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ABSTRACT

Record and vPlay: Problem Determination with
Virtual Replay Across Heterogeneous Systems

Dinesh Subhraveti

Application down time is one of the major reasons for revenue loss in the modern en-

terprise. While aggressive release schedules cause frail software to be released, application

failures occurring in the field cost millions to the technical support organizations in per-

sonnel time. Since developers usually don’t have direct access to the field environment

for a variety of privacy and security reasons, problems are reproduced, analyzed and fixed

in very different lab environments. However, the complexity and diversity of application

environments make it difficult to accurately replicate the production environment. The

indiscriminate collection of data provided by the bug reports often overwhelm or even mis-

lead the developer. A typical issue requires time consuming rounds of clarifications and

interactions with the end user, even after which the issue may not manifest.

This dissertation introduces vPlay, a software problem determination system which

captures software bugs as they occur in the field into small and self-contained recordings,

and allows them to be deterministically reproduced across different operating systems and

heterogeneous environments. vPlay makes two key advances over the state of the art. First,

the recorded bug can be reproduced in a completely different operating system environment

without any kind of dependency on the source. vPlay packages up every piece of data

necessary to correctly reproduce the bug on any stateless target machine in the developer

environment, without the application, its binaries, and other support data. Second, the

data captured by vPlay is small, typically amounting to a few megabytes. vPlay achieves

this without requiring changes to the applications, base kernel or hardware.

vPlay employs a recording mechanism which provides data level independence between

the application and its source environment by adopting a state machine model of the appli-



cation to capture every piece of state accessed by the application. vPlay minimizes the size

of the recording through a new technique called partial checkpointing, to efficiently capture

the partial intermediate state of the application required to replay just the last few moments

of its execution prior to the failure. The recorded state is saved as a partial checkpoint along

with metadata representing the information specific to the source environment, such as call-

ing convention used for the system calls on the source system, to make it portable across

operating systems. A partial checkpoint is loaded by a partial checkpoint loader, which

itself is designed to be portable across different operating systems. Partial checkpointing is

combined with a logging mechanism, which monitors the application to identify and record

relevant accessed state for root cause analysis and to record application’s nondeterministic

events.

vPlay introduces a new type of virtualization abstraction called vPlay Container, to

natively replay an application built for one operating system on another. vPlay Container

relies on the self-contained recording produced by vPlay to decouple the application from

the target operating system environment in three key areas. The application is decoupled

from (1) the address space and its content by transparently fulfilling its memory accesses,

(2) the instructions and the processor MMU structures such as segment descriptor tables

through a binary translation technique designed specifically for user application code, (3) the

operating system interface and its services by abstracting the system call interface through

emulation and replay. To facilitate root cause analysis, vPlay Container integrates with

a standard debugger to enable the user to set breakpoints and single step the replayed

execution of the application to examine the contents of variables and other program state

at each source line.

We have implemented a vPlay prototype which can record unmodified Linux appli-

cations and natively replay them on different versions of Linux as well as Windows. Ex-

periments with several applications including Apache and MySQL show that vPlay can

reproduce real bugs and be used in production with modest recording overhead.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

As transaction volumes raise, even brief periods of application downtime lead to major rev-

enue loss. When core business processes of a customer are suspended due to an application

failure, quickly diagnosing the problem and putting the customer back in business is of

utmost importance.

Resolving a problem that occurs in the field environment typically starts with reproduc-

ing it in the lab. Developers adopt a cyclic debugging technique, where the bug is repeatedly

triggered to examine the application’s internal state and its behavior from various angles

to gain insight into the root cause of the failure. Once the symptom is reproduced, the

developer is often able to visualize a solution. However, due to the heterogeneity of the

application environments and nondeterministic factors, reproducing a software bug is one

of the most time consuming and difficult steps in the resolution of a problem (Figure 1.1.)

Application environments are increasingly heterogeneous due to the large diversity of

individual components that make up the software-hardware stack. A variety of operat-

ing systems, corresponding libraries and their many versions, application tiers supplied by

different ISVs, network hardware with varied configuration settings etc. make applica-

tion environments complex and bugs hard to reproduce. As open systems are favored, it is

rare that a single vendor provides the complete software-hardware infrastructure. Users and

platform distributions choose from a rich variety of components to provision their individual

deployments. The diversity in the operating systems, middleware, network infrastructure

etc. and their subtle differences often lead to unforeseen issues. The source of a problem
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Application 

Field Lab 
Bug Report 

Application 

Figure 1.1: Reproducing problems is difficult due to differences in field and lab environments

could be an incorrect assumption implicitly made by the application about the availabil-

ity or configuration of local services such as DNS, or about co-deployed applications and

their components, or it may surface only when a particular library version is used [76]. For

example, there may be a difference in the application binaries or other support libraries

installed on the system. Dynamically linking with incompatible versions of libraries may

cause applications to fail. Problems occur due to discrepancies in the configuration files on

disk, differences in the kernel API, or unexpected responses received from other applica-

tion tiers. Although software components are normally designed to conform to standards

and pre-negotiated interfaces, discrepancies arise due to inaccurate implementations and

incompatible versions.

The heterogeneity of application environments places a burden on the application de-

velopers to design applications to be portable. Each software component has to be able to

work with all possible varieties of other components. Applications have to be portable not

only across different hardware architectures and operating systems, but also across subtler

differences in the computing environment. In order to correctly function in diverse envi-

ronments, applications are often written to sense their target environment at runtime and

adapt accordingly. However, thoroughly accounting for all possible combinations of target

environments is impractical if not impossible. As a result, software often fails mysteriously

when encountered with the alien customer environment.

Reproducing a bug can require creating the original field environment in the lab and

providing the same set of inputs to the application. However, the large number of inter-
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acting software and hardware components and the complexity of their configuration make

it difficult to accurately replicate the production environments in the lab. For example,

reproducing a bug in the application server may require configuring a backend database

and a web front end, which in itself, is a tedious and error prone process. Alternatively,

the developer may directly access the production environment, but in practice a variety of

privacy and security issues prevent the use of the production environment for debugging.

Nondeterminism adds to the problem. Factors such as timing, scheduling, signals, user

inputs, inputs from the operating system may introduce unexpected execution paths by

changing the interleavings of the application code and contribute to the difficulty in repro-

ducing a problem. With multicore systems becoming pervasive, applications are turning

to higher levels of parallelism to realize higher processing rates. Increased parallelism also

increases application nondeterminism and the number of possible execution paths. An-

ticipating every type of input the application may receive in the field, and verifying each

possible control path the application may take is challenging, if not impossible. As a result,

even after extensive in-house testing, many crucial bugs are only detected by external users

after the software is released.

Even though the complexity of applications and their susceptibility to errors is growing,

the debugging methodology has not changed significantly in decades. When a failure occurs,

the user typically provides a descriptive account of the problem to the developer through

a bug report. The bug report consists of assorted pieces of information such as description

of the status of the application at the time of the failure, the action being performed, the

workload applied, specific failure inducing operations, any suspicious interactions with other

applications etc. In many cases, most of the information presented to the developer may

have little or nothing to do with the root cause of the bug. Since the end-user may not

know the application internals and what is relevant for debugging, user supplied data may

overwhelm or even mislead the developer. Typically a bug report has to be followed up

with several rounds of exchange with the user.

Since the common approach of manually conveying a bug report is often inadequate,

some application vendors [41; 45] provide built-in support for automatically collecting nec-

essary information about the execution environment when a failure occurs. They conser-
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Report 
Reproduce 

Fix 

1)  Report-Problem 
§ End user doesn’t know what is relevant 
§ Overwhelm or mislead developer 
§ Privacy concerns 

2)  Reproduce-Problem 
§ Replicating environment: tedious 
and error-prone 
§ Complex software/hardware 
requirements 
§ Nondeterminism: Repeated testing 

Figure 1.2: Much time is spent in understanding the reported problem and reproducing it.

Once reproduced, fixing is relatively easy

vatively record every piece of information that potentially has a bearing on the manifested

problem, in an attempt to ensure that sufficient context is recorded to be able to reproduce

the behavior offline and possibly fix it. Other sophisticated mechanisms [28] may provide

more comprehensive data including traces and internal application state. However, they

are limited in their ability to provide insight into the root cause of the problem because

they represent the aftermath of the failure, not the steps that led to it. Furthermore,

indiscriminate recording and transfer of client data evokes privacy concerns.

1.1 Record and Replay

Record-replay approaches [64; 62; 69; 46; 53; 2; 35] capture and reproduce application bugs

by recording them as they occur, then providing the recording to the application vendor

to deterministically replay the bug at a later time. By directly recording the application

and capturing the bug as it occurs, the burden of repeated testing to reproduce the bug is

removed. When combined with a checkpoint-restart mechanism, record-replay techniques

could be used to capture an interval of an application’s execution and replay the interval
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at a later time.

Despite the potential for simplifying bug reproduction and debugging, the fundamental

limitation of previous record-replay approaches is that they require the record and replay

environments to be roughly identical. In particular, all previous approaches require at

minimum the availability of all original code executed as a part of the recording, including

not just the buggy application binary, but also any other software executed, such as other

applications, libraries, utilities, and the operating system. If the application were to map

a new shared library, for example, the shared library is expected to be available at the

destination. The original code is required to generate the instructions that will be executed

on replay.

This is problematic in practice for several reasons. First, customers often disallow ap-

plication vendors direct access to their production environments, so replaying a bug in the

original production environment is simply not possible. They are unwilling to make their ac-

tual production environment available to vendors for debugging purposes given that keeping

it up and running in production is crucial for business. Production compute environments

represent key IT assets of an enterprise which are expected to be run at full utilization.

Even small downtime typically requires extensive coordination and reprovisioning. Second,

customers are often unwilling to even make replicas available since they may contain custom

proprietary software that they do not want to provide in their entirety, or applications from

other vendors which they are not allowed to provide to a competitor. An application bug

can arise from interactions with a particular mix of application versions, and those other ap-

plications may not be available at the time of replay outside of the production environment.

Third, even if customers provide detailed information to allow vendors to create replicas, it

is quite difficult for them to get all the versions and configurations of all software right to

replay a bug that occurred in a complex production environment which depends on complex

interactions in the environment. Fourth, even if an exact replica of a production environ-

ment could be created for debugging purposes, its creation may be prohibitively expensive

in terms of both hardware and software requirements for complex production environments.

Finally, bugs can be data dependent and all necessary data is typically not available out-

side of the original production environment. While it may be possible to record every single
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instruction executed, along with all data arguments, so that they can be replayed without

need for the production environment, such a recording would be prohibitively expensive to

do, impose excessive storage requirements, and result in unacceptable recording overhead

in production.

1.2 Record and vPlay

This dissertation presents vPlay, a software problem determination system which captures

software bugs as they occur in the field into small and self-contained recordings and allows

them to be deterministically reproduced across heterogeneous operating system environ-

ments in the lab. vPlay achieves this functionality using a novel recording mechanism

which provides data level independence from the source environment and a new type of

virtualization abstraction, vPlay Container, which enables applications built for one op-

erating system to be natively replayed on another. While vPlay recording ensures that

all information necessary to reproduce an application bug is available, vPlay Container

provides the virtual environment which replays that information to the application by in-

sulating its execution from the underlying environment.

1.2.1 vPlay Recording for Data Independence

vPlay recording mechanism adopts a state machine model of application to capture each

piece of state accessed by the application such that its execution can be replayed completely

independently of the source environment. Starting from an initial CPU state, vPlay treats

all other state that crosses the application boundary, including its memory and the very

instructions it executes, as external inputs and captures it on initial access. This model

creates a concise but complete recording that can replay the application for the specified

time interval.

vPlay recording provides two guarantees by design. First, any state not directly ac-

cessed by the application is not included in the recording. Since vPlay only captures

state actually accessed by the application, any extraneous state such as unaccessed parts

of the application’s address space or its binaries are not included, leading to a small per-



CHAPTER 1. INTRODUCTION 7

bug recording. Other automated error reporting tools may collect various assorted pieces

of information, but vPlay’s data collection is directed by the application’s execution it-

self. While conventional error reporting tools may blindly gather information, vPlay only

collects information which is known to be relevant.

Second, all state necessary to replay a specified interval of execution is captured. As

vPlay monitors every interface through which the application could access external state,

any data required by the application during its deterministic re-execution is guaranteed to

be available. The completeness of vPlay’s recording allows it to replay the application

independent of the target environment by providing necessary state from the self-contained

recording. For example, a bug in a Linux application can be natively replayed on Windows.

At the target lab, there is no need to install or configure the original application, support

libraries, other applications, or the operating system to reproduce the failure. Portions of

the application environment, including bits of application and library code necessary to

reproduce the failure, are automatically isolated and recorded.

The key feature of vPlay recording is that it allows replay to occur without replicating

the original production environment in which the application is recorded. Exclusively re-

lying on a lightweight per-bug recording, vPlay deterministically reproduces the captured

bug on a different operating system, without access to any originally executed binaries or

support data. The dependencies on the application binaries is addressed by directly cap-

turing the specific code pages within the executable files accessed by the application during

the faulty run. Alternatively, it may be possible to install the same set of application bi-

naries and libraries at the target site. However, installing an application usually involves

also installing a series of other packages, which can be a tedious task. Furthermore, there

is no clear and systematic way to determine the set of packages and their configurations

necessary to reproduce the failure. Directly recording the actual binary pages provides the

most definitive way to ensure that the same instructions and data are presented to the

application during replay.

vPlay introduces partial checkpointing, a simple, novel technique to capture the partial

intermediate state of the application required to partially reconstruct the application for

replay. Based on the premise of short error propagation distances [48; 72], vPlay cap-
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Figure 1.3: Partial checkpointing captures data consumed by the application within the

last recording interval

tures the application state necessary for its execution during the last few seconds prior

to its failure (Figure 1.3.) Instead of the traditional approach of taking a full applica-

tion checkpoint representing the application’s cumulative state until that point, partial

checkpointing completely ignores the application’s previous execution and focuses on state

accessed by the application within the interval of interest. All application state, includ-

ing the instructions executed within its binary and other libraries, required to reconstruct

the application for replay is captured. While a complete application checkpoint [51; 34;

22] can require high overhead and have an adverse impact on client’s privacy, partial check-

pointing selectively records discrete pieces of data accessed by the application during a brief

time interval immediately preceding a failure.

The resulting partial checkpoint is saved in a format which is designed to be portable

across different operating systems. In addition to the data directly consumed by the appli-

cation, a partial checkpoint also contains metadata identifying the specificities of the source

environment that allows the data to be correctly interpreted even on a different operating

system. vPlay provides a partial checkpoint loader to load a partial checkpoint into mem-

ory. The partial checkpoint loader itself is designed to be portably implemented on any

operating system. It partially reconstructs the application and directly launches it into a

vPlay Container where the application resumes execution from an intermediate point prior

to its failure and continues through the end of the specified interval.

vPlay combines partial checkpointing with a logging mechanism that serves two pur-
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poses. First, it ensures that all data accessed by the application during its execution in

the interval is recorded. In particular, changes to the memory region geometry are tracked

and any new memory state accessed by the application is logged by trapping accesses to

the memory pages. Second, the logging mechanism captures the nondeterministic events

encountered by the application so that the same execution trajectory is reproduced at

replay. vPlay’s logging mechanism provides techniques to address each source of applica-

tion nondeterminism, including asynchronous signal events, data race conditions caused by

concurrent accesses to shared memory and system calls, which may otherwise diverge the

execution of the application.

1.2.2 vPlay Virtualization

Conceivably, a variety of issues arise when an application from one operating system is

executed on another. It has been shown in the past that applications can be run natively

across different application environments, kernels versions [58] and even hardware architec-

tures [67] through various forms of virtualization and emulation. However, natively running

an application binary from one operating system on another has been challenging. At the

outset, the target operating system may not recognize the binary format. The memory

model of the target operating system may prevent the application code to be loaded. The

application may depend on specific system configuration data, libraries and their layout on

the persistent storage.

Existing virtualization approaches are unsuitable for replaying application bugs across

different operating system environments. Hypervisor virtualization [4; 5] allows applications

of one operating system to be run on another through the medium of a guest operating sys-

tem. However, since virtual machines need to encapsulate the guest operating system and its

applications in their entirety, the state associated them is typically too large for easy shar-

ing with the developers and may contain sensitive client data. Container virtualization [51;

59] isolates the application from the underlying environment by providing private resources

and namespaces. However, they essentially run the virtualized application directly on the

underlying operating system and cannot support applications from a different operating

system, which may require services that are unavailable on the target or are incompatible
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with its semantics.
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Figure 1.4: vPlay decouples the application from its environment

vPlay introduces vPlay Container, a thin virtual replay environment which can na-

tively replay applications built for one operating system on another (Figure 1.4.) vPlay

Container decouples the application in three key areas which enables it to run in a different

operating system environment than the one it is built for. First, the application is decoupled

from the memory address space and its content. In particular, the application is decoupled

from its binaries by trapping accesses to the code pages and presenting the actual pages

captured at the source, avoiding dependencies on the target and any version discrepancies.

The ABI incompatibility is addressed through a portable design of the partial checkpoint

and the partial checkpoint loader. Second, applications are decoupled from the processor

MMU structures such as segment descriptor tables through a binary translation technique

designed specifically for user application code, which traps and emulates the offending in-

structions during replay. Third, the application is decoupled from the operating system

by abstracting the system call interface through emulation and replay. System call emu-

lation decouples the application from the various operating system specific resources and

dependencies. It also decouples individual processes of the application from each other by

virtualizing inter-process interactions.

vPlay achieves heterogeneous record-replay functionality while meeting four important

goals. First, vPlay does not require source code modifications, relinking, or other assistance

from the application. Record-replay is a complex and sensitive operation and requires

intimate access to application’s internal processing to record the state required for replay.

Consequently, it is typically implemented as a loosely coupled library extension [64] of

the application itself to monitor its execution. Sometimes record-replay tools require the

programmer to directly participate in the process through language extensions [23] which
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assist in determining the pieces of state that need to be recorded. However, these methods

fail to support the large body of commonly used proprietary and legacy applications.

Second, vPlay does not require specialized hardware modifications. It may be possible

to bypass all software layers and provide a transparent solution by recording individual

instructions at the processor level with additional hardware support. Several processor

extensions [78; 48] propose mechanisms to record and replay applications at the instruction

level granularity. Unfortunately, they are only tested in software simulations and few of

them have ever been implemented in practice due to the high cost barrier. They also

impose a high space and runtime overhead due to the fine-grain level of their recording.

Third, the state captured by vPlay is small. Rather than coarsely recording the appli-

cation along with its operating system and all other potentially irrelevant processes running

on the system, state recorded by vPlay is per-bug and small enough that it can be eas-

ily shared with the developers. Having to share large amounts of data or heavy virtual

machine image files impacts ease of use. Even storing and accessing recordings correspond-

ing to long durations of application execution presents a challenge. Sharing large amounts

of data, much of which may not be useful for problem determination, further compounds

privacy concerns.

Fourth, vPlay’s runtime recording overhead is low. Bugs that occur in production, in

software released after internal rounds of testing and quality control, are most difficult to

reproduce and fix. Bugs which manifest in production may never occur again even after ex-

tensive internal testing. It is necessary to capture the bug directly in production. However,

enabling record-replay function for production software requires a highly efficient design

which does not consume excessive resources in production and impact the common case

performance of the application. As a positive side effect, leaving vPlay’s instrumentation

enabled in production also side steps the probe effect problem. If a bug does not manifest

due to the instrumentation, it is not an undesirable consequence for production software.

However, if the instrumentation triggers a latent bug, vPlay would capture it and assist

the developer to quickly fix it.
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1.3 vPlay Usage Model and System Overview

vPlay is a tool for recording and replaying specified intervals of the execution of a group

of processes and threads. We refer to a group of processes and threads being recorded

or replayed as a session. A session can consist of multiple processes that make up an

application or a set of applications, where each process may contain threads that share the

address space of the process. Once vPlay is installed on the same machine as a production

application, it continuously records its execution. When a fault occurs, vPlay outputs a set

of partial checkpoints and logs taken before the fault. When recording multiple processes,

partial checkpoints and logs are saved separately for each process, along with information

identifying the process that had the failure.

vPlay divides the recording of an application into periodic, contiguous time intervals.

For each interval, it records a partial checkpoint for each application process, and a log

for each application thread that executes during that interval. A recording interval can be

configured to be of any length. As the application executes, a series of partial checkpoints

and logs are generated and the most recent set of checkpoints and logs are stored in a fixed

size memory buffer. Storing a set of partial checkpoints and logs rather than just the most

recent one ensures that a certain minimum amount of execution context is available when

a failure occurs.

Partial checkpoints and logs are maintained in memory to avoid disk I/O and minimize

runtime overhead. Older partial checkpoints and logs are discarded to make room for the

new ones. Partial checkpoints and logs in memory can be written to disk at any time by

stopping the current recording interval, causing the accumulated partial checkpoints and

logs in memory to be written to disk. vPlay has built-in support for detecting explicit

faults such as segmentation violation and divide by zero. In addition, vPlay provides an

interface to integrate with external fault sensors. Characterizing application behavior as

faulty or correct is difficult in general. Interfacing with external fault detection mechanisms

would simplify the mechanism and enable it to correctly function across a broad range of

application failures.

When a failure occurs, the recording can be made available to the developer in lieu of, or

as an attachment to, a bug report. The bug can then be directly replayed on any hardware
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in developer’s environment using vPlay. Although the failure may involve an interaction

of multiple tiers of software, the developer does not need access to any of that software to

reproduce the failure. This is important since an application developer may have access to

only his application software, not other software required to reproduce the failure. Since

vPlay captures architecture dependent binary instructions of the application as a part of

its partial checkpoint, the target CPU where replay is performed is required to be the same

type as the original CPU. Other hardware attributes, such as number of processors, amount

of memory, are not required to be the same.

Using a vPlay recording, a developer does not need to replay an entire multi-process

application or set of applications. The developer could just select the process where the

fault occurs to simplify problem diagnosis, and vPlay would replay just that process.

vPlay virtualizes the interactions of the selected process with other application processes

to provide a consistent replay. If the selected process uses shared memory, vPlay also

simultaneously replays other processes that share memory with the selected process so that

the mutual shared memory interactions among the processes and threads can be reproduced

for a deterministic replay. This enables replay to be done on modest hardware even if the

original production application required extensive and complex hardware resources.

vPlay integrates with a standard debugger to closely monitor and analyze the execution

of the application being replayed. Any inputs needed by the replay are provided from the

recorded partial checkpoint and any outputs generated by replay are captured in an output

file and made available to the user. If the application writes into a socket, for instance, the

user would be able to examine the contents of the buffer passed to the write system call and

also see how the content of the buffer is generated during the steps leading up to the system

call. For root cause analysis, vPlay allows the programmer to set breakpoints at arbitrary

functions or source lines, single step the instructions, watch the contents of various program

variables at each step, and monitor the application’s original recorded interactions with the

operating system and other processes. Reverse debugging can also be done by resuming

the application from an earlier partial checkpoint with a breakpoint set to a desired point

of execution in the past.

A partial checkpoint file itself does not contain any symbol information, so the de-
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bugger retrieves it from a separately provided symbol file. Typically, application binaries

are stripped of their symbol table and debugging sections before they are shipped to the

user. However, the symbol and debugging information is preserved in respective formats [1]

separately in a symbol file which would be accessible to the developers.

1.4 Contributions

This dissertation presents a novel software problem determination architecture, vPlay,

which efficiently and transparently records software bugs as they occur in production appli-

cations and allows them to be reproduced across heterogeneous operating system environ-

ments, in the presence of nondeterminism. The architecture is based on the following novel

contributions:

1. A novel recording mechanism based on the state machine model of the application,

which provides data-level independence between the application and its source envi-

ronment by concisely capturing the complete state required for its replay. In particu-

lar, it removes the dependencies on specific versions of application binaries by isolating

and recording bits of application and library code necessary to reproduce the failure.

