete for attentional priority, a single winner must 

emerge on this map to be used as the upcoming saccade target or the locus of visual attention, 

though it is unclear how the “winning” process is functionally implemented or whether cognitive 

demands can influence the competition.  One model of competition suggests that peaks of 

activity in LIP could rise and fall independently  and a winner could emerge as one peak hits a 

designated threshold.  Alternatively, activity between peaks could be non-independent, exhibiting 

correlations across trials.  These correlations could be static across the duration of the trial or 

fluctuate with the changing demands of the task and behavioral state.  We tested this by 

recording from LIP during a free choice task where monkeys were required to chose between 2 

targets with a saccade under varying reward probability.  We recorded from the locations of both 

targets simultaneously using 2 independent electrodes and looked at correlated noise during the 

spontaneous activity and during the pre-saccadic “decision” period for a given saccadic choice.  

We found that even from cells with separated receptive fields that do not share stimulus-evoked 

activity, activity from competing spatial locations is not independent. Neural noise was positively 

correlated before the saccade targets appeared and decreased in correlation during the decision, 

with a subpopulation of cells exhibiting negative correlations prior to the saccade.  Since 
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correlated noise can indicate the presence of either a common input or mutual connectivity, 

changes in correlation suggest a change in functional connectivity  between neurons during 

competitive visual decisions.  A measure of the monkey’s reward history was negatively 

correlated with saccade latency  for a given choice. Noise correlations between neurons but not 

the firing rates of individual neurons encoded the monkey’s history of rewards, indicating that 

more trial-to-trial variability may be shared during periods of indecision.

4.2  Introduction

In our neural representation of the physical world, spatial locations compete with each 

other for saccadic and attentional priority.  Choices must  be made with our eyes on a moment-to-

moment basis about which spatial locations contain the most information and which locations 

might be associated with likely rewards. Since saccadic eye movements are ballistic, all or none 

events, a single winner must emerge every  time an eye movement is to be made, such that 

competition between possible saccadic endpoint locations must be resolved prior to the eye 

movement.  

Several areas of the brain including the macaque lateral intraparietal area (LIP) encode the 

relative salience of spatial locations and its activity can be used to signal attentional priority and 

program saccades if saccades are appropriate (Bisley and Goldberg, 2003a; Ipata et al., 2006a).  

Many previous studies have demonstrated how increases in spike rate in this area signal 

increased priority at the associated spatial location and more recently, surround suppressive 

interactions have been shown to dampen responses at  competing locations (Falkner et al., 2010).  
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These interactions in LIP suggest that active competition is occurring between neural 

representations of potential saccade targets, though the mechanisms of these interactions are 

unknown.  Peaks on LIP’s salience map may rise and fall independently, eliciting a saccade when 

they  cross a particular threshold, or the activity of a particular peak could be dependent on the 

activity of a competing peak.  

Competition between the representations of visual stimuli may also be implemented by a 

change in the functional connectivity between relevant neurons.  This change in functional 

connectivity can be assessed by examining changes in the non-stimulus evoked activity: the so-

called noise correlation between multiple neurons. This noise is a measure of the shared 

variability between neurons.  LIP neurons whose response fields (RFs) overlap would be 

expected to share variability due to the noise inherent in stimulus presentation (since the neurons 

would share a time-locked response to the same visual input).  However it is less clear whether 

neurons that do not share stimulus input will also share variability.  Uncorrelated neuronal noise 

between 2 LIP neurons is evidence for an independent race-to-threshold model where neurons 

associated with spatial locations generate eye movements when the responses arrive at  a 

particular threshold, irrespective of what is happening at competing spatial locations.  In contrast, 

positive correlations indicate fluctuations that simultaneously  affect competing peaks, while 

negative correlations are evidence for suppressive interactions, a possible mechanism to resolve 

spatial competition.  

Changes in noise correlation are also a neural signature of top-down cognitive involvement.  

Several recent studies have shown that activity in other macaque visual areas exhibit low levels 

of correlation between simultaneously recorded neurons that can be modulated by the monkey’s 
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behavior.  In V4, positive correlations decreased when spatial attention was deployed to the 

location of one of the cells’ RFs during a covert tracking task, suggesting that the correlations 

between neural activity  may provide an independent channel of information about the state of 

attention at a given time (Mitchell et  al., 2009).  Moreover, modulations in noise correlation in 

area V4 account for the majority of attentional improvement in a measure of population 

sensitivity, and that measurements of spike rates alone provide an incomplete description of the 

monkey’s cognitive state (Cohen and Maunsell, 2009).  Since shared noise between visually 

responsive neurons has also been shown to limit cortical information processing capability 

(Zohary  et  al., 1994), this suggests that a reduction of any  shared noise might be a necessary 

precursor to an ongoing decision process, though this has not been explicitly tested.  

Monkeys’ behavior during choice tasks has been shown to be sensitive to previous 

rewards (Platt and Glimcher, 1999; Sugrue et al., 2004; Corrado et al., 2005; Lau and Glimcher, 

2005), and many  studies have shown that saccade latencies reflect the monkeys’ motivation state 

at the time of the eye movement (Lauwereyns et al., 2002; Takikawa et  al., 2002; Hikosaka et al., 

2006).  LIP, in addition to other priority  map areas, encodes information about attention and 

reward and these signals can affect the relative peaks on LIP’s priority  map, though it  is 

unknown whether these factors can influence competitive neural mechanisms or the dynamics of 

changing noise correlations between neurons.  To disambiguate between models of saccadic 

competition in LIP, we performed simultaneous paired recordings of 2 LIP neurons that were 

explicitly selected so that they did not share excitatory stimulus evoke activity. We examined 

changes in the neural noise during the decision process while monkeys chose between pairs of 

saccade targets located in the receptive fields of each neuron.  This approach allowed us to study 
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neural interactions that were not generated by external stimuli.  By varying the relative reward 

ratio between the 2 targets, we modulated the monkey’s internal motivation to chose a particular 

target and examined the contributions of varying cognitive demands on noise correlations in LIP.

4.3  Materials and Methods

We used two male rhesus monkeys (Macaca mulatta) weighing 8–12 kg in this experiment. 

All experimental protocols were approved by the Animal Care and Use Committees at Columbia 

University  and the New York State Psychiatric Institute, and complied with the guidelines 

established by the Public Health Service Guide for the Care and Use of Laboratory  Animals. We 

located the intraparietal sulcus in each monkey  using a T1 volume scan obtained on a GE Signa 

1.5 T magnet. Using standard sterile surgical techniques and endotracheal isofluorane general 

anesthesia we made a 2 cm trephine hole over the intraparietal sulcus and implanted 12-16 

titanium screws in the monkey’s skull and used them to anchor an acrylic cap in which we placed 

a head holding device, the recording chamber, and the plug for subconjunctival search coils for 

eye position recording. 

4.31  Data collection 

We used the REX/MEX/VEX system developed at the National Eye Institute’s 

Laboratory for Sensorimotor Research for behavioral control, visual stimulus display and data 

collection using Dell Optiplex PC’s running QNX (REX and MEX) and Windows 2000 (VEX). 

The monkeys sat in a dimly illuminated room with their head fixed and viewed a screen that 
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stood 75 cm away. Visual stimuli were back-projected onto the screen using a LCD projector 

(Hitachi CP-X275) with a refresh rate of 75 Hz. We used a photodiode to register the actual 

times for stimulus onsets and offsets. Fixation point and saccade target stimuli were 0.3 degree 

wide colored squares. Fixation points were red and saccades targets were blue and green.  We 

introduced the 2 separate electrodes per recording session into the same grid separated by  a 

minimum of 2 mm through a separate guide tubes positioned in a 1 mm grid (Crist Instruments). 

We recorded single units from each electrode from area LIP with glass-insulated tungsten 

electrodes (Alpha Omega Engineering, Nazareth, Israel) while the monkeys performed a passive 

fixation task as white spots flashed sequentially at  different locations in the visual field. We 

amplified, filtered and discriminated action potentials using an amplitude window discriminator 

(MEX software).  Only well-isolated single neurons with highly  discriminable waveforms were 

studied. 

4.32  Neuron inclusion criteria

We considered neurons to be in LIP if they showed consistent visual, delay-period and 

saccade related response during the memory-guided saccade task.  

For each neuron we isolated, we identified the center of the RF using flashed spots at 

400ms intervals (4 per trial, located on a 40 x 40 degree grid with 5 degree spacing, less than 50 

ms duration) during passive fixation.  We defined the center of the RF as the spatial location of 

the flashed spot that elicited the maximum activity. Once 2 neurons were independently isolated, 

we tested each the response of each neuron using memory guided saccade task.  We recorded the 

response to both neurons simultaneously while monkeys made memory guided saccades to a 
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single saccade target.  In one block of trials (~50 trials), the target was placed in the response 

field of the first neuron (RF1) and in the second block of trials in RF2.  For each block of trials 

we compared the activity  during the delay  period to the activity during prior to target onset.  

Neurons were considered to have sufficient delay  period activity if activity was greater during 

the delay period (t-test, one-tailed p<0.05).

