
Concurrent Execution of

Mutually Exclusive

Alternatives

Jonathan M. Smith

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

1989

Copyright © 1989

Jonathan Michael Smith

All Rights Reserved

Abstract

Concurrent Execution of

Mutually Exclusive

Alternatives

Jonathan M. Smith

We examine the task of concurrently computing alternative solutions to a problem. We

restrict our interest to the case where only one solution is needed: in this case we need

some rule for selecting between the solutions. We use "fastest first," where the first

successful alternative is selected. For problems where the required execution time is

unpredictable this method can show substantial execution time perfonnance increases.

These increases are dependent on the mean execution time of the alternatives, the fastest

execution time. the overhead involved in concurrent computation, and the overhead of

selecting and deleting alternatives. Rather than using the traditional approach of multiple

computers cooperating on the solution to a problem, this method achieves a solution

competi ti vel y.

Among the problems with exploring multiple alternatives in parallel are side-effects and

combinatorial explosion in the amount of state which must be preserved. These are

solved by process management and an application of . 'copy-on-write" virtual memory

management. The side effects resulting from interprocess communication are handled by

a specialized message layer which interacts with process management.

We show how the scheme for parallel execution can be applied to several application

areas. The applications are distributed execution of recovery blocks. OR-parallelism in

Prolog. and polynomial root-finding.

1. Introduction
1.1. Thesis Summary

2. Theoretical Underpinnings
2.1. Extremal Behavior
22. Performance Analysis

2.2.1. Overhead
2.2.2. Analytic Description
2.2.3. Parallel Speedup

Table of Contents

2.2.4. Domain-wide performance indices
2.3. Conclusions

3. Algorithms for Parallel Execlltion
3.1. System Model

3.2. Process Management
3.2.1. Synchronization
3.2.2. Atomicity

3.3. Predicates
3.3.1. Representation of Predicates

3.4. Interprocess Communication
3.4.1. Messages
3.4.2. Multiple Worlds

3.5. Discussion
4. Implementation, Applications and Experiments

4.1. Measurement of Overhead Costs
4.2. Copy-on-write

4.2.1. Motivation
4.2.2. Data Acquisition
4.2.3. Data Analysis
4.2.4. Relationships
4.2.5. Write Fraction for Rcal Programs

4.2.5.1. Franz Lisp

4.2.5.2. GNU Emacs
4.2.6. Conclusions about copy-on-write

4.3. RemoleforkO

4.3.1. Further process migration ideas
4.4. Disk Response Time
4.5. Network Response Time
4.6. Sibling Elimination

4.6.1. Real Time

4.6.2. System Time
4.6.3. Real Time, 16 Procs only
4.6.4. System Time, 16 Procs only

4.6.5. Correction for process scheduling

Page
1
4

8
8
10

11

11

14
19
21
22
22

23
25
26
26
27
32
32
33
37
40
40
41
42
42

44
50
54
55
57
58

60

60
62
63
64
66
74
82
88
94

4.7. Possible Sources of Error in Measurements

4.7.1. UNIX Clock Facility

4.7.2. Experimental Apparatus

4.8. Discussion

4.9. Applications

4.9.1. Distributed Execution of Recovery Blocks

4.9.2. Polynomial Root-finding

4.9.2.1. Example

4.9.2.2. Parallel Execution

4.9.3. Other Applications of the Technique

4.9.3.1. OR-parallelism in Prolog
4.9.3.1.1. Tutorial Example

4.9.3.1.2. Existing Solutions

4.9.3.1.3. Discussion

4.9.3.1.4. Measurements of Published Prolog Programs

4.9.3.2. Polyalgorithms

4.9.3.3. Simulation

5. Related Work
6. Conclusions
7. Directions for Future Work
8. References
9. Appendix I: do Jork.c
10. Appendix II: netrand.c
11. Appendix III: Further Jenkins-Traub executions

11.1. Polynomial #1

112. Polynomial #2

11.3. Polynomial #3

11.4. Polynomial #4

11.5. Polynomial #5

11.6. Polynomial #6

11.7. Polynomial #7

11.8. Polynomial #8

12. Appendix IV: Source, Prolog Sorts
13. Appendix V: Timings, Prolog Sorts. Large Lists
14. Appendix VI: Sort Performance, Small Lists
15. Appendix VII: Naive Sort Performance
16. Appendix VIII: Performance on Small, Ordered Lists
17. Appendix IX: Program to estimate memory speeds
18. Appendix X: Lower bound affects dispersion
19. Appendix XI: do_elim Script
20. Appendix XII: do_elim.c
21. Appendix XIII: "C' version of Jenkins-Traub algorithm
22. Appendix XIV: cvaryangle.c
23. Appendix XV: r2p.c
24. Appendix XVI: cmach.c
25. Appendix XVII: Extremal exploitation of randomness
26. Biography

11

100

101

102

104
104
104
106

107

113
117
117

118
120

126

128

130

131

132
135
141
142
153
155
157
157

158

160

161

163

164

165

166

168
170
173
174
175
176
178
184
186
194
208
210
215
220
224

Acknowledgments

First and foremost, I'd like to thank my advisor, Gerald Quentin Maguire, Jr. ("'Chip").

who was a constant source of ideas and constructive criticism, was a collaborator in

much of the experimental work reported here, and is a great friend as well, beyond his

role as my thesis advisor.

Robert Strom has been extremely helpful in my gaining an understanding of the prob­

lems, approaches. and trade-offs: he has inspired many of the ideas I've presented here.

Rob also served as an unofficial member of the dissertation committee.

Discussions with Calton Pu. Yechiam Yemini, Steven Feiner and David Farber have con­

tributed to this thesis. Further useful suggestions were made by Mischa Schwartz and

Martin Vetterli in the process of defending the thesis. Salvatore Stolfo pointed out Pro­

log OR-parallelism, and Joseph Traub suggested numerical polyalgorithms as applica­

tions. John Ioannidis was co-implementor of the rfork() mechanisms. David Presotto

pointed me towards recovery blocks. Colin Harrison of the IBM TJ. Watson Research

Center kindly allowed the use of an experimental multiprocessor for the performance

meas urements.

I'd also like to thank my parents and grandparents for their long years of support. Refen

Koh and Rodney Farrow have given me many suggestions and much support.

This work was supported in part by equipment grants from the Hewlett-Packard Corpora­

tion and AT&T. Defense Advanced Research Projects Agency contract N0039-84-C-

0165. and NSF grant CDR-84-21402.

UNIX and WE 3210 1 are registered trademarks, and 3B2 is a trademark of AT&T; HP­

UX. HP9000. and HP are trademarks of the Hewlett-Packard Corporation. VAX. DigitaL

UNIBUS. UDA50. HSC50. RA8!. and DEC are Trademarks of Digital Equipment Cor-

poration.

III

1

1. Introduction

This thesis examines the problem of concurrently executing altemative solutions to a

problem. There are four major questions which scientific research can answer. The first

question is "can we do this?;" the second is '"if so, how?," the third is "when do we

want to?," and the fourth, "where will opponunities exist?"

This thesis answers each of these questions for this problem; a summary of the

thesis results can be found at the end of the introduction.

Over time. the ratio of people to computers has decreased 1. In the mainframe

environments of the 1960s, there were often several thousand users per computer. As

time advanced, departmental minicomputers which became popular in the 1970s had an

order of magnitUde fewer users for each computer, even though these computers were

roughly comparable in power to the earlier generation. The 1980s have seen the intro­

duction of supemlicrocomputers where the number of users is a dozen or less, and works­

tations and personal computers which may support only a single user. Thus, it is reason­

able to expect that in the near future. rich computational environments will offer use of

several computers at the same time. These computers are typically connected through a

bus, where the communications abstraction is a shared memory. or a network, where the

communications abstraction is message-passing. A description of some computer organi­

zations which incorporate multiple processors can be found in Smith [Smith1986aJ.

A question which has intrigued many researchers is how this increasing supply of

computational resources, in the foml of multiple computers, can be used to solve bigger

problems, to solve problems faster. and to solve problems more reliably. Traditional

approaches have been cooperative, in the sense that the multiple computers cooperate in

developing the problem solution. Here, we look at a competitive approach, that of pursu­

ing alternative solution methods.

There are many situations where there exist several altemative methods for comput­

ing a result where a result in the most general case is a state change. Our designs show

what can be done to execute instances of this problem type. speculatively. in parallel.

We are interested in what perfonnance gains can be achieved. We measure

I These are observations noted by Nelson [Nelson 1987a] in a videotaped lecture.

2

performance llsing the metric of execution time, which is the amount of wall clock time

necessary to carry out a computation. Thus, we may increase perfonnance by this meas­

ure, while decreasing perfonnance by measures such as throughput, which is a measure

of the amount of useful work done per unit time.

This thesis demonstrates that the speedup promised by parallel exploitation of ran­

domness is achievable in practice.

We begin by describing the computations to be analyzed. These are essentially a set

of alternative methods for causing a state change to take place, with the additional con­

straint that at most one alternative state change occurs. These might be denoted a, b.

and c, and expressed as
SELECT

a
OR

b
OR

C

TCELES

a, b. and c comprise a block. The block's semantics are simple: one of its components

is executed.

Use of other language features allows conO'ol of the execution, if necessary. For

example, if one wanted to execute the alternatives in order a. b, c, loops and guards

could be applied. e.g ..

FOR I=l TO 3
SELECT

WHEN I=l: a
OR

WHEN I=2: b
OR

WHEN I=3: c
TCELES

ROF

Only alternatives with open guards can complete. Some of the alternatives may compute

an acceptable result. while others may not. The essential problem is the choice between

successful alternatives, or an indication of failure if there are no such alternatives. An

3

error condition is raised when no alternative is successful. An ALGOL-like language

construct embodying this situation is:

ALTBEGIN

ENSURE guard 1 WITH method 1 OR

ENSURE guard 2 WITH method2 OR

ENSURE guardN WITH methodN OR

FAIL

END

/* no method succeeded */

Figure 1: Alternative Block

What we want is for at most one method to be applied to our problem, or for whatever

conditions constitute failure to be indicated. Each method, 1.N, has associated with it a

guard condition. which it must satisfy to be considered sllccessful. A method is called

an alternative. When the alternatives are composed into a block. as illustrated in figure 1.

the interpretation is that one alternative (possibly failure) is selected non­

deterministically. The non-determinism defined in the semantics of alternative selection

can often be exploited with parallelism for higher-performance computing. Non­

detem1inistic a.lgorithms have been discussed in the literature; Cohen [Cohen1979a] pro­

vides a good survey; he mentions the possibility of parallel execution, algorithms for

which we will describe in Chapter 3.

The selection is non-detem1inistic and unfair, in that the selection of alternates is

not equiprobable. and should not be: it" s clear that the alternative of failure should be

given as Iowa probability of success as is possible, noting that when a.ll the alternatives

fail its conditional probability must be 1. The semantics of the construct are similar to

Dijkstra's [Dijkstra 197 6a] guarded commands, in the special case where the same guard

is used for all the statements. In an implementation setting, the construct resembles the

Ada [Ledgard198Ja] select with guarded alternatives: the selection of open (i.e ..

have satisfied the guard) alternatives is arbitrary.

Once our model is defined, and the semantics thus fixed, we can apply semantics-

4

preserving transformations to increase performance or achieve other goals. A successful

transformation. then, has two requirements. First, it must correctly preserve the seman­

tics. Second, it must achieve the goal set for it. e.g .. a performance increase.

We present (1) a model for selection of alternatives in a sequential setting. (2) a

transformation which allows alternatives to execute concurrently, (3) a description of the

semantics-preservation mechanism, and (4) parameterization of where the performance

improvements can be expected. Additionally, we show example application areas for our

method.

1.1. Thesis Summary

This thesis exanlines methods for solving problems for which there are alternative solu­

tion methods. When all such solution methods are equally acceptable. executing the

alternatives concurrently and selecting the first successful computation can improve

response time. The particular solution method which is fastest often depends on the data.

The major contributions of this work are:

• A scheme for parallel execution of nondeternlinistic algorithms. Consistency and

correctness are ensured with "Multiple Worlds." where "copy-on-write" page­

managed storage prevents side-effects and inhibits combinatorial explosion in state

storage requirements.

• An analysis of the possible speedup which identifies necessary properties of the

al ternati ves.

• An analysis of the overhead involved in the proposed parallel execution scheme.

tools for measuring this overhead. and measurements derived with these tools.

• Use of the rfork() remote fork mechanism to create a copy of a nlIlning process: this

extends the idea of process migration.

• Use of sibling elimination to reduce the scheme's effect on throughput.

• Predicates to extend the scheme to allow interprocess communication. where

interacting processes are also' 'copy-on-write."

• Example applications from three areas: parallel execution of logic programs. con­

current execution of recovery block alternates expressed in our language (RB). and

numerical analysis, particularly polynomial root-finding.

5

The scheme for parallel execution (Chapter 3) relies on the availability of alternative

solution methods. Nondeterministic algorithms give rise to alternatives by making

several choices. each one of which gives rise to an alternative. These alternatives are

executed in parallel: the results of the fIrst successful computation are chosen. At this

point, the slower computations can be eliminated. The alternatives share a common

parent process, from which their state is inherited "copy-on-write" so that unchanged

state can be shared, while internal consistency and correctness of each alternative are

maintained. The rfork() primitive extends the spawning of alternatives to a distributed

setting. To ensure correctness of interprocess communication, completion predicates are

attached to all messages sent by a process which has siblings: these ensure that receiving

processes do not make updates which depend on state which may be eliminated.

We identify the sources of overhead for concurrent execution using this scheme, and pro­

vide a measure of the performance improvement (PI) which can be used to compare exe­

cution strategies. We use this measure to identify opportunities for response time

improvement. The best sort of situation (discussed formally in Chapter 2) for our

approach is one where: the alternatives require a significant amount of computation time,

as encapsulated in the mean of their execution times; each alternative changes a small

amount of the state of the calling process, thus reducing the overhead due to copying

state; there is enough difference between the execution times of the alternatives that

choosing the fastest and killing the others is worth the overhead of spawning the copies

and deleting the slower siblings. The speedup is dependent on both the fraction of execu­

tion time devoted to overhead and the variance exhibited by the execution times of the

alternatives. The implication is that if overhead c,Ul be understood and controlled, there

is an opportunity for speedup roughly proportional to the vari,Ulce: thus superlinear

speedups, where the execution time is less than 0 (liN) for N processors. are possible

under this scenario.

Since the potential for speedup is sensitive to overheads, we examined these overheads in

Chapter 4. Copying is the major overhead in the creation and maintenance of the con­

current executions. Although there had been no previous work examining the efficacy of

. 'copy-on-write," our results indicate that the technique is extremely effective in prac­

tice. We provide several useful measurement tools to gather execution time data. These

tools are used to adapt our measurements to new computers; thus, with a few

6

measurements the domain for performance improvement using this method can be delim­

ited. We implemented a system which perfonns a remote fork, which is similar to pro­

cess migration with the exception that two processes exist when the operation is success­

ful, rather than one migrated process. Our measurements confim1 that the major over­

head cost is copying, and further. offer empirical proof that child processes can be

"spawned" in a distributed execution environment. Response time is affected by the

response times of several system components: we examine two subcomponents. the disk

and the network, in chapter 4. The final overhead is sibling elimination, which we

modeled on a multiprocess timesharing system. This should represent the worst case

execution, for which the results are encouraging, as they show the elimination to be

remarkably cheap, and insensitive to process behavior. Given that the overheads are

predictable and parameterizable these parameters can be used in deciding whether to

apply the concurrent execution scheme.

After identifying the opportunities for response time improvement with analytic work

and measurements, some example applications for concurrent execution are described.

These example applications are drawn from several different areas of computer science.

and illustrate the general utility of the scheme.

• Parallel implementation of logic programming languages, particularly OR­

parallelism in Prolog, provides an appropriate environment, because the computa­

tion is data-driven. The execution time and control flow can vary greatly with the

input. The way in which unification operates (as a "sophisticated pattern

matcher") leads to an overwhelming preponderance of read references made to

page-managed memory: while a high percentage of references are writes, these

references are mainly to the stack, and thus locality is high: stack "growth" can be

handled locally. reducing copying. Many logic programs have a great degree of

parallelism. so that appropriate opportunities must be identified with respect to the

overheads implied by our scheme. In particular, coarse-grained parallelism is better

to exploit than fine-grained parallelism at the level of overhead we have observed.

Our scheme deals with side-effects other than variable binding, and can run effi­

ciently on general-purpose hardware.

• Distributed execution of recovery block alternates uses the' 'fastest-first" behavior

7

in an attempt to find a rapid failure-free path through the computation. Recovery

blocks are designed for fault-tolerance. thus, there may be funher requirements

beyond fast execution time; we describe our RB language and suggest modifications

to the concurrent execution scheme to increase robustness. These changes increase

the amount of state available in a system to facilitate recovery.

• Polynomial Root-Finding with the Jenkins-Traub algorithm for fmding complex

roots of polynomials with complex coefficients was chosen as the third example.

The sequential algorithm chooses an angle at random in its search for a root; we

choose multiple angles and execute the choices in parallel. This application has

shown speedups of a factor of 3, and some examples demonstrate desirable proper­

ties of ollr execution scheme in the face of alternative failures.

In summary. we examined a problem setting, introduced and applied a parallel execution

scheme for improved response time, and demonstrated application areas and methods for

determining appropriate applications through measurement of overhead.