2. A new checkpointing paradigm, partial checkpointing, which captures the partial in-

termediate state of an application to reproduce its execution for a specified time

interval. When applied to debugging, partial checkpointing allows capturing the ap-

plication’s execution during the last few moments of its failure. The resulting partial

checkpoint, together with a log, is used to deterministically reproduce the faulty be-

havior at the developer site. Partial checkpointing minimizes the impact on client’s

privacy by recording only discrete pieces of data rather than a complete application

checkpoint.

3. A portable representation of the partial checkpoint and a corresponding partial check-

point loader, which together enable an interval of an application’s execution to be

replayed across different operating system environments.

4. A memory tracking algorithm which efficiently identifies and captures the changes
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made to the application’s memory region geometry by its constituent processes and

threads. Two embodiments of the algorithm, one based on an extension to the operat-

ing system’s page fault handler and another based on accessed and dirty bits provided

by the processor, are presented.

5. Incremental partial checkpointing algorithm, a further optimization to partial check-

pointing is discussed and illustrated. It reduces the size of a partial checkpoint by

omitting the content which is already included in earlier partial checkpoints in the

sequence.

6. An innovative user space instrumentation framework which enables partial check-

pointing to be implemented in user space. The framework allows application events

such as system calls to be securely and efficiently intercepted in user space based on a

simple modification to the ptrace subsystem. The mechanism avoids excessive con-

text switches, typical of ptrace, by allowing an application to trace its own events.

While being a part of the application’s address space, the instrumentation framework

protects itself against wild stores from faulty application code.

7. A mechanism to record and reproduce race conditions originating in concurrent ac-

cesses to shared memory on multiprocessor systems, which makes novel use of existing

hardware features.

8. A new form of virtualization and an associated abstraction called vPlay Container

which enables applications built for one operating system to be natively replayed on

a different operating system. vPlay Container addresses the ABI incompatibility

between the application and the target operating system using a lightweight binary

translation mechanism.

9. A debugging tool which integrates vPlay Container with a standard interactive de-

bugger to provide functionality such as setting breakpoints at the source code level

within a discrete interval of application’s execution recorded in a partial checkpoint.

The tool allows the programmer to analyze the steps the application has taken to

reach the failure state.
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10. A practical debugging-as-a-Service framework which applies vPlay mechanisms to

the cloud computing model to alleviate the challenges presented by incipient cloud

infrastructure to the legacy applications which are yet to adapt to the cloud. In

addition, several other innovative usage scenarios such as such as recording impor-

tant transactions for archival or compliance, efficiently generating fine-grain traces of

applications running in production etc. are discussed.

1.5 Organization of this Dissertation

This dissertation is organized as follows. Chapter 2 describes the high level principles

behind vPlay recording and the type of data it collects. Chapter 3 presents the partial

checkpointing mechanism, associated algorithms and the details of their kernel and user

level implementations. Chapter 4 describes the mechanisms used by vPlay to capture the

state accessed by the application during a recording interval, and to address various sources

of application nondeterminism. Chapter 5 describes the vPlay Container abstraction and

the virtual replay mechanism itself. Chapter 6 provides an analysis of vPlay’s performance

along with investigative reports of its use in debugging real-life software bugs. Chapter 7

discusses related work. Chapter 8 presents various possible extensions and applications of

the mechanisms introduced by vPlay. Finally, we present some conclusions and directions

for future work in Chapter 9.
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Chapter 2

vPlay Recording

The main goal of vPlay is to produce a concise and complete recording of an interval of

an application’s execution, so that the recording can be used to independently replay the

application in a different environment. In order to decouple an application from its source

environment, vPlay provides partial checkpointing (Chapter 3) and logging (Chapter 4)

techniques to capture each piece of state accessed by the application within the specified

interval. Partial checkpointing isolates the partial state of the application into a partial

checkpoint, which is restored initially at replay, and logging captures a log of state accessed

by the application during the interval, which is replayed back to the application at replay.

Figure 2.1: Checkpoint-Logging Approaches vs vPlay Recording

An application consumes a variety of data as it executes. For example, the application

may query information from the operating system, obtain the value of a configuration option

from a file, or receive a response from other application tiers or co-deployed services over a
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network socket etc. These are clearly different types of data that the application consumes

during its execution. Additionally, the application may read from its own program stack,

access a global variable within its data segment or execute a particular subroutine in a

memory mapped shared library. In order to completely decouple the application from its

environment, it is necessary to consider these pieces of data, including the very instructions

it executes, to be a form of input to the application.

To exhaustively collect the state accessed by an application, vPlay uses a recording

approach based on the state machine model. The application is treated as a state machine

which contains certain internal state, and consumes an external input to transition into an-

other state. The model naturally creates an application boundary that separates the state

within the application from the state outside of it, and allows for isolating and recording

the “inputs” that cross the application boundary during a specified time interval and inde-

pendently replaying them back to the application at a different location. In conventional

checkpoint-logging schemes (Figure 2.1), the application boundary is defined to include the

state of application’s resources such as registers, memory, open files etc. In contrast, vPlay

shrinks the application boundary to only contain the processor state, with all other state

treated as external input. vPlay interposes on key operating system kernel entry points to

intercept all interactions of processes and threads with their environment. All state required

for replay, including application’s own memory, is captured on first access. In addition to

recording the system call results and other events required for deterministic replay, vPlay

monitors accesses and changes to the address space pages and captures relevant information

to create a self-contained recording of an application bug.

vPlay divides recording into periodic, contiguous time intervals called recording in-

tervals. A recording interval can be configured to be of any length; it can be few tens

of milliseconds or several seconds of execution time. Shorter intervals incur more runtime

recording overhead, while longer intervals typically result in larger partial checkpoints. Each

recording interval commences with a start operation and concludes with a stop operation.

An external process enforces the recording intervals by issuing stop and start commands

in succession to conclude the previous recording interval and begin a new one. When the

application fails or exits, vPlay intercepts the exit event and automatically performs the
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stop operation. As the application executes, a series of partial checkpoints and logs are

generated. Within each recording interval, partial checkpoints and logs for each application

process and thread that executes in the interval are recorded. The recorded data contains

the information necessary to replay the execution of the application during that interval.

The most recent set of partial checkpoints and logs produced during the execution are

stored. Storing a set of partial checkpoints rather than just the most recent one ensures that

a certain minimum amount of execution context is available when a failure occurs. If the

application encounters a failure at the beginning of the recording interval, immediately after

start, the most recent partial checkpoint may not contain sufficient context for root cause

analysis. vPlay seamlessly splices the discrete series of consecutive partial checkpoints

into a new partial checkpoint encompassing the total length of the original checkpoints.

The user can resume the application from any partial checkpoint in the series and have it

continue its execution through the intermediate checkpoints, finally reaching the point of

failure. The user can progressively go, as further back as necessary, within the available set

of checkpoints to reach the problem source. A particular partial checkpoint in the series

marks a well defined point in the execution of the application from where the application

can be resumed. An arbitrary point within a recording interval can be reached by rolling

forward from the latest checkpoint prior to the desired execution point.

Partial checkpoints and logs generated during the application’s execution are maintained

in memory to avoid disk IO. Since the goal of vPlay is to capture software failures as

they occur in production, runtime performance is an important consideration. The partial

checkpoints are stored in a fixed size memory buffer. The number of partial checkpoints,

and hence the length of execution history available at any point, depends on the size of the

memory buffer dedicated for this purpose. Older partial checkpoints are discarded to make

room for the new ones.

Recording can be terminated at any time at the request of the user by calling stop to

preempt the current recording interval. Partial checkpoints accumulated until that point

are written to disk. If the application encounters a failure which results in an explicit

exception, such as segmentation violation or divide by zero, vPlay intercepts the exception

and writes the recording to the disk. vPlay also provides an interface to enable an external
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fault detection system to trigger the checkpoint upon detecting a failure. Writing partial

checkpoints to disk bears some similarity to the core dumps generated by the operating

system. However, a core dump only contains the state of the application at the point of

failure, whereas a recording consists of the state of the application a few moments before

the failure and the state necessary to deterministically lead its execution to the point of

failure.

2.1 State Composition

vPlay applies copy-on-read technique at the point of access, to isolate relevant pieces of

application state. A shared library page, for instance, is included in the partial checkpoint

when the application calls a function located in that page. Similarly, the signal handler state

is included when the respective signal is delivered to a thread. A signal handler becomes a

part of the application state when it is installed, but it is only needed and used when the

signal is actually delivered. Rather than capturing the state of all signal handlers installed

by the application in advance, only partial signal handler state corresponding to the signals

which are actually delivered within the recording interval is captured. Table 2.1 shows a

listing of various types of data captured by vPlay.

For certain resources, vPlay performs full checkpoint rather than capturing partial

state. Some pieces of application state such as the runtime register context and the state of

the processor MMU resources, are typically small and updated too frequently to efficiently

track their state in runtime. An application may never access the contents of a particular

register during a recording interval and may not be necessary to be captured. However, the

additional complexity and overhead required to track such state is not worth the marginal

space savings it may produce.

Much of the internal state of the application resources is ignored by vPlay. Since vPlay

focusses on interposing the application boundary, only state internal to the application needs

to be checkpointed. All other state, including the intermediate state of various system

resources used by the application such as open file descriptors, is not captured. vPlay also

does not capture any application outputs produced at recording time. Due to deterministic
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re-execution, identical outputs will be automatically generated during replay, as determined

by the program logic.

In addition to the data directly consumed by the application during replay, vPlay

also records certain metadata indicating the provenance of each piece of state included in

the recording. The application data itself is required for its execution during replay. The

additional metadata helps present the data within the right context for the user to analyze

and debug the behavior. For instance, a malformed service request may have caused a server

application to fail. In addition to the contents of the offending request, the peer name of the

sender would help identify the problem source. Similarly, an application may have failed

due to an unexpected interface implemented by an incompatible library version. The failure

may be correctly reproduced by simply presenting the same offending subroutine within the

incompatible library. However, if the source of the code executed as a part of replay is

unknown, it would be of little value for debugging. In addition to the code pages, the .so

name and the path of the shared library would point to the root cause of the problem.
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Resource Checkpoint type Access point Provenance

Per-session state

Shared memory Partial Page fault Region name

Per-process state

File / storage data Partial read() File path

Memory mapped file data Partial Page fault File path

Binaries, shared libraries Partial Page fault .so name

Per-thread state

Anonymous regions

(stack, heap etc)

Partial Page fault –

CPU/FPU state Full start –

Signals Partial Signal delivery Sender

Descriptor table entries Full start File path

Thread local state

(clear tid ptr etc)

Full Respective system call Thread identifier

External connection re-

quests

Partial accept() peer address / port

System state (TCP,

semaphores, pipes etc)

Not checkpointed – –

Other OS state (pid,

uname etc)

Partial Respective system call Respective system call

Table 2.1: Composition of state recorded by vPlay
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Chapter 3

Partial Checkpointing

The traditional approach for recording an interval of an application’s execution consists of

checkpointing the initial state of the application at the beginning of the interval, followed by

logging events that guide replay. The initial checkpoint consists of the state of application’s

resources representing its cumulative execution until the beginning of the interval, and the

log consists of events such as system calls, thread interactions and data inputs required to

guide replay. Such an approach, however, may include data which is not relevant or miss

data which is relevant. For instance, the checkpoint may contain pages in memory address

space or state of resources such as open files which may not be used at replay, or in some

cases, the application may map a large data file and access a few pages within it, but that

data would not be included in the initial checkpoint, even though it is necessary for replay.

vPlay adopts a different approach called partial checkpointing, to capture minimal but

complete state required for replay. Instead of taking a cumulative checkpoint of process

memory address space at the beginning, only specific memory pages actually used by the

application in an interval, and hence necessary for replay are captured. Any previous

execution, and state accumulated as a result, is ignored. The partial application state,

including a subset of pages mapped at the beginning of a specified recording interval which

are accessed by the application within that interval, constitutes a partial checkpoint. A

partial checkpoint is used to partially reconstruct the application at the developer site and

allow it to deterministically replay from an intermediate point prior to the failure to the

point of failure.
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Figure 3.1: Address space layout showing partially checkpointed memory

A partial checkpoint only consists of sparse set of pages from the total mapped address

space of an application. Figure 3.1 illustrates the 4 GB address space of a typical Linux/x86

process. The top 1 GB of address space is dedicated for the kernel use and its contents

are never included in a partial checkpoint. Application stack resides near the top of the 3

GB user address space, followed by system libraries and various other libraries used by the

application. The main application binary is loaded near the bottom of the address space.

The total virtual memory usage of even simple applications is usually quite large with all

the shared libraries mapped within the process address space. However, as depicted by the

black strips of captured pages in the figure, a partial checkpoint only represents a fraction

of the total process address space.

3.1 Properties

A partial checkpoint has four key characteristics. First, the state captured is completely

decoupled from the underlying application binaries and the operating system. Partial check-

pointing creates a self-contained recording which can be used to reproduce the execution in

a completely different environment where none of the state from the source environment is
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available. Traditional checkpoint-logging approaches record the current state of the applica-

tion’s address at the time of the checkpoint. Any other shared libraries or file data mapped

into the application address space after the checkpoint is taken, are usually required to be

available at the destination as well. Alternatively, those additional libraries and files are

packaged along with the checkpoint, increasing the size of the recorded state.

Second, it is defined only for a specific interval of an application’s execution and contains

only the portion of state accessed by the application in that interval. The space needed

to store a partial checkpoint can be small since it is used only for recording the execution

for a brief interval of time. Even though an application itself may be large in its memory

footprint and processing large quantities of data, it only accesses a fraction of itself during

a brief interval of time.

Third, it is only useful for deterministically replaying the specific time interval, not for

running the application normally. When the application is replayed, it does not perform

any useful work, except that its execution is available to be analyzed using tools such as

debuggers and profilers. Once the application reaches the end of the recording, it would have

to be stopped or terminated because the subroutines that the application may invoke after

that point may not exist, or any further requests it may make cannot be satisfied. Finally,

it is captured over a specified time interval, not at a single point in time. A particular piece

of state is included in the partial checkpoint when it is first accessed within the interval.

3.1.1 Related Techniques

Regular checkpointing. Partial checkpointing is a new concept which is substantially

different from standard checkpointing techniques [55; 51]. In particular, the system state

of the application maintained internally by the operating system, such as the state of file

descriptors and the state of various operating system resources, is not included in a partial

checkpoint. It allows partial checkpointing to be implemented without significant kernel

changes and enables a partial checkpoint to be resumed even on a different operating system.

Regular checkpointing allows normal execution to be resumed for an arbitrary amount of

time. Because the state needed by an application in its future execution can be arbitrarily

large, regular checkpoint implementations typically impose dependencies on the underlying
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system to reduce storage requirements, such as requiring that files in persistent storage be

available to the resumed application. In contrast, partial checkpointing does not impose

such a requirement because, the specific portions of data on disk, including portions of

application binaries themselves needed by the application during replay, are included in the

partial checkpoint. Partial checkpoints are also small since they do not need to support

normal execution; only deterministic replay over a fixed time interval.

Incremental checkpointing. Partial checkpointing is substantially different from in-

cremental checkpointing [57]. Incremental checkpointing assumes the existence of an earlier

full checkpoint, and saves only the execution state that has changed since the last check-

point. To resume execution from an incremental checkpoint, the state from a full checkpoint

must be restored, as well as the state from the subsequent incremental checkpoints. Partial

checkpointing differs in at least three ways. First, partial checkpointing does not require

saving or restoring any full checkpoint. All state necessary to use a partial checkpoint is com-

pletely contained within the partial checkpoint. Second, a partial checkpoint is completed

after the recording interval to enable deterministic replay over only the previous interval. In

contrast, an incremental checkpoint occurs after a time interval to enable normal execution

to be resumed after that time interval going forward. Third, a partial checkpoint contains

state that has been read during a time interval, while an incremental checkpoint contains

state that has been modified.

Virtual machine snapshots. Checkpointing mechanisms based on virtual machine

snapshots [32] typically rely on the availability of complete virtual machine image, including

all software code, its entire file system and additional file snapshots, to resume the execution.

In contrast, partial checkpoints are not only small and lightweight, but designed to be used

without access to any of the code or data originally used during the production execution.

Decoupling provided by partial checkpointing is also different from that of virtual machines

[10; 15], which may decouple replay of an application in a guest operating system from

dependencies on the hosting environment, but still require during replay the complete virtual

machine image with all of the installed binaries used at the time of recording.
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3.2 Partial Checkpointing Mechanism

Recording memory pages at the operating system level presents new challenges. Operating

system memory model is more complex than, for example, the hardware level memory

model, where the application reduces to a steady stream of instructions after having gone

through appropriate processing at the higher layers. The complex memory model and the

dynamic nature of application’s execution with memory regions being mapped, unmapped,

remapped and shared across multiple threads and processes makes efficiently capturing

these events difficult.

We will use Linux and x86 semantics to describe how partial checkpointing is done in

further detail. A partial checkpoint broadly consists of session state accessed by processes

and threads in the session, per-process state, and per-thread state. Per-session state consists

of global shared memory objects accessed during the interval and not tied to any process,

such as shared mapped files and System V shared memory. Per-process state consists of

the initial set of memory pages needed to enable replay, and mappings that correspond to

the global shared memory objects used by that process. Per-thread state consists of CPU,

FPU, and MMU state.

To start recording a partial checkpoint, vPlay forces all threads in the session to reach

a synchronization barrier. The barrier is required to produce a globally consistent partial

checkpoint across all threads. The last thread to reach the barrier records the CPU, FPU

and MMU state of each thread, including the processor register state and the user created

entries in the global and local descriptor tables. The processor context marks the initial

point of execution during replay. It consists of the state of the CPU and FPU registers,

and the per-thread state of the processor MMU such as descriptor entries in the segment

descriptor tables. The state of segment registers, not directly accessible by user applications

such as cs, ds, is excluded from the register state. These registers typically represent the

memory segments covering the entire available address space on Linux and Windows and

do not have to be changed on the target system. Appropriate values already setup by the

target system are used. A status flag indicating that the session is in recording mode is set

and all threads waiting at the barrier are woken up.

For both per-process and per-session memory state, only pages that were read during
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Algorithm 1: Partial checkpointing mechanism implemented within the page fault

handler

1 if partial flag in the PTE is set then

2 if page is shared then

3 add (page address, page content) to the corresponding

shared memory object;

4 add (region’s start address, corresponding shared memory object) to the

process shared maps;

5 else

6 if page is mapped within current recording interval then

7 add page and page content to the list of saved pages in the respective

system call event record;

8 else

9 add page to the initial page set;

10 end

11 end

12 end

a recording interval need to be saved in a partial checkpoint. If a process only writes to

a page, but does not read from it, the partial checkpoint does not have to provide such a

page during replay. However, page table status flags provided by most processors are not

sufficient to determine if a written page has also been read. We conservatively include all

pages accessed during the interval in the partial checkpoint even though the application

may not have read from some of them. This approximation works well in most cases as

most pages that are written by an application are also read.

To save per-process memory state in a partial checkpoint, vPlay must determine the

memory pages that are read by the threads associated with that process during the recording

interval. Similarly, vPlay must also account for per-session state corresponding to memory

objects that are shared across multiple processes and not necessarily associated with any

individual process. To save per-session state in a partial checkpoint, vPlay must determine
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the memory pages of global shared memory objects that are read by the threads during

the recording interval. Algorithm 1 illustrates the partial checkpointing mechanism and

Table 3.1 describes the data structures involved.

vPlay uses two types of objects to store the contents of accessed pages during the

recording interval. A per-process initial page set is allocated for memory regions pri-

vate to a process. Each record in the set contains a page address and content. A per-

session shared memory object is allocated for each shared memory region accessed within

a recording interval and contains the subset of pages accessed by any process or thread in

the session within that recording interval. Each record in the set contains the offset of the

page within the region and its content as of the first access to that page. The pages in

the shared memory object may be mapped as a whole at different addresses by different

processes.

To track which pages are accessed, vPlay utilizes the present-bit available in the page

table entry. vPlay cooperatively shares its use with the kernel by keeping track of kernel

use of and changes to the bit by using one of the unused bits available in the page table

entry as a partial flag. At the beginning of the recording interval, vPlay clears the present-

bit for each page in the process address space that is present, and uses the partial flag to

store the original value of the present-bit. When a memory region is newly mapped, the

present-bits in the page table entries of the corresponding pages will be initially cleared

indicating that the physical pages have not been allocated yet. When a thread accesses a

page which does not have its present-bit set, a page fault is generated. As a part of the

page fault handler, vPlay checks the partial flag to see if it is set. If it is set, the page was

originally present and needs to be recorded. In architectures, such as ARM, which do not

provide a page-present bit, the emulated version of the bit maintained by the Linux kernel

can be used in place of the hardware bit for the purposes of page tracking.

If the page corresponds to a shared memory region, vPlay adds a record contain-

ing the offset of the page within the shared memory region and the page content to the

shared memory object that represents the shared memory region. In addition, vPlay also

updates a shared maps set, which is a per-process set of shared memory regions represent-

ing the mapped instances of the shared memory objects for that process. Each record
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of the shared maps set contains the starting address at which the shared memory region

is mapped within the process address space and a pointer to the shared memory object

representing the region. Otherwise, vPlay copies the page address and contents to the

process’s initial page set.

Each accessed page is copied just once when it is first accessed during the interval.

Memory shared among threads associated with a process is automatically taken care of

as a part of this simple mechanism. If a process is created via fork during the recording

interval, its initially mapped pages at the time of creation which are accessed during the

recording interval are also included in the partial checkpoint. This is done by performing

the same operations to the process at creation time as were done to other processes already

created at the beginning of the recording interval, namely clearing the present-bit for each

page in the process address space that is present, and using the partial flag to store the

original value of the present-bit. Note that for pages not corresponding to a shared memory

region, vPlay only includes pages in the partial checkpoint that are already mapped at the

beginning of the recording interval or at process creation.

Changes in Memory Region Geometry. The threads of an application may map,

remap or unmap memory regions within a recording interval. vPlay must capture sufficient

state to reproduce these events at replay. vPlay keeps track of the system calls made by

each thread in a per-thread queue of event record structures. In addition, vPlay keeps

track of the system calls that map memory in the current recording interval in a per-process

stack called recent maps, including a reference to the respective system call event record.

When a page is first accessed that was mapped during the recording interval, a page fault

occurs and vPlay starts at the top of the recent maps stack and scans it to find the

most recently mapped memory region that corresponds to the accessed page, which is the

current mapping being used by the thread. The page is then added to the respective system

call event record or to the respective shared memory object depending on whether the

page belongs to a shared memory region. In addition, if the page happens to be a global

shared page, a record containing a pointer to its shared memory object, and the starting

address where the shared memory region is mapped in the process address space is added

to the event record of the system call event that mapped the shared memory region. If
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the page was not mapped within the current recording interval, the record is added to the

shared maps set of the process. When a failure is detected and a partial checkpoint is

emitted, the pages associated with the system call are saved along with the event record.

Data structure Function

event record Entry describing system call state in per-thread system call

queue

recent maps Stack of system call event records that map memory re-

gions within current recording interval

initial page set Per-process set of pages initially restored at replay

shared memory object Set of (page offset, page content) records describing a sparse

shared memory region

shared maps Set of (page offset, shared memory object) records indi-

cating shared memory regions mapped within a process

Table 3.1: Partial checkpointing data structures

3.2.1 Incremental Partial Checkpointing

To reduce copying overhead, an incremental partial checkpointing mechanism can be used.