Cells pairs were included in the choice task analysis and determined not to share stimulus 

evoked activity if during the memory guided saccade task, one cell had significant activity 

30-300ms after target onset compared to an equivalent bin during the pre-target fixation period, 

and the other cell did not have an increase (one tailed t-test p>0.05).  Un-stimulated cells could 

have a significant decrease in activity  that would not be considered for exclusion by this test.  

Once it was determined that cell pairs had non-overlapping RF centers, that could be used for the 

choice task.

4.33  Task details

 Once LIP cells were isolated on each electrode, the monkey  was required to perform the 

free choice foraging task.  For each trial in this task, the monkey fixated central red spot for 500 

ms, at which point 2 saccade targets appeared simultaneously, one in the RF of each isolated cell.  

Either target (green or blue) could appear randomly in either RF.  The targets were present for 

750-1050 ms, at which point the fixation spot disappeared which was the cue for the monkey to 

choose one target. Monkeys had 400 ms after the go-cue to make a saccade to a 4.5x4.5 degree 

window around the saccade target. If the monkey’s eye was in the window for 100 ms from 400 

ms to 500 ms after the go-cue, a beep indicated whether the monkey would receive a reward:  a 
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long beep signaled reward while a short beep  indicated no reward.  Rewards were determined 

using a changing relative probability  schedule that was changed pseudo-randomly approximately 

every  200 trials.  Reward magnitudes were fixed for the duration of each session.  The range of 

reward probabilities tested included 3:1,2:1,1:1,1:2,1:3, though not all relative probabilities were 

tested each session, depending on the number of trials and the monkeys’ satiety.  Each target was 

re-baited (using a random flip of an independent coin for each target) each time that color target 

was chosen but uncollected rewards carried over across trials so that monkeys could harvest 

rewards maximally  by visiting each target color with the same proportion at which it  is rewarded 

relative to the other color.  We did not use a changeover delay.  Though monkeys did not always 

perform this task optimally, they did change their choice strategy when reward probabilities 

changed during a session, indicating that they had learned that  the target reward probabilities had 

changed.  The monkeys’ behavior was quantified by comparing the relative reward ratio 

(RewardGreen / (RewardGreen+RewardBlue)) to the monkeys’ choice ratio (ChoiceGreen / (ChoiceBlue

+ChoiceGreen)).  For the monkeys’s instantaneous choice ratio, the choice ratio was averaged over 

blocks of 10 trials. Saccade latencies for variable reward trials were normalized by the average 

saccade latency across all trial types for each saccade direction.

 For a subset of cell pairs (n=33 cell pairs), we also recorded data for the “empty” RF task.  

The empty RF task is identical to the free choice task in every respect, except that the locations 

of the choice targets were changed so that a target  appeared in RF1 and the second target 

appeared diametrically opposite RF1 such that it  did not excite either RF1 or RF2.  RF2 thus 

became the “empty” RF and was then no longer a choice option associated with a reward.

105



4.34  Data analysis

All data analysis programs were written in MATLAB (Mathworks Inc, Natick, MA).  For 

the foraging task we examined the relationship  between the spike count of each neuron during 

the choice separately for each saccade direction (saccade into RF1 and saccade into RF2) and 

reward probability.  We used a sliding bin of 300 ms stepped every 25 ms and calculated the 

spike counts from each cell across the trial.  Spike counts were normalized by subtracting the 

mean spike count from each trial type from the absolute spike count of each trial.  We used a 

sliding average from the surrounding 10 trials of the same saccade trial type to eliminate slower 

fluctuations in rate that could be caused by slow changes in the monkeys’ alertness.  Calculating 

the Pearson coefficient without this sliding average made no qualitative difference in the results.  

We also calculated the Pearson coefficient on the z-score of the spike counts rather than the raw 

spike counts themselves (Kohn and Smith, 2005; Smith and Kohn, 2008) and again this made no 

qualitative difference in our findings.

We calculated the Pearson correlation of each pair of spike counts separately for each bin 

across the duration of the trial.  The Pearson correlation was computed separately for each 

saccade direction within a given pair of cells, NOT pooled across saccade directions, which can 

produce spurious negative correlations that are uninformative about functional connectivity.  For 

single cells, error bars were calculated using Jackknife methods leaving out individual trials 

(iterated 1000 times).  For populations of cells, error bars were calculated using standard error of 

the mean for population averages at each timestep.  Significant correlations were assessed using 

a t-test on the distribution of correlation coefficients for each selected bin independently, while 

pairwise significance testing was done using Wilcoxon signed rank tests (p<0.05) at  each time-
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step correcting for multiple comparisons.  Cell pairs were excluded from analysis if individual 

decisions did not have a minimum of 20 trials in order to ensure an minimally appropriate 

estimate of the correlation.  

We validated that 300 ms was an appropriate bin to use (Bair et al., 2001; Smith and 

Kohn, 2008; Mitchell et al., 2009) by calculating the Pearson correlation using different  sized 

bins slid along the baseline period (500 ms prior to target onset) in the choice task.  Bin sizes 

used were 5 10 25 50 100 150 250 300 400 and 500 ms stepped through the duration of the 

baseline period at 50ms increments.  For example, a binsize of 400ms would be calculated 3 

times in during the 500ms (starting at -500, -450, and -400).  

We calculated synchrony between neurons by taking the spike trains from the pre-target 

and pre-saccadic epoch and computed a cross average cross correlogram across trials for each 

pair.  For each pair of neurons, we then recomputed the cross correlogram after shuffling trial 

order and iterated this process 1000 times.  From these shuffled correlograms we extracted 95% 

confidence bounds.  We considered a neuron to have significant synchronous spiking if the value 

of the spike coincidence was greater than the upper 95% bound for a 3ms window across the 0 

time lag.  

 For the reward history model, we extracted a measure of the reward history  by  computing 

a vector of previous rewards where positively rewarded trials were labeled with a 1 and 

negatively rewarded trials with correct saccades were labeled with a 0.  Trials were the 

monkeys’ saccades were overly  inaccurate or exceeded the time limit were excluded.  This 

reward vector was then convolved with an exponential with a variable time constant tau.  For 

each behavioral session, we determined the best-fit tau by regressing the saccade latency for each 
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trial with the reward history term and minimizing the squared residuals minus a tau2 term, which 

prevents the model from over fitting.  We performed this analysis for the total reward stream 

over all choices and also for choices only to each particular color target as controls.  The 

coefficient of regression between latency and reward history  was computed using the best-fit  tau 

for each session.  Distributions of coefficients were compared to a predicted mean of 0 using a t-

test.

 To determine the relationship between correlation and reward history, we binned the trials 

from each session into 5 equal bins using the best-fit tau for each session and recalculated the 

noise correlations and average spike counts across trials in each of the bins.  Regressions were 

computed using standard techniques and linear fits were done using least-squares.  

4.4  Results

4.41  Choice Behavior

To get the monkeys to make free saccadic choices into the receptive fields of the recorded cells, 

we used a dynamic foraging task (Sugrue et al., 2004; Lau and Glimcher, 2005) where monkeys 

were required to saccade to one of 2 possible targets (green or blue) after a variable delay  (Figure 

4.1A). The relative reward ratio between the different targets was changed pseudo-randomly 

every  200-300 trials (see methods), while absolute reward magnitude was fixed throughout the 

duration of each session.  
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Figure 4.1  Choice task behavior.

A) Monkeys performed choice task after 2 LIP cells had been isolated and their RF’s mapped (see methods). 

Monkeys fixated on a central red spot for 500 ms, then 2 targets appeared (green and blue), one in the center 

of each RF.  750-1050 ms later, the fixation point disappeared, at which point the monkey had up to 400 ms 

to make a saccade to either target.  Targets colors were assigned either a reward or no reward based on a 

fixed reward ratio that was changed approximately every 200 trials.  Targets were re-baited with rewards 

every time the target color was chosen.  B) Choice behavior during an example session.  Red line shows the 

relative reward ratio as a function of trial number.  The blue line shows the monkey’s instantaneous choice 

ratio averaged over bins of 10 trials.  C)  Monkeys’ choice behavior averaged over all sessions across all 

reward ratios.  Error bars are +SEM (Monkey D, n=71 sessions, Monkey I, n=33 sessions).  All reward 

ratios significant from reward ratio 0.5 (ANOVA p<0.05).  

In theory, monkeys could optimize reward collection by choosing each colored target 

with the same relative frequency as its relative reward ratio (Hernstein, 1961), so it benefited the 

monkey  to adjust his choice allocation frequency accordingly.  In practice, monkeys did not 

behave optimally, but showed a clear bias demonstrating that  they  were aware of the changing 

reward structure of the task (Figure 4.1B). Though the monkey’s behavior is clearly not optimal, 

changes in his average choice probability track changes in the relative reward ratio across the 
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duration of the session.  Across all sessions, both monkeys consistently  under-matched (Fig 

4.1C), though on average clearly  tracked changes in the relative reward ratio through his 

instantaneous choice behavior.  For the purposes of this study, we were not concerned with 

whether the monkeys’ behavior was optimal, only that the session-by-session behavior of the 

monkeys reflected the changing reward probabilities.  All average choice frequencies of relative 

reward ratios other than 0.5 were determined to be significantly  different from the monkey’s 

behavior when the reward ratio was 0.5 (1-way ANOVA p<0.05 for each comparison).