8

2. Theoretical Underpinnings

2.1. Extremal Behavior

Consider the n random variables Xl, ... ,Xn, each representing the execution time of a

computation. The order statistics are computed by permuting the values of Xi to form a

new set of values X (1), X (n) such that X (i-1) $X (i)$X (i+1)' This ascending order
II

implies that X (n)= ~lax Xi and X (1)= ~un Xi' X (1) can be interpreted as the random vari-
1=1 1=1

able defined by the first event to complete. Then, the distribution of
n

X (l).F (t)=P (X (1)~t) is given by 1-[I[l-Fi(t)] where Fi(t) is the distribution of Xi. The
i=1

random variables are assumed to be independent. If the random variables are exponen­

tially distributed each with parameter Gj. then l-Fj(t)=exp (Grl). Thus, X (1) is also
II

exponentially distributed with rate (parameter) LGi . This means that the average value
i=1

of X (1) is given by -n-
l
-. In particular, if the random variables are identically distri­

LG j

i=1

buted (all the Gi are the same), the average time to completion is given by _1_ or, in
n-G

other words. the average time to completion (min) is l.- times the average execution time
n

of a replica. _1 . Thus. the perfomlance gain in the extreme is 0 (l.-). that is. linear in the
G n

number of processes. A short discllssion of limit theorems for order statistics is available

in Feller [FeUer1970a] and a detailed treatise on the behavior of these extremes is given

by Galambos [Galambos1987a]. While the exponential distribution eases analysis and

leads readily to a linear speedup, there remains the possibility of arbitrary speedups.

since the speedup is a function of the distribution. We should note as an aside that sys­

tem throughput is not affected if the linear speedup occurs, since it is a measure of the

amount of useful work performed in unit time. We compare n processors executing until

first completes versus one executing a random instance. <X> is the expectation of ran­

dom variable X. The analysis shows that n ·<X (1) > = <Xi >; thus, there is no decrease in

system throughput at the limit, even though the work of n-l processors might be inter­

preted as wasted.

9

Since the random variables must be independent for the analysis to hold, the execu­

tion times should be random. Two cases exhibiting this behavior are given in Appendices

XVII and X. Appendix XVII shows a simple search problem. The experimental

apparatus is given; the problem closely approximates many classical search problems

where the input is random. For example, there is an obvious mapping between the ran­

dom search problem and the problem of finding a name in a phone directory, given a

number. Measurements are shown in figure 2:

,
" "

" " " " "
0.1 - "

,
" " * " " * " " * * " * "

,
" 0.01- " " Time " " " " sees. " , ,

" "
*

.' '" ,
" , ,

" " * "
0.001 -

, , ,
" ,

" " " ,
* " ,

" * " " " * *
,
" " "

0.0001 I I I I

1 10 100 1000 10000
Trials (=processors)

Figure 2: Use of randomness in search (Appendix XVII)

The results provide an existence proof that the tradeoff between randomization and paral­

lelism can be exploited for speedups in practice. Another interesting aspect of our

10

approach is that the variance of the time to completion X is reduced by order 0(_1_)
n 2

when the execution times are exponentially distributed. This implies that the distribution

of X tends to be very sharply focused around the best time possible. This fact has impor­

tant implications for systems where the execution time must be predictable, such as real­

time systems. Actual algorithms exhibit this behavior to the extent that you may ran­

domize their execution times to be independent random variables. For example. Appen­

dix X shows that a random choice of partitioning element in quicksort has little effect on

the execution time, even though the behavior is as predicted, i.e., decreasing execution

times and decreasing variance. The perfom1ance is limited in this case since the distribu­

tion function, FO. is bounded on the bottom by O(nlogn). and the mean execution time

of the algorithm approximates this quite closely.

The next section discusses the measurement of speedup we will use to test the suc­

cess of the method, and shows the conditions necessary for this speedup to occur.

2.2. Performance Analysis

The possibility of a performance increase stems from the fact that we can select the

fastest alternative by means of the synchronization protocol. The introduction's argu­

ment promises linear speedup. There are two facts which frustrate this promise. First.

the dispersion of execution times must be significant, and the probability distribution

function, FO, must have a long "tail." Second, we ignored the overhead involved in

concurrent execution such as copying, sibling elimination, and processor contention.

The cost we must pay for obtaining execution time proportional to the time for the

fastest alternate is use of available hardware.

Note that the action of continuing execution of the successful alternative and the

process of sibling elimination can take place asynchronously. The effects of various

overheads and system parameters are analyzed in the next section.

11

2.2.1. Overhead

To understand the overhead implied by the method, we should compare a sequential exe­

cution of the construct, in the best case, where the fastest alternative is selected. There

are penalties we are paying for parallel execution of all alternatives. We must compare

this scheme with sequential execution of the alternative which will be selected in any

case. These penalties are:

1. Memory Copying. In the distributed case we must copy state for a remote child so

that it can read or write locally. In the shared memory multiprocessor case. the copy­

ing overhead (in execution time) is reduced as the interprocessor bandwidth is much

higher. There is additional copying to be performed during synchronization. as the

changed state is updated in the parent's storage. The parent is constrained to remain

blocked while the children are executing.

2. Sibling elimination. This is asynchronous. and naturally parallel, but the instructions

to terminate the alternates must still be issued. and they increase with the number of

alternates.

3. Effect on throughput, due to wasted work. As our bias has been towards execution

time as a performance goal, we were willing to trade away throughput. Users may

want to know what the tradeoffs are here. so the effect on system throughput should

be analyzed.

2.2.2. Analytic Description

Assume that we have N alternative methods of perfomling a computation. A computa­

tion is a transformation from an input set (or Domain) to an output set (or Range); these

sets consist of state vectors. intended to describe the relevant state of the world, Le., the

machine state. For Domain D and Range R XE 0 is transformed via the computation
....".".".

into some yE R, thus we could write y = C(x) There may be several such C which we

classify as interesting. Transformations of C which add or remove useless operations are

infinitely numerous. but not interesting. Algorithmic differences, random parameters, or

significant differences in implementation technique are interesting. Assume that the N

alternatives postulated earlier are N such interesting Cs, and that they will be applied to

some XE D. Each C consists of some series of steps. where x is transformed into x'
....".

until y is achieved. Each step requires some amount of clock time, t, to complete; for

12

C(X) ~(C:X) is the sum of these times. 1, the execution time, gives us a way of compar­

ing the peIiormance of two computational methods on the same input, say-;.

There are many practical situations in which we want to minimize the computation
~

time required for the transformation of x to y. We will denote the N alternatives as

C 1, ... , CN. Since our goal is minimizing execution time, let us consider some possible

relations between the C on elements of D.
......

1. t(Ci.X) ~ t(Cj,x) for every XE D which interests us. It's clear that we should use Ci

and discard Cj for every i and j for which this holds.
......

2. t(Ci,x) ~ t(Cj.x) for some x which interest us, and we can accurately predict for

which -; this relation holds. In this case. we can construct a synthetic computation.

CN +1, which selects Ci when this holds. To anchor the relation with an example.

consider the case of two list-sorting algorithms, Q and 1. Q is faster than I when

the number of elements to be sorted is greater than 10. Thus, using this knowledge,

we can construct a synthetic sorting routine as follows:

sort (list, size

if(size> 10

Q(list, size

else

.-

I (list, size).

The synthetic routine partitions the input domain by performance. and thus achieves

performance superior to either Q or 1. The tough point here is the partitioning; it's

rarely as simple to delimit performance boundaries as "size < 10." If the input

set can be partitioned, but only at significant computational cost, the desired property
-"

of the synthetic routine. that t(CN+1,X) = m~n't(Ci'X) (or all x of interest. may be ,
achievable with the following technique.

......
If all interesting x are known in advance, we can associate one Ci with each x in a

precomputed table. Thel1. 't(CN+l:X) can be calculated by adding the cost of a table
......

lookup to the cost of executing the table element on x. 111 rare cases (rare due to the

amount of state under consideration. and the sizes of Rand D for the problems we are

13

interested in), we may be able to storey in the table, thus removing any execution

time cost except for a table lookup.
~ ~ ~!I..

3. t(Ci,X) ~ 't(Cj .x) for some x which interest us, but while interesting, the x cannot

easily be related to 't(Ci~) Essentially. this means that the table lookup technique

cannot be used, because we cannot reasonably precompute the values of 't(Ci:X)

This might be due to the input set, e.g., infinite size. For example, a naive quicksort

is not stable. and where the list is ordered the sort is slow. In these cases, a stable

sort with good performance, e.g., heapsort. may be preferable. However, it's clear

that storing a lookup table of all "interesting" lists is infeasible, and pretesting for

the "ordered" property is potentially expensive. Another problem is that 't(Ci~)

may vary due to the execution environment (which mayor may not be described by
--""
x: it probably should be, for completeness), e.g., processor type. multiprocessing

workload, or interactions with other computations. In these cases, where perfor-
~

mance on the XE D is unpredictable, we might try other schemes:

A. Statistical data can be applied, e.g .. quicksort is "almost always" O(nlogn).

B.

C.

Thus, we'll rarely go wrong using it.

An algorithm can be selected at random from amongst the Ci when given x.
-->0 ~

The Ci can be applied to x concurrently; the first Ci which produces y is

selected. The other C j are irrelevant and can be terminated. There is. however,

overhead in setup and synchronization (selection) which cannot be ignored.

Scheme A relies on infonnation which may not be available. Scheme B, when run

repeatedly on some uniformly distributed
~

input x. will perfonn at the arithmetic

N --""
L't(Ci,X)
i=l

means of the computations' performance, i.e., ---­
N

Scheme C offers some

.....
opportunity for achieving the best performance on each input x. We will try to

characterize this opportunity. Note that there are two possibilities for concurrent exe­

cution. real and virtual. Real concurrency means that the evaluation of Ci(X) is tak-
--""

ing place simultaneously with that of CjCx) ~irtual means that there is some sharing

of hardware, for example through multiprocessing.

14

2.2.3. Parallel Speedup

Our analysis must begin with semantics. as otherwise we are subject to criticism of the

"apples and oranges" type. Such criticism stems from the observation that changing the

problem in order to apply a program transformation makes performance results incom­

parable; we are comparing unlike programs.

To an observer, the concurrent execution of the Cj must look like Scheme B. (as

discussed above)~ that is, that we have followed a single thread of computation, chosen

arbitrarily from amongst C 1, ... ,CN' Since the C 1 ,CN may update shared state
~

described by x, we solve the problem by copying state when needed and by selecting

some Cj by virtue of its state changes. Thus, since the observer sees non-deterministic

selection of one alternative, we must compare concurrent execution to sequentially per­

fornling some Cj, chosen arbitrarily (we'll assume randomly). Since, as stated previ­

ously. execution time is our figure of merit, we'll analyze with that intent. ignoring meas­

ures such as throughput. Arbitrary selection is trivial to implement~ it costs no execution
~

time for purposes of our analysis. The execution of the selected alternative costs 1(Cj ,X)

N ~
L T(Ci .x)

~ i=1
for the x under study. Thus. we can expect the mean cost to be --N--' the average

~

of the Cj's times when applied to x. For notational convenience. define Cmean such that

N ~
L 1 (Ci .X)

~ j=l
T(Cmean ,x) = --N--

By executing the Cj concurrently, we will expect the cost of execution to be

--'"
't(C beSI ,x)+'t(overhead)

where

--'" --'>.

't(Cbesl'X)~' .. ~'t(Cworsl'X)

and overhead is complex. Overhead consists of operations perfoffi1ed to support con­

current execution which would not be necessary in the nondeterministic sequential case.

It consists of the following components:

setup: Instead of simply calling C j , we must now spend cycles creating execution

runtime:

selection:

15

environments for C 1, CN: for example. setting up process table entries

and page map tables.

This consists of copying memory areas which are shared between the

C 1, ... , CN when updates are attempted. This performance is strongly

influenced by locality of reference. Additionally, if Cbest is sharing

resources, e.g., CPU time, with some Cj, i#best, then all such Cj'S runtimes

must be added to the runtime overhead of Cbest, as cycles spent processing

Ci are not spent processing Cbest.

This is the cost involved in selecting Cbest , e.g., deleting

Ci sllch that i #best. cleaning up system state. such as performing the

updates made by Cbest' e.g .. writing checks or bottling beer.

-'"
Thus. for a given C 1, ... , CN and x.

r.(overhead) =
-'"

r.(serup(C 1 •.• CN.X) ~
-'"

r.(runtime(Cbest,X) i
-'"

r.(selection(Cbest'C 1 .•.• , CN·X)) .

and the parallel execution wins at~ iff

-'" -'"
r.(Cbest'x) + r.(overhead) < r.(Cmean,x).

Thus, we can calculate the performance improvement (PI) as:

r.(Cmean~)
PI=

r.(CbestJ) + r.(overhead)

essentially a ratio of execution times. For illustration, consider a case where N=3, on

input~. Thus, we have three methods C I, C 2. and C 3. Let r.(overhead) be 5. Some

possible relations are tabulated:

16

~ --'>. ~

t(C I ,x) 't(C 2,X) 't(C 3 ,X) PI

(1) 10 20 30 1.33

(2) 19 106 7.0

(3) 20 20 20 0.8

(4) 2 3 0.33

(5) 115 120 125 1.0

(6) 100 200 300 1.9

What can we infer from the examples? (3) indicates, along with (5), that the size of the

differences matters. (4) shows that the relative magnitudes of the execution times and

the overhead matters. (6) shows that the effects of the overhead (under our assumptions)

diminish with increasing relative execution time. (2) illustrates a good situation, where

the difference

is large. This magnitude of difference is well-encapsulated by such a statistical measure

of dispersion lRobbins1975aJ (letting values of't serve as the random variable) as the

variance, and the variance is easily computed as:

variallce=meall value('t(C i :t)2)-P p.('t(C bes/ :t')+'t(overhead))2

However. this re-expression seems to serve little purpose, as we can manipulate the sim­

ple relationships describing PI into fonns which genuinely ease analysis. Additionally,

the variance, although a good measure of dispersion is not precisely what we want to

predict speedup. This is because values other than the best execution time can be altered

with no effect on the mean execution time. Altering these values can increase the value

of the variance but not change the potential for speedup. In the remainder of this thesis,

when we use the tenn "variance", we will mean the layman's variance, a measure of

dispersion. rather than the statistician's variance.

We can analyze precisely the domains in which there is a perfonnance improvement
~

t(Cmean.x)
(PI>1). Letting R 11 = and Ro

't(Cbes/.x)

't(overhead)
~----,==-~, we can calculate PI as:

't (C bes"X)

17

PI= [_1 1 RJl
l+Ro

This re-expression isolates the effect of the dispersion, encapsulated in R Jl ' from the

effect of the overhead, encapsulated in Ro. Holding one of R Jl or Ro fixed allows us to

estimate the effects on PI caused by the other. The behaviors are illustrated in figures 3

and

3.5

*

3.0

2.5

2.0

PI

1.5

*

10 ---------/-------------------------------

0.5 ./

./
* 0.0

o 2 3 4 5

Figure 3: PI as a function ofRJl (Ro=O.5)

4. The relationship illustrated by the first figure is with Ro set to the constant value2 O.5~

2 As reported in [Smith 1988a] we observed a write fraction. which describes the fraction of
memory copied by "copy-on-wrile" mechanisms. to be between 0.2 and 0.5. Thus 0.5 is reason­
able, since the major overhead we observed was copying.

18

R ~ is varied between 0 and 5, and the values can easily be scaled. The curve is not

interesting, as it's a direct proportion for fixed Ro: Ro detemlines the slope of the line.

with Ro=O the best case giving a slope of 1. This tells us that the performance improve­

ment we can expect will be proportional to the variance of 't(Ci~) damped by whatever

effect r.(overlzead) exhibits. Holding R ~ fixed and varying the overhead is more interest­

ing, as figure 4 illustrates. The y axis has PI scaled proportional to R ~=exp (1.0). and the

scales are log-log to view a wide range of values.

PI

3.0

'"-* ----- '" --'" ---* 2.0 ~
~*

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.01

~ ,.
------------------------------------~-------

0.05 0.10 0.50 1.00

R
o

Figure~: PI as a function of R (R =exp(1.0))
o ~

'"

5.00

This tells us that varying the overhead has a significant effect on the performance

improvement we achieve. when scaled against the variance in execution times. An

important fact which we can deduce from this perfomlance analysis is that with sufficient

variance, and small enough overhead, N processors can exhibit superlinear speedup by

19

parallel execution of N serial algorithms, as opposed to parallel execution of one serial

algorithm which has been . 'parallelized.·'

2.2.4. Domain-wide performance indices

In the previous section, we constrained our analysis of the performance of concurrent

execution to the performance at a single input state. encapsulated symbolically in-;.
~

Thus. we have in our perfomlance index. PI. a function of x. This allows us to identify

states at which the execution of alternatives will provide a performance improvement.

Now. were we to consider the entirety of the input domain D, we might parameterize the
~,.

performance at each x as P/(x) .our goal in securing a performance improvement is

maximizing the "overall" performance improvement. How might we measure this? Let

the overall performance improvement be calculated as

OPI(D) = I. P{eX)'prob(X)
~EU

Prob(X) IS the probability that a given input state -; will occur: we assume that

1 = I. prob(X) We note that special care must be taken when I D I is +=. i.e., the input
XED

set is infinitely large, as (1) this case is common; and (2) we want a useful measure.
~,.