Pages already copied as a part of previous partial checkpoints that are still stored in mem-

ory do not need to be copied again for the current partial checkpoint if the contents remain

the same. This optimization would be most useful for code pages which are generally only

read and never modified. This is done by creating regular partial checkpoints periodically

but less often, and using incremental partial checkpoints in between regular partial check-

points. An incremental partial checkpoint can only refer to the previous regular partial

checkpoint and subsequent incremental partial checkpoints before the current incremen-

tal partial checkpoint. For simplicity, when an older partial checkpoint is removed from

memory, all associated incremental partial checkpoints are also removed.

To create an incremental partial checkpoint, vPlay creates a per-process incremental

page set for each process and a per-session incremental shared object for each shared

memory object to track which pages are stored as a part of which regular and incremen-

tal partial checkpoints. They are maintained starting with a regular partial checkpoint
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through its successive incremental partial checkpoints. vPlay uses an extra unused bit

in the page table entry as a dirty flag, clears it when the page is copied as a part of a

partial checkpoint, and marks the page copy-on-write. Using the copy-on-write mechanism,

any modification to the page will be detected and the dirty flag will be set. The per-

process incremental page set mirrors the process address space and associates a pointer

to the latest saved page content of the respective page address, stored as a part of the

initial page set or the event record of the memory map system call, as the case may

be. Similarly, the incremental shared object associates the latest saved contents of a

page with the respective page address associated with the respective shared memory re-

gion.

The next time the page is first accessed in a different interval for recording a partial

checkpoint, if the dirty flag is clear and the page does not correspond to a shared memory

object, the page address is copied to the initial page set of the current partial check-

point, but the contents are not copied. Instead, a reference to the page content stored in

the incremental page set is associated with the page address in the initial page set,

avoiding the cost of copying the page contents. Similarly, if the dirty flag is clear and

the page corresponds to a shared memory object, a record containing the offset of the

page within the shared memory region, and a reference to the page content stored in the

incremental shared object, is added, again avoiding the cost of copying the page con-

tents. If the page was written to and the dirty flag is set, the page address and content are

added to the appropriate system call event record in the current recording interval, and

the entry for the page address in incremental page set is updated to point to the new

page data. While incremental partial checkpointing can reduce storage requirements and

copying overhead, experimental results in Section 6 indicate that the additional complexity

required is not needed as the storage requirements and copy overhead of regular partial

checkpoints is modest.

3.2.2 Partial Checkpointing Examples

We illustrate the above mechanism using a hypothetical application with two processes each

with an address space spanning four pages (P1-4). Threads T1 and T2 belong to process 1
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Figure 3.2: Partial checkpointing illustration

and threads T3 and T4 belong to process 2. An interval of execution of the two processes

within respective address spaces is represented in Figure 3.2. Its execution is divided into

recording intervals, with solid vertical lines representing regular partial checkpoint intervals

and dotted vertical lines representing incremental partial checkpoint intervals. Intervals

I11, I12 and I13 belong to I1 regular partial checkpoint. Horizontal arrows represent the

time interval during which the region of address space page has an associated mapping. The

threads which mapped and unmapped each region are also indicated on the left and right

sides of each arrow respectively. Absence of a horizontal arrow at a particular time indicates

that the address space region is not mapped at that time. First read or write access to a

mapping within an interval is indicated by a small downward arrow, with the thread number

making that access indicated on top. Shared memory mappings are highlighted as thick

horizontal lines.
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3.2.2.1 Regular Partial Checkpointing

We describe the processing performed to take a regular partial checkpoint of process 2 for

the recording interval I1. At the beginning of the interval, page-present bits for all four

pages are reset and only page address P2 has an active mapping. Thread T4 makes the first

read access in the interval to page P2. Since the page-present bit is reset, a page fault is

generated. Algorithm 1 implemented as a part of the page fault handler checks if the page

belongs to a shared memory mapping. Since it is not a shared memory mapping, it checks

if the page was mapped within the current recording interval by consulting recent maps.

The page was indeed mapped prior to the current recording interval and has to be mapped

at the beginning of replay. So the page is added to the initial page set of the process.

The region is eventually unmapped by thread T3, which maps a new region at page address

P4. Mapping a new region causes respective system call to be added to T3’s log queue as

an event record and to the recent maps stack of the process. When thread T4 accesses

page P4, Algorithm 1 is invoked once again. Since the page does not belong to a shared

memory region and the region was mapped within the current recording interval earlier

by thread T3, the page is added to the list of saved pages in the respective system call’s

event record.

Next read access occurs to a shared memory region mapped by thread T3 at page address

P1. As a part of the page fault triggered when thread T3 accesses the shared page, the page

offset within the region and its content are added to a global shared memory object that

represents the shared memory region. In addition, mapping address of the region within

the process address space and a pointer to the global shared memory object are added to

the shared maps set of the process.

3.2.2.2 Incremental Partial Checkpointing

The table in Figure 3.2 shows the processing performed to take an incremental partial

checkpoint during the intervals I11, I12 and I13 for page P2 of process 1. At time 0, copied

and dirty flags are cleared and the page data pointer is set to 0. At time 1, thread T1 maps

a regular memory region and later at time 2, thread T2 accesses the region for the first

time causing a page fault to occur. Since the copied flag is clear, vPlay needs to capture
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the page data, and since dirty flag and the page data pointer are both 0, the content of the

page is saved in the page set associated with the system call that mapped this page earlier

at time 1. Later when thread T1 accesses the same page for the first time, it sees that the

copied flag is set and hence does not save the page. Thread T2 writes to the page at time

4 causing the dirty flag to be set and eventually unmaps it at time 5.

Thread T1 then maps a new shared memory region at time 6, reinitializing the copied

and dirty flags and page data pointer to 0. First access to the page is performed by thread

T1 at time 7. Since the page now belongs to a shared memory object, the page data is saved

in the corresponding shared memory object and the starting address of the region and the

shared memory object identifier are added to the shared maps set of the process.

The first incremental checkpoint interval is closed at time 8, causing all page ownerships

to be preempted, all present and copied flags to be cleared and new shared maps and shared

memory object sets to be created. Thread T2 accesses the page for the first time at time

9 and since the copied flag indicates that the page was not yet included in the current

interval, it checks the dirty flag to determine whether the page data was already saved in a

previous interval. Since its a shared page, the page data needs to be added to the respective

shared memory object in the shared memory object set of the current recording interval.

The data need not be copied because the dirty flag is 0. Instead the value of the current

page data pointer is added. Appropriate record is also added to the shared maps set of the

process for the current recording interval. Thread 1 eventually dirties the page at time 10

and the second incremental checkpoint interval ends while the shared memory region is still

mapped. The copied flag is cleared at time 11 as a part of the initialization for the third

incremental checkpoint interval but the value of dirty flag carries forward from the previous

interval. When thread T2 reads the page at time 13, it adds the current page data to the

new shared memory object of the third interval.

3.3 Partial Checkpointing in User Space

Partial checkpointing is a novel and valuable concept, and the ability to implement par-

tial checkpointing in user space enables several additional advantages. A key use-case of
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partial checkpointing is to reproduce application execution across heterogeneous platforms.

Executing applications across different platforms requires that the mechanism used for the

purpose itself be portable. A user implementation would decouple the mechanism from the

services of the host, and make it portable by minimizing the dependence on the kernel.

Further, a user space design makes the mechanism simple and robust by remaining outside

the sensitive, high-incidence control paths of paging and virtual memory within the kernel.

However, without kernel support, a user space mechanism would be limited to applications

that do not use shared memory, and frequent context switching required to trap events at

the user level may impact the performance of the solution. We quantify the performance of

the user implementation of partial checkpointing in Chapter 6.

An important design feature of partial checkpointing is that it does not require recording

internal kernel state of the application which is not directly available to the user, and hence

it is amenable for a user space implementation. By segregating the user space counter

parts of the application and only recording its input-output interface, partial checkpointing

remains untainted by platform-specific internal state. Regular checkpointing methods, on

the other hand, typically require extensive kernel support or are limited in the scope of

applications they support.

A user space partial checkpointing mechanism must provide two functions. First, a

mechanism to transparently intercept system calls made by the applications (Section 3.3.1).

Second, an efficient interface to determine the memory pages accessed by the application

in a given interval and their contents (Section 3.3.2). The functions are implemented based

on two simple and generic kernel extensions. Rest of this section presents the techniques

which allow partial checkpointing to be implemented in user space based on these kernel

extensions. The techniques are described within the context of an alternative user space

implementation of partial checkpointing called vPlay-user, which leverages existing kernel

and hardware features and provides a new instrumentation technique to enable a user space

implementation. The mechanisms implemented by vPlay-user are conceptually similar to

the kernel implementation described earlier. We highlight the pieces which are different.
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3.3.1 Instrumentation Framework

vPlay-user uses an instrumentation architecture based on a small change to ptrace func-

tionality which allows a process to set it as a ptrace parent to itself. As per normal ptrace

semantics, a process attempting to attach to itself as a debugger results in an error. It may

be possible to attach to the application through an external process. However, ptrace is

originally designed for debugging and its runtime performance is unacceptable for common-

case use. The simple extension provided by vPlay-user allows a process to be notified of

events generated by itself in addition to any external process, such as a debugger, which

may have registered to receive those notifications. In the conventional debugging paradigm,

a separate debugger process controls the execution of the debugged process. The kernel no-

tifies the debugger through a SIGSYS signal whenever the debugged application encounters

events such as system calls, receipt of a signal, process completion etc. The debugger is

allowed to take necessary actions before the event is processed. In such a model, each ap-

plication event generates several context switches between the debugger and the debugged

application resulting in high overhead. The ptrace extension implemented by vPlay-user

avoids this context switching overhead by allowing the application itself to be the debugger.

The challenge, however, is to transparently embed code into the process address space to

handle the debugging events posted by the kernel. The rest of this section describes the

architecture that permits this operation.

Figure 3.3: User space instrumentation via vPlay-user agent

The application is started by an initial process called, vPlay-user agent. vPlay-

user agent is implemented as a self-contained statically linked application program with
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its load address chosen to be in an address range not commonly used by the applications.

On Linux/x86, we have chosen the address range, 0x08000000 - 0x08031000, to load the

vPlay-user agent. Common Linux/x86 applications don’t use addresses below 0x08048000.

As a part its initialization, the agent maps a region of memory with MAP SHARED attribute.

The agent exclusively uses this region to hold its internal data structures. Any state cre-

ated by the agent residing in one process could be accessed by its counterparts in other

processes via the shared memory region. Agents in different processes or threads of the ap-

plication communicate through the shared memory region arbitrated through futex based

synchronization.

The agent starts the application by creating a child process and directly mapping the

memory regions and segments described by the application’s binary into memory. Loading

of an application binary is typically performed by the kernel as a part of the exec system call.

vPlay-user agent, however, implements the exec operation in user space. The goal in doing

so is to retain vPlay-user agent’s own memory regions within the application’s address

space as new memory regions of the application are added. Invoking the standard exec

system call would cause all existing memory regions along with the agent to be unmapped

and replaced with new memory regions specified in the application binary. Performing exec

in user space allows vPlay-user agent’s interception routines to be embedded within the

application’s address space.

vPlay-user agent installs a signal handler for the SIGSYS signal before transferring con-

trol to the application by jumping to the application’s start address. Once the application

takes control, any events posted by the ptrace subsystem will be handled by the signal

handler which is a part of the vPlay-user agent. Installing a signal handler for SIGSYS is

disallowed by intercepting and disabling the sigaction family of system calls. The signal

handler takes necessary actions such as recording the system call return value and argument

data when SIGSYS arrives. Application passes the system call arguments in processor reg-

isters which are saved on the signal stack by the kernel when the SIGSYS signal is posted to

the application. Within the signal handler context, the agent is able to process the system

call arguments by reading and writing to the signal stack. System call return value can also

be altered as desired by modifying the respective register on the signal stack. The agent
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can virtualize the system call, emulate or nullify it, or process it in any other way it wants

by calling the same system call with altered parameters or other system calls, all in user

space.

ptrace notifications are disabled whenever the agent runs its own code. A flag in the

ptrace extension indicates whether to post system call events to the application. When a

monitored application thread makes a system call, the ptrace extension first resets the flag

and sends a SIGSYS signal to the thread. Since the notifications are disabled, any system

calls made by the agent code that runs as a part of the SIGSYS handler would not cause

further signals to be issued. After the agent completes its processing, it re-enables the

notifications and returns control to the application.

The memory region occupied by the vPlay-user agent is marked read-only while the

application code runs so that potentially buggy application code does not accidentally cor-

rupt the agent’s memory. Any attempts to change the region permissions by the application

are disallowed by intercepting the mprotect system call, which is the only user interface to

change memory permissions. The permissions for the agent’s memory region are changed

to read-write by the ptrace kernel extension before posting the SIGSYS signal. This mech-

anism ensures that the agent retains secure control over the application’s system calls even

though it is a part of its user address space. The agent changes the permissions back to

read-only before returning control to the application code.

vPlay-user agent emulates the sigreturn system call which is normally called implic-

itly at the end of the signal handler. At the end of the system call processing, control is

transferred back to the application by returning from the signal handler. Normally, the

signal stack is setup such that the application automatically calls the sigreturn system

call when it returns from the signal handler. However, that would trigger another debug

event resulting in an unbounded recursion. To avoid the problem, vPlay-user adjusts the

signal stack to remove the implicit call to sigreturn and instead directly performs the

sigreturn operation in user space. It involves appropriately loading the processor registers

saved on the signal stack and jumping directly to the application code.

The initial process started by the agent and the entire process hierarchy rooted at the

initial process automatically inherit the instrumentation. The agent’s code and the shared
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memory region are automatically mapped into any children of the agent program and their

successors at the same address, as a part of the fork system call. The signal handler state

is also inherited by the children processes and threads, resulting in any signals received by

the children threads to be directed to respective agent stubs mapped at the same address in

all the processes. Events generated by children threads are posted to the respective threads

and handled by respective copies of the vPlay-user agent embedded within the host process

of the thread.

vPlay-user also installs the signal handlers for other signals such as SIGSEGV and

SIGBUS, which indicate error conditions. If the application itself attempts to install a signal

handler for a specific signal, the corresponding system call is intercepted and the function

pointer of the application signal handler is separately saved to be called later. It allows

vPlay-user to intercept exceptions caused by application failure, such as a segmentation

violation or divide by zero, to cause checkpoints to be written to disk.

vPlay-user agent can be controlled by sending signals to the target application. vPlay-

user registers a signal handler for a reserved user signal to enable external process to com-

municate with the agent. To control the behavior of the agent or direct it to perform an

action, the user can simply send the reserved user signal to the respective thread. In par-

ticular, it allows an external process to periodically send the start and stop commands to

enforce periodic partial checkpointing and to stop recording and write the checkpoints at

any time based on an external fault detection system. Since the reserved signal sent to the

application is first processed by the embedded vPlay-user agent, it is able to take necessary

action before calling the original signal handler that the user may have installed. When the

application is not being recorded or replayed, vPlay-user agent silently forwards all system

calls and signals to the application. When the application fails due to an exception such as

SIGSEGV, any data recorded until that point is saved to disk.

The basic start and stop primitives that control partial checkpointing are implemented

by the vPlay-user agent. A recording interval commences with an external process sending

all application threads a reserved signal to have them reach a barrier. At the barrier, the

agent first records the current processor context of the thread. Register context is obtained

from the signal stack and descriptor entries used by the thread are obtained through the
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API provided by the operating system. On Linux, get thread area is used to read the

GDT and modify ldt, to read the LDT.

Like the kernel implementation, when an application is recorded, each thread within

the application undergoes recording. Every input that crosses the application boundary

is intercepted and recorded. Each thread in the application records its private processor

state and one thread per-process records the common memory state. Partial checkpoints

generated are stored in separate buffers by the vPlay-user agent within respective processes,

and written to disk on request or when a failure is detected.

3.3.2 Tracking Accessed Pages

To record a partial checkpoint for an application, vPlay-user must determine the memory

pages that are read by the application. vPlay-user leverages built-in support for dirty and

accessed bits provided by the MMU hardware for this purpose. Since the hardware sets the

bits transparently and automatically, there is no continuous additional cost in tracking the

pages. The accessed and dirty bits are typically used within the kernel to implement page

replacement algorithms and virtual memory. A simple extension to Linux’s virtual memory

subsystem exposes this information to the user space. Windows provides an equivalent

API as a standard feature of the memory subsystem, which Windows applications use to

implement sparse data structures etc. Since Linux does not currently expose these bits to

user applications, we have implemented it as a part of vPlay-user.

The accessed and dirty bit information is typically used within the kernel to implement

page replacement algorithms and virtual memory. vPlay-user shares the use of these bits

with the kernel based on two pairs of additional shadow bits allocated in the page descriptor

of the page, one to be used by the kernel and the other to be used by vPlay-user. The

bit sharing is implemented by extending the macros used to set and reset these bits. The

macro to reset the dirty or accessed bits is extended as follows. If the original bit in the page

table entry was set, the kernel would set the shadow bit in the page descriptor meant to be

used by vPlay-user. If it was originally reset, the same shadow bit in the page descriptor

is reset. Similarly, vPlay-user would set the shadow dirty bit meant to be used by kernel

before resetting the page table entry bit. If the bit was originally reset, it resets the same
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shadow bit. When the kernel has to read the bit, it would interpret the bit as set if either

the page table entry bit or its shadow bit is set. vPlay-user’s kernel extension provides

a user interface to reset and query the net dirty and accessed bit information. In the case

of hardware architectures, such as ARM, that do not provide accessed and dirty bits, their

emulated Linux versions (young and dirty bits) can be treated as the hardware bits for the

purpose of the above method.

The start operation calls the kernel extension to scan the page tables of the process

and reset the accessed and dirty bits for each page in its address space. These bits will

be set by the processor as the application accesses the pages during its execution. stop

will query this information later at the end of the recording interval to determine the pages

accessed by the application, to be included in the partial checkpoint.

If a page is modified by the application during a recording interval, the original copy

of the page needs to be included in the partial checkpoint. To obtain the original copies

of the dirty pages, vPlay-user leverages the copy-on-write mechanism implemented as a

part of the kernel’s clone functionality. At the beginning of each recording interval, a child

shadow process is created. It shares all other resources with the parent except for its virtual

memory. The shadow process exclusively acts as a backup copy of the parent’s virtual

memory, and does no processing other than to wait for requests from its parent. It never

modifies any pages used by the application. The shadow and parent processes communicate

through the agent’s shared memory region arbitrated by futex locks. At the end of the

recording interval, the stop operation examines the accessed and dirty bits of each page in

the process address space, obtains the original copies of the dirty pages from the shadow

process if needed and kills it. A new shadow process is created to track the original copies

of the dirty pages for the next recording interval.

3.3.2.1 Incremental Partial Checkpointing

The page tracking mechanism as described above may include multiple copies of the same

page in different partial checkpoints. For instance, if the same page is read by the application

in two consecutive recording intervals, it is included in both the partial checkpoints. To avoid

this duplication, vPlay-user implements a version of incremental checkpointing adapted to
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Algorithm 2: Processing performed at the end of the recording interval to create a partial

checkpoint

1

delete the oldest partial checkpoint;

for each memory region in the process address space do

syscall record = search recent maps to find the system call that mapped this region;

for each accessed page page address do

if page address was read then

add (page address, nil) to the initial page set;

end

if page address is dirty then

if syscall record is not nil then

if syscall record indicates that region is an anonymous private region then

page data = zero page;

end

if syscall record indicates region is a file map then

page data = get the original copy of the page from the file;

end

add (page address, page data) to syscall record;

end

else region not mapped in current interval

page data = get the original copy of the page from the shadow process;

add (page address, page data) to inital page set;

end

end

end

end
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suit the semantics of partial checkpointing. The algorithm consists of two parts. The first

part is implemented as a part of the stop operation (Algorithm 3) and the second part is

implemented by the write checkpoints routine (Algorithm 2), which writes the partial

checkpoints stored in memory to disk when the application exits or encounters a failure.

A data structure, initial page set, represents the set of pages contained in a partial

checkpoint. It consists of records of type (page address, page data), and indicates the

initial set of pages loaded into memory when the application is resumed. Page addresses

are unique within the set and page data indicates the contents of that page. Some records

of the set may only contain the page address without any associated page data, in which

case, the page data would be indicated as nil.

At the end of the execution interval, stop queries the kernel module to determine which

pages in the process address space have been accessed in the previous interval. A page can

be in any of the following four states: not accessed (00), read from (01), written to (10),

read from and written to (11). If a page was read (01, 11), its address is added to the

initial page set with nil page data. If a page was written, the original copy of the dirty

page is obtained from the shadow process. The page address and the original page data are

added to the initial page set.

When the application either exits or encounters an exception, write checkpoints (Al-

gorithm 3) writes the accumulated partial checkpoints to disk. Partial checkpoints are

processed starting from the earliest one to the most recent one in sequence. For each record

in the initial page set, its page address, is written. If the page data is not nil, the

page data is also written. If the page data is nil, the initial page sets of the sub-

sequent partial checkpoints are searched to check if the page address exists. If a record

with matching page address is found in a subsequent partial checkpoint and the associated

page data is not nil, no page contents are written for that page. It implies that the page

was overwritten in a subsequent recording interval and the original copy of the page will be

saved in that partial checkpoint. There is no need to save the page in the present partial

checkpoint. If such a record is not found, the current contents of memory at the address

page address is saved as the page data. Not finding a matching record implies that the

current data at page address was not subsequently modified and it is still valid. Similar
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processing is applied to each partial checkpoint in sequence.

Algorithm 3: Processing performed to write the partial checkpoints when an

exception is encountered

1 for each partial checkpoint do

2 write the pages which have associated page data;

3 for the rest of the page addresses do

4 if the page data is not saved in any subsequent partial checkpoint then

5 save the current memory contents as the page data for that page;

6 end

7 end

8 end

3.3.2.2 Changes in Memory Region Geometry

If the application unmaps a region of memory during the course of a recording interval,

the accessed pages in that region will be missed by the stop operation which is only called

at the end of the interval. By that time, the memory region would escape the scanning

performed by the stop operation as it would have been unmapped already. Similarly, if a

new region is mapped during a recording interval, the shadow process would not contain

the region. vPlay-user handles these cases with the following extension, which intercepts

mapping and unmapping operations to capture the accessed pages in memory regions which

have been mapped or unmapped during a recording interval.

System calls are recorded as an ordered list of event records. Similar to the kernel

implementation, vPlay-user keeps track of system calls that modify memory regions by

also logging them to the recent maps stack. The stack tracks the system calls (mmap,

brk, exec etc.) which have mapped a memory region within a recording interval. The

recent maps stack is emptied at the beginning of each recording interval. When the appli-

cation unmaps a region of memory, the recent maps set is searched to find the most recent

system call event record which maps the region encompassing the region being unmapped.

If a matching system call record is not found, it implies that the region was not mapped
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in the current recording interval. The regions must have been inherited from a previous

recording interval, and the accessed and dirty pages are added to the initial page set in

the same manner as described earlier.

If a matching record is found, it is removed from the set, accessed and dirty pages in

the region are recorded as described earlier, and the recorded pages are linked with the

corresponding system call event record in the main system call log to be written to disk

by write checkpoints.

If a memory region is mapped during the course of the recording interval, it would not

be a part of the address space of the shadow process which is created at the beginning of

the recording interval. The original data of the dirty pages of such a region is determined

as follows. If the region is an anonymously mapped private memory region, the original

data is marked as a special zero page, to indicate that the page is initialized with zeros.