We recorded the activity  of 134 LIP neurons (n=67 pairs of neurons) in 2 monkeys.  To 

eliminate the possibility of stimulus-evoked correlation we recorded only from pairs of neurons 

with spatially distinct RF centers such that a stimulus in the center of one cell’s RF did not excite 

the other cell (see methods for inclusion criteria). We recorded the neural activity associated with 

these targets while monkeys chose to saccade to one target or the other.  

4.42  Noise correlations decrease over the course of the saccadic decision

 Each trial consisted of 2 possible choices:  saccade to the target RF1 and saccade to the 

target RF2.  Since we made no assumptions about mutual or symmetric connectivity  between 

neurons, we treated each choice as a separate decision and did not pool across possible decisions.  

However we did pool across colors for a given target position and reward ratio: response 

differences between targets of different colors were indistinguishable and were averaged together 

for each saccadic decision (p>0.05, paired t-test at each time bin).  
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Figure 4.2  Activity and corre-

lation in example neuron pair.

A) PSTH of activity for choices 

to target in RF1 shown aligned 

to target onset (left) and 

saccade onset (right) for neuron 

1 (solid line) and neuron 2 

(dotted line) of example simul-

taneously recorded pair.  PSTH 

bin is 20ms.  B) Activity of 

example pair shown in spike 

counts.  Spike counts shown are 

from 300 ms bins stepped every 

25 ms and are aligned to the 

beginning of the bin.  Conven-

tions as above. C) Scatter plot 

of de-meaned spike counts (the 

“noise) from the 300 ms bin 

preceding target onset 

(“pre-target” epoch) for neuron 

1 and neuron 2.  Sold line is 

least-squares fit.  Pearson 

correlation coefficient (r) is 

0.25 (p<000.1).  D) Scatter plot 

of de-meaned spike counts 

from 300 ms preceding saccade 

(“pre-saccadic” epoch).  Con-

ventions as above.  Pearson 

correlation coefficient (r) is 

-0.12 (p<0.001).  E) Noise 

correlations computed from 

spike counts shown in B as a 

function of trial time (thick 

black line) with Jackknife error 

bars.  Thin black line is noise 

correlation computed after 

shuffling trials. 
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For each choice, activity  consisted of the simultaneously recorded responses to the 

chosen target and the rejected target.  As expected, activity corresponding to the chosen target 

was greater than the activity evoked by  the rejected target (Figure 4.2A). For each cell, we 

smoothed the spike rates into a running average of spike counts by  computing the spike counts in 

each bin of 300 ms (stepped every 25 ms) for each cell’s response to the chosen and the rejected 

targets (Figure 4.2B).  We used a bin size large enough to contain sufficient spikes in order to 

capture “slow” correlations resulting from shared variability, but small enough to capture the 

temporal resolution of the emerging decision. The spike count traces appear to rise prior to the 

onset of the target stimuli (Figure 4.2B, left) because they are aligned to the beginning of the bin 

such that the response aligned to -250 ms actually contain 50 ms of the target onset response.  

 We next  computed the Pearson correlation (r), a measure of correlation that is equivalent 

to the covariance of the cells’ spike counts divided by the product of their respective standard 

deviations, across each set of spike counts, taking each decision (saccade to RF1 vs. saccade to 

RF2) separately.  To calculate the noise correlation we extracted the Pearson correlation 

coefficient from the spike counts after subtracting the mean for each bin for each of the decisions 

shown in 4.2A (Figure 4.2C,D).  The correlation was calculated separately for each time step  and 

error bars were computed by using jackknife methods leaving out individual trials. The Pearson 

correlation coefficient calculated on the same spike counts after shuffling trial order was not 

significantly different from 0 at any individual time bin.  

For this example pair of cells, the Pearson correlation of the de-meaned spike counts 

changed dynamically over the course of the decision.  For the 300 ms prior to target (the pre-

target epoch), the correlation coefficient was significantly positive (r=0.25, Figure 4.2C). In 
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contrast, for the 300ms prior to the saccade (the “pre-saccadic” epoch) the correlation was 

significantly negative (r=-0.12, Figure 4.2D), indicating that there is negative trial-to-trial 

variability across the spike count for this epoch of the decision making process. 
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Figure 4.3  Neurons decorrelate across a decision   

A) Average spike counts across the population of cells shown for all choices to 

targets into each cell’s RF (blue) and saccades away from each cell’s RF (red). 

Spike counts are shown aligned to the target onset (left) and the saccade (right).  

(n=108 choices, n=54 cell pairs).  B)  Average Pearson correlation coefficient for 

the population as a function of time using bin size of 300ms. Dotted black lines 

represent time point of pre-target epoch (left) and pre-saccadic epoch (right). 

The transition from positive to negative correlation occurred smoothly  throughout the 

trial: in the period prior to the target  onset the correlation was significantly positive (Figure 

113



4.2E), indicating that there was positive trial-to-trial variability, but after the targets appeared in 

the receptive field of each cell the magnitude of the correlation steeply declined until in this pair 

it eventually  changed sign and became a significantly negative correlation prior to the saccade. 

The correlation coefficient returned to positive after the eye moved (Figure 4.2E, right). 

We calculated the noise correlation for each choice in each pair of cells.  Across the 

population of cells pairs we observed similar changes in spike count (Figure 4.3A) and 

correlation trajectory  (Figure 4.3B) over the course of the decision.  In this population average, 

the correlation was significantly positive in the pre-target epoch (students t-test p<<0.001), and 

taken individually 58% of cell pairs had significantly  positive correlations in this epoch.  No cell 

pairs had significantly negative correlations in this epoch.  

 Correlations were significantly reduced prior to the saccade.  For almost every individual 

choice, correlations in the 300 ms before the target appearance were significantly higher than  the 

correlations were 300ms before the saccade (Figure 4.4A, p<<0.0001, Wilcoxon signed rank 

test).  

 Correlations can trivially increase as spike rates increase (Zeitler et al., 2006; de la Rocha 

et al., 2007).  To ensure that the decrease in Pearson correlation observed over the course of the 

saccadic decision is not due simply  to decreases in spike rate over the course of the trial we 

plotted the average spike count from the baseline vs. the spike count from the decision period 

(Figure 4.4B).  As expected, the spike counts for the decisions where saccades were executed 

into the RF were significantly enhanced in the pre-saccadic decision bin in comparison with the 

baseline bin (Figure 4.4B, blue, Wilcoxon signed rank test p<<0.001).  The average spike counts 

for the cells where saccades were made opposite the cells’ RF had largely declined to the level of 

114



the pre-target epoch (Figure 4.4B, red, Wilcoxon signed rank test p=0.72).  Since the spike 

counts were actually increased for one set of choices and were unchanged for the other, these 

changes cannot account for the change in correlation observed between the 2 epochs.  
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Figure 4.4 Comparison of pre-target and pre-saccadic epoch

A) Comparison of correlation coefficient from pre-target (ordinate) and 

pre-saccadic (abscissa) epochs for each choice.  Pre-target correlations are signifi-

cantly higher than pre-saccadic correlations across the population (p<<0.001, 

Wilcoxon  signed rank test).  B)  Comparison of spike counts between the pre-target 

and pre-saccadic epochs across the population.  For choices to target in each cell’s 

RF saccades (blue), spike counts were higher for the pre-saccadic period (p<<0.001, 

Wilcoxon signed rank test).  Spike counts for the response to the rejected target 

were not significantly different from pre-target activity (p=0.716, Wilcoxon signed 

rank test).

The change in noise correlation between these 2 epochs is also not due to an overall 

change in independent  variability of the spike counts.  The raw variance for the 2 epochs (pre-

target vs. pre-saccadic) is not significantly different for neurons encoding the rejected target 

(spike count for saccades out of RF, p=0.55) and trends closely to significance for neurons 

encoding the chosen target (p=0.06, Wilcoxon signed rank test), though the direction of this 

difference is an increase, the opposite direction predicted if a change in Pearson correlation were 

due strictly to a change in the independent variance of the neurons.    
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 To examine the dynamics of cell pairs with different correlations, we computed the 

Pearson correlation across the entire decision period (750ms prior to saccade) for each cell pair 

for each decision when the reward ratio was 0.5.  From this, we created an index of significantly 

negatively correlated pairs (n=14) and positively correlated pairs (n=32).  We re-plotted the 

correlation coefficient calculated from the sliding 300ms bin from these positive and negative 

(Figure 4.5) subpopulations to compare the coefficients from the pre-target and pre-saccadic 

epochs.  Both subpopulations show a decrease in noise correlation from the pre-target  to the pre-

saccadic epoch, regardless of the sign of the correlation. 

-500 0 500

-0.3

0

0.3

-500 0

-0.3

0

Pe
ar

so
n 

co
rr

el
at

io
n

Aligned to target onset (ms) Aligned to saccade (ms)

Pearson correlation

-1 0 1

-1

0

1

Correlation:  pre-target 

Co
rr

el
at

io
n:

 p
re

-s
ac

ca
di

c

BA

p<0.0002
p<0.001

Figure 4.5 Both positive and negatively correlated cells decorrelate during a decision.