Thus. our fommlation of OPI serves as a weighted value of the PI(x) values over x
....,.,.

selected from domain D. This is just the expectation of PI(x) -;,PI(x». If we assume

the-; are equiprobable, then

....,.
OPI = I. PI(x)

XEDTDf

....,. 1
since prob(x) is rI>f' How good a measure is this? First. examine the case where

there is no improvement in the perfonnance. i.e. PI=1. Then,

I.l

OPI = I~)I = 1.

which certainly makes sense. given the situation that this symbolic representation
....,.

describes. If we expand the expression of PI(x) we get

[
1:(Cmean:t) 1 -'>.

OP/(D) = L = 'prob(x)
XED 1:(Cbes1 .x) + 1:(overhead)

20

The value of OPI(D) is maximized when the weighted average of the PI(x) values is

maximized. What factors are there? First, there is the input distribution. which for many

interesting problems we know little abouf. Second, there is the overhead, and the
-'" -'"

dispersion of values exhibited by 't(Ci,X) at a given x. It's clear that reducing the over-

head always helps; for the limiting case of 't(overhead) = 0,

~ 't(C,nean:X)
PI~x) = R)l = = ~ 1

t(C best,X)

-'" -"'-'"
Now. any dispersion of values of t(Ci,x) causes t(Cmean,x) > t(Cbest,x) ~o that R)l> 1,

and thus PI> 1.

-'"
It is worthwhile to discuss the value of prob(x) further. We estimated the sequen-

tial performance by assuming that a random choice be made from among the alternatives.

This represents the "best guess" that could have been made using our statement of the

problem. What if we relax the constraints on information available, so that rather than

equiprobable inputs. we have some data gathered about the probability distributions of

the input. The data may have been gathered through a small statistical sample. such as

might be possible from a short historical record of the inputs4. How c,m this data help?

If 't(Ci:X) < 't(Cmean~x) with probability Pi> l-ir' the expected performance of the

sequential algorithm might be improved by always choosing Ci rather than choosing at

random. Unfortunately, we also need to know the values of 't(Ci~) to be effective. The

difference in expected values amortized over the input domain can be represented as

If we refer to the inner term as !1i, we know that prob (!1i <0) = Pi. But knowing this

value, and not knowing I !1i 1 ' we can not predict whether a perfoTInance increase will

3 This statement' 'know little" must be qualified. On the one hand, the contents of a large person­
nel data base may be available before we begin our computation, so that we could "know" how
long a particular formulation of a query will take. On the other hand, it seems computationally in­
feasible to (1) pre-compute lhis information or (2) store per-datum, or stalic aggregate, annota­
tions of which method to choose. Also, execution time information from previous executions may
have lillie predictive value, or may be sensitive to environmenllli change.
4 For example, the single bit history of page-referencing behavior maintained with a . 'dirty" bit in
a virtual memory management system.

21

result. With the advance of systems for process migration and load-balancing, determi­

nation and control of this value becomes more computationally difficult. The "load­

balancing" can contribute to the observed execution times in such a way that it generates

an unpredictable domain-wide dispersion [Barak1985a].

2.3. Conclusions

We have analyzed the properties necessary for a set of alternatives to show a perfor­

mance improvement, in particular the relationship between the dispersion of execution

times and the overhead associated with the parallel execution. These properties were
--'>.

general: for example, x may encapsulate the execution environment so that processors

with heterogeneous performance can be accollnted for.

The factors contributing to r,(overhead) were dissected: they are mainly a propeny

of the execution environment and not of the application. Thus. measurements of over­

head may allow us to calculate the performance improvement, PI, based solely on the

application characteristics. thus removing a variable from any analysis.

22

3. Algorithms for Parallel Execution

3.1. System Model

A process is an independently schedulable stream of instructions. In implementations, it

is often associated with some unit of state, e.g., an address space, and a set of operations

provided by a kernel to manage that state. Interprocess communication is done solely

through passing messages. Thus, a message is the only means by which:

• Pm can make Pj aware of a change in Pm's state .

• Pm can cause a change in Pj's state.

Interprocess communication (lPC) is assumed to behave reliably (no lost or duplicated

messages) and FIFO (no out of order messages).

System state is divided into two types, source and sink. The division is made on the

basis of idempotence; operations on sink devices can be retried without the effects being

visible, while operations on sources cannot be retried. For definiteness. consider a page

of backing store and a teletype device, respectively. Side effects which affect sink state

can be hidden: this is a common technique in the implementation of such abstract opera­

tions as transactions; the idea is that the transaction has the property of atomicity. me<ill­

ing that either none or all the transactions component actions occur, and that intemlediate

states are not observable external to the transaction. Complex transactions may involve

reads, which can occur unhindered, or writes, which must be done to a temporary copy

until the transaction commits. or in other words, makes its changes permanent. Reads

intended for the recently written copy are satisfied by that copy so that the transaction is

internally consistent, i.e., it can read what was written.

Sink state is manipulated as fixed-size pages. All sink state can be represented in

this fashion: this is clear from implementations of a single-level store. as in MULTICS

[Organick1972aj. Thus we bury the entire memory hierarchy under the page abstraction:

files are named sets of pages. and thus mechanisms which are used to transparently

access files over networks LSandberg1985a, Weinberger1984aj can be used to hide the

network through the page management abstraction. This has been successfully done in at

least one commercial system. Apollo's DomainH1 [Nelson 1984a. Leach 1983a.

Leach 1982a].

23

3.2. Process Management

Two primitives encapsulate the entire semantics of the process management component.

The process management component is concerned with the mutually oblivious alterna­

tives. To spawn the alternatives, the parent uses alt_spawn (n). which returns

numbers from 1 to n in the alternates and 0 to the parent. Thus a language preprocessor

applied to a program with mutually exclusive alternatives would generate (in pseudo-C):

switch(alt_spawn(n))

case 0:

alt_wait(TIMEOUT);

fail(); /* if returned */

case 1:

/* First alternate */

case n:

/* n-th alternate */

alt_wait(0);

Figure 5: Use of alcspawnO and alcwaitO

The purpose of alt wait () is manifold: the essence is establishing a single path

through the tree of possible computations which is reflected in the execution history of

the running process.

Alt_wait () is the synchronization locus. Alt_wait () takes a TIMEOUT

value as an argument: the point is that this value should be chosen such that if TIMEOUT

time units have elapsed, it is highly probable that no alternative succeeded. While choos­

ing Stich a value is hard. most computations have an execution time which is clearly

unacceptable to the application: this value can then be used. The point of passing such a

timeout value will be seen shortly.

24

When a spawned alternate calls al t _ wai t () at the termination of its computa­

tion, a rendezvous between the a 1 t _ wa i t () ing parent and the child is effected. The

behavior is much like that of the UNIX exec () system call. where the new data and

executable code are read in from a named file. For a 1 t _ w a i t () , the parent process

absorbs the state changes made by its child by atomically replacing its page pointer(s)

with that of the child. Thus, the flow of control through the child appears to have been

seamless, up to and including maintenance of the process id. It is as if the parent process

was' 'lucky," and performed the execution of the fastest alternative itself.

Use of these primitives is shown by concurrent execution of the program segment in

figure 5 shown in figure 6:

Sequential

Program

Start

Block

""'" \ ~..,.

method l method 2 ... methodN failure , --====::=:
Synchro-

nization

Normal

Program

Figure 6: Concurrent Execution of Alternates

If all the GUARD conditions have been satisfied. a process which completes its prognU11

segment attempts to synchronize. If any of the conditions required by the GUARD were

not satisfied. the process abons without synchronizing. Note that the GUARD can be

executed before spawning the alternative. in the child process. at the synchronization

point, or at any combination of these places, for redundancy. We currently expect the

25

child process to execute it, thus speeding up spawning and synchronization.

3.2.1. Synchronization

It is at the synchronization point that the data for sibling elimination are available; all

processes which assumed that the successful child had failed must be deleted. as they

have made an assumption we now know to be false. To minimize the effect on

throughput, when an alternative is selected. its "siblings" are eliminated. This is done

by infomling the scheduler that the process is to be temlinated. The deletion can be done

synchronously (where the other alternates are deleted before execution resumes in the

parent) or asynchronously (where the deletion occurs at some time after the

al t _wai t () resumes in the parent, but exactly when is not specified); we suspect that

asynchronous elimination will give better execution-time perfomlance. This is because

the execution time we are concerned with is that of the successful alternative. If the suc­

cessful alternative cannot continue executing until its siblings are eliminated, then it is

waiting. and thus will have increased execution time. Now, on the other hand, if the

sibling elimination is started but the successful alternative does not wait for completion,

it will result in faster execution, as work (and delay) has been removed from its execution

trace. Measurements in Chapter 4 show that these suspicions are well-founded.

Now, communications problems or system failures may prevent this infom1ation

from reaching the scheduling component of a remote system. yet we must still preserve

the" at most one" semantics of our design. The backup in this case is that the synchron­

ization action is designed so that it can be done at most once: that is, if the remote system

attempts synchronization for the alternative it is executing, it is informed that it is "too

late" for the synchronization. and it should tenninate itself. In applications where this

might create a single point of failure. the synchronization is set up as a majority con­

sensus [Thomas1979al decision across several nodes. The engineering tradeoff here is

between performance and reliability; the additional communication and protocol of

multiple-node synchronization is the price paid for increased robustness of the synchroni­

zation.

26

3.2.2. Atomicit),

An important question is "when do the alternate's changes become visible?" Clearly,

this must occur at some point after the synchronization policy described above has been

effected. Since we have taken the trouble to prevent the effects of other alternatives

being visible, the update will be, by default, atomic (although we can have an ordered set

of intermediate states made visible by the timestamping information we've preserved).

Since any state changes must only be visible after the synchronization point, we'll

assume that the state changes are made atomically. to simplify the discussion. It should

be clear how the intemlediate state changes can be made visible, but it seems pointless.

How, then, can the state updates be made atomic? The method depends on cooperation

between the method for supporting alternatives and the memory manager. Since we have

required the predicates (described in the next section) to be stored in such a way that the

value of a predicate is stored in one place. we can atomically update that infonnation.

Thus, an atomic state change is achieved as follows:

begin ATOMIC:

All pages to be changed are predicated

with FALSE;

The predicating conditions (all TRUE) are

removed from the alternate's pages.

end ATOMIC

Thus, it appears to other processes that all changes (to address spaces. or to what could

normally be considered files) occur at once. The way in which I/O (e.g .. printing a

value) takes place must be considered carefully in an implementation, but the point at

which the predicates can be removed from the pages is the same point at which I/O can

be performed using these pages.

3.3. Predicates

Ideally, we would like an alternative to carry on with its computation as much as it can

before either blocking or synchronizing. To effect this. we add "predicates" to the mes­

sages.

27

3.3.1. Representation of Predicates

Each page object has associated with it some set of predicates; these are the same predi­

cates that are associated with message-sending. In most cases. there will be NO predi­

cates associated with a page, as there is only one timeline, reality, that it is associated

with; there are of course no conditions on reality.

Predicates might be stored as a bit-map, indexed by the process id. if the number of

possible process ids is small (e.g., if it is limited by the Operating System's process

table). If this is so, then predicate matches are essentially performed with existing

machine instructions for comparisons, and rules for deciding whether a predicated object

is accessible by a predicated process. Alternatively, the predicates can be stored as lists;

in this case, there must be a more sophisticated, and possibly slower, comparison pro­

cedure. One idea is to store a linked list of process ids as a predicate: elements of this list

can then be checked against their process table entries to detem1ine the value of the

predicate. If forward and back pointers5 are used, we can update the value of these ele­

ments as processes change state, with the idea that processes change state much less fre­

quently than they make memory references to objects. It seems both "fairer" and more

practical to control state by using software-implemented per-process predicates. The

arguments are as follows:

• Any mechanism which stores predicates at the page level must pervade the page

management system. Thus. all users must pay the cost for the extra page management

data, while not aBusers may have need for the data and page management facility.

• Predicates are used only in the process control and message transmission activities.

Thus, predicate changes and evaluations are performed only at points where processes

change state, not on a per-access basis.

• A bit-map for a system with 8192 processes would require 1024 bytes: thus for a sys­

tem with 1024 bytes per page, there would be a page of predicates per page of data.

Additionally. the comparison of predicates would have to take place at each page

reference. thus slowing an already time-intensive operation. If the bit-maps are stored

with the processes. the storage requirements grow as O(n2) for a bitmap. thus for 8192

5 Back pointer here means that attachcd (0 the predicatc is a list of processes which depend upon
its value.

28

processes, 8 megabytes of bitmap storage would be required, and it is expected that

most of it would be unused or sparsely used, There is a possibility for a time/space

tradeoff since all bitmaps except for those of running processes can be stored in a

compressed form. However. efficient compression algorithms often require significant

execution time to compress and uncompress data, and this penalty would be paid at an

already busy point, the context switch .

• With a list implementation, processes with no predicates would pay little (2 pointers)

overhead, and testing this condition would require about two instructions: as has been

pointed out in several perfonnance studies I Leffler1984a, McKusick 1985a], several

thousand insmlctions are executed per I/O or context switch: thus the added overhead

is significantly less than one per cent for processes which don't use the facility .

• As the system is described, there are three possible values which must be stored:

"must complete," "can't complete," and "don't care." Thus, at least two bits per

process are necessary, increasing the bitmap storage requirements by a factor of two.

With lists, the presence of a process identifier in either the "can't complete" or "must

complete" lists indicates that condition, and its non-presence in both lists indicates

.. don't care. "

Thus, we will implement multiple "copy-on-write" [Bobrow1972a] forks to maximize

sharing during parallel execution, and keep updated and newly-written pages linked in a

per-process descriptor table. Pictorially,

per
process

dma

PAGE

pgs

PAGE

One important notion is that the process-stored information must be dependencies, so

that storage of the predicate values themselves can be logically centralized, even if this is

29

not the case in reality.

Two operations, READ PAGE and WRI TE PAGE are defined: it's obvious that

any value manipulation can be performed with these primitives. They provide the point

of interaction between the process state, as defined by its predicate values, and the state

of external values. These operations can be implemented as follows:

and

READ PAGE:

Obtain the PREDICATES of the calling PROCESS.

Examine the PAGE TABLE for a PAGE

such that No PREDICATES assumed FALSE

by the PROCESS are TRUE.

IF no such page is found, FAULT,

setting the newly read page's

PREDICATES to that of the PROCESS

ELSE return a pointer to PAGE Fl.

WRITE PAGE:

Obtain the PREDICATES of the calling PROCESS.

Examine the PAGE TABLE for a PAGE

such that No PREDICATES assumed FALSE

by the PROCESS are TRUE.

IF such a PAGE is found

IF No PREDICATES assumed TRUE

by the PROCESS are FALSE, update the

PAGE and return a pointer to it.

ELSE

Make a new copy of PAGE.

Fl.

ELSE

Allocate a new PAGE.

FI.

Set the PAGE's PREDICATES to that of

the PROCESS.

Update the PAGE

Return a pointer to the PAGE.

30

To see how this works, consider the following example, with Parent Process P having

spawned Alternates A] and A2. The predicate associated with A] is A]and -.A2, which

we'll represent as 10. and ,Aland A2, which we'll represent as 01. The state previous

to the alternates is then 00. and 11 can't happen. The state 00 implies FAILURE after

the alternates have been spawned, as it implies

.. At and .. A2. Let the initial state of the page map (P's) be:

31

Virtual Predi- Real

Page# cates Page#

0 00 19

1 00 12

3 00 3

Assume further that Al has the following operations: READ 0, READ L WRITE 3,

READ 0, and that A2 has READ 0, WRITE 0, WRITE 0, READ 3. The resulting state of

the page map will be:

Virtual Predi- Real

Page# cates Page#

0 00 19

1 00 12

3 00 3

0 01 37

3 10 8

The predicates are lists of process identifiers, some of which the sending process depends

on completing successfully and others on which the sending process depends on not

completing successfully. Thus, these are even simpler and easier to manage then the

predicates described by Eswaran, el al. [Eswaran 1976aj The advantage of this representa­

tion over predication of data objects is that we can update the value of these elements as

processes change status (e.g .. mnning, blocked), with the idea that processes change

status much less frequently than they make memory references to objects. Note that

since the processes are mutually exclusive, there is no problem sharing the other objects

on a page.

These lists are constmcted in two ways. First, the predicates of a "child" process

consist of those of the "parent:" this allows for nesting and potentially complex depen­

dencies. Second, when the' 'parent" spawns each of its alternative "children," each of

32

the children additionally assumes that it will complete successfully, and that its siblings

will not6. The state management strategy is "copy-on-write" [Bobrow1972a] with page

map inheritance from the parent, thus it is easily implemented within the context of a

system which provides such features, e.g., Mach [Young1987a], and benefits from exist­

ing hardware support. e.g., for the WE® 32101 Memory Management Unit

[AT &T1986a]. The software-implemented predicates are used in the process control and

message transmission activities to maximize sharing. Updated and newly-written pages

are predicated by virtue of their residence in a per-process descriptor table.

3.4. Interprocess Communication

3.4.1. Messages

A message from Pm to Pj has the following three part stmcture:

1) A sending predicate, encapsulating the assumptions under which the sender, Pm

sends the message.

2) The data comprising the message contents.

3) Some control information, e.g., sender id, destination id, etc.

Each process in a multiprocessing (e.g .. timesharing, multiprocessor, or distributed) sys­

tem has a unique identifier. used to identify the process both within the system (e.g .. for

scheduling and resource allocation), and further, for interaction with other processes.