Otherwise, if the page is mapped from a file, the original contents of the dirty page are

obtained directly form the file. Since the page must have been recently accessed by the

program within the current recording interval, it is likely to be in the file system cache and

unlikely to cause disk IO.

In addition to the system calls such as mmap that explicitly map new regions into process

address space, kernel implicitly maps new pages at the top of the stack as the stack grows.

If a page within the stack region, which is not available in the shadow process but accessed

in the current recording interval, is found, it is assumed that the page was mapped by

the kernel and it’s page address is added to the initial page set with nil page data.

Since the kernel grows the stack with zero-initialized pages, if a dirty stack page which is

not available in the shadow process is found, it is added to the initial page set with

associated page data set to zero page.

3.3.2.3 Initial Conditions

The very first stop operation after the application is loaded into memory has to record

the pages that have been touched by the application since it is loaded. If any pages have

been dirtied during that interval, the original contents of those pages have to be obtained

and recorded. vPlay-user applies the same common case approach to the initial loading
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phase as well. Immediately after performing the user space exec operation, vPlay-user

makes an implicit call to start. Among other steps, it records the initial processor context,

where usually only instruction and stack pointers are defined, and creates a shadow process.

When an application is initially loaded, it typically contains the application’s text and data

segments, dynamic loader’s executable object, stack and heap regions. The stack region,

in particular, contains command line arguments, environment variables etc. The shadow

process created as a part of the user space exec operation would provide a pristine copy of

these regions to the subsequent stop. Other shared libraries, such as the C library needed

by the application, are loaded by the dynamic loader, which is considered a part of the

application itself. The dynamic loader maps the shared libraries in the same way as the

application itself would map them, and those regions are treated like other regions mapped

by the application.

If one of the application processes forks a child process, the new child process is au-

tomatically placed within the purview of vPlay-user instrumentation. It’s memory pages

are tracked and system calls are intercepted and recorded. The very first stop command

delivered to the child process would have to record the pages accessed by it since it was

forked. vPlay-user implicitly performs a start which records the register context at the

fork system call and creates a shadow process to preserve the original copies of the pages

dirtied by the child process within the first recording interval.



CHAPTER 4. LOGGING 48

Chapter 4

Logging

vPlay performs logging to collect necessary information and application state to deter-

ministically replay each process and thread in a session from an initial state defined by the

partial checkpoint through the end of the recording interval. Logging serves two functions.

First, it records necessary data, including executable code, which may not be available at

the target environment where the application is replayed. Second, it captures information

related to the outcomes of nondeterministic events to ensure a deterministic replay.

Memory constitutes a significant portion of the log. The mechanism used to track

accessed memory pages that are mapped during the recording interval and add them to

respective system call event record is similar to that used for tracking accessed pages

for partial checkpointing. vPlay records in order, all systems calls that map memory to

a per-process recent maps stack, including a reference to the corresponding system call

event record in the per-thread log queue. When a page is first accessed that was mapped

during the recording interval, a page fault will occur and vPlay will search the recent maps

queue to find the most recently mapped memory region corresponding to the page, which

is the current mapping being used by the thread. The page is then added to the respective

system call event record or to the respective shared memory object if it is for a shared

memory region.

To ensure deterministic replay, vPlay continuously monitors the application to inter-

cept and record nondeterministic events in its execution. In the piece-wise deterministic

execution model of application programs, a replaying program follows an execution course
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identical to recording as determined by program logic as long as there are no nondetermin-

istic events. In order to make an execution interval deterministic, it is sufficient to record

the outcomes of the nondeterministic events that occur within the interval and enforce the

same outcomes at replay.

Figure 4.1: Piece-wise deterministic execution model

Nondeterminism originates from various sources such as hardware interrupts, scheduling

etc. But from application’s perspective, it boils down to four types of events: nondetermin-

istic instructions, system calls, signals, and concurrent accesses to shared memory. vPlay

leverages mechanisms provided by Scribe [35] to handle nondeterminism due to hardware

instructions, signals and shared memory interleavings, and provides different mechanisms

for logging system calls to support replay debugging. vPlay also provides new mechanisms

to integrate logging with partial checkpointing to support seamless replay of the applica-

tion in a different environment. Nondeterministic events are captured in event records

which are stored in order in per-thread log queues. Each event record consists of a header

followed by data of arbitrary length.

Nondeterminism due to hardware instructions is handled by setting the processor flags

to disallow executing these instructions in user mode, causing them to trap into the kernel

where the returned values are recorded. By default, they are directly accessible to the

application and need no operating system intervention. On x86 CPUs, there are three such

instructions, rdtsc perhaps being the most common, and they all involve reading CPU

counters.
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4.1 System Calls

For most system calls, vPlay simply records the system call return value and data, then

provides it back to the application during replay. The system call results are captured as

unstructured data and replayed as such. vPlay does not modify or otherwise attempt to

interpret it. Returning the values on replay instead of re-executing the system calls provides

a simple mechanism for handling most common sources of nondeterminism. It includes

nondeterminism due to system calls such as gettimeofday, select, read and write. For

example, consider the case where two processes concurrently write into one end of a pipe,

and a third process reading from the other end. Normally, this leads to nondeterministic

execution. The data read by the third process depends on the interleaved order in which the

first two processes are scheduled. However, vPlay decouples this interprocess interaction by

independently recording the system call results. During replay, the writers get the number

of bytes written into the pipe as observed during recording, and the reader is passed the

data from the log independent of the writers, thereby removing the nondeterminism and

the dependency between the reader and writers. The same applies to synchronization and

interprocess communication mechanisms such as pipes, semaphores, message queues, file

locks, etc. where processes interact through the system call interface.

vPlay uses a data plug-in which encodes the system call interface of the operating

system to record the system calls. vPlay consults the plug-in to determine which system

call parameters carry data to be returned to the application and their sizes. Each system call

is logged as an event record containing the system call return value and data returned to

the thread through the system call parameters. For each system call, the plug-in encodes the

following three pieces of information: the system call service number, the number and sizes

of the system call parameters, and a boolean value indicating whether a specific parameter

may contain return data. In addition, the plug-in also specifies the calling convention used

by the source operating system to invoke the system call. For instance, Linux/x86 and

BSD/x86 use int 0x80 or sysenter instructions to trap into the kernel to service a system

call. The system call service number is placed in eax register and the system call arguments

occupy respective registers. This approach of using a data plug-in decouples the record-

replay mechanism from the system call semantics of the operating system and makes both
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vPlay and partial checkpoints portable across different operating systems.

There are three types of system calls which need additional processing beyond log and

replay of their return data:

1. Process control (clone, fork, vfork, exit, exit group): Since partial check-

points are taken per-process, system calls for process control need to allocate and deal-

locate state for recording partial checkpoints, and log queues to record event records.

When a new process is created, the child process is included within vPlay instrumen-

tation by attaching to the new process or through an implicit copy of the agent into

the child process in user space implementation. If exit system call is encountered,

the partial checkpoints maintained in memory are written out to disk.

2. Address space geometry (mmap, munmap, brk, execve): For system calls that

manipulate memory regions such as mmap, vPlay logs the memory pages which are

mapped during the course of the recording interval, including code pages from shared

libraries or data pages from other memory mapped files used by the application. When

a system call maps a new memory region into a process address space, the associated

event record will contain the subset of pages from the newly mapped region that were

accessed within the recording interval. In addition, the newly mapped region is pushed

on to recent maps stack. When a region is unmapped (munmap), the corresponding

region is removed from recent maps.

3. MMU context (set thread area, modify ldt): When a system call successfully

adds a new descriptor to a descriptor table, the linear address of the segment base

as represented in the descriptor is associated with the event record of the system

to be logged along with other return data of the system call. No special processing

is required for get thread area or when modify ldt is used to read a descriptor,

except for recording the system call return data.
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4.2 Shared Memory

Replaying shared memory interleaving is critical for deterministic replay, especially on mul-

tiprocessor machines. Memory sharing happens either explicitly when multiple processes

share a common shared mapping, or implicitly when the entire address space is shared, e.g.

with threads. Replaying the order of memory accesses efficiently in software is difficult since

one process may access shared memory asynchronously with, and at any arbitrary location

within, another process’s execution. When applications use shared memory without explicit

locking mechanisms, the operating system is completely unaware of these race conditions.

In the absence of explicit calls to the operating system, it is difficult to transparently in-

strument the application code involved in the sharing. Since memory accesses are quick and

frequent, it is also difficult and inefficient to log individual accesses to the shared memory.

The rest of this section focuses on describing the algorithms and mechanisms to address the

nondeterminism originating in interleaved access to shared memory.

On uniprocessor systems, the order of accesses to shared memory may be reproduced by

replaying the order and precise length of process time slices. Instead of logging every access

to the shared memory region, it is sufficient to log one record per scheduling period specifying

the process identifier of the process that was scheduled in that period and the number of

instructions executed by it in user mode. However, this method cannot be independently

applied to each processor of a multiprocessor system. Two threads running on two different

CPUs could simultaneously access a word in memory and the cache-coherency hardware

may arbitrarily choose one of the threads to access the word first.

When a process either reads or write to a memory word, the process has a logical

exclusive access to the location, during the span of the instruction making that access.

In the absence of exclusive access, memory operations would have unpredictable results.

Figure 4.2 represents such a memory access as a small solid rectangle on a graph with

process address space plotted on y-axis and time on x-axis. We refer to it as an access

event. An access event represents a unit of recorded information. No two access events can

overlap because the process logically holds an exclusive access to the memory location for

the access interval. The specific dimensions of an access event depend on the hardware. For

example, the hardware may provide exclusive access to a word even though only one byte
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Figure 4.2: Clustered Shared Memory Accesses

is accessed by the process. Applications are unaffected by these hardware attributes and

it is possible to artificially change the length of the exclusive access interval or the size of

memory block without affecting application level semantics. By providing exclusive access

to a block of memory for a duration extending beyond the access interval, several thousands

of memory accesses by a single process can be combined into one ”composite” access event.

In effect, the dimensions of the access event are increased from one word to a memory block

and one instruction to an extended access interval, as shown by the dotted rectangle in

Figure 4.2. By locality of reference, if a process accesses a memory location, it is likely to

access the same location, or other locations near it, in the near future. As shown in the

graph, memory accesses by a process tend to occur in clusters. By aggregating near-by

words in memory and near-by accesses in time, and providing the processes exclusive access

to such aggregated units in space and time, the total number of access events to be recorded

would be reduced to a manageable order.

The mechanism to track shared memory interleaving is implemented within the oper-

ating system. Convenient choices for aggregated units of time and space at the level of

operating system are process time slice and memory page respectively. While the operating

system cannot control access to individual memory words, it manages process address space
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in the units of memory pages. While it doesn’t control the execution of individual user in-

structions, it arbitrates access to the CPU in the units of process time slices. By raising

the granularity of shared memory accesses in space and time to the units controllable by

the operating system, it is possible to efficiently record shared memory interleaving.

When a shared page is first accessed by a process, it is given exclusive access to that

page until it is scheduled out. Each such ownership assignment is logged by recording the

identifier of the process, the page number and the duration of the exclusive access, along

with a monotonically increasing sequence number to indicate the order. The duration of

exclusive access is measured in terms of the number of user-mode instructions executed by

the process while owning the page. A process could acquire exclusive access to multiple

pages during a time slice. To guarantee deadlock-free operation, each process releases all

its pages when it is scheduled out. If a process attempts to access a page which is already

owned by another process, it is suspended until the page is released.

In order to implement the above algorithm, two key operating system mechanisms are

needed. (1) A mechanism to selectively assign ownership of a shared page to a specific

process for an interval and (2) the ability to preempt the execution a process at a precise

point in its instruction stream and transfer page ownership to another process. Sections

4.2.1 and 4.2.2 describe these two mechanisms respectively.

4.2.1 Selective Page Ownership Assignment

The main tool to monitor and control memory access in software is the page protection

mechanism. The operating system virtual memory manager uses the page-fault interrupts

to detect accesses to absent pages, and to implement deferred allocation of pages through

copy-on-write mechanism. The same hardware support is used to intercept accesses to

writable pages in shared memory. Each operating system process is assigned a page-table

data structure which the processor uses to decide which portions of the address space are

mapped to physical pages. Each page in the address space is represented by an entry in the

page-table called the page table entry. A page table entry contains architecture dependent

protection and status bits, based on which the processor takes appropriate actions. In

particular, the page-present bit indicates whether the corresponding page is present in
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the physical memory or not. It is possible to force the processor to generate a page fault

interrupt when a page is accessed, by clearing the page-present bit in the respective page

table entry.

When a physical page is shared by two processes, it is represented in the page tables of

each process by a corresponding page table entry indicating the mapping. It is therefore

possible to give exclusive access of a page to one process, while denying access to another,

by setting or clearing the page-present bit in their respective page table entries. Threads

which share their entire address space, also share their page tables and the page table

entries. This is handled by maintaining a set of shadow page tables, one for each thread

along with a reference page table within the host process. When a process is scheduled

to run, the corresponding shadow page table is loaded into the processor’s MMU. When

the reference page table is modified, as page mappings are added, changed or removed, the

change is propagated to the per-thread page tables.

Exclusive access to shared memory is implemented by instrumenting the operating sys-

tem’s page-fault interrupt handler. An unused bit in the page descriptor is used as a flag

that indicates whether exclusive access to the corresponding page is already assigned to an-

other process. If a process accesses a page which is already assigned to a different process,

the task is suspended and placed in a wait-queue where it waits until the page is released.

When the original process eventually releases the ownership to the page and the ownership

is assigned to the waiting process, the page fault handler sets the page-present bit in the

page table entry of the process, and lets it proceed and access the page. The process now

holds exclusive access to the page for the rest of its scheduling period. During this time, the

process can access the page any number of times without generating a fault. Any process

running in parallel on another processor would cause a page-fault, if it attempts to access

the page during this time. Eventually, when the process which is given exclusive access to

the page is suspended, either at the end of its time slice or due to a blocking system call,

the scheduler releases all the shared pages held by the process. The page-present bit and

flag bits for every shared page that the process ever acquired access to are cleared.
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4.2.2 Page Ownership Transitions

To ensure deterministic replay, precise locations of transfer of page ownerships between

different processes have to be recorded. An ownership transfer may occur at an arbitrary

point in the instruction stream of a process and the ownership must be preempted at the

same point of execution during replay. We describe two alternative approaches to record

and replay the point of ownership transfer, one based on hardware instruction counters

(Section 4.2.2.1) and another based on sync points (Section 4.2.2.2).

4.2.2.1 Using Hardware Counters

Hardware performance monitoring counters [30] are typically used for performance analysis

and statistical application profiling by periodic sampling of counter values. These counters

can either count events or measure durations. When counting events, a counter is incre-

mented each time a specified event takes place or a specified number of events takes place.

In particular, most hardware counting facilities can count the number of retired instruc-

tions in user mode. The value of this counter can be read or written to using an instruction

provided for that purpose. The length of the period of exclusive access can be measured by

resetting the counter when the process is first given access to a shared page and reading the

counter value when it is scheduled out. In addition, hardware counters provide the facility

of notifying the operating system by means of an overflow interrupt when the counter value

reaches zero. This can be used to force the replaying process to execute a specified number

of instructions by placing a negative value in the counter and generating an interrupt once

the process has executed those instructions.

However, hardware counters suffer from two key limitations. First, the instruction

which reads the value of a counter is not serialized with respect to the other instructions

in the processor pipeline. The instructions are executed out-of-order and the reported

instruction count could be inaccurate. Second, there may be some latency in the generation

of the overflow interrupt. The interrupt handler may be activated well after the overflow

is reached. Meanwhile, the processes continue to execute and trigger event counters. Since

the precise number of instructions executed by the process has to be recorded and replayed,

the above limitations make the hardware counters unusable as such.
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Instruction counter inaccuracy is overcome by using processor support for setting break-

points at specified instruction pointer values and a checksum of register context. Although

the instruction count value is inaccurate, accurate values for the program counter and other

processor registers are available. Operating system uses this state information to restore

the processor’s register context when a process is rescheduled after it had been previously

suspended. Along with the inaccurate instruction count, program counter value and a

checksum of the processor state containing these register values are recorded. In order to

stop the replaying process when the stipulated number of instructions have been executed,

as specified in the recorded log, the instruction counter is first set to overflow well before the

actual number of instructions, while ensuring that the overflow interrupt is generated in the

proximity of the target instruction, but before it. In the interrupt handler of the overflow

interrupt, a breakpoint is set to the instruction, as specified by the program counter value.

This generates a breakpoint interrupt when the process reaches the instruction pointed to

by the program counter. However, the process may not have reached the desired point

of execution due to the presence of loops in the program. Such cases are discriminated

by comparing the processor register state with the recorded checksum. If the checksum of

the current processor state matches that of the recorded value, then the process is consid-

ered to have reached the same point of execution as the corresponding point in its primary

counterpart. If not, the process is released and its execution is continued until it hits the

breakpoint again.

The success of the above algorithm depends on the instruction margin used to set the

overflow interrupt and the strength of checksum. For Intel processors, our initial measure-

ments show an empirical value for the instruction margin to be about 50 instructions and

for PowerPC processor, we found the same value to be about 15 instructions. By including

the general purpose registers in a 32-bit checksum, we have been able to implement this

procedure for common applications like PostgreSQL. Rare cases of checksum conflict could

be addressed by including the memory values on the stack and even the contents of memory

locations pointed by the general purpose registers. Furthermore, this method is not em-

ployed in every scheduling period. It is only used if the primary process was asynchronously

descheduled by an interrupt. Typically, processes are descheduled when they encounter a
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blocking system call or other synchronous event. In such cases, the system call itself would

provide the reference point to preempt the process. The processing necessary to record the

instructions executed during the preceding scheduling period is performed by the operating

system when the task is suspended, while the task is in the privileged mode. Therefore, the

corresponding instructions are not counted, because the instruction counter is programmed

to count user mode instructions only.

The size of a typical hardware instruction counter on x86 architecture is 32 bits. The

counter value overflows after about four billion instructions and the maximum instruction

count value that ever needs to be recorded is bound by the length of scheduling period used

by the operating system scheduler. On a fast processor, it is possible for the counter value

to overflow while counting the instructions. In such case, the overflow interrupt handler is

instrumented to account for the overflow.

4.2.2.2 Using Sync Points

The method described in Section 4.2.2.1 accurately records and reproduces shared memory

interleaving by providing a mechanism to log precise locations in the execution of a process

and preempt it at the same point during replay. However, it may not be necessary to record

arbitrary execution points, as long as the ownership is transferred at a point which is well

defined both at record and replay with reference to other synchronous kernel events. Sync

points [35] provide such a convenient location for ownership transfers. vPlay adopts the

sync point approach for ownership transfers because it makes the mechanism simple and

more efficient.

vPlay employs a concurrent read, exclusive write (CREW) protocol [13] to manage

page ownerships, and then uses sync points to ensure that transitions occur at precisely

the same location in the execution during both recording and replay. Page state transitions

are allowed to only take place when vPlay can conveniently track, and later replay them.

When a process tries to access an owned page, it faults, notifies the owner, and blocks

until access is granted. Conversely, owner processes check for pending requests at every

sync point and, if necessary, give up ownership. Note that page faults due to the memory

interleaving under the CREW protocol contribute significantly to the pool of sync points.
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Although transfer of page ownership is always performed by the owner process, there is

one exception to this rule due to interaction of blocking system calls and shared memory.

When an owner of a page blocks inside a system call, it cannot transfer its page ownership

to another process. This can cause long delays in ownership transfer and even lead to a

deadlock. To address this problem, vPlay guarantees that user space shared memory is

not accessed by an owner process when it is executing a system call. If another process

needs to access a shared memory page owned by the calling process, vPlay can simply

transfer ownership to the requesting process knowing that the original owner process will

not access shared memory because it is executing a system call. There are no shared mem-

ory interleavings to track between the original owner process and the requesting process.

vPlay can just identify the location in the original owner’s instruction stream at which

this ownership transfer occurs as being the occurrence of the system call, which it already

logs.
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Chapter 5

Virtual Replay

Replay across different operating system environments requires (1) data level independence

from the source environment and (2) a virtualization layer which insulates the application

from the target to correctly playback the recorded data. Partial checkpointing and logging

mechanisms described in Chapters 3 and 4 are designed to provide a complete and self-

contained recording of all data necessary to replay the application’s execution. The state

included in the recording is selected such that the application’s replayed execution is com-

pletely decoupled from the target environment. In addition, the target environment must

also provide a mechanism to launch the application from the recorded data and insulate its

execution from the discrepancies of the target host environment.

5.1 vPlay Container

Even with all the data available, natively running an application built for one operating

system on a different one is difficult. Applications are typically compiled for a target ar-

chitecture, operating system and environment. Specific features, interfaces, memory model

etc. tie an application to its target operating system. In order to run an application built

for one operating system on another, it has to be explicitly ported to the target by making

appropriate changes to the source code. Unless the application is originally designed for

portability, even porting may not be straight forward and may amount to rewriting the

entire application.



CHAPTER 5. VIRTUAL REPLAY 61

Processor emulators can run applications built for one architecture on another but still

require the same operating system. Virtual machines such as Qemu [5] and Xen [4] provide

full system emulation so that they could host a different guest operating system, which in

turn could run the applications built for it. However, they cannot allow an application to

run natively without the guest operating system to provide the system services. Since they

need to encapsulate the guest operating system and its applications in their entirety, the

state associated with them is typically too large for easy sharing with the developers and

may contain sensitive client data. Furthermore, they tend to obfuscate application level

events necessary for debugging by introducing additional intermediate layers of software.

vPlay provides vPlay Container, a thin virtual replay environment which consistently

emulates the semantics of the application’s interfaces with the target by decoupling its

processes from their address space, memory, binaries, CPU and MMU structures, operating

system resources and services, and each other. vPlay Container decouples the application

from the target in three key areas which enable it to run the application on a different

operating system than the one it is built for. First, the application is decoupled from

the memory address space and its content. In particular, the application is decoupled

from its binaries by trapping accesses to the code pages and presenting the actual pages

captured at the source, thus avoiding any version discrepancies. The ABI incompatibility is

addressed through the portable design of the partial checkpoint and the partial checkpoint

loader. Second, applications are decoupled from the processor MMU structures such as

segment descriptor tables through a binary translation technique designed specifically for

user application code, which traps and emulates the offending instructions during replay.

Third, the application is decoupled from the operating system by abstracting the system call

interface through emulation and replay. System call emulation decouples the application

from the various operating system specific resources and dependencies. It also decouples

individual processes of the application from each other by virtualizing all inter-process

interactions.
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5.1.1 Memory Address Space and Content

A key requirement for heterogeneous replay is that the same address space regions used by

the application during recording be provided to the application during replay. Since vPlay

captures non-relocatable chunks of application binaries directly from application’s memory,

they have to be loaded at the same address offsets at replay. However, the required address

regions may not be available because, as per the general memory layout of the target

operating system, the memory regions may be reserved for the operating system or the

system libraries. For example, the default Linux/x86 configuration reserves top 1 GB of

address space for the kernel use, whereas the default Windows configuration does not use the

same size address space layout. Furthermore, system libraries such as Windows’ kernel.dll

and Linux’s virtual dynamic shared object (VDSO) require to be loaded at specific address

offsets which they reserve for themselves, preventing the use of their address regions by

general applications.