A) Subpopulations of cell pair choices that showed significantly positive correlations (blue, 28%) and 

significantly negative correlations (red, 12%) across the entire target epoch (750ms prior to saccade) were 

extracted.  Correlations for both subpopulations decrease over prior to the saccade.  B) Comparison of 

correlation coefficients between the pre-target (300 ms prior to target) and the pre-saccadic (300 ms prior to 

saccade) epochs.  Comparisons for both positive (blue) and negative (red) subpopulations were significant 

(p<0.0002 and p<0.001 respectively, Wilcoxon signed rank test).  Black points show cell pairs that fall into 

neither subpopulation.  

4.43  Decorrelation abolishes synchrony

We validated our use of bin size by  repeatedly calculating the correlation coefficient for 

multiple bin sizes, then averaging over all correlations within a particular neuron pair (Figure 

4.6).  We used bin sizes of ascending size (5, 10, 25, 50, 100, 200, 300, 400, 500ms) stepped 
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every  50ms through a 500ms epoch prior to target onset and a 500ms bin prior to saccade.  For 

both epochs, correlations are weakest when binsize is smallest  and in both cases, the correlations 

increase with increasing binsize.  The magnitude of the correlation plateaus at a binsizes 

>300ms, indicating that this bin size captures shared variability  during trial-to-trial fluctuations, 

but can be examined dynamically over a trial that exceeds 1s.  
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) Figure 4.6  Timescale of correlations.

Average Pearson correlation as a function of 

bin size for 500 ms pre-target epoch (blue) 

and 500 ms pre-saccadic epoch (red).  Corre-

lations averaged for each pair after stepping 

through epoch with varying bin sizes.  Error 

bars represent SEM across population of pairs 

(n=108 choices).  Bin sizes used are 5, 10, 25, 

50, 100, 200, 300, 400, and 500 ms.

 Although we found that correlations are maximal for binsizes >300ms, suggesting that 

these correlations emerge on a slow timescale, this does not preclude a contribution from 

synchronously occurring spikes. We calculated the incidence of synchronously occurring spikes 

by computing the cross correlation for each pair of cells during the pre-target and pre-saccadic 

epoch.  For each epoch, we recalculated the cross correlation after shuffling trials and iterated 

this calculation 1000 times to extract  estimates of the 95% confidence bounds for each pair of 

cells.  Individually, 17/67 pairs of cells (25%) had significantly higher incidence of synchronous 

spikes than would be expected by  chance in the pre-target epoch (Figure 4.7A).  During the pre-

saccadic epoch, despite the fact that there are more spikes evoked, only one pair of cells (1%) 

had significantly higher incidence of coincident spikes (Figure 4.7B).  
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Figure 4.7  Incidence of synchronous spikes in the A) pre-target epoch and B) pre-saccadic epoch.  

Red line shows the average coincidence of synchronous spikes at varying time lags.  Black line shows the 

average coincidence of synchronous spikes after shuffling trials.  95% confidence bounds were calculated 

after iterating shuffled coincidence 1000x (n=67 pairs of cells).  

4.44  Correlations encode information about reward history

To perform the choice task well, monkeys must learn the value of the relative reward of 

each target  and use this information to allocate his choices between the two targets.  Increasing 

his harvesting efficiency across this task requires that the monkey retain information about 

previous rewards.  Monkeys have been found to use this information to generate upcoming 

choices, but it may influence other behavioral measures, including his saccade latency to a 

particular choice target.  

To test  this, we first  divided the trials into “rewarded” and “unrewarded” trials based on 

whether the monkey had successfully  harvested a reward on the previous trial and examined 

whether the monkeys’ saccade latencies were different between these 2 groups.  We found a 
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highly  significant difference in average saccade latency  for each choice (Figure 4.8D, 

p<<0.0001, blue, p<0.005 for choices to RF1 and RF2 respectively).  This effect was true 

whether choices to targets with all relative rewards were included, or whether the analysis was 

restricted to choices when the relative reward was equivalent (relative reward=0.5).  This effect 

was also significant regardless of which choice the monkey made previously  (p<<0.0001 for 

previous green or blue choices respectively), his upcoming choice (p<<0.0001 for upcoming 

green or blue choices respectively) or which RF he chose on the previous trial (p<<0.0001 for 

RF1 choices, p for RF2 choices, Wilcoxon signed rank test).  Thus the monkeys’ saccade latency 

is not a function of the properties of the choice and instead reflects an overall state variable 

related to his history of rewards.  

We next looked at the spike rates and correlation between neurons when monkeys made 

choices after a successful and unsuccessful previous trial.  Between these 2 groups of trials 

(previous trial rewarded vs. previous trial unrewarded), the average spike counts showed no 

significant difference across the trial (Figure 4.8A).  In contrast, the average correlation 

coefficient was significantly  different for the unrewarded trials compared to the rewarded trials 

(Figure 4.8B).  When monkeys failed to receive a reward on the previous trial, the amount of 

correlated noise between the neurons encoding the choices options was significantly  higher than 

if he was successful.  This effect begins in the spontaneous activity  prior to the target onset and is 

exhibited several hundred ms into the trial.  For the pre-target epoch (300ms prior to target 

onset), this effect is highly  significant (Figure 4.8C, p<<0.0001 Wilcoxon signed rank test).  The 

average values of the correlation converge when aligned to the saccade onset, both exhibiting the 

stereotyped decrease over the trial described above.  These data suggest that  in the pre-target 
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epoch, correlations, though not spike counts, encode information about the previous reward and 

that missed previous rewards are associated with slower saccades on the next trial.  
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Figure 4.8  Correlations are influenced by previous rewards.

A) Average spike counts for the population of cells shown for saccades into the RF (solid) and saccades away 

from the RF (dotted) split between trials where the previous saccade did result in a reward (blue) and trials where 

the previous saccade trial was unrewarded (red).   Spike counts between these trials were not significantly differ-

ent (paired t-test).  Error bars are standard errors.  Average spike counts are shown aligned to the target onset (left) 

and the saccade (right).  n=67 pairs of cells.  B)  Average Pearson correlation coefficient for the spike counts 

shown in A.  Trials where the previous saccade was unrewarded had higher correlation coefficients than trials 

where the previous saccade was rewarded.  (n=114 individual saccade directions, n=67 pairs of cells.)  C)  Scatter 

plot comparing the correlation coefficient across the population in the baseline period (300 ms prior to target 

onset) between rewarded and unrewarded previous trials.  (p<<0.001, Wilcoxon signed rank test).  D)  Scatter plot 

comparing the saccade latencies between trials where the previous trial was rewarded to the trials where the 

previous trial was unrewarded.  Saccades to RF1 are shown in blue, and saccades to RF2 are shown in red.  

(n=114 individual saccade directions).  (p<<0.0001, blue, p<0.005, red, Wilcoxon signed rank test).  

 We examined this relationship more rigorously by  extending this analysis to rewards 

further back in time:  if monkeys’ saccade behavior is sensitive to rewards on the previous trial, it 

may  be sensitive to a string of missed rewards.  We determined a measure of reward history for 
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each trial by  convolving the stream of rewards on previous trials (a vector where 1’s represent 

obtained rewards and 0’s represent missed rewards) with an exponential with a particular time 

constant tau.  We regressed the latency of the saccades in a particular behavioral session with the 

reward history terms and extracted a best-fit time constant (Figure 4.9A).  A short time constant 

would indicate that the monkeys’ behavior is determined primarily by very recent rewards, and a 

longer time constant would suggest that he also takes into account rewards farther back in time.  
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Figure 4.9  Reward history predicts saccadic latency.  

A)  For each day, the monkey’s history of past rewards, represented by a vector of 1’s 

(reward received) and 0’s (reward not received), was convolved with an exponential 

and fit with a time constant tau by regressing the reward history term with the saccade 

latency.  B) Histogram of best-fit taus for each session by regressing reward history with 

saccade latency for each behavioral session.  Mean tau=3.08+0.08 SEM. (n=104 behav-

ioral sessions).    C) Histogram of coefficients of regression of saccade latency with 

reward history.  Mean slope=-0.12+0.01SEM.  63 of sessions (61%) had significant 

regressions (p<0.05, n=104 behavioral sessions).  Distribution is significantly different 

from 0 (p<<0.0001, student’s t-test). 

We extracted the time constants (Figure 4.9B) and the slopes of the regression for each session 

(Figure 4.9C).  Monkeys had an average time constant (tau) of 3.08+0.08 SEM  and an average 
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regression slope of -0.12+0.01 SEM.  This indicated that across all sessions (n=104 behavioral 

sessions), saccade latencies were negatively correlated with the reward history for that particular 

trial:  when reward on a particular trial was high, the saccade on the next trial was faster.  
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Figure 4.10  Noise correlations vary with reward history.