This unique identifier can be constructed by concatenating several quantities at the time

of process creation if local process ids are not unique (as in a distributed system), but

processor names are:

<processor name, local process id, timestamp>

The timestamp is included to mitigate against re-use of local process ids. In the single­

processor case. a local process id must be unique at any given time in order for the pro­

cess to be named in an unambiguous fashion. However, as soon as the process ter­

minates. the name. e.g., a table address or small integer, can be re-used. The local

6 Thus, so-called "sibling rivalry" is Laken LO its extreme in this design! The failure alLemative
assumes thaL none of Lhe siblings will complete.

33

picture of time may not hold across processors, and thus we force uniqueness with a

timestamp,

3.4.2. Multiple \Vorlds

An idea from science fiction, inspired by Dewitt's [DeWitt1973a] multiple worlds

notion, is appropriate here, The problem with interprocess communication stems from

the fact that a given alternative mayor may not be successful. In the case where it is suc­

cessfuL its execution results are available to the calling process. Where it is not success­

ful, its results and any side-effects it may have generated must not be observable. These

include side-effects due to interprocess communication,

The specialized side effects resulting from interprocess communication are con­

trolled by a message layer which insures that any receiver of a message makes the same

assumptions about the state of the world as the sender. Since a given sender may fail and

make its assumptions invalid (as well as irrelevant) two copies of the receiver are created

when the sent message causes the receiver's state to change: one copy is in the sender's

'·world." the other is not.

In any case, the message subsystem must be aware of the decisions made. so that

the copies are made once. at the first message receipt, not at each message receipt. Thus,

as far as the receiving process is concerned, there are two worlds: one where the sender

exists. and one where it doesn't. Depending upon whether the sending process completes

successfully, one "world" may be realized.

The message system, the virtual addressing mechanism, and the process manage­

ment mechanism are linked in the following way. When a receiving process accepts a

message. its predicates (R) are checked against those attached to the message (S). If

the assumptions that the receiver makes about the ,. state of the world," as encapsulated

in the predicates, agree with those of the sender (e.g., S~R). the message is immediately

accepted. If the receiver's predicates conflict (PE Sand .pE R), the message is ignored.

and if the receiver must make further assumptions to accept the message (pE Sand

pe R), two copies of the receiver are created. One copy is created with the predicates set

to the previous values with complete (S) 7: the other is set up with its predicates as

7 Thus implying allthc sendcr's predicatcs,

34

before, except that complete (S) is negated.S This is shown in a revision of a pre­

vious figure:

Sequential

Program

Start

Block

Synchro-

nization

Normal

Program

methodN failure

" mes~ge

"

no/ complete IN)

Figure 7: Use of predicates

This is easy given the representation as two lists (i.e., "must complete" and "can't com­

plete") of process identifiers. When the sending process succeeds or fails, one receiver

must be eliminated to maintain a consistent ., state of the world;" at this point the addi­

tional assumptions which receipt of the message caused will become TRUE, and they

can be eliminated from the lists.

To illustrate the idea, consider a group of communicating processes composed of p,

Q, and S. P has children a, b, and c: Q has children d, e, f. This is illustrated by figure 8.

8 Thus implying rejection of the sender's predicates without creating a logical impossibility. As­
suming the negation of all of S's predicates might imply that two mutually exclusive processes
must complete.

35

p

a

b

c S

Q

d

e

f

Figure 8: Communicating processes

Suppose both band f wish to communicate with S. We use the predicates to create mul­

tiple copies of S, with which the alternatives communicate. This is illustrated in figure 9.

36

p

a

b

c S

b-,f -,b-,f
I

------~ ~------

Q - - - - - - , r------

-,bf bf

d

e

f

Figure 9: Communicating processes after message receipt

There are several implications to this scheme:

1. There is clearly a potential for a combinatorial explosion in the number of processes

that exist, and amount of state which must be copied. Since the process creation is

based on message receipt. it is "lazy".

2. Commit is very fast, as it can be accomplished using only pointer (page descriptor)

manipulation. For example, -,bf can be committed by simply updating the page

descriptor table associated with S.

3. Messages must be duplicated. as all valid receivers must get the message.

4. The method is optimistic. Rather than locking a resource based on a predicate, the

assumption embodied in the predicate is sent with messages and used to create new

"worlds.' ,

While a process has predicates which are unsatisfied, it is restricred from causing

37

observable side-effects. and thus cannot interface with sources.

This behavior is similar to that required of transactions. Transactions [Gray1978a,

Lampson1981a, Traiger1982a, Gray1981a] are a structuring concept for operations: tran­

sactions are required to be atomic with respect to any observer. This atomicity property

means that a transaction either executes in its entirety or does not execute. Thus, any

side-effects of a transaction which is in progress (i.e., not complete) must not be visible,

since the transaction might fail. The method described here might be viewed as a set of

competing transactions, at most one of which will complete, or commit. The competing

transactions must not only be isolated from external computations, but they must be iso­

lated from each other as well.

3.5. Discussion

Upon receipt of a message. the predicates associated with a message (by virtue of it being

sent by some process with assumptions about its existence and the existence of other

processes) are checked against those of the receiver. Remember, the predicates associ­

ated with a process encapsulate the assumptions it has made about the world in order to

continue executing. It has to be done this way to avoid blocking or waiting for the predi­

cated condition (typically successful termination) to become true. The idea is that for

some process these assumptions will be right. In order that the interaction with other

processes leave a consistent .. world view." we are forced to perform some special

actions upon message transmission between two processes, e.g .. one alternative and some

server process. The idea is that the message layer. as illustrated above, is involved in

process management as well. When a process receives a message which causes it to

update its state (read-only messages don't change the receiver's world view, and so they

can be ignored by our mechanisms but are of course used by the receiver). it must be

careful. The care is taken in examining the assumptions which must be made by the

receiver to continue executing. If a sending process has made an assumption which the

receiver has not made. the receiver has two choices. The receiver can share the assump­

tion with the sender. and reply accordingly. Or. the receiver can reject the assumption,

and hence the message and implied updates of its state. If the sending process completes

successfully, then its updates become visible when the predicates are removed from its

state and from the receivers, but not before.

38

One issue which should be discussed is locks. If one of the alternatives successfully

obtains a lock on a data object, then other alternatives will be blocked and the concurrent

execution will not be transparent. Two scenarios are possible where a lock is involved.

If the lock is acquired before the alternative block is entered, a copy of the state indicat­

ing successful lock acquisition will be made when the alternatives are spawned. Copies

of the locked object will be made as the object is changed, and one of the set of changes

will be available after the synchronization point is reached. The other scenario is lock

acquisition by an alternative. In order for our mechanism to work in preserving the tran­

sparency, the lock must be accessed through another process. Then, the predicated mes­

sage mechanism can be used in lock acquisition, so that two "worlds" exist. one where

the lock has been acquired, and one where it has not. Otherwise. there are a variety of

situations from which inconsistency or deadlock could arise.

The opportunity for a performance increase arises when the methods require dif­

ferent amounts of execlltion time.

This is illustrated in the timeline diagram of Figure 10:

TI

v

Figure 10: Alternates vs. Time

It's clear that Alternate A3 is the fastest. If this had been predictable a priori. the

39

programmer probably wouldn't have used alternatives. We'd like to take advantage of

the fact that A3 executes most quickly by selecting it and deleting the other alternatives;

this is done by "sibling elimination." This is done because any computation done after

A3 has tenninated (the point in time indicated by the dotted line) is wasted computation.

In the next chapter. we evaluate implementation strategies. and the overhead associ­

ated with several execution environments. The careful perfonnance measurement

methodology is of particular interest, since this need be done only once for a particular

execution environment. Several application areas are discussed. and experimental results

demonstrate that speedup is possible with the competitive scheme on problems where no

cooperative solution is possible.

40

4. Implementation, Applications and Experiments

'" ... the sole test of the validity of any idea is experiment." [Feynman 1963a]

4.1. Measurement of Overhead Costs

It is informative to examine measured values of possible contributors to t(overhead).

Earlier, we described these as the cost of creating alternates, the cost of maintaining the

alternates, and the cost of sibling elimination.

We have developed analysis techniques and software to evaluate the sources of

overhead. The analysis techniques were applied on two workstations, the AT&T
TM 1M 3B2/31O' and the Hewlett-Packard HP9000/350

We begin by determining the relationships between the amount of memory in the

parent's data segment, the fraction of this memory which is written by the child, and the

improvement in execution time due to "·copy-on-write.·' Since the implementation of

"copy-on-write" is straightforward with modern [AT&T1986a] memory management

units (MMUs), our results for these workstations are readily generalized to other works­

tations.

The results show that the size of the parent's allocated memory has little direct

effect on performance. because only page table entries are copied during the fork()

operations. The execution time is most influenced by the amount of memory that must

be copied, which can be determined from the product of memory allocated and the frac­

tion of memory written. Thus. the worst case occurs when large address space programs

update much of their memory.

To observe what occurs in practice, we measured two programs that have what are

currently considered large address spaces. These programs, which we believe to be

representative of the sorts of programs which use large amounts of system resources.

updated less than half of the memory in their data segments.

41

4.2. Copy-on-write

The UNIX® fork() operation creates a copy of the calling process which is differentiated

from its creator by the return value of fork(). The two processes have separate address

spaces. Traditionally, UNIX systems copied the contents of the caller's address space to

create the new process. Since the ponion of the address space containing executable

code was read-only, copying was not needed and an incremented reference count and text

table entry sufficed IRitchie1978al. Clearly, the fork() operation can be expensive in

system resources. Thus, some attempts were made to take advantage of special cases.

An example is the 4.2BSD [JoyI982a] vfork() cail, which does not make a copy of the

address space for the new process but instead allows it to share the address space with its

creator. The creator is not runnable until the new process has replaced its image via an

exec() operation. The exec() operation replaces the caller's image with an image derived

from the contents of the named executable file. It is common for the operation which

immediately follows a fork() operation (after some descriptor manipulation) to be an

exec() operation. In particular, this happens frequently in the shell [Bourne 1978a],

which is the main user interface to UNIX. Thus, vfork(), in not copying, avoids unneeded

work. However, the shared, not copied, address spaces force the programmer to be very

aware of the differences between fork() and vfork().

Another approach is to alter the implementation of fork() to take advantage of

favorable circumstances such as the shell's usage. This change should be made tran­

sparent to the application. The alteration is done with a so-called "copy-on-write"

fork() , where portions of addressable memory are shared until they are changed. Similar

memory management is done in TENEX [Bobrow1972aJ and more recently. Mach

[Young1987a]. Each process has a page table which maps its virtual addresses to physi­

cal addresses: when the fork() operation is performed, the new process has a new page

table created in which each entry is marked with a "copy-on-write" flag: this is also

done for the caller's address space. When the contents of memory are to be updated, the

flag is checked. If it is set, a new page is allocated. the data from the old page copied.

the update is made on the new page. and the "copy-on-write" flag is cleared for the new

page. Thus, unexpected changes to shared state do not occur, as independent copies are

created' 'on demand." This is effective in the special case of the shell, where almost no

copying has to be done before an exec() replaces the address space. A thorough

42

description of the mechanism as implemented in UNIX is given by Bach [Bach 1986a].

4.2.1. Motivation

In section 4.3, we present results from a paper [Smith 1989al where we discuss an imple­

mentation of a mechanism to fork() a process on a remote workstation; the major cost in

execution time is incurred by data copying. Thus, we were interested in reducing the

amount of copying, especially that which takes place over a communications channel.

One strategy which we devised (assuming either homogeneous software configurations

on the workstations or NFS-available [Sandberg 1985a] binaries) was to have program

images available on the remote system and send only the changes [Maguire,Jr.1988a]

which have been made to the address space, i.e., those which would be copied by a

. 'copy-on-write" scheme. To understand the engineering tradeoffs, we examined the

local case in some detail.

The arguments presented for' 'copy-on-write" have so far been qualitative; we felt

that detailed quantitative data were necessary.

4.2.2. Data Acquisition

There are two parameters of interest, i.e., the size of the storage to be .. copied" in the

new process and the fraction (between 0.0 and 1.0) of memory references which are

writes. The number of times each parameter was exercised was also made variable, to

remove various small-sample artifacts that can occur. Such artifacts are illustrated by the

plots for small sample sizes in the copy-on-write fork() measurements. The desired data

were gathered with the C program presented as Appendix I, do Jork.c. A script was writ­

ten in order to drive the do Jork() program with various values: the values used for the

measurements described here were gathered with this shell script:

if [-f do fork

then

echo "Making do_fork."

!C.ake do fork

if -f do fork

then

echo "No do fork. Exiting."

exit 1

fi

echo "size do fork:"

size do fork

fo= forks in 0 1 3 10 32 100 316 1000

do

fo= heap size in a 1000 3:62 10000 31622 100000 316228

do

for write frac in 0.0 0.1 0.3 0.5 0.7 0.9 1.0

do

echo "time do_fork Sforks Sheap_size Swrite frac"

time do fork Sforks Sheap_size Sw=ite_:rac

done

done

done

43

The script first ensures that an executable do Jork binary is available, attempting to make

one if not. Once do Jork is available, it is invoked in the innermost of three nested

loops, which vary its parameters controlling the number of forkO operations to be exe­

cuted, the size of the heap to allocate, and the fraction of the allocated heap which is to

be written to. Before each invocation. a message is written with echo, stating what the

invocation parameters of do Jork are.

Data sets for analysis by S I Beckerl984a] are then created using the shell script. by.

e.g. for the 3B2.

script 2>& 1 1\

grep ". real" 1\

cut -£2 1\

awk '(i=indcx(SO,m); m=substr(SO,1,i-1);\

s=subst=(SO,i+l,length(SO)-i-l); s=60*m+s;\

p=in~ sl' > real.3B2

and reading the list of numbers into an S vector. The following data sets were extracted

from the script output:

44

number: The number of times an invocation of do Jork was to create a child process.

mem:

The values 0, 1, 3, 10,32, 100,316 and 1000 (0 plus powers of sqrt(JO) were

selected to make both order of magnitude induced effects (as we are changing

by orders of magnitude) and implementation artifacts (because we start at small

values, e.g., 0 and 1) visible.

The number of bytes allocated to the process's heap, via mal/oc(). The values

0; 1,000; 3,162; 10,000; 31,622; 100,000 and 316,228 were chosen for both

artifact and order of magnitude visibility, as discussed previously: the extra

factor of 1000 (over the values of number) is to compensate for the page size,

since otherwise it would require (for a 2K page9) 8 values before we accessed a

page other than the first one. Clearly, there is no practical difference between

316,228 and 3 10K: it is merely aesthetically appealing to use the correct digits.

frac: The fraction of memory which is to be written (we write one byte per page in

order that the memory access loop not contribute to the response time beyond

causing faults). The interesting boundary values of 0.0 and 1.0 were chosen, as

well as the values 0.1,0.3,0.5,0.7, and 0.9, which were chosen for their cover­

age of the input domain.

real: The real time, in seconds, printed by an invocation of "time do fork"

with the parameters as set in the other vectors.

user: Likewise for user time.

sys: Likewise for system time.

4.2.3. Data Analysis

Given the data discussed in the previous section, we wish to analyze the data in order that

we can qualitatively discuss the effects of "copy-on-write" page management on

response time. One difficulty is that by our experimental design, the measured response

time is a function of not one, but three quantities, number, mem, and frac. There are

9 HP.UX on our HP9000/350 systems uses a 4K pagesize. With our instrumentation (e.g.,
do_fork.c) the difference is relevant only when the offset of a particular byte in the last page ac­
cessed causes an extra 2K bytes of memory to be paged in. It may be more relevant to applica­
tions.

45

two obvious hypotheses which we can propose for our analysis to refute or verify. First,

that the response time increases as the size of the data segment increases, for a fixed frac­

tion of write references. Second, that the response time increases as the fraction of write

references increases, for a fixed data segment size. Figure 11 shows

real

time
(sees)

600

500

400

300

200

100

o

o 50000 100000 150000 200000 250000

memory (bytes)

Figure 11: Effect of fraction of memory \vritten

(number = 10(0)

300000 350000

mem plotted on the x axis against real on the y axis for an AT&T 3B2/31 0 with 2 mega­

bytes of memory (of which 1.2 megabytes are available to user processes), a 30 mega­

byte hard disk, and running UNIX System V, Release 3.0, Version 2. All times are given

in units of seconds. We have fixed the value of number to be 1000 to remove anifacts.

The dependent variable, plotted vertically, is the real time, in seconds. The independent

46

variable. the size of the data memory in bytes, is on the horizontal axis. Regression lines

are drawn through the plotted points corresponding to frae values of 0.1,0.5, and 0.9.

These regression lines have equations y=1.70ge-4·x+31.4. y=7.670e-4·x+30.5, and

y=1.34ge-3·x+30.7 for the respective frae values. Thus. with these equations, we could

estimate that a process with a 1 megabyte data segment which writes into half of that seg­

ment would take about 800 (797.5=7.67e-4·1.0e6+30.5) seconds of real time to per­

form lOOOfork() operations. The lines fit the plotted points well, indicating that the rela­

tionship is close to linear.