Virtual machines and emulators decouple the user code from the target system by cre-

ating a virtual MMU, which maintains the internal state of the MMU in software and uses

an elaborate scheme to emulate the memory management features such as segmentation

and page fault mechanism. It requires extensive fine grain instrumentation or specific hard-

ware support to implement a virtual MMU. However virtual machines cannot avoid the

additional complexity and cost because they virtualize an entire guest operating system in-

stance, which assumes exclusive control over the entire memory address space and resources

available to it. Virtualizing the memory address space used by the guest operating system

itself and low-level firmware and devices is particularly difficult.

vPlay Container avoids full emulation of the processor MMU by limiting the scope

of its virtualization to the replaying application. Applications only have a subset of the

total address space available to them, which excludes the regions used by the operating

system, firmware and hardware, which significantly simplifies the requirements. Further-

more, common operating systems share the basic memory layout on a given architecture

and typically allow the user to configure the way the linear address space is partitioned

between the user and kernel space using a boot-time switch. For example, Linux/x86 and

Windows/x86 allow the user to partition the 4 GB address space between user and kernel
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at 1 GB granularity. To provide the address regions required for replay, it is sufficient to

align the application address space between the source and target systems. For example,

to record Linux/x86 applications and replay them on Windows/x86, a simple way to avoid

conflicts is to configure Linux/x86 and Windows/x86 to allocate the bottom 2 GB and 3

GB, respectively, of address space to application programs. That way, Windows system

libraries, which only occupy a small region immediately below the kernel region, will not

conflict with the application’s pages in the bottom 2 GB of address space.

vPlay Container decouples the application from the binaries and the memory state it

requires by directly loading the memory content from the recording. When the application

maps a new address region, the memory pages which it is going to access from that region

are brought into memory from the log. This mechanism also enables replay on a different

operating system distribution, regardless of the environment and packages installed. For

instance, Linux kernel automatically maps the VDSO region that occupies a memory page

within the process address space. A compatible C library uses it as a stub for system call

entry. Since both the VDSO page and the respective pages from the C library within the

application that use the system call entry stub are obtained from the source environment,

the replaying application will run successfully even though the target kernel and the C

library in use are different.

5.1.2 Instructions and MMU/CPU Structures

Most instructions dispatched by the application are executed natively. Unlike virtual ma-

chine emulators, vPlay does not need to process privileged instructions since a recording

never contains them. vPlay only tracks pages within the application address space. Any

privileged instructions such as in or cli, which may be executed as a part of the sys-

tem calls, are not included. However, there are two classes of instructions that vPlay

may need to emulate: (1) instructions explicitly referencing user created segments, and (2)

instructions that invoke a system call.

vPlay Container virtualizes the replaying application’s access to the global processor

structures by emulating the instructions that reference them. The x86 architecture provides

global (GDT) and local (LDT) descriptor tables, which describe memory segments in its
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segmented memory model. They are mostly used and managed by the operating system.

However, a limited interface to access them is exposed to the system libraries which imple-

ment low level system services. For example, multi-threaded applications on Linux create

private memory segments by adding segment descriptor entries to these tables to store

per-thread local state, which can be uniformly accessed via instructions that reference the

entries. Because the GDT and LDT may be managed differently by different operating sys-

tems, vPlay virtualizes application’s access to the tables. If the application is replayed on

a different operating system from where it was recorded, vPlay emulates those instructions

to avoid conflicts with the target operating system.

vPlay intercepts the instructions used to invoke a system call, and emulates the call

itself. On the x86 architecture, the interrupt descriptor table (IDT) contains the entry point

for the system call interrupt, which is invoked by executing the sysenter instruction or the

int instruction with the index of the system call interrupt descriptor. vPlay intercepts

these instructions and emulates the respective system call based on techniques developed

in RR [6]. For most system calls, emulation is done by simply returning the results of the

system call from the recording, bypassing kernel execution.

5.1.3 Operating System Resources and Services

Emulating system calls provides a uniform and consistent method to decouple the appli-

cation from various types of operating system resources. Applications alternate between

user and kernel space execution, typically performing most of their work in the user space,

while delegating resource allocations and other privileged operations to the operating sys-

tem kernel. The user space portions of an application’s execution, by definition, do not

depend on the kernel services and can be executed independently, even on a different op-

erating system. The kernel space portions of execution occur through well-defined system

call interface, and can be collapsed into a quick replay of the system call results to the

application, thus bypassing the kernel execution. There are three classes of exceptions in

which system calls must be emulated instead of just returning their results: system calls for

process control, system calls that modify address space geometry, and system calls related

to MMU context. We discuss these in further detail in Sections 5.3 and 5.4. Replaying the
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system call results is done in an operating system independent way by vPlay on behalf of

the application. As long as the application receives consistent responses to the system calls

it makes, the application continues to run as expected.

Any differences in the system call API between the source and target operating systems

does not affect replay since the replaying application never directly contacts the target

system. The application will replay consistently even though the system calls it makes are

unavailable or have different semantics.

5.2 Virtual Replay Mechanism

To replay a piece of previously recorded application, the user chooses a process and an inter-

val of execution to replay by selecting the corresponding partial checkpoints. To reproduce

a deterministic replay of interleaved shared memory accesses among application processes,

vPlay computes a shared memory closure of the selected process and replays all processes

in the closure together as a session. A shared memory closure of a process p is the smallest

set of processes consisting of p, such that no process within the set shares memory with a

process outside the set. All threads within each process in the closure are included in the

session and replayed together.

To aid debugging, replay can also be done across consecutive recording intervals by

coalescing the partial checkpoints and concatenating the respective logs. The pages re-

quired by a process is computed by consolidating the partial checkpoints representing the

interval. In particular, the new initial page set is computed by taking the union of

initial page sets of individual partial checkpoints. If a particular page address appears

in the initial page set of more than one partial checkpoint, the element with non-nil

page data in the earliest partial checkpoint is added to the new initial page set. During

replay, memory pages accessed by the application are loaded into memory in stages. The

application is initially resumed with the pages contained in the initial page set. The

rest of the pages accessed by the application during the course of its execution are loaded

progressively at each system call that maps the region. When the application makes a

system call that maps a new memory region during replay, the corresponding system call
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event record would contain the set of pages to be loaded into memory at that point.

Virtual replay consists of two phases. (1) Load phase, where the coalesced partial check-

point of each process in the session is restored. (2) Replay phase, where the application

threads are deterministically re-executed within vPlay’s control. Transition from load

phase to re-execute phase occurs when control is transferred to the application code. With

vPlay instrumentation, the control is transferred with an implicit sigreturn at the end of

the signal handler that loads the processor context. In case of replay through Pin (Section

5.4, control is transferred through a special system call which is intercepted and interpreted

by loading the processor context.

Load phase is performed by the partial checkpoint loader. As a part of the load phase,

the partial checkpoint loader prepares the process context required for the application to

run independent of the target. It includes creating and populating the memory regions,

creating the application processes and threads, and loading user created segment descriptor

table entries. If the target operating system’s segment layout matches with that of the

source and it provides an API to access the tables, vPlay loads the entries into the tables.

If not, emulation of instructions that explicitly reference the segments is done by vPlay.

5.2.1 Integration with the Debugger

vPlay integrates with a standard interactive debugger in order to closely monitor and

analyze the execution of the application being replayed. The virtual replay mechanism

itself just resumes the application and replays it for a specified interval. However, for this

process to be useful for root cause analysis, it is necessary to expose the finer steps taken by

the application during its execution. Particularly, it is necessary to allow the programmer to

set breakpoints at arbitrary functions or instructions, watch the contents of various program

variables at each step etc., at the source code level.

vPlay integrates with GDB by providing a GDB script that directs the load phase

until the application is fully initialized for the user to start interacting through the debug

interface. It also contains the necessary GDB directives to load the symbol information

for the application being debugged. The script begins the debugging session with the

invocation of the program that performs the load phase as the debuggee, which reads the
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partial checkpoint files, reconstructs their address space and initializes their threads. The

debugger does not intervene during this process. The latency of the load phase is usually

imperceptible to the user. After the application is loaded, a single forward step within the

GDB script transfers control to the application code. The application is presented to the

user in a stopped state while the debugger shows the register state and the source line of

the application a few moments prior to the failure. The user can then set break points,

single step through the source lines to examine program variables and monitor application’s

interactions with the operating system and other processes, to analyze the root cause.

Any inputs needed by the application are automatically provided by vPlay. For in-

stance, when the application attempts to read from the console, the input is directly pro-

vided from the log rather than waiting for user input. When the application executes the

system call interrupt instruction in a debugging session, the perceived state of the applica-

tion’s registers and memory after returning from the instruction would be identical to its

state at the corresponding point during recording. Any outputs generated by the applica-

tion are captured into an output file. Any graphical output produced by the application

may not be directly visible to the user since the window manager may be external to the

application and not recorded. However, the user can observe the interactions between the

application and the window system within the debugger interface.

When vPlay-user is used, although the instrumentation mechanism itself is based on

ptrace, it does not interfere with existing debugger semantics of the ptrace interface.

Any ptrace notifications destined to external processes continue to occur. However, as the

application executes, the ptrace subsystem generates additional application events in the

form of signals that notify vPlay-user agent of the application’s events. Although these

events are extraneous to the application, they do not perturb its execution. Most debuggers

allow these events to be masked from the user during a debugging session. For example,

GDB can be configured to not print the notification signals by adding "handle SIGSYS

noprint" to .gdbinit.
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Category System Call Linux Windows

Process control

fork emulate with fork emulate with

CreateProcess

clone forward to the OS emulate with

CreateThread

exit group wait for other threads wait for other

threads

Memory geometry

mmap, brk,

execve

emulate with mmap and munmap emulate with

VirtualAlloc

shmat, mmap with

MAP SHARED flag

emulate with shmat emulate with

MapViewOfFile

munmap forward to the OS emulate with

UnmapViewOfFile

MMU context set thread area,

modify ldt

forward to the OS update

selector base

table

Table 5.1: vPlay system call emulation

5.3 Replay Across Linux Distributions and Kernel Versions

5.3.1 Load Phase

The load phase is performed by the Linux version of the partial checkpoint loader. It is

implemented as a statically linked program which creates the application processes, re-

stores their address space, places them in a vPlay Container and transfers control to the

application code. The partial checkpoint loader itself is built to be loaded at an unconven-

tional address region to avoid conflicting with the pages of the application and does not use

the standard program heap or stack. The partial checkpoint loader begins by creating the

per-session shared memory regions as defined by the shared memory objects, and mapping

them into its address space. The sparse set of memory pages in each shared memory object

are then loaded into respective shared memory regions, and the regions are unmapped.

A set of processes, each to become one of the processes recorded in the partial check-

point, are recursively created with unconventional address regions used as their stacks, to
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avoid conflict with the application’s stack pages. Each process begins restoring itself by

attaching to the shared memory regions indicated by the shared maps set in its partial

checkpoint. Each page in the initial page set is then mapped as an independent,

private, anonymous, writable region and its initial page content is loaded. After the

page content is loaded, its protection flags are set to their original recorded values through

mprotect system call. For example, if the page was originally a file map of a read-only

shared library, it is first mapped as a writable anonymous region to load its contents, and

the original page permissions are restored afterwards.

After the process address space is prepared, they are placed within a vPlay Container,

initialized with pointers to the log queues. Each process recursively creates its threads,

which load respective descriptor table entries using the Linux API, and enter a futex

barrier. Once all threads reach the barrier, the main replay thread invokes vPlay to attach

to the threads and start replaying. Each thread then executes the instructions to restore

the processor registers. When the instruction pointer is finally restored through a jmp

instruction, the thread starts running the application code.

5.3.2 Replay Phase

Even though vPlay Container provides sufficient decoupling to replay across different oper-

ating systems, for the sake of efficiency, vPlay omits the virtualization of segment descriptor

tables when replaying between different Linux systems. Since different Linux versions man-

age the GDT and LDT in the same way, and provide the API to load the entries required

by the application, vPlay directly restores the segments captured from the source and

allows the application to natively execute the instructions that reference the user segments

without emulation. The target Linux system would correctly interpret the instructions as

per the segment entries established on the target processor during the load phase.

Most system calls made by the application are handled by simply copying the data

from the respective event records. Table 5.1 lists three main classes of exceptions, where

further processing is performed beyond data copy. In particular, for the fork system call,

vPlay creates a new child process and preloads the pages indicated in the event record.

These pages include the pages accessed by the child process in the recording interval which
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were not present in the parent’s address space. For the exit group system call, vPlay

defers its execution until all other threads in that process exhaust their event records, to

avoid their premature termination. For system calls that map a new memory region (mmap,

brk, execve etc.), the pages indicated in the system call’s event record are mapped and

preloaded into memory. For system calls that map a System V shared memory region or

a shared, memory mapped file, the shared memory object indicated in the event record

of the system call is mapped. For clone, set thread area and modify ldt system calls,

the system call is simply forwarded to the underlying kernel. The interleaving of shared

memory accesses as recorded in the event stream is enforced among replaying processes

and threads and any signals received by the application within the interval are delivered at

respective points using the Scribe [35] mechanisms.

5.4 Replay Across Linux-Windows

vPlay Container for replaying Linux applications on Windows is implemented using Pin

instrumentation [39]. It is conceptually similar to replaying on Linux as discussed in Section

5.3. We highlight the steps which are different below.

5.4.1 Load Phase

The load phase is performed by the Windows version of the partial checkpoint loader in

user space using the Windows API. To replay the application, the partial checkpoint loader

itself is started under the control of vPlay pintool [39]. Replay is invoked on the command

line as: pin -t vPlay.dll -- loader.exe <recording file>. vPlay.dll is a pintool

which implements the replay phase and loader.exe implements the load phase.

vPlay pintool does not interfere with the loading process performed by the partial

checkpoint loader. The creation of processes, partial reconstruction of their address space

and creation of threads within them is performed as already outlined, except using equiv-

alent Windows APIs. Once the partial checkpoints are loaded, each thread leaves the syn-

chronization barrier and makes a special system call, which is normally undefined in Linux

and Windows. The system call activates vPlay pintool by notifying it of the completion of
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the load phase and transition into replay phase. vPlay pintool reads the respective log file

of the thread to obtain its saved processor context and loads it using Pin’s PIN ExecuteAt

API function, which turns the control over to the application code.

5.4.2 Replay Phase

vPlay pintool continues with the replay phase to monitor the application to satisfy the

requests it makes. In particular, vPlay emulates the key categories of the Linux system

calls listed in Table 5.1 using equivalent Windows APIs. For other system calls, vPlay

pintool traps the system call interrupt instruction, copies system call return data to the

application, increments the instruction pointer to skip the system call instruction and allows

the application to continue normally. In the absence of such a mechanism, executing the

Linux system call interrupt instruction would cause a general protection fault on Windows.

When new memory regions are mapped, respective memory pages that will be accessed

by the application in its future execution are brought into memory in a way similar to

Linux replay, except using the Windows semantics. For instance, Windows treats memory

address space and the physical memory that backs it as separate resources, whereas Linux

transparently associates physical pages to memory mapped regions. To emulate the Linux

system calls that map new memory regions, vPlay reserves both the address space and the

memory together.

Instructions explicitly referencing user segment registers are treated through a trap and

emulate mechanism. Windows configures the CPU descriptor tables in accordance with

its memory layout which is different from that of Linux. A segment selector, which is

an index into the segment descriptor table, used by the Linux application may point to

a different region of memory on Windows or may not be valid at all. Any attempts to

update the Windows descriptor tables may result in a conflict with the way Windows uses

its resources. vPlay resolves these conflicts by intercepting and emulating the offending

instructions within the Linux application’s binary and the system calls that modify the

descriptor tables.

vPlay uses two key-value table data structures, segment selector and selector base,

to emulate the instructions with segment register operands. At any given time during replay,
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the segment selector table maps a segment register to the selector it contains, and the

selector base table maps a selector to the base linear address of the segment that it points

to. When an instruction which refers to one or more of its operands through a segment

register is encountered during replay, vPlay computes the location of each operand in the

flat address space using the formula, (segment base + operand base + displacement +

index*scale), where segment base is the base address of the segment and is obtained by

joining the two tables on the selector. The remaining terms have instruction semantics and

are obtained from the instruction. Using Pin’s API, vPlay rewrites the original instruc-

tion such that the final linear address of the operand is used rather than referencing the

segment register. The tables are initialized based on the descriptor table state captured in

the partial checkpoint. As the application executes during replay, the segment selector

table is updated by intercepting the mov instructions that load the segment registers with

selectors and the segment selector table is updated by intercepting the set thread area

and modify ldt system calls, which provide the mapping between the segment base address

and the selector.

5.5 Replay Across Hardware Architectures

Since vPlay directly captures binary instructions from the application’s memory, it re-

quires that the source and target hardware architectures be the same. In order to provide

replay across different architectures and to provide a general support for virtual application

address space, we have done a preliminary integration between vPlay and Qemu-user [5].

Qemu-user is an ancillary component of Qemu [5] which allows an application built for one

architecture to be executed on a different architecture of the same operating system. It

leverages a subset of Qemu’s functionality to execute a user application on a virtual CPU

without the need for a guest kernel running underneath the application. While this is cur-

rently work-in-progress, we have been able to replay simple Linux/x86 partial checkpoints

on Linux/ppc hardware.

vPlay provides three extensions to Qemu-user that enables it to replay a partial check-

point on a different operating system and architecture. First, a custom partial checkpoint
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loader which enables Qemu-user to read files in vPlay’s partial checkpoint format and load

them into memory. Qemu-user currently only supports binaries in ELF format. Second,

a system call replay mechanism that replaces Qemu-user’s existing system call translation

component in case the loaded binary is a partial checkpoint. Third, the SoftMMU [5] func-

tionality from Qemu is integrated such that application addresses are translated to addresses

which are valid on the host, thereby effectively providing the replaying application with an

independent virtual address space.

The replay operation is initiated by invoking Qemu-user with the partial checkpoint

file as an argument. Qemu-user goes through the normal initialization process necessary

to execute a Linux user application. It starts with basic initialization of the virtual CPU

data structures followed by loading the application executable. If the executable is an ELF

binary, Qemu-user invokes its ELF loader component which appropriately maps the binary

into memory in user space. In case of virtual replay, it calls the partial checkpoint loader,

which maps the pages as already outlined. The intermediate register state as represented

in the partial checkpoint is then read and returned to Qemu-user for further initialization.

Qemu-user continues with the initialization by loading the registers returned by the

partial checkpoint loader. It then sets up the Interrupt Descriptor Table (IDT) to handle

exceptions (in particular, to trap system call interrupt), and the Global Descriptor Table

(GDT) with descriptors referring to the 4 GB linear address space, as used by Linux. Any

additional descriptor entries previously setup by the application at recording time are added

to the respective descriptor tables by calling the emulated versions of set thread area

and modify ldt system calls implemented by Qemu-user which act on the virtual CPU.

Finally, Qemu-user loads the segment registers with right selectors and starts the virtual

CPU. At this point, the checkpointed application resumes execution at the beginning of the

recording interval, as dictated by the instruction pointer value. The execution continues

until a processor exception is raised.

If a system call exception is raised, Qemu-user normally forwards the system call to

the underlying kernel after performing necessary translation. While replaying a partial

checkpoint, however, Qemu-user calls vPlay’s system call replay mechanism, which returns

the previously recorded system call result back to the application. vPlay continues to
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monitor the application and ensures a deterministic replay until the execution reaches the

end of the specified interval. In particular, system calls that add new memory regions to the

address space are handled as described earlier, except that the target architecture specific

versions of map and unmap system calls (target mmap and target unmap) provided by

Qemu-user are used to map the pages. set thread area and modify ldt are also handled

similarly except that the Qemu versions of the respective system calls, which act on the

virtual CPU are used.
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Chapter 6

Evaluation

We have implemented vPlay as a kernel module on Linux 2.6.11 and 2.6.18 kernels and

associated user-level tools that interact with the kernel module through an ioctl interface to

perform the record and replay functions. The prototype can produce recordings of multi-

threaded and multi-process Linux applications and replay them across the two kernels. We

have also implemented the vPlay Container abstraction and a user-level replay tool for

Windows based on Pin binary instrumentation [39], which currently only replays recordings

of non-threaded Linux applications on Windows. Our unoptimized prototype works with

unmodified applications without any library or base kernel modifications.

Using our prototype, we evaluate vPlay’s effectiveness in (1) replaying recordings across

environments differing in software installation, operating system and hardware, (2) captur-

ing the root cause of various types of real software bugs on server and desktop applications,

(3) minimizing runtime overhead and storage requirements of recording applications.

6.1 Platform Independence

Table 6.1 shows the software and hardware configuration of the record and replay environ-

ments and Table 6.2 lists the application workloads used for the experiments. Recording

was done on a blade in an IBM HS20 eServer BladeCenter, each blade with dual 3.06 GHz

Intel Xeon CPUs with hyperthreading, 2.5 GB RAM, a 40 GB local disk, and interconnected

with a Gigabit Ethernet switch. Each blade was running the Debian 3.1 distribution and



CHAPTER 6. EVALUATION 76

Record-Replay Debian Replay Windows Replay Gentoo

IBM HS20 BladeCenter Lenovo T61p Notebook Apple MacBook Pro

3.06 Ghz Intel Xeon 2.4 GHz Intel Core 2 Duo 2.66 GHz Intel Core i7

Debian 3.1 Windows XP 2.16 VMware Fusion 3.0 / Mac OS X 10

Linux 2.6.11 2 GB RAM, 160 GB disk Gentoo 1.12

2.5 GB RAM, 40 GB disk Linux 2.6.18

4 GB physical RAM, 512 MB to VM

500 GB physical disk, 8 GB virtual disk

Table 6.1: Diversity of replay environments used for the experiments

the Linux 2.6.11 kernel and appears as a 4-CPU multiprocessor to the operating system.

For server application workloads that also required clients, we ran the clients on another

equivalent blade. The server applications were the Apache web server in both multi-process

(apache-p) and multi-threaded (apache-t) configurations, the MySQL database server

(mysql), and the Squid web cache proxy server (squid). httperf-0.9 was used as the

benchmark for the web servers and web proxy to generate 20,000 connection requests. The

desktop applications were a media player (mplayer) and various compute and compression

utilities (gzip, bc, and ncomp). The applications were all run with their default configu-

rations. Each application workload was recorded in three different ways by taking partial

checkpoints at three different intervals: 5, 10, and 15 seconds.

Replay was done in three environments, each significantly different in its hardware and

software configuration from the others: (1) another blade in the BladeCenter running Debian

3.1, (2) a Lenovo T61p notebook with an Intel Core 2 Duo 2.4 GHz CPU, 2 GB of RAM,

and a 160 GB disk running Windows XP 3.0, and (3) and a VMware virtual machine

with 2 CPUs, 512 MB of RAM, and an 8 GB virtual disk running Linux 2.6.18 kernel on

Linux Gentoo 1.12 distribution using VMware Fusion 3.0 on a MacBook Pro notebook with

2.66 GHz Intel Core i7 processor, 4 GB of RAM and 500 GB disk. None of the recorded

application binaries were installed or available in any of the environments used for replay.

The Windows and Gentoo replay environments had completely different software stacks

from the Debian recording environment. Furthermore, the IBM blade center, the Lenovo

notebook and the MacBook notebook with VMware virtual hardware represent diverse
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Name Description Workload

mysql MySQL database server MySQL 3.23.56, 10 threads, run

sql-bench

apache-t Apache webserver multithread configu-

ration

Apache 2.0.48, 57 threads, run httperf

0.9

apache-p Apache webserver multiprocess config-

uration

Apache 2.0.54, run httperf 0.9

squid Squid cache proxy server Squid 2.3, run httperf 0.9

bc Arbitrary precision expression evalua-

tor

bc 1.06, compute π to 5000 decimal

places

gzip Gzip compression utility Gzip 1.2.4, compress 200 MB

/dev/urandom data

ncomp Ncompress compression utility Ncompress 4.2, compress 200 MB

/dev/urandom data

mplayer Mplayer media player Mplayer 1.0rc2, play 10 MB 1080p HD

video at 24 fps

Table 6.2: Application workloads

hardware configurations. Gentoo’s 2.6.18 Linux kernel and Debian’s 2.6.11 Linux kernel

were very different with many new core features and code changes added between the two

kernels. All of the application recordings were determinstically replayed correctly across all

three different replay environments except for mysql and apache-t, which were replayed in

the two different Linux environments but not in Windows due to lack of threading support.