A) Saccade latency is negatively correlated with reward history across sessions.  Each 

data point is the average saccade latency for across sessions for trials binned by 

reward history (error bars are +SEM) and solid line is best-fit least square regression 

(r-square=0.96, p<<0.001, n=104 choices).  B) Noise correlations of trials binned by 

the trials’ reward histories.  Conventions as above.  Correlations regress significantly 

with reward history across choices in both pre-target epoch (red, rsquare=0.96, 

p<<0.0001) and the pre-saccadic epoch (blue, r-square=0.78, p<<0.001, n=108 

choices).  C,D)  Correlation of the spike count with reward history across choices for 

the pre-target and pre-saccadic epochs (red and blue respectively) for responses to the 

chosen target (C) and the rejected target (D).  
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 Since correlations between neurons cannot be computed for individual trials and require a 

sufficient number of trials to achieve an accurate estimate of the coefficient, we next binned the 

trials during each session according to the reward history computed with the best-fit tau (see 

methods).  The reward history term is bounded between 0 and 1, so trials were binned into 5 

equally spaced bins.  We extracted the spike counts associated with both the pre-target epoch and 

the pre-saccadic epoch and computed the correlations for each bin and averaged across sessions.  

We plotted the average saccade latency  across sessions for each of the bins (Figure 4.10A).  As 

expected from the negative regression slopes, there was significant negative correlation between 

the average reward history and the average saccade latency  that was fit extremely well using 

linear least-squares regression (r2=0.96).  We also found that the average correlation coefficients 

also significantly varied across reward history, with high reward history values being associated 

with the lowest correlations.  This was true for both the pre-target epoch (Figure 4.10B, red) and 

the pre-saccadic epoch (Figure 4.10B, blue).  

 Surprisingly we found that the average spike counts varied little across differing values of 

reward history for both epochs (Figure 4.10C,D), and average spike counts between the highest 

and lowest reward history  bins were not significantly different (all comparisons across reward 

history p>0.05, Wilcoxon signed rank test).  

 To test whether saccade latencies on current trials were sensitive to information about the 

rewards associated with a particular saccadic choice, we recomputed the reward history for each 

trial, but included only  choices to a given target (i.e. choices to green targets or choices to blue 

targets only).  We computed the reward history as above, by convolving the new single choice 

reward vectors with an exponential and regressing the saccade latencies of the upcoming choices 
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with the new reward history term (Figure 4.11).  For both green and blue choices, distributions of 

correlation coefficients were not  significantly  different from 0 (p=0.15 and p=0.48 respectively, 

t-test), indicating that overall, saccade latencies are more associated with a measure of the total 

reward stream than rewards to a particular choice.  This suggests that rather than use this 

measure to inform upcoming choices, the monkey may  be deriving his overall motivational state 

from his aggregated rewards.
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Figure 4.11  Reward history for a particular choice is not correlated 

saccade latency.  

A) Best fit taus for each behavioral session where reward history is com-

puted for choices to green targets only.  B) Histogram of regression coef-

ficients for reward history (green choices) with saccade latencies 

(choices to greens) for each session.  Black shows significant regres-

sions (p<0.05).  Distribution is not significantly different from 0 (p=0.15 

student’s t-test).  C) Best fit taus for blue choices.  Conventions as in A.  

C) Histogram of regression coefficients for blue choices.  Conventions 

as in B.  Distribution is not significantly different from 0 (p=0.48 

student’s t-test).
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Figure 4.12  Correlations do not encode relative reward.  

Trials were divided into saccades to high relative reward targets (red, relative 

reward ratio>0.5) and saccades to low relative reward targets (green, relative 

reward<0.5).  A) Average spike counts for responses to the chosen (solid) and 

rejected (dotted) targets aligned to target onset (left) and saccade (right).  Conven-

tions as above.  Responses to low and high relative reward targets were not 

significantly different at any time point (p>0.05 Wilcoxon signed rank test at each 

bin).  B) Average Pearson correlation of spike counts shown in A.  Correlations 

for choices to high and low relative reward targets were not significantly different 

from each other (p>0.05 Wilcoxon signed rank test).  

4.45  Correlations do not encode reward of chosen target

 While correlations encode information about the monkeys’ total history  of rewards, do 

they  also encode information about the relative reward of the chosen target?  We compared the 

spike counts and correlations of trials when monkeys made choices to reward “high” targets 
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(relative reward ratio>0.5) and choices to reward “low” targets (relative reward ratio<0.5).  We 

found no significant difference between either the spike counts or the correlations across the 

different choice conditions (p>0.05 at each time epoch, Wilcoxon signed rank test) between the 

high (Figure 4.12A,B red) and low (green) choices.  This demonstrates that while correlations 

encode information about previous rewards, they are insensitive to the absolute relative reward 

of the chosen target.  

4.46  Target representations compete with non-target spatial locations.

During a saccadic decision, potential targets compete with each other for attentional 

priority, though it is unknown whether potential targets also compete with spatial locations that 

do not encode the locations of legitimate choice options.  For example, a winning peak on LIPs 

map may compete with other target locations, and also locations that do not encode potential 

targets, resulting in changes in the noise correlation across the trial.  However, spatial locations 

that are not in direct  competition may exhibit different dynamics in their noise correlation across 

the same set of choices.  To test this, we varied the spatial design of the task such that one of the 

choice targets lay inside a cell’s RF, and the other lay  diametrically opposed to it such that the 

second target  did not excite either cell’s RF.  This orientation allowed for 2 possible competitive 

scenarios for the recorded cells:  1) if the monkey chooses the in RF target, that target  is not only 

competing with the target diametrically opposed, but the other cell which is encoding only empty 

space, and 2) if the monkey chooses the target encoded by neither RF, the 2 cells being recorded 

from are no longer in competition.  If targets only compete with each other, we might expect the 

correlation between the 2 cells in this to be identical, regardless of the monkeys’ choice.  
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However, if an individual target competes with the whole map, then we might see difference in 

the time course of the correlation.  

We tested this in a subpopulation of cell pairs (n=33 pairs) with each recorded pair 

divided into choices to the in RF target and choices to the out or RF target (Figure 4.13A).  For 

simplicity during experimentation, we restricted task design to include only trials where the 

reward ratio was equal to 0.5.  As expected, there were deviations in the spike count between the 

these 2 choices (Figure 4.13B, solid lines) for the responses to the cell encoding target 1, with 

choices to that target having a higher spike count prior to the saccadic decision.  However there 

were no significant differences in the spike count for the cell that encoded a patch of empty 

space, regardless of which target the monkey chose.  

When we calculated the average Pearson correlation for each of the saccadic decisions 

for each cell pair we found striking differences in the magnitude of the correlation in the epoch 

prior to the saccade (Figure 4.13C).  Both choices (saccade to inRF target and saccade to noRF 

target) had highly positive correlations during the baseline epoch and following the target onset, 

both groups begin to decorrelate, but 500ms after the onset of the targets, the correlations begin 

to deviate from each other (Figure 4.13C, left).  When aligned to the saccade (Figure 4.13C, 

right), choices to the inRF target  are significantly  lower than choices to the out of RF saccade.  

Though differences in the spike count could potentially account for differences in the 

correlations, the differences in spike count observed in this experiment go the opposite direction 

of that prediction:  spike counts are higher for the in RF choices, though Pearson correlation 

coefficients are lower. 
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Figure 4.13   Targets compete with non-target locations.

A) “Empty” RF task: configuration of stimuli.  Target 1 was placed inside RF1, but Target 

2 was placed diametrically opposite target in RF1. RF2, the “empty” RF was not excited 

by either Target 1 or Target 2.  If monkey chooses T1, RF 1 may compete with all spatial 

locations, including empty RF (left), but if monkey chooses T2, RF1 and RF2 are not in 

competition (right).  B) Average spike counts for a sub-population of cell pairs (n=33 cell 

pairs) used in the paradigm shown in A.  Responses show activity in RF1 (solid lines) 

when monkey choose T1 (green) and T2 (blue).  Activity in RF2 (dotted lines), where there 

is no stimulus, is shown for the same choices.  Spike counts are for 300 ms bins and are 

shown aligned to the target onset (left) and to the saccade (right).  C) Average Pearson 

correlation coefficients for the spike counts shown in B for choices to T1 (green) and 

choices to T2 (blue).  Correlations are lower earlier for choices to targets in RF1. Dots 

show significant bins (p<0.05 Wilcoxon signed rank test).    
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These results indicate that the timing and amount of decorrelation during a saccadic 

decision depends on the distinct spatial configuration of the choice being made.  When response 

fields represent spatial locations that are in direct competition, this is reflected in the reduced 

correlation across the trial.  

4.5  Discussion

We demonstrate that pairs of cells with non-overlapping RFs have correlated spontaneous 

activity while monkeys are passively fixating on a central target.  While monkeys chose between 

2 saccade targets, this correlated activity decreases over the course of the trial.  A key finding is 

that the degree of correlation encodes information about the history  of rewards and is reflected in 

the latency of upcoming saccades, suggesting that noise correlation between neurons are 

influenced by top-down mechanisms and represent  the motivational state of the monkey.  The 

amount of decorrelation between LIP neurons is also decreased between neurons that are not  in 

direct competition with each other, indicating that there is a spatial specificity to these changes 

during a choice. 