The same data are plotted for a Hewlett-Packard HP9000/350 with 8 megabytes of

main memory and an HP7945 70 megabyte hard disk. running HP_UX™ 6.0 (same units.

restrictions, and axis markings) in Figure 12.

real

time

(sees)

90

80

70

60

50

30

20

10

o 50000 100000 150000 200000 250000

memory (bytes)

Figure 12: Effect of write fraction (HP-UX)

(number = 1000)

47

300000 350000

The equations for the lines with frac set to 0.1, 0.5, and 0.9 are y=2.952e-5·x+12.7.

y=1.264e-4·x+12.4. and y=2.124e-4·x+12.2, respectively. The effect of the faster pro­

cessor in the HP9000/350 is clear from the extent of the y axis in this figure versus that

of the previous one. The important parameter in comparing processor speeds under this

workload is memory-copying speed. To measure this, we wrote a short C program which

took the number of bytes to copy as an argument, the relevant fragment of which is:

48

p = malloc(size);

clock = times(&tbl);

rr.emcpy (P, P, size);

clock = times(&tb2) - ClOCK;

For size set to 316,228 and a page size of 2K bytes (4J< on the HP9000) we measured

0.40 seconds of real time, 0.39 seconds of user time, and 0.00 seconds of system time on

the 3B2/310. The values were 0.06 seconds of real time. 0.06 seconds of user time. and

0.00 seconds of system time on the HP9000/350. These values held true through several

trials, and show that for memory-copying the HP is about (to the limited accuracy of the

measurements) 6.7 times faster than the 3B2. They also provide an upper bound on the

memory copy rate which can be used to evaluate overhead incurred by page management

operations. For the HP. we get 5M (5,270.467=316.228/0.06) bytes per second. or about

1,300 (1,286=5,270.467/4,096) 4K pages lO per second. For the 3B2, we get 0.8M

(810.841=316.228/0.39) bytes per second or about 400 (396=810,841/2.048) 2K pages

per second.

We can use the regression lines we have presented for further analysis. The y­

intercept (about 31 seconds for the 3B2/31O and 12 seconds for the HP9000/350) should

represent the time required for 1000 forks which allocate 0 bytes of memory: examina­

tion of the script output confirms that this figure is accurate. Since do Jork is \\-'litten to

be compact (no standard I/O, etc.) this should accurately indicate the cost of performing a

fork when divided by the number of operations perfom1ed. Thus, using the computed

intercepts we have given for number set to 1000, the average 3B2/31O fork requires

about 31 (=(31.4+30.5+30.7)/(3'1000)) milliseconds of real time. For a fixed number

of fork() operations the y-intercept is not nearly as interesting as the slope of the line.

We should note that in reality. the function is not a line, as the quantization of bytes into

page size quantities forces a staircase function. However. for purposes of analysis we

can assume that a linear function exists. The slope of the line for some known value of

frac gives the relationship between changes in real caused by changes in memo Hence,

we can use the slope of the regression line to estimate the rate at which page faults are

10 For comparison purposes, Lhis would be about 2,600 (2,573=5,270,467/2,048) 2K pages per
second.

49

serviced. Mem·frae gives a fixed amount of memory. with which we use the equation of

the regression line to compute a real time estimate. Then, the observed page fault service

rate can be computed with the simple formula mem·~rae. The slope of the line can be
real tlme

used to compute the service rate directly. for a known value of frae and number; this

. . b number'frae h' h I I I" f b d F rate IS gIven y I . W lC ca cu ates a va ue In umts 0 ytes per secon. or
s ope

the 3B2. these values are 585.138; 651,890; and 667,161 (286. 319. and 326 2K

pages/second, respectively) for the three values of frae plotted. The corresponding

values for the HP9000 are 3,387,534; 3,955,696; and 4,237,288 bytes per second (827.

965, and 1,034 4K pages/second 11 ,respectively). Using the best observed page fault ser­

vice rates for each processor. we calculate the ratio of the page fault service rate and the

time for memory-copying. which is 0.823 (=667,161/810,841) for the 3B2. and 0.804

(=4.237.288/5.270.466) for the HP. Values for the ratio can range between 0 and 1; the

best case is a value ne,u' 1. as this indicates that the virtual memory management incurs

little overhead. We can estimate this overhead using the information we have. Using to
to measure time. we know that

r,(jork) = t(copy one page)·frae·# pages +

t(overhead for page table entry)·# pages +

't(overhead to creme new process)

Now. t(copy one page) is really a function of the hardware components (e.g., bus, pro­

cessor, memory) comprising a system, and we've shown how it can be gathered with a

small auxiliary program. But from our numbers and analysis we can get r,(overhead for

page table entry) and t(overhead to create new process). Thus. for any givenfork opera­

tion, the time required is completely parameterized by t(copy one page), t(overhead for

page table entry). 't(overlzead to create new process), frae, and mem (# pages). The key

is that the first three are detemlined by the system characteristics. and they can thus be

precomputed: the application-dependent influences are completely encapsulated in the

latter two parameters. Thus, an application can be characterized on a given system by its

size in pages and the fraction of those pages which are written to.

11 For comparison, 1,655: 1,932; and 2,069 2K pages/second.

50

4.2.4. Relationships

The shapes of the plots we generated are similar for both processors. The HP9000 plots'

time values (the y axis) are scaled differently because the HP9000 is significantly faster

than the 3B2. We'll use the 3B2 to illustrate the analysis in the remaining figures.

One failing of the x-y plots is that there are two independent variables. The per­

spective plot shows that the real time increases as a product of mem and frae; the max­

imum value is 505.82 seconds, for number at 1,000; mem at 316,228; and frae at l.0.

Figure 13 shows a 3-D perspective plot of real (z-axis). mem (x-axis), and frac (y-axis).

The point (316.228; l.0;505.82) is the furthest. highest point on the graph. Thus mem is

increasing from our left to our right (it's an exponential curve as the data val ues are

chosen to increase exponentially), and frae is increasing from our right to our left. mov­

ing away from us. Figure 13 would then be overlaid cross-sections taken from the per­

spective plot by intersecting a series of y-planes with it. Of course, not all the data of fig­

ure 13 are available due to hidden line elimination.

51

Figure 13: Perspective plot, mem vs. frac vs. real

We've limited the data shown in Figure 13 to that gathered with number set to 1000.

This was done after analysis of the raw data showed two things which limited the value

of the data gathered for a small number of fork operations. First, there was little oppor­

tunity for the data to become evident against the overhead of executing the parent pro­

gram. This could, of course. have been removed by calling timesO from inside do Jork,

but given our strong preference for the shell as a measurement apparatus, this was not

done. Second, the timing data were apparently overwhelmed by other sampling noise,

sllch as that caused by various background processes and network daemons (although the

processors used for these tests were otherwise idle). These other processes were not shut

down due to the effect on our working environment.

52

If we plot a 3-D perspective plot with parameters as before, except that number is

1, we get Figure 14, which demonstrates what sort of anifacts, or "noise" can arise due

to inadequate sample size,

Figure 14: Perspective plot mem vs. frac vs. real

The deduction one can make from examining this plot is that there is no obvious relation­

ship between the input values and the response time output The errors and spurious

values have dominated the measurements to the extent that visual tools such as graphs

are no longer useful, It is doubtful whether any tools are useful under these cir­

cumstances, and the lesson is clear: the analysis must be aware of the sources of error.

and the measurements must be made in such a way as to minimize these sources. In our

case, the minimization was achieved by using an adequate sample size.

53

The question might be raised as to why real time is used, not sys. Philosophically. the

real time is what is most relevant to an observer. Scientifically, analysis shows that for

number large, real is less than 20 percent greater than sys, and that they are closely

correlated. This is illustrated in figure 15, where the x axis has values of number, and

real-sys
the y axis is the value ----=--

real-5}'s
sys

20

15 I-

10 f-

5 1-"

" •
f . ' • ...
"

0 rf
0

sys

•

~

•
f I

I
I

200

" • I I

400 600

number

Figure 15: Relation between real and sys

800 1000

The plot shows that the relationship between real and S)'S is not good for small values of

number; they differ by almost a factor of 20. However. things improve as number gets

larger: a detailed graph is provided in figure 16 by restricting number to values of 100 or

more. It's clear from this illustration that for number at 1000, sys and real are

54

reasonably good approximations of each other.

0.8

0.7 I-

0.6 '-

0.5 -

0.4 -
rcal-svs
---'-

sys

0.3 -

0.2 - *
..
*

0.1 - • •
0.0 I I J I I

0 200 400 600 800 1000

number

Figure 16: Relation between real and S)'S

Incidentally. we should note that for small values of number (e.g., 1). sys is subject to

the same noise problem that real suffers from: this is easily observed with another per­

spective plot, which we will not present due to space considerations.

4.2.5. Write Fraction for Real Programs

In the last section, we saw that the factors mem and frac influenced the real time require­

ments of our test program. The biggest savings for the' 'copy-on-write" scheme would

come from programs with large address spaces which updated a small fraction of their

55

data before exiting or exec()ing a new binary. As discussed before, this works well for

the shell. but the shell typically uses little of its data segment. While it may expand the

address space as necessary to store new variables or metacharacter expansions, this does

not account for many pages. We thus sought programs with large address spaces, to see

what effect the "copy-on-write" scheme would have.

As they had the largest address spaces (of programs in common use in our depart­

ment), we set out to take some measurements of the memory utilization of two symbolic

interpreters. We chose 4.2BSD's [BSD1982a] Franz Lisp (Opus 38.92), as it is widely

available. Another less detailed set of measurements was taken using the GNU Emacs

[Stallmanl986al LISP interpreter. which is also widely available. These measurements

were taken on a DEC ™ VAX-ll/750, because both pieces of software were available

there (Franz Lisp is not available on our HPs and 3B2s, although GNU Emacs is). Since

we are measuring data segment utilization, and the machines discussed in this paper all

have 32 bit architectures, the measurement results should be portable. This is particu­

larly true because we use relative measures, such as the fraction of the data segment

which has changed. While a particular architechlre may have a less efficient representa­

tion of the data, this should not change the fraction of the data altered by the program sig­

nificantly.

~.2.5.1. Franz Lisp

Our first exercise was choosing a computationally intensive process so that we could

gather some statistics on the sort of processes which one would want to improve the per­

formance of [Leland 1986a1 : that is, those that consume many resources. Experience

with an ABSTRIPS [Sacerdoti 1974a] implementation led us to use this system to gather

statistics. ABSTRlPS is a "planning" system which works by constructing increasingly

detailed series of actions at decreasing levels ("criticality levels") of abstraction. There

are primitives defined (in predicate logic) for each level of abstraction: as the levels are

traversed, we gradually "flesh out" the details of a plan for achieving the goal.

ABSTRIPS relies heavily on the use of a theorem prover: hence, it is representative of

much current AI computation. An example of its output is given in Figure 17.

Franz Lisp, Opus 38.92

-> [load abstrips.lsp]

-> criticality level: 4

skeleto:1 plan : «goal c»

critical~~y level: 3

skeleton plan : «get-slippers d)

(give-slippers DOG ME) (goal c»

critical:ty level: 2

skeleton plan : «gothrudoor c b DOG)

(gothrudoor b a DOG)

(gothrudoor a d DOG)

(get-slippers 0)

(gothrudoor d a DOG)

(gothrudoor a b DOG)

(gothrudoor b c DOG)

(give-slippe: s DOG ME) (goal c»

criticali:y level: 1

skeleton plan : «go:hrucoor c ::, DOG)

(gothrudoor b a DOG)

(pushopen a d)

(gothrucoor a d DOG)

(get-slippers d)

(gothrudoor d a DOG)

(gothrudoor a b DOG)

(gothruooor b c DOG)

(give-slippers DOG ME)

(goal c»

«gothrudoor c b DOG)

(gothrudoor b a DOG)

(pushopen a d)

(gothrudoo: a d DOG)

(get-slippers d)

(gothrudoor d a DOG)

(gothrudoor a b DOG)

(gothrudoor b c DOG)

(give-slippers DOG ME) (goal c»

->

Figure 17: ABSTRIPS Output

S6

The problem in our example was to have a dog fetch your slippers from another room.

This problem takes about IS minutes to plan on a VAX-IlnSO; the implementation

makes heavy use of recursion and maintains several large lists.

The size of the Franz executable (from the UNIX size command) is 139,264(text)

+ Sll,488(data). The data on memory usage was obtained by using the UNIX system's

ability to create a core dump of a process's address space: since the text segment is

read-only, only the data and stack segments are dumped. Sending the SIGQUIT signal to

a process causes a core dump; this was done at the following points in the execution of

57

the ABSTRIPS planner.

1. When the LISP interpreter was started. This gives us a baseline value, with no pro­

gram loaded and no code executed. The core dump occupied 528,384 bytes.

2. Immediately after ABSTRIPS was loaded. This tells us how much of the address

space change is due to storage of the ABSTRIPS program. The core dump occupied

556,032 bytes: a bytewise comparison with the previous dump showed that 56,937

bytes had changed.

3. Immediately after ABSTRIPS execution is terminated. This tells us how much of the

address space has changed during execution. The core dump occupied 613,376 bytes,

and differed from the previous dump at 77,910 bytes. The difference between this

dump and the first dump was a total of 123,942 bytes changed. No garbage collec-

tion was announced.

An important issue is the locality of reference: our measurement programs for the

. 'copy-on-write" fork performance showed that we could write every page by writing

one byte on each page. The byte comparison routine delivers addresses where it found

differences between two files; the difference in bytes could then be measured by piping

the output to .. we -1;" if we divide each address by the pagesize (512 on the V AX)

and pass the results to "un i q I we -1," we can find the number of pages that have

changed: in this case 270 of the 1.198 (=613,376/512) pages changed, for a write fraction

of 0.23.

4.2.5.2. GNU Emacs

GNU Emacs provides a facility to dump the currently executing image into an executable

file. When this file is executed, the state of the Emacs interpreter is restored to the state

it had when the (dump-emacs) was invoked. We took the following measurements

on the V AX/lI-7 5012. The size of the GNU Emacs editor we measured was

437,248(text) + 208.896(data). detennined with size. We sought an example program

12 The results for GNU Emacs were checked on the workstations, and they are consistenL For the
"Towers of Hanoi" problem discussed below, the fraction of the data altered by the program was
0.30 on the 3B2 and 0.48 on the HP9000. Much of the difference is due to what features the runn­
able Emacs is pre-loaded with; the VAX executable has large amounts of pre-loaded information,
which is read-only.

58

which had the sort of behavior (computation-oriented) that we desired. We based our

desire for computationally-intensive examples on the observation that as heavy resource

users, these programs would demonstrate the greatest effects from an optimization. GNU

Emacs provides a library of LISP code; one routine provides a graphic solution of the

classic' 'Towers of Hanoi" problem. We ran the GNU LISP interpreter on the following

mput:

(dump-emacs "pre-hanoi" "/usr/local/emacs·)

(hanoi 10)

(dump-emacs "post-hanoi" "/usr/local/emacs")

(As might be expected, this requires patience at 9600 bits per second!) The interpreter

emitted several messages to the effect that it was performing garbage collection.

At the completion of the computation. we performed a bytewise comparison on the

two dump files:

$ Is -1 post-hanoi pre-hanoi

-rwxr-xr-x 1 jrns phd

-rwxr-xr-x 1 jms phd

851968 Oc~ 27 08:25 pos~-hanoi

737280 Oct 26 16:01 pre-hanoi

which showed that 183,312 bytes had changed. which for the computed data segment

size of 414.720 (=851.968-437,248) is slightly less than thirty-five percent of the dump:

that is, almost the same percentage we had observed with Franz Lisp and ABSTRIPS.

Several times during the computation and in the dump-emacs function the garbage

collector was run. Thus the amount which appears to have changed may include pmts

which did not chmlge but were relocated and thus appear to have changed. It also com­

pacted storage which appeared to be changed (since newly-allocated storage is con­

sidered changed from the previous non-allocated storage). The important point is that

these changes would be seen by a page-management mechanism in either case.

4.2.6. Conclusions about copy-on-write

''Copy-on-write'' paging strategies for address space inheritance have been shown to be

effective in reducing the real time required to perform UNIX fork() operations. This

qualitative assessment is based on the quantitative clata we gathered and analyzed. For

large processes, the time required is proportional to the fraction of write references, so

59

that a child process which updates half (0.5) of its address space will spend half the time

doing copying that a child process which updates all (1.0) of its address space will. For a

pair of interpreters with large address spaces, we showed that the portion of the address

space changed from process startup until process termination was small, typically less

than 0.5. These measurements concur with those of Zayas LZayas1987a]. who measured

program behavior in an Accent environment. and confirm the desirable properties

observed of a similar scheme for fast state transfers to remote systems in the V

[Theimer 1985a] system 13.

Thus. if these interpreters or programs which behave similarly were to JorkO child

processes which executed tasks similar to those described, a reduction of 50 percent or

more of the system time devoted to copying data might be achieved. This confirms that

the scheme for remote Jork() using' 'lazy" copying has considerable merit.

This reduction in copying also reduces the amount of swap space required, reduces

the amount of time spent swapping, increases the number of processes which can be run

without paging, and decreases the cost of context switches (where the cost of paging out

the written pages and the paging in of pages which are only read and have not been

modified is included). Thus the advantages of the text table are extended to unmodified

pages (or viewed another way UNIX gains via "copy-on-write" the ability to eliminate

the text table and improved lorkO performance). With respect to these page manage­

ment strategies. note that TENEX [Bobrowl972al had these advantages ten years earlier

and needed neither a distinguished text table nor the confusion of two varieties ofJork().