6.2 Debugging with vPlay: Example Bug Scenarios

This section illustrates through several real life software bugs listed in Table 6.3, how vPlay

is used to perform root cause analysis. Figure 6.1 shows a graphical screenshot of a typical

vPlay debugging session with a partial checkpoint loaded within the GDB debugger. The

application is paused at a breakpoint in the source code and the user is able to use standard

debugging facilities. For example, mousing over a variable shows its content.

Most of the application bugs were taken from Bugbench [37], which is an assorted collec-
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tion of real life bugs reported in popular open source software with an intent of providing a

benchmark to measure the effectiveness of existing bug detection tools based on static and

dynamic code checking. In addition to the common types of bugs in the BugBench suite, we

also included bugs which only occur due to incompatible target environment. Those type

of bugs were not present in the Bugbench suite and we obtained them from Internet forums

where they were reported. The bug types include nondeterministic data race conditions,

different types of memory corruption issues such as buffer overflow etc. We recorded each

faulty application while the bug is triggered in the Debian environment. The applications

were run by applying workload with specific characteristics such that the bug is triggered. In

some cases, the experiment had to be repeated many times before the bug manifested. The

recordings of the bugs were then analyzed by deterministically replaying them within the

GDB debugger using vPlay in the Gentoo environment. We also reproduced all the bugs

in the Debian environment and all the bugs except mysql and apache-t in the Windows

environment.

Name Application Bug

mysql MySQL 3.23.56 Data race

apache-t Apache 2.0.48 Atomicity violation

apache-p Apache 2.0.54 Library mismatch

squid Squid 2.3 Heap overflow

bc bc 1.06 Heap overflow

gzip Gzip 1.2.4 Global buffer overflow

ncomp Ncompress 4.2.4 Stack smash

mplayer Mplayer 1.0rc2 Device incompatibility

Table 6.3: Example Software Bugs

A primary use case of vPlay was in debugging itself during the development process.

While vPlay captures and exposes the buggy execution of an application, a recording rep-

resenting a bug-free execution serves as a test case for vPlay itself. A part of vPlay’s

regression test suite consists of a set of recordings captured from bug-free intervals of ap-

plication’s execution. While replaying a recording, if vPlay notices a discrepancy between

the application’s actual execution and the events recorded in the log, it points to an in-
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ternal inconsistency. This was also the mechanism we used to identify various application

interfaces which needed to be emulated and the state of resources to be captured.

In our experiments with real software bugs, we found that vPlay is able to guide the

debugging process towards the root cause of the failure where most conventional debugging

methods fall short. In particular, vPlay was able to aid in debugging the following type of

bug scenarios:

1. Bug depends on specific library version: Applications often rely on libraries and

code components supplied by third parties and expect them to provide specific pro-

gramming interfaces for them to be compatible with the application. With growing

complexity of applications, it is challenging to accurately determine the dependency

graph among various application components. Any incompatibilities between appli-

cation components surface as failures or faulty behavior. Such incompatibilities could

arise due to outdated library versions, incomplete or incorrect installation, overwrit-

ing of common libraries by co-deployed applications that need a later version of the

libraries etc. Reproducing and diagnosing such failures can be difficult due to the

large search space of possible errors. Since vPlay captures the actual code pages

in the offending libraries and uses them during replay, the behavior is guaranteed to

be reproduced. In addition, the information regarding the provenance of the data

included in the recording directly points to the problem source.

2. Bug triggering data on disk: Sometimes data on disk such as an ill-formatted entry

in a large data file, or a particular script in a large source code repository could be the

source of the bug. In such cases, identifying the specific piece of bug-triggering data

would be crucial to problem diagnosis. Existing record-replay tools based on system

call interposition may capture the data accessed through system calls but any data

directly accessed from the memory regions would be missed. vPlay narrows down

the problem by eliminating potentially large data sets in the source environment from

consideration and focuses analysis to the small amount of data captured as a part of

the recording.

3. Nondeterministic race conditions: Shared memory race conditions are notori-
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Figure 6.1: Interactive debugging session within vPlay integrated debugger showing as-

sembly instructions within the partial checkpoint and corresponding source lines
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ously hard to reproduce and debug. Bugs that depend on thread scheduling could

take a large number of iterations to manifest. Even so, an occurrence of the faulty

behavior may only prove that the bug does exist, but it does not necessarily help

with root cause analysis, which may require many repeated occurrences. vPlay’s

software-level support for record-replay of threaded applications captures the specific

interleaving of accesses to shared memory which cause the faulty behavior. Once

captured, the same interleaving and the buggy behavior can be deterministically re-

produced every time.

4. Offensive client requests and external inputs: Certain bugs manifest only un-

der specific workloads or when specific types of external inputs are presented to the

application. Identifying the source data responsible for the failure is key to addressing

those failures. vPlay captures the required application inputs and replays it back to

the application in a way which is consistent with the application semantics, even if

the target system itself does not support the corresponding interface.

5. Lost program context: Conventional debugging methods, such as core dump anal-

ysis, which do not preserve historical execution context are often ineffective for many

difficult cases of memory corruption. The final state of the application may bear no

link to the original root cause of the problem. Examining the crash site on a post-

facto basis may not provide any leads. In such cases, the relevant execution context

is either completely lost due to program counter itself being corrupted or even if the

program is in a consistent state, it’s final state may be seemingly unrelated to the

root cause. Replaying the execution steps prior to the failure with the intermediate

state of program memory pages preserved, exposes the program control flow that lead

to the corrupt end state of the program.

In general, vPlay’s approach of capturing software bugs into a self-contained recording

reduces the overall turn around time of problem determination in two ways. First, vPlay

helps reproduce and diagnose otherwise hard-to-reproduce and complex bug scenarios. Sec-

ond, vPlay also streamlines the bug fixing process for even simple bugs which, according

to anecdotal evidence, represent most of the support tickets received by large technical
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support organizations. In addition to reducing the time taken to fix complex bugs, the

vPlay model also expedites the resolution of simpler issues by containing debugging to a

streamlined and repeatable process.

In our experiments, once a recording of the bug occurrence was captured, vPlay was

able to deterministically replay the bug every time, even in a different environment, and was

useful to diagnose the root cause of each bug. For example, for the mysql and apache-t non-

deterministic data race bugs, vPlay correctly captured the specific interleaving of shared

memory accesses required to reproduce the bug. vPlay was able to capture all data required

to reproduce these bugs with partial checkpoint and log sizes orders of magnitude smaller

than the application’s memory footprint. In general, vPlay captured the bug-triggering

conditions and input required to reproduce all bugs. For instance, the malformed client

request which caused squid to fail and the relevant code snippet from the input program

that triggered a heap overflow in bc were part of the log recorded by vPlay. In case of

apache-p and mplayer, the bugs occurred due to incompatibility with the target environ-

ment. For apache-p, one of the processes would silently exit when it notices unexpected

behavior from a function in one of the libraries it uses due to an incompatible version. Since

vPlay captured the code page in the library where the offending function resides, vPlay

was able to reproduce the faulty behavior even on the system where the right version of

the library was installed. Other record-replay tools which only record at the system call

interface would not be able to capture these types of bugs. Similarly, vPlay correctly

captured the root cause of the problem for mplayer, which failed due to an incompatible

audio device at the system on which it was run.

6.2.1 ncompress: Stack Smash

ncompress is a commonly used compression utility based on LZW algorithm. In function

comprexx of its code, a local array is initialized without checking the array bounds, which

could result in stack corruption in case of an overflow.

899 void

900 comprexx(fileptr)

901 char **fileptr;
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902 {

903 int fdin;

904 int fdout;

905 char tempname[MAXPATHLEN];

906

907 strcpy(tempname,*fileptr);

...

1275 }

Running the program causes a segmentation violation and examining the core file in

GDB shows that the instruction pointer doesn’t point to a valid region of memory. In fact,

all original register contents were erased due to wild stores over the stack.

$ gdb core core

Program terminated with signal 11, Segmentation fault.

#0 0x61616161 in ?? ()

gdb $ bt

#0 0x61616161 in ?? ()

gdb $ info registers

eax 0x0 0x0

ecx 0x1000 0x1000

edx 0x0 0x0

ebx 0x61616161 0x61616161

esp 0xbfffeb90 0xbfffeb90

ebp 0xbfffebb8 0xbfffebb8

esi 0x61616161 0x61616161

edi 0x61616161 0x61616161

eip 0x61616161 0x61616161

eflags 0x10282 [ SF IF RF ]

cs 0x73 0x73

ss 0x7b 0x7b

ds 0x7b 0x7b

es 0x7b 0x7b

fs 0x0 0x0

gs 0x33 0x33

This is a common occurrence in debugging memory corruptions, where the program ends

up in corrupt state with NULL or invalid program counter. The program could have reached
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this end state from anywhere. Since the stack overflow erased the stack contents, the core

file does not contain the necessary context to debug the crash. The reported symptom or

the core dump itself do not provide any lead.

We captured the same bug as a partial checkpoint by running the program within vPlay.

The partial checkpoint not only contained the relevant code context to debug the problem

but also the specific code pages such that it was not necessary to reinstall the application

at the target. The application was revived in a consistent state to a point prior to the

crash with the program counter pointing within the caller of comprexx function. Stepping

through the source got the program to line 907 where it crashed again with a segmentation

violation. We replayed the partial checkpoint for a second time to examine the fileptr

variable which contained the bug triggering input. Obviously, its contents were too big for

the local array into which the program was trying to copy.

6.2.2 gzip: Global Buffer Corruption

817 local int get_istat(iname, sbuf)

818 char *iname;

819 struct stat *sbuf;

820 {

821 int ilen; /* strlen(ifname) */

822 static char *suffixes[] = {z_suffix, ".gz", ".z", "-z", ".Z", NULL};

823 char **suf = suffixes;

824 char *s;

825 #ifdef NO_MULTIPLE_DOTS

826 char *dot; /* pointer to ifname extension, or NULL */

827 #endif

828

829 strcpy(ifname, iname);

830

When invoked with the bug triggering input, the gzip program crashes with a core

dump due to an overflow of an array in the global data segment. Examining the core file in

GDB shows that the exception occurred in free() libc function. Even though the program

counter points to a valid function, there is no direct correlation between the root cause of

the problem and its manifestation as a segmentation violation in free().
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vPlay correctly captures the program execution leading to its failure state. With no

descriptive account or additional information from the user, the partial checkpoint directly

provides all data necessary to reproduce and fix the problem. The program was resumed to

a point before the crash, and setting a watchpoint at the corrupt memory clearly pointed

the root cause to be the strcpy() function at line 829. Variable iname contained the bug

triggering input string.

6.2.3 squid: Heap Overflow

squid-2.3 contains a security flaw [49] which results in denial of service when triggered

by a specially crafted input FTP request. Each offending request causes one of the server

processes to silently crash with a segmentation violation, eventually rendering the server

unusable. Running a GDB backtrace on the core file just lists a long series of meaningless

values on the stack, and the program counter points to a valid but zero initialized portion

of memory.

These types of failures are particularly difficult to debug without precisely knowing the

type and characteristics of the workload presented to the application at the time of the

failure. A server like squid may receive thousands of complex requests and pin-pointing

exactly which set of events triggered the failure can be difficult. Anecdotal references

indicate that the server failures are typically reproduced using custom-built load generators

which fabricate artificial workload based on the server logs. However, the logs produced

by the server may not have adequate information to accurately generate the bug-triggering

workload and reproduce the failure.

vPlay captured the offending client request along with other context within a partial

checkpoint measuring less than 1 MB in size. It was used to repeatedly replay the crash

even on a different system, with all interactions between the crashed server process and

external clients simulated within the virtual vPlay environment.

6.2.4 bc: Heap Overflow

bc is a standard unix tool with a bug which causes its parser to crash when interpreting

certain types of bc scripts. The bug was introduced due to a typo in the code, which
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uses the variable v count in place of the variable a count. In the bc code snippet below,

the array variable arrays is initialized with a count number of elements but the loop on

line 171 iterates over the array v count number of times, which represents the number of

variables in the bc program.

165 /* Increment by a fixed amount and allocate. */

166 a_count += STORE_INCR;

167 arrays = (bc_var_array **) bc_malloc (a_count*sizeof(bc_var_array *));

168 a_names = (char **) bc_malloc (a_count*sizeof(char *));

169

170 /* Copy the old arrays. */

171 for (indx = 1; indx < old_count; indx++)

172 arrays[indx] = old_ary[indx];

173

174

175 /* Initialize the new elements. */

176 for (; indx < v_count; indx++)

177 arrays[indx] = NULL;

The bug was triggered with a bc input program containing several dozens of variables

and arrays, all declared within a function, with variable count larger than the array count.

The program was syntactically correct and otherwise legitimate, but running it in bc caused

it to crash with a segmentation violation.

Analyzing the core dump would not yield any pointers to the root cause. The key to

debugging this type of bugs is the availability of right program inputs. In this case, the

input happens to be in a disk file containing a piece of offending bc script. In general,

applications have access to large amounts of disk data and identifying the portion of that

data which triggers the bug can be challenging. Existing debugging tools based on system

call level record-replay may capture the program inputs accessed through the system call

interface but the applications could directly read parts of disk files through memory mapped

regions. vPlay’s memory tracking approach is able to record every piece of required data,

including that read directly from memory.

vPlay provided the required debugging context by means of a self contained partial

checkpoint. Through a combination of single stepping and watch points, it was clear that

the root cause of the problem was the for loop on line 176.



CHAPTER 6. EVALUATION 87

6.2.5 mysql-t: Race Condition

This is a rare race condition where the state of the database does not agree with the state

of the recovery log. Deletion of all rows in a table is optimized by creation of a new table.

However, the optimized code path enters the transaction into Mysql’s recovery log (bin log)

after releasing all the locks. If the server receives another request after the creation of the

new table but before it is logged, the recovery log would be in an inconsistent state with

respect to the state of the table.

The bug was triggered by issuing the following statements concurrently from two clients:

Client 1: mysql -u root -D test -e ’DELETE FROM tab’

Client 2: mysql -u root -D test -e ’INSERT INTO tab values(1)’

When the bug was triggered, examining the log file showed that the delete and insert

entries were out of order with respect to the order of their original execution. vPlay

correctly captured the execution order of the two threads with respect to the lock that

protects the recovery log. In each replayed execution, the thread doing table delete was

made to wait until the insert statement has been logged, even though the delete thread

began executing first.

6.2.6 apache-t: Atomicity Violation

Threaded version of apache-2.0.48 exhibits a race condition due to concurrent writes

to shared memory. In the code below, a structure buf allocated on heap is concurrently

accessed by multiple apache threads as they process requests and add messages to the

log. The log message is added to buf->outbuf and the current pointer within that buffer

is maintained by buf->outcnt. However, writing to the buffer and updating the pointer

are not protected by a critical section, and the entries logged by concurrent threads could

overwrite each other.

1327 static apr_status_t ap_buffered_log_writer(request_rec *r,

...

1358 for (i = 0, s = &buf->outbuf[buf->outcnt]; i < nelts; ++i) {
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1359 memcpy(s, strs[i], strl[i]);

1360 s += strl[i];

1361 }

1362 buf->outcnt += len;

...

1366 }

The bug was triggered by two concurrent httperf clients, each making 10000 requests

for two different files. Given the rarity of the bug occurrence, the buggy control path had to

be exercised several thousands of times, which as a side effect also resulted in a significant

amount of log (about 2 MB of log and 1 MB of partial checkpoint per thread group, per

second). Examining the log file showed several places where the log entries were jumbled

up. The entire experiment was run within vPlay to record the partial checkpoint.

Once the partial checkpoint was captured, vPlay was able to reproduce the pathological

interleaving of threads across log entries. Regardless of the new ordering of threads enforced

by scheduler, vPlay produced the correct interleaving of threads with respect to the shared

log buffer such that the same garbled log message text was produced on each replay.

6.2.7 apache-p: Library Mismatch

The bug was triggered by prematurely interrupting the install script which upgrades apache-

2.0.54 to apache-2.2.15. The interruption caused one of the core apache libraries (libapr

utils) to be left in its old version, whereas another component (libapr), that depends on

libaprutils to be upgraded. The server starts correctly but the processes begin to silently

exit when httperf workload is placed. No exception is received by the processes and no log

entries related to the errors are generated. Errors such as this occur for a variety of reasons

and an unsuspecting programmer may be misled into trying to reproduce the failure and

validating the code functions in the programmer’s environment.

Recording the behavior with vPlay captured the partial checkpoint for the failed pro-

cess. The partial checkpoint contained the binary instructions relating to the un-upgraded

version of libaprutils library, along with provenance metadata indicating its .so name

and version. Replaying the partial checkpoint within the debugger showed the code that

the failed process executed and how the interaction between the base httpd code and the
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code in the library were not compatible, causing it to prematurely exit.

6.2.8 mplayer: Device Incompatibility

When an HD video file is opened and played by mplayer, the video appears in its window

but no sound is produced. There could be many reasons for such a behavior given the

complexity and number of hardware devices, audio/video formats etc. Regardless of the

reason, this type of problems are annoying and it is not trivial to determine the cause even

for an experienced user.

A simple recording of the faulty run with vPlay captured all required data to inform

the developer of the reason for the lack of sound. The format of the media was supported

by one of the plugins mapped by mplayer, but a failed ioctl call indicates that the target

device is configured incorrectly and incompatible.

6.3 Performance and Storage Overhead

Name Time Memory Partial Log

mysql 105 s 121 MB 538 KB 29 KB

apache-t 57 s 221 MB 1305 KB 2284 KB

apache-p 59 s 4188 KB 935 KB 2570 B

squid 82 s 7192 KB 991 KB 4 KB

bc 55 s 2172 KB 349 KB 2714 B

gzip 68 s 1820 KB 321 KB 1341 B

ncomp 82 s 1440 KB 293 KB 1229 B

mplayer 40 s 44 MB 1393 KB 9513 KB

Table 6.4: Application workloads used for performance characterization

We have evaluated the runtime performance and storage overhead of vPlay using the

application workloads listed in Table 6.2. Table 6.4 lists the execution time for each ap-

plication workload when run natively on Linux without vPlay, and Figure 6.2 shows the

normalized runtime overhead of recording the application workloads compared to native ex-

ecution. For the 5 second intervals, the recording overhead was under 3% for all workloads
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except for squid and mysql, where the overhead was 9% and 17%, respectively.
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Figure 6.2: Normalized record-replay performance

Figure 6.2 also shows the speedup of replay on Linux and Windows. Replay was gen-

erally faster than recording, several times faster in some cases. Two factors contribute to

replay speedup: omitted in-kernel work due to system calls partially or entirely skipped

(e.g. network output), and time compressed due to skipped waiting at replay (e.g. timer

expiration). bc did not show any speedup because it is a compute-bound workload which

performed few system calls. Speedups on Windows were smaller due to the additional over-

head of binary instrumentation and emulation required to replay on Windows. The binary

instrumentation overhead was less for longer replay intervals as Pin’s overhead of creat-

ing the initial instruction cache for emulation is amortized over the replay interval. The

difference in replay performance on Gentoo and Debian systems was due to the difference

in the underlying hardware used in the two systems. Even though the Mac system had a

faster processor compared to the blades, the VMware virtual environment added additional

overhead. Figure 6.3 shows recording overhead as a function of the length of the recording

interval for the application scenarios. Overhead was generally smaller with longer recording
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intervals, where checkpointing was done less often.
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Figure 6.3: Recording performance vs recording interval

Figure 6.4 shows a measure of partial checkpoint latency, the average time it takes to

atomically finish recording one interval and start recording a subsequent recording interval

while doing a periodic recording of the applications. It includes the time taken for the

application threads to reach the synchronization barrier so that a consistent initial state of

the application for the partial checkpoint can be recorded. The application is not completely

stopped during this time. Some of the application threads may still be running application

code while others reach the barrier. The barrier is created in the kernel when checkpoint

request arrives and each application thread reaches the barrier the next time it enters the

kernel. Once all threads reach the barrier, the rest of the processing is done. The latency

is less than a few hundred milliseconds in all cases. The average latency was the same for

the 5, 10, and 15 second recording intervals.

We saved the last three partial checkpoints and their associated logs for each applica-

tion and characterized their size and composition. For mplayer, only the last two partial

checkpoints and logs were saved for the 15 second recording interval due to its relatively
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Figure 6.4: Checkpoint latency

short execution time. We only considered complete intervals, so if 5 second recording in-

tervals were used and an application had a partial checkpoint at the end of its execution

accounting for the last 2 seconds of execution, that partial checkpoint was not included in

this characterization.

Figure 6.5 shows the average total size of partial checkpoints across all processes of each

workload for 5, 10 and 15 second recording intervals. Partial checkpoint sizes are modest

in all cases, no more than roughly 5 MB for even the longest recording intervals. Most of

an application’s memory pages are untouched during any particular interval of execution.

For example, the largest partial checkpoint was roughly 5 MB for mysql, which had a

virtual memory footprint of well over 100 MB. Figure 6.5 also shows the size of the partial

checkpoints when compressed using lzma, as denoted by the patterned bars. In addition

to the fact that the partial checkpoint data compressed well, the high compression ratios

indicated were also due to our unoptimized prototype which would end up storing duplicate

code pages with the same content for multi-process applications. While the cost of taking

regular full checkpoints is usually highly correlated with checkpoint size due to the large
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Figure 6.5: Partial checkpoint size

amount of memory state that needs to be saved, Figures 6.4 and 6.5 show that partial

checkpoint latency is not correlated with partial checkpoint size because the sizes are quite

small.

Figure 6.6 shows the total size of logs generated by all processes of each application

for 5, 10 and 15 second recording intervals. mysql had the most log data due to the high

density of system call events carrying input data presented by sql-bench. For a 5 second

recording interval, the log size was 59 MB. While this is significant storage overhead, the log

does not accumulate over time. Even though vPlay continuously records the application,

it only stores the most recent execution history within a buffer of fixed size. bc was mostly

compute bound and had the least log data, less than 1 KB, which is not visible in Figure 6.6.

Figure 6.6 also shows the compressed log sizes, as denoted by overlaid pattern bars. The

logs of most workloads compressed well, except for gzip, ncomp and mplayer, for which

negligible compression was obtained and hence the compressed values are not shown. The

log of gzip and ncomp mostly contained the 200 MB of random data, which does not

compress well. The log of mplayer was dominated by the compressed video file, which also
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Figure 6.6: Log size

does not compress well.

Figure 6.7 shows the composition of each application’s log. The three bars shown for each

application correspond from left to right to the 5, 10, and 15 second recording intervals,

respectively. The log data is classified into four categories: sys is system call records

and integer return values, output is the data returned from system calls, mmap is pages

mapped during the recording interval, and shm are events corresponding to page ownership

management of shared memory. In most cases, the log was dominated by output data

which is returned to the replayed application through system calls. One of the primary

goals of vPlay is to decouple the application from its source environment and vPlay

meets this goal, in part by logging more data than other record-replay systems that require

an identical replay environment. bc produced a small log, mostly containing the system

call records. apache-t shows many page ownership management events in its log since it

is a multi-threaded application with many threads. mysql has fewer threads and less page

ownership management events. Log data due to memory mapped pages was generally small

relative to other constituents of the log because most of the memory mappings occurred
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Figure 6.7: Log composition

at the beginning of the applications and the logs are for the last few complete intervals of

application execution.