 Few previous studies have looked at interneuronal correlations in the parietal cortex and 

none to date have isolated the contributions of “noise” from variability associated with a 

particular stimulus or behavioral outcome.  In areas 2 and 5 of the parietal cortex, neurons 

recorded simultaneously on the same electrode were found to have a consistent relationship 

between the amount of stimulus evoked noise (signal correlation) and the amount of correlated 

129



noise in the spontaneous activity though this effect was abolished at neuronal distances greater 

than 1.5mm (Lee et al., 1998).  In contrast, the electrode tips in the current study  were separated 

a minimum of 2mm in cortex, and significant correlations were observed in the spontaneous 

activity in almost all pairs.  

4.51  Possible mechanisms of correlation and decorrelation

Since noise correlations cannot arise de novo and by definition cannot arise purely from 

intrinsic independent noise within each cell, they are indicative of either a common input or 

reciprocal connectivity between cells in LIP 

 During the choice task, LIP neurons are likely receiving input from a number of different 

areas.  They receive spatially specific visual input about the locations and properties of visual 

stimuli in the world from areas V4 and V1.  Along with the frontal eye fields and the superior 

colliculus, they can encode a signal related to the decision process or spatial attention.  LIP 

neurons also receive a number of ascending non-spatial signals from the brainstem (Baizer et al., 

1993).  The correlated activity between widely  separated neurons in the pre-target epoch likely 

arises from a non-spatial signal and these inputs are likely candidates that would act  to 

synchronize the LIP map on each trial.  

The dynamics of the reduction in correlation suggests a change in the functional 

connectivity between cells representing competing options over the course of the decision.  

Several previous studies have found changes in noise correlations that depend on the parameters 

of the task.  In MT correlations between neurons were increased when the information encoded 

by individual neurons could be pooled to solve the task (Cohen and Newsome, 2008).  In FEF, 
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the degree of correlation between neurons during a visual search task depended on the location 

of the search target, showing greater competition and reduced correlations when the target was 

restricted to a location that excited a single neuron (Cohen et al., 2010).  In both cases, the 

authors suggest that mutual inhibition between cortical neurons can serve to taper the amount of 

shared variability, so that information can be pooled in cases of large amount of shared 

variability, and separated during competitive interactions. 

In this study, we have taken this further by excluding any  component of shared variability 

due to the visual stimulus and we have tailored the task and stimuli to explore the specific 

relationship  between cells that represent spatial locations that should be in direct competition.  

Our results show that sources of shared variability are reduced over the duration of the trial.  This 

could occur mechanistically in two distinct ways.  First, sources of shared variability may simply 

decrease during the decision. Second, mutual inhibition between competing neurons could 

actively change the amount of shared variability between cells.  

Of course these hypotheses are not mutually exclusive, but several lines of evidence lend 

support to the latter.  First, a quarter of cell pairs (far more than predicted by chance) change 

from a positive correlation in the pre-target epoch to a negative correlation in the pre-saccadic 

epoch.  But more importantly, shared variability  is decreased in a spatially specific manner 

during the course of the decision, as evidenced by the empty RF task.  If synchronous inputs to 

the whole LIP map cause trial-to-trial fluctuations, decreases in this input would be apparent 

regardless of which spatial location was encoded by the cells’ RF.  Instead, this spatially specific 

decrease suggests that mutual suppressive interactions are only  engaged between competing 

alternatives (even if one of the alternatives signals only a potential saccade target, not an actual 
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saccade target) and not when spatial locations are not in competition.  LIP, which has been 

previously  shown to reflect “push-pull” interactions using surround suppressive mechanisms, 

may implement competition using surround suppressive mechanisms (Falkner et al., 2010).  

A failure to detect a negative correlation coefficient in a majority of cases is not, on its 

face, counter evidence for mutual inhibition.  One caveat of using large bin sizes is that subtle 

circuit dynamics that occur on a shorter timescale (i.e. 10’s of ms as opposed to 100’s of ms) are 

effectively washed away when spike counts computed using the large bins.  This is, however, 

necessary  computationally, since very  small bin sizes contain far fewer spikes and will violate 

assumptions of normality implicit in calculating the noise correlation.  A reduced but non-zero 

correlation coefficient during the pre-saccadic epoch is not counter evidence for mutual 

inhibition, and could reflect an incomplete suppression of shared variability  from an common 

input.   

The magnitude of the correlations observed in the pre-target epoch is on the order of 

correlations observed in other previous studies of noise correlations in cortex.  In V1 the amount 

of correlation shared between 2 neurons was found to vary with distance between the physical 

distance between the electrodes such that correlations had varying spatial extents (Smith and 

Kohn, 2008). In the motor cortex and macaque parietal areas 2 and 5, shared neuronal noise 

varied only  for small inter-electrode distances (Lee et al., 1998).  Though we did not 

systematically  vary  this parameter in this study (the distance between the neurons was 

constrained by  where we could isolate individual neurons with non-overlapping RFs) we did not 

find any  evidence that the amount of positive correlation in the pre-stimulus epoch varied with 

the distance between the RFs.  This finding is in line with the difference in local anatomy 
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between V1 and LIP.  V1 architecture has cortical columns that represent  a fine topological 

representation with extensive local connectivity, while LIP neurons have been shown to much 

more broadly  connected with very little topography  (Baizer et al., 1991; Ben Hamed et al., 

2001).  This interconnectivity  would make it possible for LIP neurons to share information 

across larger spatial distances than the more constrained V1.  

 Several studies have suggested that cortical neurons may share variability by gamma 

synchronization across large spatial extents and across brain areas (Fries et al., 2001).  We found 

that a quarter of neuron pairs had an increased incidence of coincident spikes, and that this 

coincidence disappeared in the epoch prior to the saccade in all but one neuron pair.  These data 

would be consistent with a hypothesis in which a distributed form of arousal encompasses both 

RFs in the pre-target epoch, in some cases synchronizing the activity  of the cells.  This 

coincident spiking disappears and neurons de-synchronize when spatial attention is focused on 

one of the RFs.    

4.52  Correlations and behavioral significance

 We found that the monkeys’ saccade latency during this choice task explicitly reflected 

information about the monkeys’ history of reward.  A trial-to-trial measure of the accumulated 

previous rewards was negatively correlated with the latency of the upcoming saccade:  when 

more rewards were obtained recently, saccades to choice targets were faster.  This metric 

demonstrated to us that the monkeys’ reward history was an indicator of the motivational or 

attentional state of the monkey on that particular trial, and his latency  was an appropriate 

behavioral readout.  When trials were grouped according to similar reward histories, we found 
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that the correlation within each of these groups encoded information about this behavioral state 

of the monkey.  These changes in motivational/attentional state modulated the amount of shared 

variability far more than the actual spike count, which differed the highest and lowest reward 

history groups only by about ~0.5 spikes.  

 This is consistent with several previous studies that show that spatial attention in V4 is 

accompanied by  a decrease in interneuronal correlations (Cohen and Maunsell, 2009; Mitchell et 

al., 2009).  Though we are not  measuring attention per se in this task, we would argue that our 

free choice task accesses a mechanism that is common to both decision processes and to spatial 

attention.  In both cases, the decorrelation could represent attention being allocated to a particular 

choice target and arguably monkeys are attending more when they  are doing well (i.e. in this 

case harvesting many rewards by allocating his choices appropriately).  We believe what we have 

demonstrated reveals a general mechanism that may be employed across many cortical areas 

during tasks that require visuo-spatial selection.

 Previous studies have attempted to quantify  the relationship  of past rewards to the 

monkeys choice behavior and have produced generative models which make predictions about 

upcoming decisions (Corrado et al., 2005; Lau and Glimcher, 2005).  In this study we took a 

different approach and merely using the total stream of incoming rewards as a prediction of the 

state of the monkey.  This approach is validated by the fact that the total stream of rewards is a 

much better predictor of the upcoming saccade latency that an estimate of rewards to a particular 

target.  

 Previous studies have also found that firing rates in LIP vary  with the expected reward of 

the visual stimulus (Platt and Glimcher, 1999).  We found weak though non-specific modulation 
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of firing rate as a function of the absolute relative reward of the acquired target, though this is 

possibly due to differences in the task design.  By using a foraging task where targets remained 

baited until chosen, the actual reward probability of a given target increases as it is left unchosen.  

This suggests that in our task, when the monkey selected targets that had low relative rewards at 

a lower rate, each choice had a higher probability of being rewarded.  

4.53  Functional implications of correlations for priority maps

 Changes in the mean spike rate can affect the relative salience of peaks on LIPʼs priority 

map and the ease with which a winner can be selected.  In addition to changes in the means, the 

precision of LIPʼs representation can potentially be improved by  reducing the variability  of LIP 

neuronal responses (Paradiso, 1988; Vogels, 1990).  Attentional processes decrease the amount of 

neural variability, which results in higher reliability of spiking at the attended receptive field, 

allowing higher discriminiability by  enhancing the signal to noise ratio.  The results of this study 

suggest that decreasing the amount of shared variability  is associated with changes in the relative 

salience of competing neural representations.  