The cost figures we present should be representative of a shared memory configura­

tion of equivalent processor technology. The fact that we have provided a methodology

for gathering such measurements ensures that the techniques are portable. even if the

measurements themselves are not.

13 Sec the descripLion in Smith's survey paper [SmiLh1988bj.

60

4.3. Remote fork()

There is more overhead associated with the distributed case, due to the increased costs of

copying. We describe a method of implementing a distributedforkO operation in Smith

and Ioannidis l Smith 1989a]. A process successfully executing a forkO operation gen­

erates two copies of its address space; these are often distinguished as parent and child

by the return value of the forkO call. If the child process continues its execution with the

containing address space located on a processor different from the parent process. we

have achieved a "remote fork."

By distinguishing between the state saving activity and the state transfer activity, we

were able to measure and refine the performance of each activity independently. Once

the design and initial implementation were complete. we analyzed the performance, and

reimplemented pieces of the system (on several different machine architectures) to

improve the response time. This improvement was dramatic: from about 7 seconds of

real time on the HP9000 and the 3B2. to less than 1 second on the HPs and Suns using

NFS. The major savings came from reducing the execLltion time devoted to copying

state information from point to point.

4.3.1. Further process migration ideas

As the major cost of process migration is copying [Zayas1987al, attempts have been

made to reduce this overhead. More sophisticated migration schemes. using . 'on­

demand" state management techniques have been constructed [Theimer1985a]. Most

programs exhibit locality of reference: in particular symbolic computations which use

large amounts of system resources [Smith 1988a]. These computations are representative

of those that present the greatest opportunity ILeland 1986a] for applying process migra­

tion to load-balancing across mUltiple processors. In early computer systems, the notion

of a relocatable (position-independent) module of executable code improved the degree

of multiprocessing. Relocatable code allowed multiprocessing systems to exploit avail­

able memory more effectively. This exploitation increased the degree of mUltiprogram­

ming, achieving an increase in throughput. Likewise, relocatable processes give operat­

ing systems the capability to exploit the availability of multiple processors. This exploi­

tation can result in improved throughput, improved response time, or both. What makes

a process relocatahle is a description of its state which can be used to continue the

61

computation elsewhere. This description is often achieved via a copy, thus forcing the

expensive copying operations. Measured in execution time, the cost of copying can be

reduced by faster networks or data transfer software. Our implementation of ifork()

shows that this approach can be effective. However, for any data transfer scheme there is

a limit on its performance. This limit is imposed by the combination of the transfer

hardware and the software used to access it. Also, although the mapping between data

volume and execution time may increase in steps rather than smoothly, more data implies

more time. Thus, for a limited data transfer rate, we should seek methods of reducing

data copying.

Several ideas suggest themselves:

1. Be lazy. This describes the approaches of Zayas and Theimer; they took advantage of

locality to reduce copying or its effect on program execution speeds. "Demand­

paging" has illustrated the effectiveness of lazy copying in computer systems.

2. Encode Symbolically. The state can be encoded symbolically. Symbolic encoding

can be achieved by use of interpreters or compiled interpretative languages. When

the execution of a process is halted. the program and the state of the interpreter are

re-represented in a symbolic form. This symbolic fom1 is then passed to another

interpreter, which can restart the program from the "symbolic checkpoint." This

representation may also be more compact than the running program. Note that such

machine- independent representations offer the only hope for true "heterogeneous"

process migration.

3. Compress. Another possibility for re-representation IS compression. where the

encoded state is produced by applying a data compression algorithm [Lelewer1987a]

to the saved state. When the process is restarted, the state is uncompressed and used

to recreate the running process.

Schemes 2 and 3 pay a computational cost in encoding and decoding. Thus, there is a

performance tradeoff between the cost of copying and the cost of encoding. For straight­

forward compression techniques, the cost of encoding can be calculated using the size of

the input state. For "symbolic checkpoints." cost estimates are less predicatable from

the size of the process, but can easily be made using the symbol table which is necessary

for the encoding to take place. Copying costs can be estimated lIsing the techniques we

have described in this thesis. so that decisions can be made by a dynamic migration

62

manager. These decisions, about whether to migrate or not, can help in load-balancing.

4.4. Disk Response Time

Referenced pages will not always be available in memory, thus disk access (or network

access, to be discussed later) may be needed for a reference to be satisfied. One diffi­

cUlty with simulation, or with' 'toy" implementations is that the quantitative data neces­

sary for accurate response time evaluation are not llsed in the simulation. To make our

results more accessible to practitioners. we have used data on disk response times

[Johnson 1987a] which was gathered on a running UNIX system, operating the Digital

Equipment Corporation T~ (DEC) RA81 drives whose characteristics are summarized in
the table,

DEC RA81 Disk Drive Characteristics

Cylinders 2516

Transfer Rate 2.2 megabytes/second

Rotational Speed 3600 rpm

A verage Rotational Latency 8.33 milliseconds

Head Switch Latency 6 milliseconds

A verage Seek 28 milliseconds

One Cylinder Seek 7 milliseconds

Maximum Seek 50 milliseconds

attached to a DEC UDA50 controller. Under the load conditions described by Johnson,

Smith, and Wilson as . 'nomla!," the average number of ticks per response was 2.1. thus

the average response time using a tick of 1/60 second was $ 2.1 cdot (1/60) $. or 35 mil­

liseconds. From their data analysis, it can be seen that this number is constant across

drives, interfaces, transfer sizes, and transfer start time. It varies between reads and

writes, with writes taking longer, and it varies with the location on the drive. Writes take

longer because they are bunched together at times when UNIX flushes its buffer cache,

63

thereby lengthening the time spent in the drive's request queue. The response time varies

with the location on the drive due to hot-spots found at the i-lists of file systems found on

the drive. Both of these variations are due to the nature of the UNIX file system, and thus

are not significant for our discussion.

4.5. Network Response Time

To gather information on the response time for network page requests. the program

C'netrand.c") was written. Since it is shon, a source listing is provided as Appendix II.

The experiment was to operate the program on two files, one on local disk, and the other

on an NFS-mounted file system. The system employed for testing was a Hewlett­

Packard HP9000/350 with 8 megabytes of main memory and an HP7945 70 megabyte

hard disk, running HP-UXnf 6.0.

The UNIX buffer cache mechanism was frustrated by copying a large (2 megabyte)

file previous to running the tests. Three executions of the test were run on each file; for

the purposes of benchmarking we ran the program with an argument of 400 blocks.

Since the randomization frustrates the buffer cache mechanism to some degree. the

buffer cache has a significant effect by the third execution. The results of running the

program on the local file were 10.68, 10.24, and 9.74 seconds of elapsed time for the

three runs. For the remote file (the server is a machine of the same type. accessed over a

lightly-loaded lOMbit Ethernet) the results were 15.42, 15.02. and 13.32 seconds of

elapsed time for the three runs. The improvement in performance seen as the runs pro­

gressed is due to the success of the UNIX buffer cache in retaining recently-read blocks.

The network access seems to indicate a penalty of about a factor of 1.5 for network

access of pages. which is encouraging. The time per page (using the worst case. where

h h · fl h d) . . f 15.42 d b 39 '1 t e cac e IS us e gIves us a per-page ume 0 400 secon s, or a out mI -

liseconds per page. This works out to about 26 pages per second for 4K pages. This cost

compares unfavorably with the cost of a local page copy, which is about I millisecond on

this machine.

64

4.6. Sibling Elimination

A remaining source of overhead is the cost of eliminating unwanted computations; we

have speculated, selected, and now we must eliminate. What will this cost us in time? A

program. do _efim.c. is presented in Appendix XII. It was constructed to address the vari­

ous factors which might influence the time involved in eliminating processes. While the

details of the construction are evident in the program, some discllssion of the goals and

philosophy is in order. The goal was to give us some idea of the cost in execution time

attributable to sibling elimination which would not be paid in the case where the fastest

alternative was selected" at random .. , This helps LIS to estimate r,(overhead).

The philosophy was to use a highly-tuned existing operating system, in this case

Hewlett-Packard's HP-UX 6.0 implementation of UNIX System V. The idea behind that

is that we can experiment with various tunable parameters of interest, while taking

account of details which a simulation might otherwise ignore. In addition, the numbers

should be close, certainly less than an order of magnitude away, from values gathered in

an implementation. We gathered data for real, user, and system times. obtained from

the UNIX times() system call. The UNIX timing facility is not particularly accurate. but

we applied techniques which should, in the average case. remove much of the error con­

tent from the data.

The basic design of the experiment was to create some number of processes. have

them each do something after spawning. and then eliminate them. Only the elimination

portion of the experiment is bracketed with timing requests. Elimination is done by

means of the UNIX kil/() system call, which sends a small (less than a byte) amount of

data from a sender to a receiver in the form of a signal. The signal causes the receiver to

execute some signal-handling action. which can include terminating. ignoring the signal,

or handling the signal in some specialized fashion. The processes in our experiment

were set up in a fashion that ensured process termination upon receipt of a signal. Bach

[BachI986a] provides discussion of these mechanisms in such detail that further detail

here is unnecessary.

The factors we chose to examine were:

Groups: UNIX provides a facility to send a signal to (1) a single process. or (2) a group

of processes. selectable by virtue of either the owner's llser id or the process

group. Use of the process group signaling facility allowed us to emulate the

Files:

65

effects of a multicast message-sending facility, so that we could evaluate the

effects of point-to-point elimination versus multicast.

Among the items of system-maintained state associated with a UNIX process

are a number of open files and their associated data structures. Upon exiting,

these files must be closed, which involves deallocating them, flushing some

buffers, etc. Thus, varying the open files should vary the system state main­

tained by a process which is to be deleted.

Size: As we saw the effect of virtual memory copying on response time earlier in the

thesis, it may have some impact on process deletion, in particular the dealloca­

tion of allocated pages and page descriptors. Varying the size gives the best

estimate of the impact on response time, as we saw earlier.

Work: The spawned subprocesses either loop sleepOing, or they alternate between

sleeping and iterating in an empty forO loop. The latter case tries to estimate

the effect of the UNIX process scheduling policy on processes; in particular, if

the wait for a working process would be longer than the wait for a sleeping pro­

cess.

Asynch: After signaling the spawned subprocesses with kil/O. we can either wait for

them to complete inside the timing block, or we can exit the timing block. to

emulate a situation where we don' t wait for the processes to die, but just signal

that they should die, and then continue. The waiting case is synchronous, and

the other is asynchronous. With a large degree of parallelism present, asyn­

chronous elimination seemed a better policy, as the hardware parallelism could

be employed to speed up the elimination.

Dirty: As with the size of allocated memory, we earlier discovered that the write frac­

tion had a determining effect on response time when coupled with memory

Procs: This varies the number of spawned sub-processes. The idea is to see how the

increase in sibling elimination costs varies with both the policy employed for

elimination. and the number of processes the policy is applied to.

The measurement program, do _ eiim.c. was run using the shell script in Appendix XII.

The numbers were extracted, and entered into an S [Beckerl984a] dataset for analysis.

The statistics system was used as a tool for data analysis, in the sense that VariOllS param­

eters were related to the real and sys times they exhibited, to determine the importance

66

of their effect on the response time. The next two sections present the data in graphical

fonn, with a short discussion and explanation following each figure. The first of these

sections presents the real time measured, and the second section shows the sys time

measured. The point of real time is that it' s the best measure of response time; sys time

tells us how much effort the system is exerting on our behalf. In response to well-known

problems with the granularity of the UNIX clock scheme, we ran the creatiofl- timed

deletion- cleanup loop 100 times (by setting REP_COUNT to 100 in do _ elim.c) for

each variety of do _elim invocation. This has two effects. First, it gives us enough mag­

nitude in the data so that comparisons can be made between the different test inputs.

Second, the timing errors in such a loop can be lesser or greater than the correct time.

With repetitions. the idea is that the errors will in effect cancel. so that the repetitions

will in the average case purify the data. much like oversampling techniques in audio. Of

course. in the worst case, correlated or systematic errors. there is the possibility that the

results will be all noise. This possibility is refuted later.

~.6.1. Real Time

To measure the effects of the different variables on the execution time (real time. in

UNIX jargon) we plotted the real time values as a function of the variable values. The

most useful technique we have found for representing this data is the boxplot; it provides

much more infomlation than an X-Y plot for this type of data. For a given x value. the

box defines the middle 50 percent of the data, the horizontal line inside the box is the

median. and the bar at the end of the dashed line marks the nearest value not beyond

some standard range (in this case, 1.5·(inter-quartile range)) from the quartiles. Points

outside these ranges ("outliers") are shown individually. Details of box plot presenta­

tion can be found in Chambers, et al. rChambers1983al

The first plot. figure 18, indicates that the lise of the process group mechanism

reduces the execution time devoted to sibling elimination. While the median improve­

ment is not great, the larger top half of the left hand box for not killing by groups indi­

cates that for the slowest half of the times. group signaling had a more significant effect.

35

30

R
c 25
a
I

T 20

m
e

15
(
s
e
c 10
s

5

0

*

*

*
*

* I
I
* -.

*
;

=
I -.
I
I

:
No Yes

Kill by Groups?

Figure 18: Effect of signaling process groups on real time

(For 100 repetitions)

67

This is an intuitive result. since broadcast should be signiticantly cheaper in wall clock

time than a serial sending of the' 'messages,"

Figure 19 shows the effect on real time of the number of open files: it appears that

the amount of system state which must be changed when these are closed on process ter­

mination is not significant in its effect on sibling elimination times,

35

30 I-

R
e 25 f-
a
I

T 20 -
m
e

15 f-

s
e
c 10 -
S

)

5 -

0 c-

*

*

..
*

*
=

iii ~
* * -. If< * ~

* I *
= *

T
T

T
I T

I
I

Cd Cd D 0
o 5 10

Open Files

Figure 19: Effect of number of open files on real time

(For 100 repetitions)

15

68

Figure 20 shows the effect of performing the elimination synchronously (Asynch=O)

versus asynchronously (Asynch= 1). There appears to be no difference in the real time

required. This is surprising, as intuitively, not waiting for something to happen should be

faster than waiting for something to happen. There are two possibilities: (1) the effect is

too insignificant to be discerned against the measurement error (a real possibility, given

the granularity of the UNIX clock facility) or (2) the experimental apparatus is flawed.

We address this counterintuitive result later in the thesis.

35

30

R
e 25
a
1

T 20

m
e

15
(
s
e
c 10
S

)

5

0

*

*

*
*

* • = *
lie

,
i

* I t

--,- --,-
I

=
Synchronous Asynchronous

Asynch

Figure 20: Effect of Asynchronous elimination on real time

(For 100 repetitions)

69

Figure 21 indicates that the effect of dinying pages in the child (" dirtying" is done by

the child, as it would be in truly concurrent execution) is negligible when measured in

real time.

35

30

R
e 25
a
I

T 20

m
e

15
(
s
e
c 10
S

)

5

0

*

*

*
*

*
* I
Ijr :
* Ijr

Ijr i ~
* -,-- -,--
I
I

I

: :
No Dirtying Dirty All Pages

Dirty

Figure 21: Effect of Dirtying child pages on real time

(For 100 repetitions)

70

Figure 22 indicates a slight effect on real time caused by the process behavior of the

spawned children. The idea here was to see if the signals would take longer to propagate

if the multiprocessing involved processing and not merely waiting for receipt of a signal.

As one might imagine, it takes longer to eliminate busy children than it does sleeping

children.

35

30

R
e 25
a
I

T 20
i
m
e

15

s
e
c IO
s
)

5

0

*

*

*
*

*
* I
;t !

'" '" I !
* -.-
* I --.-

= :
Sleeping Compuling

Work

Figure 22: Effect of child work/sleep activity on real time

(For 100 repetitions)

71

Figure 23 indicates almost no effect contributed by the process size. There is a slight

difference, most evident when the least (size=O) is compared with the greatest

(size= 100.000) where we see a slight increase in the max, median, and top 50 percent.

The increase is so slight that it would be difficult to attribute a significant time cost to

process size in sibling elimination.

35

30 ,..-

R
e 25
a
I

T 20

m
e

15 -
(
s
c
c 10 -
S

)

5 -

0 -

*

* *
* !i: * * * *

T
I T

T
T

T , I
I I

, ,
I

I
,

I
, ,

I
I

I I ,
I I I , , , I I ,

D [J 0 0 D
0 103 3162 104 31622

Size (bytes)

Figure 23: Effect of child process size on real time

(For 100 repetitions)

72

..

..

..
*

!
Ii'
~

T

I

I ,
I

[]
lOS

Figure 24 shows the effect the number of child processes (which are spawned and then

eliminated) has on the measured real time. This plot indicates that the number of child

processes has a significant effect on the required real time for sibling elimination. and

that the cost increases in proportion to the number of children. The sample values for

Procs fanned an exponentially increasing sequence, giving rise to the shape of the curve

drawn through the medians or the curve through the top "whiskers." These drawn

curves differ slightly in their shape: 8 child processes is a jump in the value of the top

whisker. where the curve through the medians is smoother. This discontinuity was not

consistently reproducible. For example, real time and system time should be well-

73

correlated on these measurements, and yet a comparison of the graphs does not show the

slight discontinuity in the curve connecting the top whiskers. Therefore it is probably

measurement error; see the section below on errors in the measurements for a detailed

discussion of the sources of such errors.

35

30

R
e 25
a
I

T 20

m
e

15
(
s
e
c 10
s

5

0

*

*

*
*

*
* .. * *

*
!