Table 6.4 shows the partial checkpoint and log sizes for vPlay to capture and reproduce

each bug. We also measured the virtual memory footprint of each application as reported

by top command to provide a rough measure of the amount of state required to run it.

In practice, applications typically require far more data than the content of their virtual

memory. They also indirectly rely on the state represented by their environment and the

operating system. In all cases, the size of the sum of the partial checkpoint and log is

much less than the virtual memory footprint of each application. While the log generated

by vPlay contains the complete set of events and data necessary to reproduce a bug, it

represents all application activity occurring within that interval. Within the same recording

interval where the mplayer bug was triggered, it was also mapping various codec libraries

and accessing their pages to initialize them. This additional noise accounts for the large

log size produced by mplayer bug. Note that the partial checkpoints and logs required

to capture the bugs is in general much less than what was required to record the more
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Application Bug Error Propagation Distance

MySQL 3.23.56 Data race –

Apache 2.0.48 Atomicity violation –

Apache 2.0.54 Library mismatch 1581

Squid 2.3 Heap overflow 2860

bc 1.06 Heap overflow 2005

Gzip 1.2.4 Global buffer overflow 261

Ncompress 4.2.4 Stack smash 87

Mplayer 1.0rc2 Device incompatibility 18852

Table 6.5: Error propagation distance in terms of number of instructions

resource-intensive application workloads shown in Figures 6.5 and 6.6.

Figure 6.8 shows the error propagation distance for each bug listed in Table 6.5. To

measure error propagation distance, we instrumented vPlay to log the value of the time

stamp counter along with each event record, and calculated the time between two closest

events that encompass the root cause of the bug and the appearance of the bug symptom.

In all cases, the observed value was less than half a second, validating vPlay’s assumption

of short error propagation distances and demonstrating that a modest recording interval

of 5 seconds as used in our experiments is more than sufficient to capture and reproduce

the bugs. Table 6.5 also shows the error propagation distances in terms of the number of

instructions executed by the application between the root cause of the problem and the

failure. The instruction count is omitted for the multithreaded applications where the root

cause and the failure occur in different threads. We observe that the application quickly

reached the failure point after encountering a bug, within a window of several thousand

instructions in every case.

6.4 Evaluation of the User Space Partial Checkpointing Im-

plementation

We have also experimented with a vPlay-user prototype, which generates the recordings

of Linux applications and replays them on other Linux distributions and Windows. The
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Figure 6.8: Error propagation distance

prototype was implemented mostly in user space based on the two kernel extensions dis-

cussed in Section 3.3. The user-space prototype did not support shared memory or signals.

The experimental setup consists of two identical machines, each with an Intel Core 2 Duo

2.4GHz processor and 2 GB of RAM. One of them is installed with Ubuntu 8.10, and the

other is installed with Windows XP version 2.16 and Fedora 11, in two bootable parti-

tions of its hard disk. Ubuntu system and Fedora systems run Linux-2.6.26 kernel with the

vPlay-user kernel extension.

Application Description

apache-2.2.11 Web server (httperf workload)

squid-2.3 Cache proxy server (httperf workload)

gzip-1.2.4 Uncompress a 64MB compressed file

bcbench-1.06 Calculate pi to 2000 places

abiword-2.6.6 Word processor

gv-3.5.8 Document viewer

Table 6.6: Application scenarios used for experiments with user space implementation
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The application scenarios evaluated in the experiments are listed in Table 6.6 and the ap-

plication environment and configuration used were generally different from the benchmarks

used for the kernel based prototype. Recording was performed on the Ubuntu machine with

each application continuously recorded while the measurements were taken. At any point

of time, seven most recent partial checkpoints were maintained in memory. For apache and

squid, httperf benchmark [44] was used to generate a workload of 200 connections per

second and the resulting connection response time was measured, gzip was recorded while

it was uncompressing a 64 MB compressed file that decompresses to a 285 MB clear text

file, bc was calculating the value of pi to 2000 decimal places, and abiword and gv were

each displaying a document while they were being monitored and recorded. In each appli-

cation scenario, a fabricated failure event was triggered during the benchmark by sending

the application a SIGSEGV signal, so that vPlay-user would write-out the last seven partial

checkpoints. The resulting partial checkpoints were then replayed individually on Fedora

and Windows systems. The experiment was repeated six times with varying lengths of

recording intervals from 125 ms to 4000 ms on a log scale. We removed the applications

used in the experiment from the Fedora system, and so the replay exclusively relied on the

checkpointed memory and binary pages.

Figure 6.9 shows percentage performance overhead compared to native execution with-

out recording for four applications: apache, squid, gzip and bcbench [73] at recording

intervals varying from 125 ms to 4000 ms. Squid showed the highest worst case overhead

of 15% at 125 ms recording interval. The overhead was 13% for apache, 6% for gzip and

5.5% for bc at the same interval length. In all cases, the overhead became unnoticeable at

sufficiently long recording intervals.

Figure 6.10 shows the storage space occupied by different constituents of a recording

representing a one second recording interval. It consists of three parts - the amount of

memory read and dirtied by the application, and the amount of data returned via system

calls. In most cases, the memory pages dominate the partial checkpoints. A significant

portion of this overhead originates in the file system data captured by vPlay-user which

enables the applications to be replayed without an identical install base at the target site.

The large system call log shown by gzip accounts for the contents of the compressed file
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Figure 6.9: Recording performance

read through the read system calls. bcbench on the other hand is mostly CPU-bound and

its partial checkpoints contain little system call related data. Figure 6.11 shows the rate at

which the total size of a partial checkpoint grows with the length of the recording interval.

Figure 6.12 shows the time taken to perform start and stop operations. In general,

start operation is relatively light and the time it takes is dominated by the creation of the

shadow process. stop is heavier because it has to scan the page tables of the application

to determine the pages accessed in the last recording interval. gzip behaves anomalously

because of the large system call data held by vPlay-user agent in its address space. When

the shadow process is created during start, the clone system call copies the page table

entries of the entire address space of the process including those within the vPlay-user

agent memory region. However, vPlay-user doesn’t scan its own memory region when it

checks the accessed and dirty bits, making stop relatively lighter.

Figures 6.13 and 6.14 show the times taken by load and replay phases of the virtual replay

operation respectively on Fedora and Windows systems. As expected, the load and replay

times are greater on Windows than on Linux. vPlay-user uses its native instrumentation
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Figure 6.10: Space breakdown (1 second interval)

mechanism to replay on Linux, which intercepts and replays the system calls more efficiently.

The higher replay times on Windows is due to Pin’s instruction-level instrumentation. We

observe that the replay times for applications such as apache and squid were much smaller

compared to their recording times. A recording of a one second interval could be replayed

in a few tens of milliseconds. This speedup is due to the fact that server applications spent

a significant part of their time in poll and select system calls. During replay, vPlay-user

readily returns from these system calls without the wait.
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Chapter 7

Related Work

Many diagnosis and debugging tools have been developed. While interactive debugging

tools [21] are helpful for analyzing bugs that can be easily reproduced, they do not assist

with reproducing bugs. Techniques for compile-time static checking [75; 17; 38] and runtime

dynamic checking [25; 29; 16; 24; 27; 79] are useful in detecting certain types of bugs, but

many bugs escape these detection methods and surface as failures, to be reproduced and

debugged in the developer environment.

Because of the prevalence of buggy software, bug reports are commonly used. Some

application vendors [20; 41; 45] provide built-in support for collecting information when

a failure occurs. Other sophisticated mechanisms [28] may provide more comprehensive

data including traces and internal application state, in an attempt to ensure that sufficient

context is recorded to be able to reproduce and possibly fix the bug. However, they are often

limited in their ability to provide insight into the root cause of the problem because they

represent the aftermath of the failure, not the steps that lead to it. Privacy mechanisms have

been developed to reduce privacy concerns regarding bug reports [7], but like all bug report

mechanisms, they do not provide the ability to deterministically replay bugs to reproduce

them.
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7.1 Checkpointing

Checkpointing has been a focus of extensive study. Checkpointing systems [61; 65; 56;

71; 31] allow application state to be rolled back to a point in the past. Some of them [8;

18] have been applied to cyclic debugging, where the intent is to reduce the waiting time

in repeated debugging cycles. Most of these techniques are only applicable to compute-

bound parallel jobs. More recent implementations [51; 22; 34] of checkpointing are able to

checkpoint a more general class of applications. Even though checkpointing the complete

state of an application has proved to be difficult [22] and requires extensive kernel support

[42], they typically aim to checkpoint the application state as completely as they can to

minimize the impact of checkpointing on the application after it resumes. In particular,

they checkpoint the entire virtual memory of the application even though most of the state

may not be relevant for debugging. Given large memory footprints of modern applications,

these techniques usually store the checkpoints on secondary storage, incurring high overhead

during the process. As a result, they cannot afford to take frequent checkpoints necessary

for debugging, especially when the application is running in production.

Partial checkpointing is substantially different from regular checkpointing [55; 51]. In

particular, the system state of the application maintained internally by the operating sys-

tem, such as the state of file descriptors and the state of various operating system resources,

is not included in the partial checkpoint. It allows partial checkpointing to be implemented

without major kernel changes and enables a partial checkpoint to be replayed even on a

different operating system. Regular checkpointing allows normal execution to be resumed

for an arbitrary amount of time. Because the state needed by an application in its future

execution can be arbitrarily large, regular checkpoint implementations typically impose

dependencies on the underlying system to reduce storage requirements, such as requiring

that files in persistent storage be available to the resumed application. In contrast, partial

checkpointing does not impose such a requirement because, the specific portions of data

on disk, including portions of application binaries themselves needed by the application

during replay, are included in the partial checkpoint. Partial checkpoints are also small,

since they do not need to support normal execution, only deterministic replay over a fixed

time interval.
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Various checkpoint optimizations have been developed, including incremental check-

pointing [57] and logging. Logging records a checkpoint by recording old values of memory

locations before they are updated, then recovers the checkpoint when needed by taking the

final system state and restoring the logged values in reverse log order. Partial checkpointing

differs from logging in at least four important ways. First, logging is used for data memory

locations and still requires the original code, including all application binaries, to use the

checkpoints. In contrast, partial checkpoints include any necessary code pages used and do

not require access to any of the originally used code. Second, logging provides a full check-

point which contains more state needed for normal execution, whereas partial checkpoints

are only for deterministic replay over a fixed interval. Third, logging can require saving

multiple old values of a memory location to produce an initial checkpoint, whereas par-

tial checkpointing requires saving only one value of each memory location. Finally, previous

proposed logging approaches are designed for hardware support not available on commodity

machines.

Netzer and Weaver [50] proposed an optimal tracing mechanism that has some simi-

larities to partial checkpointing. Similar approaches have also been designed for hardware

support not available on commodity machines [78; 47; 36]. Tracing creates a checkpoint for

replaying from some starting point by recording values of memory locations when they are

initially read, then restoring all of those values upon replay. Tracing differs fundamentally

from partial checkpointing as it does not support replay in a different environment and

requires the availability of the same instrumented application code during replay. In con-

trast, partial checkpointing is primarily designed for replay without requiring the original

application code or other software used during recorded execution. Tracing incurs very high

recording overhead, up to seven times native performance on simple applications, whereas

partial checkpointing is low overhead and fast enough for production use.

7.2 Record and Replay

Record-replay mechanisms provide the ability to record the execution of a running applica-

tion and use that recording to replay its execution later. Replay may also be done live such



CHAPTER 7. RELATED WORK 106

that the recorded and replayed instances of the applications run simultaneously on different

hosts. Most record-replay techniques [36; 64; 62; 69; 46; 53; 2; 35] have been applied to

debugging and recovery. All of these approaches impose crucial dependencies between the

environment at the time of replay and the original production recording environment. All

previous approaches assume the availability during replay of all software code used dur-

ing recorded execution. Combining the key features of transparency, determinism, and low

overhead has been difficult to achieve with record-replay, especially for multi-threaded appli-

cations on multiprocessors. Hardware mechanisms face a high implementation barrier and

do not support record-replay on commodity hardware. Application, library, and program-

ming language mechanisms require application modifications, lacking transparency. Virtual

machine mechanisms incur high overhead on multiprocessors, making them impractical to

use in production environments [15]. To reduce recording overhead, various mechanisms [2;

53] propose record-replay that is not deterministic. Building on Scribe [35], vPlay ad-

dresses these shortcomings using a lightweight operating system mechanism to provide

transparent, fully deterministic record-replay for multi-threaded applications on multipro-

cessors with low overhead.

Operating system mechanisms [64; 69] may record input data through system calls, but

still require the availability of all files, including application binaries, during replay. For

example, consider use of a memory mapped file or access to a memory mapped device,

both of which would impose dependencies on devices and files from the original recording

environment. Neither of these types of data would be included by recording system call ar-

guments or results, as has been previous proposed. Application, library, and programming

language mechanisms [62; 23] not only require access to binaries during replay, but they

also require access to source code to modify applications to provide record-replay function-

ality. In contrast, vPlay requires no access to any software from the production recording

environment, including application, library, or operating system binaries. Flashback [69]

proposes a lightweight checkpointing scheme based on fork system call, which allows a

programmer to record and replay certain type of bugs. Repeated testing to trigger the

bug, recording its occurrence and replaying it to analyze its root cause, all have to occur

in one user session at the programmer site. The checkpoints it generates cannot be saved
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to persistent storage, or transmitted to an offsite programmer for analysis. It also doesn’t

address nondeterminism due to shared memory. In general, checkpoint/rollback schemes

that don’t allow production use require the bug to be reproduced offline through repeated

runs. Some times the bug may never occur due to probe effect introduced by the system.

A number of speculative tools leverage record-replay or checkpointing. Triage [72] pro-

poses a diagnosis protocol to automatically determine the root cause of a software failure in

production. ASSURE [66] and ClearView [54] attempt to automatically diagnose a failure

and automatically patch the software, with a goal of quickly responding to vulnerabili-

ties. While such techniques may work for a limited set of well characterized bugs, they

are generally not suitable for many common bugs which require intuitive faculties and

application-specific knowledge of a human programmer. For instance, the right set of pro-

gram inputs and environment manipulations to be used for each repetition of the execution

heavily depends on the application and is generally not possible to automatically generate.

Several replay systems [18; 9; 52; 19] address application nondeterminism as an in-

dependent problem. They provide varying degrees of support for nondeterminism by

recording and replaying the nondeterministic events that affect the application. Most of

them are able to record and replay system calls. Replay is generally restricted to iden-

tically configured systems running the same operating system and they cannot handle

discrepancies in the application environment. Due to high frequency of nondeterministic

events, they produce large amounts of data, especially for long application runs. Some [18;

52] address shared resource nondeterminism by capturing the interactions among threads

and replaying them. They require cooperation from the application and are nontranspar-

ent. The system described in [63] uses a notion of repeatable scheduling which records and

replays each context switch at a thread library level to make the application deterministic.

However, replaying the global scheduling instead of preserving the reference order to the

resource of contention imposes high overhead. The approach is limited to uniprocessor sys-

tems and requires modifying the application. [3] provides a record and replay system for

concurrent shared memory accesses in multiprocessors. It relies on monitoring the memory

bus using a specialized hardware to log memory references. While the application itself

doesn’t incur any runtime overhead, the system generates a large amount of log. Dunlap
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et al [15] propose virtual machine based deterministic replay in SMP environment. They

report an overhead of several times the uninstrumented case. A few industry vendors [70;

40; 26] also offer hardware or co-hardware/software solutions for fault-tolerance based on

record and replay. They commonly connect the primary and secondary servers by means of

proprietary hardware.

Hardware mechanisms [78; 47; 43] record data accesses at an instruction granularity, but

do not record code and rely on the availability of binaries to replay instructions. BugNet

[48] uses load based checkpointing where the operand values accessed by load instructions

are recorded at the hardware level to replay the execution. Load-based checkpointing is

conceptually equivalent to other checkpoint-logging systems, except that the concept is

applied at the instruction level, where input operands to the instructions are recorded, but

instructions themselves are not recorded. Partial checkpointing is conceptually different

from this approach because vPlay considers all data including the instruction opcodes as

external inputs in order to produce a self-contained recording.

7.3 Virtualization and Emulation Mechanisms

A number of virtualization mechanisms exist which decouple the application from the un-

derlying system. Virtualization enables benefits such as consolidating applications on to the

same physical hardware for better utilization, providing a flexible infrastructure fabric im-

plemented in software which can be easily managed, templatizing application environments

for repeatable deployment, seamless application management where applications and their

environments can be moved between physical machines etc. Virtualization mechanisms typ-

ically employ a model where a virtual abstraction of a lower layer in the software-hardware

stack is created such that the next layer above can run on top of the virtual abstraction. The

two most widely used types of virtualization are hypervisors [74; 5; 4] and containers [51;

59; 60], which abstract the hardware and the operating system respectively.

Hypervisor virtualization [74; 5; 4] techniques provide a virtual hardware abstraction

which can run a guest operating system along with all its applications on top of a different

host operating system. The guest operating system provides the interfaces and services
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necessary for the application to function. The hypervisor creates virtual instances of hard-

ware resources which appear as real hardware to the guest operating system. Qemu [5], for

example, uses a binary emulation method based on gcc which allows it to run applications

built for an operating system and architecture on a different operating system running on

a different architecture. Binary instructions dispatched by virtual CPU are emulated on

the host operating system and architecture and the entire system, including the system

chipset and devices are emulated. In general, a hypervisor internally maintains the state of

the virtual CPU, memory, disk and other resources and allows a snapshot of the state to

be created. A user could create a virtual machine snapshot which encapsulates the entire

state required to run an application together with its operating system and other processes

running on it. The virtual machine snapshot could be shared with the developer so that

the developer does not have to replicate the original production environment to reproduce

a bug.

Using virtual machines to encapsulate and share the application environment has several

problems. First, the size of a virtual machine snapshot is large. Since hypervisors provide

a virtual view of the hardware, the internal structure of the operating system that runs on

it, the applications and their behavior is generally unknown at the hypervisor level. Even

though the problem occurs only within the application, there is no way for a hypervisor

to only capture the application state. As a result, a virtual machine snapshot contains

the state of the application along with the state of the entire guest operating system, all

of the physical memory, and all storage state. The large snapshots are not easy to be

shared between the users and developers. Creating a snapshot can also be a slow process.

Second, since the state of the virtual machine may encapsulate the application environment

in its entirety, it may contain sensitive user state which cannot be externally disclosed.

Third, a hypervisor is a complicated piece of software and it needs to intercept, emulate

and virtualize low level hardware events occurring at high frequency. Even though many

recent advances make them quite efficient, they still impose considerable overhead which

may not be acceptable for types of workloads.

Containers [51; 59] or application virtualization is an alternate form of virtualization

which partitions an operating system into multiple instances, each with its private set of
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resources. It is typically implemented at the system call layer by intercepting the system

calls which can potentially cause resource conflicts with the host. Containers provide a vir-

tual operating system environment which can host applications independent of applications

running on the host or in other containers. A Container decouples the application running

within it from the underlying operating system, by providing it with a private view of the

system resources. The application directly runs on the underlying operating system but its

access to the operating system resources are intercepted and virtualized, such that it runs

consistently even as the container migrates from one system to another.

Even though containers decouple the application from the underlying system, they can-

not insulate the application from major differences in the operating system environment.

In particular, since the application directly runs on the target operating system, its general

memory layout, services provided etc. are expected to be the same as the original envi-

ronment. For example, an application built for a different operating system from the un-

derlying target operating system cannot be supported. Furthermore, like virtual machines,

a container also requires that the state of persistent storage along with the application

environment is available at the target.

Operating environments such as Cygwin [14] and Wine [77] implement a compatibility

layer which provides the necessary libraries and build environment to allow applications

of one operating system to be compiled and built on a different operating system without

requiring them to be developed from scratch. Cygwin provides a Linux-like environment

on Windows, with many Linux applications ported to the Windows Cygwin environment.

Even though Cygwin based Linux applications look and behave like their native Linux

counterparts, they are win32 applications from the perspective of the operating system.

They are compiled as Windows binaries and use native Windows services. vPlay Container

environment on the other hand is very different and allows Linux applications to be natively

replayed on Windows.

7.3.1 Virtual Machine Based Replay

Virtual machine mechanisms [15; 10; 33] may allow replay on a different host environment

from recording, but typically rely on the availability of complete virtual machine image,
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including all software code, its entire file system and additional file snapshots, to resume

the execution. Not only does this require a large amount of data, but this is often impractical

for bug reproducibility as customers are unlikely to allow application vendors to have an

entire replica of all of their custom proprietary software. Decoupling provided by partial

checkpointing is also different from that of virtual machines, which may decouple replay of

an application in a guest operating system from dependencies on the hosting environment,

but still require during replay the complete virtual machine image with all of the installed

binaries used at the time of recording.

The space requirement of virtual machine snapshots would be several orders of magni-

tude higher than that of partial checkpoints. Since VM snapshotting involves checkpointing

the state of the entire operating system and its applications, including the state of secondary

storage, the amount of data in each snapshot is large and it can take several tens of sec-

onds or minutes to complete. Crosscut [11] aims to extract a subset of data offline from a

complete recording of a VM to reduce the size. However, it still requires a heavy weight

instrumentation during recording and the original log it generates is large. On the other

hand, since vPlay only captures the most relevant application level state, it is able to take

several partial checkpoints of the application per second. The high checkpoint frequency

also allows for quick forward and backward movement of execution during replay. Further-

more, virtual machine based logging imposes high runtime overhead given the large number

of low level hardware events. For instance, only a fraction of the network traffic processed

by a virtual network card would be visible to the application and consumed by it.
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Chapter 8

Applications and Extensions

8.1 Debugging as a Service

Cloud computing is an emerging service paradigm where managed virtual assets are offered

to the users as a service by the cloud service provider. The assets typically consist of a

preconfigured operating system or application platform packaged as instances of virtual

machine appliances. Since the user or the customer does not have to acquire dedicated

resources and manage them, cloud resources are used by businesses to simply their infras-

tructure by out sourcing their operations to the cloud provider.

Minimizing application downtime is a common objective for cloud providers, end-customers

and software vendors alike, yet problem determination in a cloud environment remains an

elusive and time-consuming process. As legacy applications adapt to the incipient cloud en-

vironments which are significantly different in their response characteristics to the physical

hardware, many latent application bugs surface. A cloud environment hosts several virtual

machines with over-committed memory and CPU resources on the same physical hardware

in a multi-tenant configuration. The sharing of resources leaves the applications vulnerable

to interference from other virtual machines and triggers unexpected behavior.

Most existing debugging tools are designed to be used by the developers in a development

environment and are unsuitable for a cloud ecosystem. When an application fails in a

managed cloud environment, the user has little access to or control over the underlying

environment. Since traditional debugging processes cannot be applied, the user has to
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depend on the cloud itself for assistance.

While the cloud computing model presents certain challenges to applications which are

trying to adapt to the cloud, it also provides an excellent substrate for experimental and

innovative services. Features and services involving multiple software components, requiring

custom changes and configuration to the software stack could be easily deployed on the cloud

in a contained manner. For example, one of the hurdles to a widespread adoption of vPlay

is that the vPlay system needs to be installed on the platform where the application runs

in production, and at the target where the developer analyzes and resolves the problem.

Sophisticated debugging tools such as vPlay with rich feature set and support for a wide

range of unmodified applications often rely on specific kernel extensions to gain access to

the application internals, which may not be supported by main-stream kernels. However,

deploying these extensions into existing environments is challenging in practice. Any kernel

extensions deployed as kernel modules on a host platform may violate the service agreement

with the operating system distribution vendor, increasing the adoption barrier.