During an ongoing decision, competing neurons move from having shared noise, to 

having relatively  independent noise.   Since long saccade latencies accompanied trials where 

neurons share more variability, this noise may  act  as a hindrance to the decision process. This 

result is in line with several studies that show that positive correlations can limit the amount of 

information processed by a network.  In V1, positive correlations between cells have been shown 

to reduce the amount  of Fisher Information about the encoded stimulus (Kohn and Smith, 2005), 

and in MT, even small amount of correlations between cells have been shown to limit the 
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psychophysical benefits of pooling across cell populations (Zohary et al., 1994; Bair et al., 

2001).   These results indicate that populations of cells with reduced shared variability can more 

reliably  signal stimulus information.  This has direct implications for LIP, a brain area that 

signals the location of an upcoming saccade.  Shared variability across neurons that represent 

competing saccade locations could potentially  result in less reliable or slower saccades, since it 

may take longer for a “winning” location to emerge. 

Models of visual attention and saccadic selection routinely  invoke mutually suppressive 

interactions between competing alternatives to resolve competition. Our data is consistent with 

such a model, and suggests that  motivation or attentional allocation can be implemented by 

adjusting the gain on this mutual suppression in a competitive-cooperative circuit. This would 

have the dual effect of reducing spike rates and reducing the amount of variability to a particular 

stimulus.  These data also suggest that decision-making models that propose that neurons with 

independent variability race to a threshold are an incomplete description of the processes 

occurring during saccadic choice.  Instead, non-independent noise is actively reduced until the 

amount of shared variability approaches 0 prior to the behavioral readout of the choice.  
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Chapter 5:  Conclusions

5.1  Summary 

When multiple stimuli in the visual world compete for your limited attentional resources 

there are winners and losers.  The winners become the loci of attention and possibly the target of 

the next saccade while the losers are ignored.  In the brain, neural representations of events in the 

real world are locked in a constant struggle, an invisible fight of ever changing players.  This 

body of work describes several mechanisms at work during these competitive processes and 

explores the dynamics of how attention is allocated to a winning spatial location and a saccade is 

initiated.  We have examined the responses of neurons in monkey  LIP during a series of saccadic 

tasks where monkeys were required to prioritize certain spatial locations and make timed eye 

movements to them.  LIP neurons encode the priority of spatial locations, combining incoming 

sensory  information with cognitive signals that carry information about  the nature of the stimulus 

in the receptive field, reward and the motivational state of the monkey.  In each set of tasks, we 

modulated the monkeys’ motivation by changing the expected reward or probability of reward 

and looked for corresponding changes in saccadic behavior.  

We first probed competitive processes in LIP by asking a very  simple question:  How do 

we ignore distracting events?  We recorded the responses to distractors in LIP and required the 

monkey  to make a series of planned eye movements to saccade targets at various spatial 

locations.  We discovered that neurons have large, spatially  tuned suppressive surrounds such 

that when monkeys plan saccades to particular regions of space, the response to the distracting 

stimulus is maximally reduced.  This suppression can occur even when the monkey is planning a 
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saccade to a remembered location, suggesting that the genesis of this suppression is from a brain 

area that is active during this memory period.  Suppression of the distractor can be evoked by the 

target stimulus, but concurrent suppression of the target response can be evoked by  the flash of 

the distractor, suggesting that these interactions are implemented by a mutually suppressive 

mechanism.  

We modulated the monkeys’ motivation in this task by cueing him to expect a large 

reward on some trials and a small reward on others.  When monkeys expect a large reward, target 

representations in LIP are enhanced and distractor representations are reduced.  The opposite is 

true for small reward trials, which are associated with low target responses and high distractor 

responses.  The monkeys’ saccadic behavior also mirrored these changes.  On small reward trials, 

monkeys made more errors, and had much slower saccade latencies.  Saccade latencies have 

positive trial-to-trial correlations with the neural activity at the distractor, which suggests that a 

high distractor response is directly related to the monkeys’ behavior on that particular trial.  

These experiments demonstrate that modulations in firing rate, specifically suppression of task 

irrelevant visual stimuli in LIP have a direct relationship with saccade behavior and task 

performance.  Increases in firing rates at attended locations are coupled with decreases in firing 

rates at ignored locations, allowing a winner to emerge easily on LIPs priority map.  

Competitive processes can also be stymied by unreliable signals.  Increasing the fidelity 

of neural signals can increase the discriminability  between competing visual stimuli and allow 

for ease of target selection.  We next explored whether neurons in LIP reflect changes in the 

variability of neural signals during a saccade task.  We found that surround suppression in LIP, in 

addition to reducing spike rates at unattended locations, can also increase the reliability of 
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signals by decreasing the amount of across-trial variability of the neural response.  Neural 

variability decreases at the location of the saccade target following the onset of the visual 

stimulus, but non-target locations also show decreases in neural variability.  The amount of 

variability reduction at a spatial location is strongly  modulated its distance from the target 

location such that farther locations have greater amounts of reduction.  There is a strong 

relationship  between the spike counts and the variability:  high spike counts are associated with 

high amount of variability, demonstrating that these effects are not driven by changes in firing 

rate alone.  This suggests a common mechanism such as surround suppression might drive both 

changes in firing rate and changes in the variability.  

Decreases in across-trial variability  are observed in both the representation of the target 

and the distractor when expected reward is high, which suggests that the whole LIP map may be 

more reliable when the monkeys’ motivation is strong to complete the task.  Changes in 

variability also have important behavioral consequences for the monkey.  During a memory 

guided saccade task, reduced variability  around the time of the go cue is associated with faster 

and more accurate saccades, without concurrent changes in firing rates.  These differences 

disappear prior to the saccade itself, suggesting that it  is the reliability  of the signal at the time of 

the cue that most significantly affects behavior.

Neurons in LIP may change their functional connectivity  as a result of competitive 

decision processes.  This can be assessed by looking at the amount of shared variability  or neural 

noise between multiple neurons.  Neurons in LIP that are widely  separated in cortex and do not 

share stimulus-evoked activity  are correlated in the epoch prior to the appearance of the saccade 

targets.  In a task where monkeys were required to make a free saccadic choice between two 
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saccade targets that appeared in the receptive field center of each neuron and did not drive the 

activity of the competing neuron, the amount of noise correlation between neurons decreased 

over the course of the trial, reaching its nadir in the epoch prior to the saccade.  

The motivational and attentional state of the monkey  also affects the competitive 

processes occurring in LIP.  During the choice task, the targets were associated with different 

probabilities of reward, and monkeys allocated their choices accordingly.  Saccade latency in 

this, a primary indicator of motivation, was significantly affected by the monkeys’ history of 

previous rewards:  when monkeys had gotten many previous rewards, saccade latencies were 

faster than if he had gotten few rewards on the previous trials.  When sorted by a measure of total 

history of previous rewards on each trial, the correlation between neurons was greater when 

monkeys had gotten few previous rewards.  Correlations, but not  spike rates, encoded 

information about the monkeys’ motivational state, suggesting that  correlations provide an extra 

channel of information and that studies of single cells in LIP provide an incomplete description 

of the dynamics that occur during saccadic choice.  Moreover, these data are evidence against 

models of saccadic choice that  suggest that neurons compete via an independent race-to-

threshold mechanism.  Instead, noise is correlated between competing pools of neurons when 

targets appear and the level of independence is modulated by the cognitive state of the monkey.  

The take-home message from these studies is that changes in firing rates, across-trial 

variability, and shared variability  occur during saccadic choices, and these changes can have 

important implications for behavior.  During this time, faster saccades are accompanied with 

increased firing rates at  target locations and decreased firing rates at non-target locations.  To our 

surprise, these changes are also accompanied by  increases in the reliability of the neural signal, 
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and decreased shared variability.  These changes allow peaks on LIP’s priority map to become 

more separated and provide a mechanism for ease of target selection.

A note about the tricky relationship between firing rates, variability, and noise correlation

During the same trial, LIP neurons can undergo changes in firing rates, independent 

variability, and shared variability.  Sometimes these changes co-occur within the same epoch, 

and during other epochs, a change can occur within one variable without a concurrent change in 

another, suggesting that they can be modulated in an independent manner.  For example, changes 

in the independent variability  of a neuron accompany, but do not account for changes in the 

shared variability during a saccadic choice.  Additionally, changes in firing rate accompany, but 

do not account for a drop in Fano factor.  

Instead, it  suggests a more complex relationship between firing rates and variability  than 

previously  appreciated.  In truth there are few good ways to assess changes in variability when 

firing rates are also changing.  Fano factor does a particularly poor job of this, since this measure 

can change directly  even when there is no change in variability.  Our best estimates of the 

contribution of variability  reduction can be made over epochs where the firing rate changes very 

little or not at  all.  Correlations, which are a direct measurement of the co-variation between 

multiple neurons are also difficult to disentangle from changes in independent variability.  The 

Pearson correlation, our chosen measure of the shared variability between neurons is not 

insensitive to changes in the independent variance of each neuron since it  is scaled by the 

standard deviation of each distribution of the underlying spike counts.  This normalization 
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implies that increases in these variances will result in a decrease in the Pearson correlation if the 

amount of shared variability is constant.  