; I *
! T

* f
T

~ * *

* ..
m

I g
*

T

• I ..L.
21!

2 4 8

Child Procs

Figure 24: Effect of number of child processes on real time

(For 100 repetitions)

..L.

16

Thus, the data we have gathered indicate that there are two significant variables in the

real time devoted to sibling elimination. These are (1) the use of process groups in com­

municating message information through signals (roughly equivalent to a multicast), and

(2) the number of processes which are spawned and eliminated. Surprisingly, there was

little effect seen from the use of asynchronous messaging. To refine our estimates of

74

measurement errors, we decided that plots of the system time required for each of the

variables we analyzed the real time for were necessary. These are presented in the next

section.

4.6.2. System Time

As in the last section, the time required for a multicast sibling elimination is reduced sig­

nificantly when compared to serial message-sending. In light of the intuition and previ­

ous measurement results, this helps to confinn that the results are significant (and not

noise) if the experimental apparatus is correct.

1.6

1.4

S 1.2

Y
s

1.0
T
i

m
e 0.8

(
s 0.6
e
c
s
) 0.4

0.2

0.0

*

*

*
* ...-

f
-r-

I

I
-L.. -L..

No Yes

Kill by Groups?

FibTUre 25: Effect of signaling process groups on sys time

(For 100 repetitions)

75

As before, the number of open files was examined as a contributor to the measured time

values. There does not seem to be any contribution to the system time, as is evidenced

by the plotted data of figure 26.

1.6

1.4 I-

S 1.2 I-

y
s

1.0 -
T

m
e 0.8 -
(
s 0.6 -
e
C

S

) 0.4

0.2 -

0.0 r

*

*

*
* * *

* * ~ * *
* i * i * i

I ; I ~ ; $
~

i $ * *
~ * * *

T * i * T -r -r I

I
I
I I

I I

Q g g g
I I

..L ..L ..L

0 5 10

Open Files

Figure 26: Effect of number of open files on system time

(For 100 repetitions)

I
..L

15

76

Figure 27 shows the effect on system time of making the elimination process asynchro­

nous. As in the analysis for real time. the results are counterintuitive; that is, there seems

to be no difference. This seems to make more sense in the system time setting, as the

system must do approximately the same work in each case; the exception might be in

table searches which could be done on the basis of process group membership, rather

than multiple searches for single process identifiers: however, the effect of this would

probably be lost in the noise. Likewise, there is an increased number of system calls:

their contribution appears to be minimal according to the plot.

1.6

1.4

S 1.2
y
s

1.0
T
i
m
e 0.8

(
s 0.6
e
c
s
) 0.4

0.2

0.0

*

*

*
*
i
=

* =
t = -r- -r-

I
-1...- -1...-

Synchronous Asynchronous

Asynch

Figure 27: Effect of Asynchronous elimination on system time

(For 100 repetitions)

77

Figure 28 shows the effect of the child process's page updating behavior on the system

time; as before, there is no observable difference.

1.6

1.4

S 1.2
y
s

1.0
T
i
m
e 0.8

(
s 0.6
e
c
s
) 0.4

0.2

0.0

,.
,.

,.
* ,.
$ $

I :
i -.-

..,....

I
~ ~

No Dirtying Dirty All Pages

Dirty

Figure 28: Effect of Dirtying child pages on sys time

(For 100 repetitions)

78

Figure 29 shows the effect of the child process's computational behavior on the system

time; there is no observable difference.

1.6

1.4

S 1.2

Y
s

1.0
T
i

m
e 0.8

(
s 0.6
e
c
s
) 0.4

0.2

0.0

*

*

'"
* *
* $ *
i

= i = -.--
--,-

I
-l-. -l-.

Sleeping Compuling

Work

Figure 29: Effect of child work/sleep activity on system time

(For 100 repetitions)

79

Figure 30 shows the effect of the child process's allocated memory size on the system

time: there is no observable difference, not even the slight effect we observed previously

for real time. This may be due to the accounting scheme used for faulting pages; if the

page fault time is charged to some kernel "process" the extra costs associated with page

management (including deletion of diny pages) may not be charged to the proper entity.

1.6

1.4 f-

S 1.2 f-

y
S

1.0 f-
T
i

m
e 0.8 -
(
s 0.6 -
e
C

S

) 0.4 f-

0.2 f-

0.0 f-

*

*
* *

* * * * * *
*

I
*

* * $
$ *

i :

~
I

i i
! $ * * * : *

* ~

* * ~
* *

T
T * T

T
T

I I

I
I I I I
I I I I

I I I I g ld g g Q
I I I I

.!. .!. .!. .!. .!.

0 103 3162 104 31622

Size (byLes)

Figure 30: Effect of child process size on system time

(For 100 repetitions)

80

*

*

*
*
*

i
i
~

*
* T

I
I
I
I

g
.!.

Ie?

Figure 31 illustrates the effect the number of processes has on the system time. The

increase is once again proportional to the number of processes; this increases our confi­

dence in the behavior of the observed real time. It's interesting to observe that there is

also a correlation between the number of processes and the dispersion of the system time

values measured: much more so than our observations for real time. We have no expla­

nation for this other than clock inaccuracy and the contribution of other variables. For

example, the contribution of data from both values of a bimodally distributed variable

such as Groups may cause an apparent dispersion. Also, since the system time values are

always smaller than real time values (on a uniprocessor) the effect of clock granularity on

81

measurement accuracy will be more pronounced. Clock granularity as a source of error

in measurement is discllssed below.

1.6

1.4

S 1.2

Y
s

1.0
T
i
m
e 0.8

(
s 0.6
c
c
s
) 0.4

0.2

0.0

T

T

i
~ * T

T
I

I

; I

2 .l-

.J. .J.

2 4 8

Child Procs

Figure 31: Effect of number of child processes on system time

(For 100 repetitions)

T

I

.l-

16

Thus, our observations of the system time correlate well with our observations of the real

time. What this does is to confirm that where the data shows an influence. there exists an

influence. The non-intuitive values for asynchronous elimination drove us to further

examination of the data and the apparatus.

Since there was a clear correlation between the number of processes spawned and

eliminated and the time required for both timing measurements, it seemed worthwhile to

examine the most expensive case separately, to remove extraneous influences form the

82

data. In the next section. we examine the influences of the variables for the special case

of 16 spawned and eliminated child processes.

4.6.3. Real Time, 16 Procs only

As in the less restricted set of measurements, the use of process groups seems to provide

a significant improvement in real time performance. Figure 32 illustrates the magnitude

of this improvement.

35

30

R
e 25
a
I

T 20

m
c

(15

s
c
c

10 s
)

5

o

*

*

*

*
* t

!
I

-,-

*
* * .. -,-

---l.-

---l.-

No Yes

Kill by Groups? (Procs= 16)

Figure 32: Effect of signaling process groups on real time. 16 procs

(For 100 repetitions)

Figure 33 indicates a small contribution from the number of open files: this makes sense.

as for the larger number of processes involved, the system has significantly more state to

83

manage. However. the contribution still appears slight: it is slight enough to be

accounted for by errors, as discussed below as "Sources of Errors in Measurements."

35

30

R
e 25
a
I

T
20 i

m
e

(
15

s
c
c

10 s
)

5

o

*
* * *

*
T

I

:
o

*

*
*

*

T
I

e
5

*

*

*
* iii

*

I
.J...

10

Open Files (Procs:: 16)

* *
*
*

I

.J...

15

Figure 33: Effect of number of open files on real time, 16 procs

(For 100 repetitions)

Surprisingly. asynchronous elimination still does not have any effect on the real time. as

illustrated in Figure 34. These results inspire a certain amount of suspicion, since the

synchronous version must unfailingly wair() for each of 16 children to complete, while

the asynchronous case (at least according to the code) returns without wait{) -ing: collec­

tion is done outside of the timing loop.

R
e
a
I

T

m
c

(
s
c
c
S

)

35

*

30

*

25

*

20

* * * *
15 ... !

*
* I ~

-. -. 10 I
I

5 -L
-L

o

Synchronous Asynchronous

Asynch (procs= 16)

Figure 3~: Effect of Asynchronous elimination on real time, 16 procs

(For 100 repetitions)

84

Figure 35 indicates that dirtying pages has a slight effect on the real time: we doubt that

the effect is significant.

35

30

R
e 25
a
I

T 20 i
m
e

(
15

s
e
c
s IO

5

o

*
...
*
*
;
•

-y-

No Dirtying

*

*

*

* l
:
I

-y-

I
-L..

Dirty All Pages

Figure 35: Effect of Dinying child pages on real time, 16 procs

(For 100 repetitions)

85

Child process computational activity indicates a minor influence on real time, as shown

in figure 36. Work= 1, that is. the process is computing rather than sleeping, seems to

cause a greater amount of dispersion as well as a slight increase in the median value: lit­

tle significance can be attached to the observation.

35

30

R
c 25
a
I

T
20 i

m
c

15

s
e
C

10
S

)

5

o

*

*

*

*
* ~

~ ~

* * ! -,-
* *

I
I

! I
I -,-

--L-
--L-

Sleeping Computing

Work (Procs=I6)

Figure 36: Effect of child work/sleep activity on real time, 16 procs

(For 100 repetitions)

86

Process size has a greater effect on the measured real time in the 16 process case than we

observed for all the values of Proc lumped together. This effect is demonstrated by fig­

lire 37. The fact that the effect begins to be significant only on the larger sizes, not

linearly or proportionally, makes us suspicious that the cause is some system artifact such

as a limitation on the system memory size forcing a swapout of one or more of the

processes under test.

35

30

R
e 25
a
I

T 20

m
e

(15

s
e
e

IO
S

)

5

o

*

* *
~

*
* * * *

* *
* T

T T I
T I T I g I g I

S s 8
.1. .1. .1. .1.

.1.

o 3162 31622

Size (Proes= 16)

Figure 37: Effect of child process size on real time, 16 procs

(For 100 repetitions)

87

*

*

*

T

I
.1.

What we can infer from the data for the special case of 16 spawned and terminated sub­

processes is that the observed influences on real time are pretty much the same. The

effect of process groups is more dramatic, and there began to be an influence exerted by

the size of the processes. There was also an observed. but likely to be insignificant,

increase in costs associated with the number of open files at elimination time. What the

16 process case should illuminate is the increasing effects of various variables with a

change of scale.

We also thought it provident to examine the case of 16 processors for system time

as well, to isolate any influences which might not otherwise be visible. This data is

88

examined in the next section.

4.6A. System Time, 16 Procs only

As before, the Group signaling mechanism seems to have a significant effect on the

observed perfonnance, in this case with respect to system time. While the real time

impact is about a factor of 1.3, the system time impact is about a factor of 3; comparison

with the earlier graphs shows that clearly, the effect of this variable increases with the

number of child processes.

1.6

1.4

S 1.2

Y
s

T
1

m
e

(
s
e
c
s
)

1.0

0.8

0.6

0.4

0.2

0.0

*

*

*

No Yes

Kill by Groups? (procs=16)

Figure 38: Effect of signaling process groups on sys time, 16 procs

(For 100 repetitions)

Open files, shown in figure 39, have little effect on the system time for sixteen processes:

this suggests that the results observed for real time with 16 processes may be spurious.

1.6

1.4

S 1.2
Y
s

T
1.0

i
m
e 0.8

s
0.6 e

c
s
) 0.4

0.2

0.0

I

...L

o

T

I

I

...L

5

T

I

...L

10

Open Files (Procs= 16)

T

I

-L

15

Figure 39: Effect of number of open files on system time, 16 procs

(For 100 repetitions)

89

Asynchronous elimination had no effect, as is illustrated in figure 40; this is interesting

only in that it correlates well with the previous observations.

S
Y
s

T

m
e

s
e
c
s
)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

I
I
~

Synchronous

Asynch (procs=16)

I

~

Asynchronous

Figure 40: Effect of asynchronous elimination on system time. 16 procs

(For 100 repetitions)

90

Dirtying had no effect on the system time. as figure 41 illustrates.

----------- - -

1.6

1.4

S 1.2
y
s

T
1.0

m
e 0.8

(
s
e 0.6

c
s
) 0.4

0.2

0.0

-.-

I

.....l..-

No Dirtying

Dirty (Procs= 16)

-.-

I

.....l..-

Dirty All Pages

Figure 41: Effect of dirtying child pages on system time. 16 procs

(For 100 repetitions)

91

Processing behavior of the spawned child processes had no effect on the system time, as

figure 42 illustrates.

S
Y
s

T

m
e

s
e
c
s
)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Sleeping

Work (Procs=16)

I
I

-L-

Computing

Figure 42: Effect of child work/sleep on system time, 16 procs

(For 100 repetitions)

And finally. process size had no effect on the system time. as figure 43 illustrates.

92

1.6

1.4

S 1.2
Y
s

T 1.0

m
e 0.8

s
e 0.6

c
s
) 0.4

0.2

0.0

T

T T
T T

I
I I I ..L I

..L ..L ..L
..L

0 103 3162 104 31622

Size (Procs=16)

Figure 43: Effect of child process size on system time, 16 procs

(For 100 repetitions)

93

T

..1.

lOS

After reviewing the results of the last four sections, it seems clear that such factors as the

number of open files, subprocess actions in executing instructions and dirtying pages,

and for the most part, the sizes of the child processes have little effect on time required

for sibling elimination.

The time increases with the number of processes, and this was used to see what fac­

tors change with scale: there were really no significant changes. What was surprising,

however. was the major impact of process group signaling, and the non-existent impact

of asynchronous execution, After some further examination of the code, we changed the

code so that the do e/im process forked a copy of itself just previous to the sibling

94

elimination phase. In the synchronous case. the tennination of this process was waited

for. The asynchronous case returned without waiting. All children and grandchildren are

eliminated by a post timing-loop cleanup routine.

This had a dramatic effect on the timing results, as is shown in the next section. We

believe that the relationship between Groups and Asynch was due to a subtlety in the

UNIX process scheduling which defeated the intent of our measurement apparatus.

4.6.5. Correction for process scheduling

To scale the graphs properly. all real time measurements longer than twenty seconds

were removed from the graphs. This only removed outliers from the full graphs. and

allows an enlargement of the relevant detail. The fust graph. figure 44, of Groups

against real time. shows that the effects of Groups have gone away.

20

R
e
a
I

15

T

m
e

(
IO <

2
0
)

s
e 5

c
s
)

0

* * * * !
*
* I
* !
• * t • : !
• • I I
I ,
I

... --.
--.

I I

~ ~

No Yes

Kill by Groups?

Figure ~4: Effect of group signaling on real time, corrected

(For 100 repetitions)

95

The expected change in real time for the Asynchronous case occurred. as is shown in fig­

ure 45: note that a factor of two difference is observed.

20

R
c
a
I

15

T
i
m
c

(
10 <

2
0
)

s
c 5

c
s
)

0

* *
* !
* I
* !
• •
I *

*
* * -.-- *
* l

i
*

I -,-

I
I

-L-

-1-

Synchronous Asynchronous

Asynch

Figure 45: Effect of Asynchronous elimination, corrected

(For 100 repetitions)

96

Groups was examined for the case Procs= 16 to see if scale changed anything. It did not,

as figure 46 illustrates.

20

R
e
a
I

15

T
i

m
e

(
IO

<
2
0
)

(
s

5 e
c
s
)

0

'" '" '"

'"
'"
'"

-r-

'"
'"
$
~
'"

--,---

I
-L-

I
-L-

No Yes

Kill by Groups? (Procs=16)

Figure 46: Effect of process groups on real time, corrected, 16 procs

(For 100 repetitions)

97

Finally, the effect of asynchronous elimination shows a factor of more than two improve­

ment in the real time case with 16 processes, scaling as expected. This is illustrated by

figure 47.

R
e
a
I

T
i
m
e

<
2
0
)

s
e
c
s
)

20

* * ,
* 15

*
-.-

*

*
10 * *

* *
i
* * • i

5 -.

I
I

---1..-

I
---1..-

0

Synchronous Asynchronous

Asynch (procs=16)

Figure ~7: Effect of asynchronous elimination on real time. corrected, 16 procs

(For 100 repetitions)

98

1.8

1.6

S
y
s

T 1.4

m
e

(
s 1.2
e
c
S

)

1.0

0.8

* -,-

-,-
I

I

---L-

-l-.

*

No Yes

Kill by Groups? (Procs=16)

Figure 48: Effect of group elimination on system time. 16 procs

(For 100 repetitions)

99

S
y
s

T

m
e

(
s
e
c
S

)

1.8

-,-

*

1.6
-,-

1.4

1.2 I
-1-

1
1
I

--L-

*
1.0

*

0.8

Synchronous Asynchronous

Asynch (procs= 16)

Figure "'9: Effect of asynchronous elimination on system time, 16 procs

(For 100 repetitions)

4.7. Possible Sources of Error in Measurements

100

There are two places where errors can affect the measurements. One is the measurement

apparatus, in this case the UNIX timing facility. The other is in the experimental

apparatus which gathers the raw data from the measurement when experiments are per­

fonned. In this discussion. the UNIX clock facility was used for all measurements. and is

a common weakness or strength of the experiments.