In this section, we present a practical debugging framework and a model with emerging

cloud computing eco-systems as a reference. The framework consists of two components,

namely recording and replay appliances. The recording appliance is a part of the cloud

infrastructure and it produces a recording of bugs encountered by an application in the

cloud. The replay appliance is provided as a simple hardware device which reads previously

generated recordings and reproduces the bugs captured within them for the developer to

analyze.

The solution benefits the end-users by minimizing the application downtime, the appli-

cation vendors, by enabling them to quickly fix the problems, and the cloud providers, by

enabling them to offer value-added debugging services.

8.1.1 Recording Appliance

The cloud model allows debugging to be offered as a cloud service without requiring explicit

changes to the user environment. A cloud service provides a catalog of virtual machine

appliances, each typically customized for a specific application and purpose. The user

selects and instantiates the desired appliances to host the user’s applications. For each
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Figure 8.1: Debugging as a service in the cloud

appliance available in the catalog, an alternate vPlay-enabled appliance is provided. The

vPlay-enabled appliances contain vPlay’s recording function integrated within them and

are configured such that when they comes up, the primary application of the appliance is

already instrumented and undergoes recording. When the application encounters a failure,

the appliance automatically generates corresponding partial checkpoints and logs.

The appliance model of deployment makes vPlay transparent and seamless to the user.

The recording functionality is contained to the appliance, and no other component in the

cloud is affected. The cloud provider would offer support for the entire appliance as an

integrated software stack, relieving the user from having to work with individual ISVs and

distribution partners. The user has the flexibility to choose the standard, or vPlay-enabled

versions of an appliance based on the need. For instance, vPlay-enabled appliances could

be used to run unhardened beta software, which is likely to contain defects. Or they could

be used internally, as a part of development-testing cycle. Applications or usage-scenarios

which are highly performance sensitive could use the standard versions of the appliances.

The cloud model also facilitates privacy. Since the end customers must already have

some level of trust with the cloud provider to be hosting their applications in the cloud,

the cloud provider could act as a neutral third party between the end customer and the
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application vendor, and host a debugging service that the developer can access. Since the

developer would only have access to the service API exposed by the cloud provider and not

to the underlying infrastructure, risk of the developer circumventing privacy features built

into the platform as an operating system extension is minimized. The integrated vPlay

recording function monitors the application running within the appliance, and any failure

that occurs is captured into a small recording consisting of relevant partial checkpoints and

logs. The collected data is shared with the vendor of the failed application for analysis and

debugging.

The data generated by the record component is encrypted at the source. Even though

vPlay only records discrete pieces of relevant data required to reproduce the bug, it may

contain sensitive client data and the user may not approve unrestricted access to it. Inter-

nally encrypting the data as a part of its generation, before it is shared with anyone ensures

that the privacy is maintained.

8.1.2 Replay Appliance

The replay appliance is based on a simple hardware device which assists the application

developer in reproducing and fixing previously recorded bugs. A tailored hardware device

built-in firmware limits the use of the appliance to debugging and prevents arbitrary ma-

nipulation of data contained in the recording. The device accepts the encrypted recording

of the bug and relevant symbol information as inputs through a secure REST web interface

using which the developer can analyze the bug. The interface shows the application state

at the beginning of the recording interval and provides the standard debugger controls to

interact with. To debug the problem, the developer would be able to set breakpoints and

single step through the source lines through the web interface. The architecture of the

device is shown on the right hand side of Figure 8.1.

The replay component integrates with a debugger and runs within a virtual machine

instance consisting of a guest operating system environment. The guest environment also

runs the web services necessary to expose the debugger interface to the developer through

a REST API. The guest environment itself runs on a hypervisor host which emulates the

target architecture of the recording, while running on an underlying low-power embedded
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hardware such as Marvell. Marvell hardware provides a cheap but full-featured server

platform. An emulator such as Qemu not only provides the virtual machine but also enables

the entire replay environment along with the operating system to be run on the embedded

hardware. Linux/Marvell operating system runs as the lowest software layer, directly on the

embedded hardware. For in-premises customer use where privacy is not a concern, the replay

component can also be provided as a virtual appliance. The virtual replay appliance would

still provide all the benefits of replaying the bug independent of the source environment,

except that it is run on a standard hypervisor host rather than a hardware device.

The replay device is designed to be tamper-proof. The only external means to access

the device is the streamlined web interface which takes a recording and provides debugging

control over its replay. The hardware guarantees that the developer cannot use the captured

state for any reason other than problem diagnosis. The recording of the bug is internally

decrypted using a key included in the device at manufacturing time. The key is only

available to the cloud framework which produces the recordings and the device that replays

it. This security model is analogous to the Digital Rights Management model used by

content providers to distribute their content to the end users. The encrypted digital content

in the media can be played only by authorized play-back devices but cannot be used to

extract the data or misuse it otherwise. In the case of debugging, the developer is able to

single step etc, but not arbitrarily access partial checkpoint data. The debugging interface

is streamlined such that features like dumping arbitrary regions of application memory are

disabled.

In contrast to the conventional debugging approach, the replay device allows the failure

to be securely played back by the developer, similar to logic analyzers used by hardware

engineers, without having to acquire specific hardware, replicate the customer setup, install

specific version of the software and configure as per the bug report etc. The tamper-proof

device acts as a trusted component in the target replay environment. It also insulates the

user from vPlay’s kernel dependencies etc by integrating those dependencies within the

appliance. Additionally, the device provides a convenient point for pay-per-use metering

and chargeback services.
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8.2 Application Beyond Debugging

8.2.1 Micro-aps

Like hardware, software is growing more and more powerful, packing more functionality

within each application. However, common usage patterns of applications exercise only

a fraction of the application functionality. Most configuration options and menu items

remain unexplored and unused. Even if the user is interested in just one particular feature

of the application, the entire application with all its dependencies is required to be installed.

An application like Photoshop, for instance, occupies several gigabytes of disk space with

support for hundreds of image transformations, but the user may just want to apply one

particular photo effect to an entire image collection.

Similar to the way hardware is partitioned into multiple cores or multiple virtual ma-

chines for better usability and simpler management, it may be beneficial to create functional

partitions of otherwise monolithic software. We refer to these functional partitions as micro-

aps. Micro-aps deliver the effect of their respective function without requiring the entire

application. One approach to isolate individual functions of an application is to modify the

source code and build each piece of functionality as a separate application. However, doing

so can be complicated, expensive or infeasible. Instead it is desirable to quickly and easily

create micro-aps by directly manipulating the functionality at the binary level, without

requiring source code changes. Partial checkpointing provides a convenient method to do

that.

8.2.1.1 Creating Micro-aps

Micro-aps are created using the start and stop primitives provided by vPlay. In case

of debugging, vPlay continuously monitors the application and keeps track of its most

recent execution to capture failures which could happen at any time. However, since Micro-

aps represent a specific user-specified function of an application, no continuous recording

is necessary. They are created by issuing the start command, followed by issuing the

application input to trigger the desired application behavior and then issuing the stop

command.
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Micro-aps are essentially vPlay recordings with data and logic quilted together into

one package. vPlay’s recording mechanism naturally creates them. Simply running an

application within vPlay gathers coherent portions of the application and creates a map-

ping between the activated functionality and a self-contained slice of the application which

implements that functionality, along with respective data. Application developers typically

create test cases as a part of a typical development-test process, which exercise various

features of the application. The test-cases map respective features to a region of the overall

application binary and can be used to create the Micro-aps.

vPlay recording mechanism is extended to capture additional information to enable

Micro-aps to connect with external entities when they run. Unlike debugging, not all exter-

nal interactions of the application are nullified or virtualized. In addition to the data that

is directly consumed by the application, vPlay also records the identity and configuration

of the external entities that the application interacts with. As we illustrate in the examples

below, this includes information such as the path of the file where a processed image is

stored, the name of the playback audio device and the sampling frequency used etc.

8.2.1.2 Running Micro-aps

Running a Micro-ap is quite different from replaying a vPlay recording. Whereas a vPlay

recording is replayed for the exclusive purpose of analysis and debugging, a Micro-ap is

expected to run live. In particular, a Micro-ap must be connected to the external world as

it runs, rather than just run within an isolated container with its interfaces virtualized. To

do that, vPlay must emulate system calls that are not otherwise intercepted for debugging.

For example, when the application makes a write system call on a file descriptor, the

descriptor must be valid and the write system call must actually occur.

A running Micro-ap must be connected to the external entities with which it interfaces.

When a Micro-ap is replayed, vPlay supplies the data captured as a part of the recording

as input to the Micro-ap logic. The logic processes the input data and produces the output.

For common user applications, most of the application output boils down to writes to

various types of file descriptors (regular files, devices, sockets connected to external clients

etc.) Normally, any output generated by the replaying application is either captured to a
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file or simply discarded, as in the case of interactive debugging where the output is displayed

to the user. For Micro-aps, these outputs would have to be delivered to their data sinks to

drive respective external entities.

Outputs generated by a running Micro-ap is routed through a vPlay proxy which

maintains a mapping between the data sources of the application and the data sinks of the

external entities. The proxy is implemented as an extension to vPlay’s system call replay

mechanism. For each data source in the application such as an open file descriptor to a

regular file or an open socket connection, the proxy initiates a separate connection within

the context of the replay process and creates a mapping between the two. It establishes

and configures the Micro-ap’s connections as it were when the start command was issued.

This is required because the application may have created the connection and configured

it before the start command was issued and expects it to be valid when subsequently

used. Any new connections setup during the execution of the Micro-ap are emulated. For

example, when a Micro-ap opens a file, the proxy intercepts the system call and opens the

file. Similarly, when the Micro-ap subsequently writes to the file, the proxy intercepts the

system call and forwards the data to the respective file. Any file descriptors used by the

application would always be invalid during replay since the file is never directly opened by

the application. They just act as pointers to their counter parts maintained by the proxy.

In fact, the application may not even be able to directly open the file if the target operating

system happens to be different from the source. In that case, the proxy translates the

semantics of the write operation between the application and the target environment.

From among the recorded identities of the external entities with which the application

interacted during recording time, the user selects a subset of interfaces that need to be ”live”

during replay. For example, it may not be necessary for the Micro-ap to interact with all

external clients or perhaps it may not have to produce any trace files. Note that, even

though data from the application is transmitted to the external world, any data sent back

to the application from the external clients is discarded, since application inputs always

come from the recording.

In some specific cases, it may be possible to templatize a Micro-ap by removing data

from it and retaining the code such that it can be used with alternative data. For example,
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a replaying database server may receive a request for a different row than one originally

recorded. Data portions of the recording can be identified based on the provenance informa-

tion stored in the recording. Alternate data from the user is provided to replay. However,

the ability to replay with alternate data depends on the application and in general, the

Micro-ap model works best for external entities which are passive data sinks. We illustrate

the typical usage model with a few applications where the Micro-ap approach is suitable.

Self-decoding Data: A variety of data can be packaged as Micro-aps along with the

logic to decode it. Self extracting executables of compressed files is an example. The

compressed data is included within the data segment of the executable which implements

the decompression logic. With logic packaged along with the data, the target platform

does not need to have the specific application that can decompress the data. While self-

extracting compressed files are created using a special feature provided by the compression

utility, vPlay can be used as a general technique to create Micro-aps for different types of

data transformations. vPlay allows the decoder logic to be quickly isolated by running the

application within vPlay to capture its recording as a Micro-ap so that the end user can

readily use it without needing the codec or driver. This approach is different from building

the decoder into a virtual machine appliance, which would require a different appliance for

each data type.

Audio Player: Applied to an audio player, vPlay recording would automatically

isolate the required logic of the respective codec from a binary which may support many

audio formats. The codec is packaged along with a segment of the audio file, so that it

could be played independent of the target environment. Before running the Micro-ap, the

proxy would open the audio device, set the sampling frequency and other parameters as

previously recorded. When the Micro-ap runs, it directly renders the recorded data to the

audio device.

Load Generator: Applications often require testing with real-world workloads before

they are released. However, collecting a realistic workload can be a difficult task. Using

vPlay it is possible to create a Micro-ap representing a canned user workload which can

then be applied repeatedly as a part of regression testing. For example, to capture a

user-generated workload for a database server, the web application which interfaces with
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the database server and the external users can be recorded. Before the workload Micro-

ap is executed, the proxy would establish a connection to the database server and maps

application’s data source to it. The user click stream and requests from a real usage are

captured as requests to the web application, which in turn translates them into a database

workload.

8.2.2 Tracing

Application traces contain a wealth of information about the behavior of the application and

the specific events and interactions that occurred during the execution of the application.

They are used for a variety of reasons including forensics, debugging, performance analysis

and archiving. Since traces are typically captured as simple text, they lend themselves well

for use with tools such as log analyzers which mine the traces to extract relevant information

in a platform independent way.

Capturing traces requires instrumenting the application control paths. An application

relies on services provided by layers of software and hardware below it and its events can be

traced by instrumenting at any of those layers. The frequency of events and the overhead of

instrumentation depends on the level of instrumentation. For instance, tracing the execu-

tion at instruction level granularity can be orders of magnitude more expensive in runtime

overhead and space requirement than tracing the application at the system call level. On

the other hand, the granularity of tracing required depends on the purpose for which traces

are used. Fine grain traces may be necessary for optimizing critical application control

paths whereas high level traces may be sufficient for visualizing application’s interactions

with external components.

Some applications maintain a running trace of application events in order to assist the

debugging process in case of a failure. Typically such tracing is limited to high level events

such as system calls or network packets. While existing tracing tools can provide fine-grain

traces, they cannot be applied to production software due to the runtime cost associated

with tracking application events occurring at high frequency. Also, storing execution traces

as static data can consume large storage space and extracting relevant information from

large quantities of trace through search can be cumbersome. Determining the root cause of
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many common bugs requires finer grain detail such as memory reference trace or a trace of

instructions.

Using vPlay for tracing provides two key advantages. First, the user does not need to

know at what granularity to trace the application. vPlay’s recording mechanism captures

just the right amount of data necessary within a recording to reproduce the complete ex-

ecution. Any required trace can be generated by running replay through existing tracing

tools. A recording produced by vPlay serves as a compact representation of an application

trace, which implicitly encodes the application state at each point of its execution. Relevant

application state can be quickly obtained by setting breakpoints or watchpoints within the

debugger. While conventional tracing only provides traces which are static, partial check-

points can be used to derive a variety of application traces such as instruction trace, system

call trace and memory reference trace, by replaying the application under instrumentation

tools such as Pin.

Second, vPlay efficiently captures the partial checkpoints of applications in production

and allows relevant traces to be derived offline by running replay through existing tracing

tools.

8.2.3 Application Monitoring and Visualization

Applications represent a significant enterprise asset and keeping them running at optimal

level is critical for business. Many tools [68] exist which monitor the enterprise environment

and report the health of various applications. They collect generic pieces of information

obtained from tools like iostat and vmstat, and typically present it as a graphical summary.

While such tools are regarded as generally useful, they fail to convey a comprehensive end-

to-end picture of the application environment. Many key events in a data center occur as

internal application events which are not captured by standard utilities.

A recording generated by vPlay provides exhaustive knowledge about the functioning

of an application in a given interval. vPlay captures every program input along with its

provenance information, and the resulting recording would be able to expose key application

events missed by conventional monitoring tools. While standard monitoring and tracing

is enabled during normal operation, vPlay recording could be used to randomly sample
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the application behavior to gain a deeper and more comprehensive understanding of the

application health. The additional information about intimate application events provided

by vPlay could be used to enrich the pool of data collected by standard tools for offline

analytics and visualization. For example, precursor symptoms for a degraded performance

and an eventual crash of an application may appear as unusual execution patterns within

the application. The early signs of divergence from normal or healthy patterns can be

identified with trained machine learning algorithms used by log analysis tools if detailed

internal events of the application are presented.

8.2.4 Information Archiving

Information archiving is a major market segment in data storage driven by regulatory

compliance requirements. Governmental regulations require businesses in some industries

to maintain records of certain transactions. In order to prove that a particular action has

been taken or a transaction executed, the result of the action is typically archived as static

data. Instead, it may be more effective in some cases to archive the action itself as a partial

checkpoint. A partial checkpoint not only serves as a record of the transaction, but it

also implicitly captures the required proof elements along with substantial detail associated

with the action into a compact representation. The action may involve nondeterministic

steps which are also captured by the recording. The provenance information for various

program inputs that vPlay includes would provide the necessary context to the forensic

investigation team in case of a security audit. For example, a bank may be required to

notify affected clientele about an update to the terms of a mutual agreement. While a

static record of such a notification may include high-level data elements such as date, place

etc., a partial checkpoint would capture the context of the transaction at a much greater

depth. It would include the identity of the server which negotiated the transaction, the

specific response received etc., which helps the corporation to be better prepared in case of

a litigation.
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8.3 Limitations

vPlay is an initial effort to address fundamental problems of existing debugging model

using a simple and lightweight virtualization mechanism. However, there are a number of

limitations, yet to be addressed:

Recording Windows Applications: Current implementation of vPlay is largely

based on the semantics of Linux applications. The resources and interfaces used by the

Linux applications are recorded and the same resources and interfaces are emulated on

other environments including Windows. Even though the general concepts developed as a

part of vPlay may be applicable to recording applications of other operating systems, the

implementation may require different engineering. For example, Windows applications are

vastly different from Linux applications. Their structure, API available to them, the general

programming model are all very different. Windows implements its system calls as a part of

win32.dll and kernel.dll system libraries. In many cases, the system calls completely occur in

the user space without switching to the kernel mode, which makes the user-kernel boundary

difficult to intercept. Windows also implements a lower-level native API, which is perhaps

closer to the system call API on Linux, but the semantics of the API are undocumented. In

general, lack of access to Windows internals makes transparent instrumentation of Windows

applications difficult.

Short error propagation distances: Not all failures may be reproduced by vPlay.

Although reported as rare [48], the root cause of some failures may lie far in the past,

outside the recent execution context recorded by vPlay.

Accurate system call specification: In order to accurately record and replay system

call responses, vPlay requires an accurate representation of the system call API in the form

of a data plug-in as described in Section 4.1. Some system calls, especially ioctl interface

dealing with uncommon devices may have poorly specified semantics, making it difficult to

record such system calls. Given additional support from the kernel [12], the memory side

effects of those system calls may also be captured correctly.

Connections with external components during replay: The replay function of

vPlay is designed to be used with a debugger for analyzing the faulty execution of the

application. Any external interactions of the application are not reproduced. As a result,
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the user may not be able to directly see the effect of replay on external components. For ex-

ample, replaying an interval of a graphical application would not show the graphical output

of the application during that time. However, the user can analyze the interaction between

the application and the window system within the debugger to identify any problems related

to the graphical output.

Specialized hardware and memory-mapped devices: vPlay assumes that the

application uses standard resources arbitrated by the operating system. Any specialized

resources and devices used by the application may have unstandardized semantics associated

with them and generally not possible to support without specific integration. For instance,

artificially making a device page absent may impact the correctness or the device may allow

reading the page only once by the application such that vPlay cannot read it again for

recording it.
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Chapter 9

Conclusions and Future Work

vPlay is the first system which can capture production software bugs and reproduce them

deterministically in a completely different environment, without access to the original pro-

duction environment. vPlay accomplishes this by relying only on an innovative recording

mechanism which provides data level independence between the application and its source

environment and a lightweight virtualization layer which insulates the replaying application

from the target environment. There is no need for access to any originally executed binaries

or support data, no need to run the same operating system, and no need to replicate the

original setup or do repeated testing.

vPlay introduces partial checkpointing, a simple and novel mechanism to record the

partial state required to deterministically replay an application, including relevant pieces

of its executable files, for a brief interval of time before its failure. Partial checkpointing

minimizes the amount of data to be recorded and decouples replay from the original exe-

cution environment while ensuring that all information necessary to reproduce the bug is

available. vPlay integrates with a standard unmodified debugger to provide debugging

facilities such as breakpoints and single-stepping through source lines of application code

while the application is replayed. The captured state, which typically amounts to a few

megabytes of data, can be used to deterministically replay the application.s execution to

expose the steps that lead to the failure. No source code modifications, relinking or other

assistance from the application is required.

Our experimental analysis on real applications running on Linux shows that vPlay
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(1) can capture the root cause of real-life software bugs and the necessary bug triggering

data and events, (2) can capture partial checkpoints of unmodified Linux applications and

deterministically replay them on other Linux distributions and on Windows, and (3) is able

to generate partial checkpoints of applications such as Apache and MySQL with modest

recording overhead and storage requirements. These results demonstrate that vPlay is a

valuable tool that can simplify the root cause analysis of production application failures.

9.1 Future Work

The concepts and techniques presented in this dissertation are geared towards addressing

software failure diagnosis. However, vPlay exposes a number of follow-on research and

engineering challenges.

General execution across operating systems: Porting applications to various op-

erating systems and maintaining them is an expensive undertaking for development orga-

nizations. Even though the vPlay Container abstraction is only applied to the limited

case of application replay for problem diagnosis, it could be used as a lightweight virtual

environment to host applications built for on operating system on another. A running ap-

plication relies on the services provided by the operating system. In case of replay, the

pre-computed results of most system calls are already available from the recording which

can just be returned to the application. In general execution however, all system calls made

by the application have to be emulated on the target system. Compatibility layers such as

Cygwin and Wine would simplify the emulation. For instance, the Linux system calls made

by a Linux application running within the vPlay Container environment on Windows could

be emulated by calling corresponding equivalents provided by Cygwin’s POSIX API. The

same techniques provided by vPlay Container for handling instruction and processor level

conflicts would also apply for the general execution case.

Distributed applications: Distributed applications represent important class of ap-

plications which are complex and often require significant hardware resources. Several

types of distributed applications such as data-intensive map-reduce applications or compute-

intensive MPI jobs could benefit from isolated replay of individual processes from a large
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distributed application. It may be possible to leverage specific attributes of these appli-

cations or perhaps directly integrate with their middleware to enhance them with built-in

debugging support. These issues remain to be explored.

Operating system bugs: vPlay relies on the kernel to correctly record application’s

execution, and assumes that the kernel itself is bug free. While reproducing kernel level

bugs is not supported, it is possible to record and replay an entire kernel running in the

user space within a virtual machine such as Qemu.

Relaxing replay determinism: vPlay disallows any debugging operations that

would potentially alter the deterministic execution course of replay. For instance, writ-

ing to the registers or other program variables may make the application take an execution

course which does not represent its original execution during recording. But in some special

circumstances it may be possible to relax the requirement of deterministic replay. For exam-

ple, it may be beneficial to be able to increase the logging level of the replaying application

for debugging, by allowing the user to modify respective logging flags. Replay would take

a slightly different path than recording to print extra log statements. By identifying and

capturing additional peripheral program state, it may be possible to accommodate small

digressions from the the originally recorded execution.

Client privacy: While vPlay strives to minimize the amount of state necessary to be

recorded and transmitted to the developer, a partial checkpoint may still contain sensitive

client data. To further reduce the recorded state, a partial checkpoint can be preprocessed

on-site to generate a memory reference trace by replaying it through an offline tracing tool

and filtering out unaccessed memory locations from the pages stored in the checkpoint. To

completely avoid having to transmit any raw data, it is conceivable to provide a remotely

accessible web interface to a hosted debugger which runs the partial checkpoint at the client

site within an isolated Java application which can run on any browser. Integrate replay with

an x86 emulator implemented in Java to replay within a browser. The customer would host

the web application in his premises and the developer would access the link to debug. Since

the code contained in the partial checkpoint is user code, an x86 emulator implemented in

Java would be able to replay the recording.
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