5.2 A proposed model

 What kinds of circuits could mediate these types of competitive interactions? A serious 

limitation of experimenting using single and multiple electrode recording techniques is that  it 

allows you to conclude very little about circuitry.  Even in the case of the paired cell recordings, 

it is highly unlikely that by randomly inserting our electrodes into several square millimeters of 

cortex that we will be recording from two cells that are physically  connected.  When we observe 

correlations (and especially  negative correlations) on these time scales (i.e. several hundred ms), 

we do not mean to suggest that these cells are physically mutually connected.  Rather, they are 

part of a population of cells that is jointly  encoding the location of a salient event and over 

repeated trials, responses co-vary  with a secondary  population of cells that is encoding a second 

spatial location.

 Let us take each of the results in turn.  Chapter 2 demonstrates that the responses to a 

distracting stimulus during the baseline and the on response are suppressed when a target appears 

outside the excitatory RF of a given neuron.  These results are consistent with a circuit that 

includes long-range excitation and shorter-range mutual suppression between competing spatial 

locations.  Several lines of evidence suggest this particular circuitry.  First, the effects of 

surround suppression in LIP are spatially tuned.  Though LIP does not have a strict topography, 

there is clustering of cells representing distinct spatial locations.  This would suggest that 

neurons in LIP do not have random connectivity and instead have an architecture that would 
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support more spatially  selective connections.  The fact  that the suppressive effects are patchy  and 

unsystematic within single cells lends further support to this.  Second, increased target responses 

are coupled with decreased distractor responses.  This is suggestive of a mutual inhibitory 

circuitry  because the increased target response would activate inhibitory cells and generate the 

suppression necessary to make the representations of spatial events more discriminable on LIP’s 

priority map (Figure 5.1).

 An alternative hypothesis that could account for much of this data would be that it  is 

generated by  an attentional mechanism with a single “enhancement” feature.  In this model, 

spatial attention (or something akin to it) could alight on a spatial location and turn up  the gain of 

responses at that particular location, resulting in a relative suppression of the responses to stimuli 

at competing spatial locations.  While this could certainly account for the increased response at 

the target location, this would be insufficient to explain the distinct spatial tuning observed at 

both the single cell level and across the population.

 We also found that across-trial variability is reduced at spatial locations that are widely 

separated from the target.  Close spatial locations are associated with the most variability 

reduction and far spatial locations have the most variable responses.  This is also consistent with 

a circuitry of spatially  tuned mutual suppression.  Since the lowest firing rates in the surround of 

LIP are also the least variable, we propose that inhibitory circuits activated by the target response 

affects the across-trial variability of the target response by raising the threshold necessary  to 

evoke spikes at competing spatial locations.  This would in effect  reduce average firing rates and 

trim spikes from the most variable, noisy responses, resulting in a decreased Fano factor.
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Using paired recording techniques, we also found that the responses of multiple neurons reduced 

the amount of shared variability (as assessed by noise correlations) prior to the saccadic choice.  

144



Pairs of neurons have significantly  positive correlations in the spontaneous activity  prior to the 

target onset and this noise is decreased over the duration of the choice, reaching its nadir in the 

epoch directly prior to the eye movement.  It is likely that this initial correlation arises from a 

shared, non-spatial input, since the correlation is not restricted to pairs of cells that encode 

potential saccade targets.  Instead, even neurons that respond to blank portions of the screen (see 

the “empty  RF” task) are correlated with target encoding neurons.  Additionally, this correlation 

is likely  derived from a non-spatial input because it is significant regardless of what the 

upcoming choice will be.  This correlation carries information about the reward history  of the 

monkey  and is directly related to the upcoming saccade latency, a measure of the monkeys’ 

motivational state.

 This pre-target correlation quantifies the amount to which this shared non-spatial input 

can synchronize the cells in the LIP map.  The changes in shared variability in this epoch could 

be implemented by inhibitory neurons that act to stabilize the network.  They cannot be directly 

mediated by a change in the shared input itself, since that would modulate the firing rates of the 

neurons in addition to the correlations.  Instead, mutual inhibition could modulate the state of the 

network during a given trial, depending on cognitive variables such as reward history.  Reduced 

correlation during this epoch places the network in a state of readiness and allows for faster 

saccades since the correlation is decreased at an earlier timepoint relative to the go-cue.  The 

onset of the targets further stabilizes the network, moving the neurons from a regime where their 

noise is correlated to where their noise is largely independent.  Simply adding variability  to a 

single neuron (via a spatial attention signal or visual input signal) cannot in itself, account for the 

changes in noise correlation in the pre-target epoch.  The Pearson correlation measures how 
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much activity  between neurons co-varies and is scaled by the standard deviations of the single 

neurons.  An increase in independent noise at one (or both) location(s) would result in a decrease 

in Pearson correlation in the pre-target epoch.  In the pre-saccadic epoch, the decrease in 

correlation could, in principle, be due to an increase in independent noise in one of the recorded 

neurons.  However, what is observed in LIP is an overall decrease in neural variability  over the 

course of the trial, reaching its nadir prior to the movement.

Previous work has demonstrated that stimulus onset is associated with both a drop in the 

shared variability and the independent variability in several cortical areas, including LIP.  Our 

data suggests that this occurs by  the de-synchronization of the network from a non-spatial input 

that contains relevant information about previous rewards.  These data are consistent with 

computational descriptions of competitive networks that use a single parameter (the gain of 

inhibition) to modulate the state of the network at a given time (Moldakarimov et al., 2005).

5.3  Broader implications

5.31  Is this happening within LIP?

A valid question is whether these processes are occurring within LIP.  The current data do 

not allow us to definitively assess this, and since LIP shares many of the same properties with 

other areas in the attentional-oculomotor network, such as the SC and the FEF, it is possible that 

these interactions (including mutual inhibitory  interactions) are a phenomenon of the larger 

network.  Many of these properties (specifically ones that are mediated by a present visual 

stimulus) may also be computed at other levels of visual processes such that they are “inherited” 
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from their inputs.  Other processes, such as suppression evoked by the memory of a stimulus, 

must emerge from areas, such as LIP, that maintain a focalized bump of activity  during a 

working memory oculomotor task.  However it is important to remember that to date, no 

property described in LIP has been shown to occur exclusively  within LIP, and instead, we 

believe that these interactions could represent more general phenomena that occur in cortical 

networks when competitive decisions are made and are not specific to LIP.

5.32 A word about attention 

LIP neurons encode information about the locus of attention, and the results in this thesis 

can also be framed in this light.  For example, the response increase at  the target locations and 

concurrent response decrease at the distractor location can be described as attention deployed to 

the location of the target and removed from the location of the distractor.  The decorrelation 

observed during the decision process could concurrently be described as an allocation of spatial 

attention to one target location.  

While these explanations provide an excellent psychophysical description of the 

processes occurring during these experiments, what  is needed is a complete description of how 

attentional processes are implemented.  We propose that  the changes observed in these studies 

(changes in firing rate, variability, and noise correlation) provide the actual mechanism by which 

attention is deployed and a winner is chosen on LIP’s map.  
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5.4 Future directions

From this body of work, a number of testable predictions can be generated that will 

further increase our understanding of attention, saccade selection, and competitive decision-

making.  I will outline several experiments that could serve as “next steps” to further validate the 

hypotheses in this body of work.

Psychophysics

The nature of LIP’s spatially  tuned suppressive surround suggests several immediate 

psychophysical questions.  Are we more distracted by visual stimuli at  the edge of the surround, 

where responses are higher and more variable?  Our data did not have a sufficient number of 

error trials to test this, but a modified task with fewer assayed locations could probe this question 

in more depth.   What is the relationship between surround suppression and perception?  Is there 

a spatial “blind spot” created by surround suppression?  This can be probed using a task that 

varies the spatial relationship between an attended stimulus and a subthreshold stimulus to be 

discriminated that occasionally appears in the suppressive surround of the attended stimulus.  

Physiology

What is the relationship between neural variability and perception?  Is there an “optimal 

subspace” for attention or choice?  Previous research has suggested that  motor preparatory 

activity has reduced variability  prior to the movement and converges upon an optimal mean for a 
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particular movement.   An interesting question would be to look more closely at the reliability  of 

neural signals that encode spatial attention.

Pharmacology

A further step would be to employ  pharmacology  loss of function experiments to test  the 

prediction that inhibition within LIP is involved in distractor suppression and saccadic decision-

making.  A testable hypothesis would be to inject Bicuculline (a GABAA antagonist) into LIP 

during the choice task.  If inhibition is involved in stabilizing the network during the spontaneous 

activity, we may see the saccade latency  effect with previous reward abolished.  Alternatively, if 

we pharmacologically  enhance the amount of inhibition in LIP with muscimol, we may see 

deficits in choice behavior that reflect an inability to decide between the competing options.

5.5  General conclusions

 We have demonstrated that neurons in the lateral intraparietal area employ 

surround suppressive mechanisms to reduce the firing rates and the neural variability  of the 

representations of competing spatial locations.  Furthermore, we demonstrate that  shared 

variability between competing options is modulated as a function of the cognitive state of the 

monkey.  We believe these data shed light on the mechanisms the brain uses during attention, 

saccade selection, and free choice between competing options.
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