101

4.7.1. UNIX Clock Facility

The UNIX clock facility is implemented rBach1986aJ as follows:

1. The underlying architecture provides a "timer" facility. The timer is typically

implemented as a storage location into which a number is written. This number's

value represents hardware "clock ticks'~ the value is decremented by the machine

clock on each of its cycles. After the hardware clock has "ticked" down to zero, a

timer interrupt is generated,

2. At the interrupt vector for the clock is the address of a timer routine. The timer rou­

tine first increments a counter, the "software clock." The timer routine then exam­

ines a linked list of queued tasks (the "c-list' '), decrementing the value of the first

task's timer. The tasks are queued in the order they should be executed: each task's

"timer" is stored as the difference between it and the preceding task on the list.

Storing times this way reduces searching to update timer values; the relative value is

set upon list insertion. Examples of tasks are (1) checking for characters on a tele­

type line and (2) sending an alarm(I) signal to a sleeping process.

3. The state of the system when interrupted determines which of a set of auxiliary clock

timers is incremented. e.g .. USER. SYS, WAITING, or IDLE. Tasks which have

non-positive timer values are executed

4. The value stored in the hardware timer is detemlined by selecting a HZ value for the

software clock. such as 60. For this value, software clock ticks are to occur every

1 second, so if there are T hardware timer units per second, ~ is loaded into the
60 60

hardware clock

Running processes are preempted and rescheduled at the "soft" clock interrupt if they

have not voluntarily released the processor. To reduce the overhead of such a timer facil­

ity. it can either be made fast or called infrequently. The UNIX time facility was created

for use on small slow machines, so that the second approach was applied after the first

was inadequate. Thus, the clock granularity is large relative to the execution speeds of

current processors. For example, the workstations we used for our measurements exe-

cute about 2 or 3 million instructions per second. So, in 6~ second. about 40,000

instructions can be executed, which is sufficient for several significant system events.

e.g., context switches. to take place. Most system events. e.g., the execution of a system

102

call. require less than one' 'tick," so that timing a single system call will often show that

the call took no time at all. Yet these events, for example spawning a new process with

the fork() system call, are precisely what we are interested in measuring. Thus. the clock

timer seems to be an insurmountable error source; the difficulties it causes in perfor­

mance measurement have been noticed before [Johnson 1987a]

There are two techniques which can be used to gather useful data in spite of the large

error caused by the clock granularity:

1. One trial consisting of repeated experiments from which the mean value is returned,

2. Repeated trials.

The mean of repeated samples is calculated by performing a series of measurements and

timing the entirety. The value is divided by the number of experiments to get the mean.

The difficulty with this technique in computer system measurement strategies is that

architects have constructed system features to perform faster under this behavior, e.g.,

caches. Thus, the measurements may not truly be indicative of the cost of performing a

single operation. The "random block number" approach of netrand.c, given as Appen­

dix II. attempts to circumvent these caching strategies to give a truer reading for the net­

work page access time.

Repeating trials of the experiment indicates that the experiments are reproducible.

Reproducibility, a fundamental requirement of science, reduces the possibility of some

artifact such as a network overload temporarily perturbing the measurements. Such an

artifact would not be present in the isolated system under study. These techniques were

applied in the development of our experimental apparatus. namely the programs in

Appendices L II. XI and XII.

4.7.2. Experimental Apparatus

We discussed the effect of repetitions on the reproducibility of experiments in the discus­

sion of "copy-on-write" fork perfonnance. It was clear that a small number of repeti­

tions produced data that was not reliable, as the poor qualities of the clock for fine

grained timing measurements displayed themselves. Repeating the inner loop and deduc­

ing an aggregate value produces results that are consistent with prediction. The predic­

tion in this case is not sophisticated: it's mainly that "copy-on-write" has the most effect

when little is copied. The value of this "prediction" is that it gives us a quick check on

103

the results, and it's clem' that small numbers of repetitions do not adhere to the model.

Our study of copy-on-write fork performance gave a graphic illustration of the effect of

repetition. We also demonstrated relations between different types of time measure­

ments (which should be closely related) which change as a function of the number of

repetitions.

Repeated trials test the validity of the experiment. For example, if the experiment

is to repeat some action 100 times and derive a mean execution time. repetitions of this

experiment should produce approximately the same mean execution time, under the

assumption of a reasonable variance. If they do not, then the figure for the mean execu­

tion time has no experimental validity. In science, since other researchers cannot reliably

reproduce the number under the same conditions, it has no value. All experiments

reported in the measurements section were repeated at least twice in order to ensure some

measure of validity. Other validation comes from repetitions with adjusted variables.

Predictions coming from models of system behavior will give estimates of the sensitivity

of the experiment to various external factors. e.g., memory size or machine speed. If, for

environmental factors to which the experiments are insensitive. the experimental results

appear to be duplicates, the results have validity.

To test the results of the' 'sibling elimination" measurements, which seemed to be

only grossly reproducible, we tried another strategy. The problem with the clock timer is

that its granularity is constant across systems of widely varying performance. Modern

processors are sufficiently fast that events can escape detection by the timer. On a slower

processor, the clock appears to be of finer granUlarity. A subset (for example, 1,4, and 8

child processes) of the do _ elim experiments were re-run using an AT&T 3B2/31O, which

as we have mentioned earlier, is significantly slower (by about a factor of 7) than the

HP9000. The curves generated were consistent with the measurements we presented in

this chapter. The consistency of the curves implies that the effort taken to limit the

effects of errors in the measurement apparatus were successful. The validity of our con­

clusions is reinforced by the relationships maintained between parameters. These stay

the same even as the magnitudes change due to the slower processing unit.

104

4.8. Discussion

We have discussed use of alternatives and shown how execution of the alternatives in a

concurrent fashion Clm lead to performance increases. Further. we have parameterized

characteristics of the alternatives and the implementation overhead so that the effective­

ness of the technique can be evaluated. Many of the contributors to 't(overhead) have

been identified and measured, so that the performance improvement can be evaluated on

the basis of the alternative's characteristics, using these characteristics to calculate

't(overlzead).

4.9. Applications

"In science the primary duty of ideas is to be useful and interesting even more

than to be (true' ." I Trotter 1941 a I

What properties must we have, other than minimal implementation overhead. for the

concurrent execution method we describe to be useful? The analysis of Chapter 2 and

the measurements earlier in this chapter suggest several:

1. A large portion of the shared state is read-only.

2. There is some state shared between the alternatives which each may update. With no

shared state, no work is necessary for transparent concurrent execution.

3. There are execution time differences between the alternatives, due to data dependen­

cies, use of heuristic methods, or other influences.

Application areas for our design are described in the following sections.

4.9.1. Distributed Execution of Recovery Blocks

The Recovery Block [HorningI974a, Rande1l1975aJ is a method for writing software

which is tolerant of mistakes in its own logic, from which failures can arise. The idea is

simple. It is assumed that the softwcu'e in question has been written to some specifica­

tion. Several alternative versions of the software are written, according to the specifica­

tion. A boolean' 'acceptance test," which checks the results of the software is developed

along with the software, using the specification. The acceptance test. which either

succeeds or fails, will be refined once some experience with the software is developed.

The alternatives and the acceptance test are gathered into an ALGOL-like block

105

construct, where the alternatives are typically ordered on the basis of observed or

estimated characteristics such as reliability and execution speed.

When the acceptance test succeeds, the results (including all state changes) of the

alternative which passed the test are made available. When the acceptance test fails, the

state of the program is "rolled back" to the state the program had before the block was

entered, and the next alternative is tried. If the last alternative in the sequence results in a

failed acceptance test, the block as a whole fails.

The scheme is conceptually similar to the "standby spare" technique used in

hardware. N alternate methods of passing an acceptance test are provided. The first

such method is referred to as the primary: they have typically been rank-ordered by some

metric, e.g .. observed perfomlance. Assuming that the acceptance test performs per­

fectly, the recovery block method fails on inputs where all methods fail the acceptance

test. Note that the acceptance test is application-specific; Hecht [Hecht1979a] provides a

detailed discussion of the fomls such acceptance tests might take. Cha, et al.

[Cha1987a] have shown that self-checks (a generalization of the acceptance tests used by

recovery blocks) can be effective in finding faults. However, there is difficulty both in

the writing of the self-checks and their placement within the program structure. They

also note a great variation in the ability to write effective self-checks, and the efficacy of

combining code-based checks with specification-based checks compared to

specification-based alone.

The recovery block is different in behavior than the "Alternative Block" we pro­

posed as a sequential model in the Introduction. First, rather than having one guard per

body, the Recovery Block possesses one guard to which all the alternatives are passed.

Second, the guard is applied after the body is executed, rather than before. However,

neither of these are problems for our design. as (1) the computation can be viewed as part

of the guard, with the body consisting solely of updates to external variables, or (2) the

blocks can be viewed as self-checking entities where the guard is always enabled for

scheduling of the computation, but which may fail due to self-checks.

The changes to the program' s state space are equivalent to some execution which

selected exactly one alternative at each Recovery Block encountered in the execution.

This the nondeterministic selection which we discussed in the introduction. The RB

language. developed by Smith and Maguire I Smith 1988c] is designed for the distributed

106

execution of recovery blocks.

Since Recovery Block alternates may attempt to update shared state, e.g., database files

or external variables. our mechanism for preventing observation of a sibling's actions is

necessary. and the "'copy-on-write" memory management reduces the amount of state

which must be maintained. One special problem which arises with the parallel execution

of Recovery Block alternates is the fact that the method is designed to cope with failures,

so that we must do more work in order not to add new failure modes. Two issues in par­

ticular are important. First, we may copy all the state rather than copying as necessary,

in order that the state not become inaccessible 14 and so cause a failure. Second. the syn­

chronization must not inn-oduce a single point of failure. This is remedied by the use of

majority consensus. as discussed above, to achieve a fault-tolerant 0-1 semaphore for use

m synchronization. A combination of existing techniques [SchneiderI983a,

Schneiderl982a] may be needed for the distributed case.

4.9.2. Polynomial Root-finding

The Jenkins-Traub r Jenkins 1972a. Jenkins1970a] algorithm for finding roots of polyno­

mial equations is a highly robust, rapid, and ponable method for solving for the zeros of

a polynomial over the complex numbers. Those interested in the internal workings of the

algorithm should consult Ralston [Ralstonl978al for details. The propeny of the algo­

rithm which makes it attractive as an application for our method is that it is adaptive, in

the following sense: as it begins the search for a zero in the complex plane, the algorithm

chooses an angle with which it attempts to approach the root. After iterating towards the

root, the algorithm tests for convergence. If the iteration is not converging, the algorithm

retries with another angle, which in the published version (ACM Algorithm 419: "Zeros

of a Complex Polynomial") is a fixed rotation in the plane. The application of the

method for concurrent execution is in the choice of the angle of approach. Several such

angles are selected, and alternative root-finders are spawned with the angle set. If an

14 Evidence [Gray1988a] from commercial systems [Bartleu1978a, Borgl983a, BarLlett1981aj in­
dicates that reliability is increased significantly with two copies of the state, as maintained in a
"process pair." The increase in reI iabi Ii ty by adding a third process is infinitesimal, and is
achieved at a significant cost in sLOrage and synchronization. Thus, if the location of storage
copies is well-known, it may not be necessary LO have more than two copies in the system;
demand-copying can be used for any copies beyond the two necessary for reliability.

107

alternative algorithm does not converge, it "fails" by exiting; successful alternatives are

selected using our "fastest first" synchronization scheme: our performance analysis of

the speedup applies here as well. The minimum time is the CPU time it took for the first

rootfinder to discover all the zeros of the polynomial. Failures are excluded. since they

did not discover all the zeros. The maximum time is the CPU time required for the last

rootfinder to discover all the zeros of the polynomial, or fail. Failures are included, since

we would have to wait for them if we didn't know whether the rootfinder was converg­

ing. The average time is the mean of all execution times, including failures. These times

are determined on a uniprocessor, since each angle choice will be executing on such a

machine in the experimental work.

The granularity of finding a single zero may be too fine to dominate the overhead

involved. but alternatives can easily be spawned which retry using different rotations or

different starting angles for the entire set of zeros in this case.

As a test, we re-coded the published Fortran program for the Jenkins-Traub method

in "e." This is provided as Appendix Xrll. A variety of test cases were run against the

algorithm. llsing a driver which varied the initial angle for the sequence of shifts. The

published algorithm had used 94 degrees as an angle; we parameterized cpo/y() with an

ang le argument which allowed different choices to be tried. The driver program,

cvaryangle.c, is given as Appendix XIV. The compiled program's address space had a

write fraction of less than 0.25 due to the large portion comprised of progran1 text.

The test cases were generated llsing r2p.c which is given as Appendix XV. The

idea is to generate a distribution of roots, which are used as input to r2p. r2p constructs a

monic polynomial having these roots, and outputs its coefficients into a form usable by

cvaryangle.c.

4.9.2.1. Example

Consider the following set of points, which are to be the roots of a polynomial:

-1.1 + O.li

-1.1 + O.li

-1.0+3.1i

-1.2 + 0.334i

-1.3 + 1.276576i

-0.4 + 0.026i

1.5 + 1.li

0.3 + 100i

0.4 + 1.0i

0.5 + 1.0i

-1.6 + O.Oi

-0.7 + 0.76i

-1.8 + 1.9i

-0.9 + O.Oi

0.1 + 0.042i

0.1 + 0.042i

-1.0+3.1i

-1.0 + 3.llli

0.2 + 0.5i

0.7 + O.3i

0.4 + 0.7i

The roots are dispersed through the top half of the complex plane:

108

109

3i .. .

2i .. .

. .
I•.•.• '........ .. -

. o e··········· . e················· .! .. "

-I~--~
-1 o 2 3

When processed by r2p, they yield15 the monic 21st degree complex polynomial z21+

(8.9-19.491576£).z20+ (-140.045104-161.369678i).z 19 +

(-1274.642064+381.680467£)'z 18+ (-743.821643+581O.8372480'z 17 +

(16752.870876+ l0043.831986i)·z 16+ (41763.432806-29981.3666280'z 15+

(-23799.211445-106982.985377i).z 14+

(-152123.766242+236186.810121i)'z 12+

(342742.413912-83786.997252i)'z 10+

(-195080.181222-100059.575279i)·z8+

(-189267 . 174496-34407.932181£)·z 13+

(198013.830239+280742.352179i)'z 11+

(37460.901644- 301901.877085i)·z 9 +

(-94732.08529+90223.058904i)'z 7 +

15 R2p.c has lost much precision; the real coefficients of the polynomial are different from those it
computes. This approximation is not bad, P(-O.9+0.0i) is O.8E-7, which is not far from zero. The
polynomial PO for which P(-O.9+O.0i) is -O.26E-26 has vastly different coefficients. For example
the coefficient of zO is -I088.35+607.0i rChang1989a]. However, this precision is not necessary
to prove our point about parallel processing!

110

(27282.343436+57 440.498715i)·z 6+ (24271.198674-3724. 963179i)' Z
5 +

(682.559499-7237 .864131i)·z4+ (-1528.494152-397.9121670·z3+

(-63.349391+237.887291i)·z2+ (27.878345+O.8979860·z 1+ (-D.80232-1.10187li).

When the program of Appendix XIV, cvaryangie.c. is run on this input, the following

output is produced on a Hewlett-Packard HP9000/350 with 8 megabytes of main memory

and an HP7945 70 megabyte hard disk, running HP-UX 6.0:

nprocs: 1, max: 1044, min: 0, avg: 1044, fails: 1
nprocs: 2, max: 1015, min: 473, avg: 744, fails: 1
nprocs: 3, max: 1733, min: 1733, avg: 1246, fails: 2
nprocs: 4, max: 1604, min: 474, avg: 1047, fails: 1
nprocs: 5, max: 1531, min: 814, avg: 1117, fails: 3
nprocs: 6, max: 1734, min: 473, avg: 938, fails: 2
nprocs: 7, max: 1330, min: 791, avg: 1023, fails: 2
nprocs: 8, max: 1571, min: 461, avg: 1037, fails: 1
nprocs: 9, max: 1706, min: 1080, avg: 1206, fails: 3
nprocs: 10, max: 1877, min: 459, avg: 1076, fails: 3
nprocs: 11, max: 1896, min: 965, avg: 1324, fails: 1
nprocs: 12, max: 1758, min: 472, avg: 1127, fails: 3
nprocs: 13, max: 3307, min: 775, avg: 1437, fails: 4
nprocs: 14, max: 1885, min: 790, avg: 1275, fails: 5
nprocs: 15, max: 1748, min: 293, avg: 1053, fails: 6
nprocs: 16, max: 2312, min: 476, avg: 1194, fails: 2
nprocs: 17, max: 1937, min: 656, avg: 1159, fails: 5
nprocs: 18, max: 1816, min: 504, avg: 1066, fails: 4
nprocs: 19, max: 2085, min: 738, avg: 1223, fails: 2
nprocs: 20, max: 2381, min: 474, avg: 1238, fails: 3
nprocs: 21, max: 2100, min: 619, avg: 1235, fails: 8
nprocs: 22, max: 1887, min: 380, avg: 1135, fails: 4
nprocs: 23, max: 2088, min: 643, avg: 1344, fails: 3
nprocs: 24, max: 2056, min: 472, avg: 1147, fails: 4
nprocs: 25, max: 2317, min: 699, avg: 1154, fails: 8
nprocs: 26, max: 2003, min: 566, avg: 1249, fails: 6
nprocs: 27, max: 1902, min: 590, avg: 1167, fails: 5
nprocs: 28, max: 1930, min: 545, avg: 1149, fails: 8
nprocs: 29, max: 2346, min: 332, avg: 1297, fails: 7
nprocs: 30, max: 1948, min: 312, avg: 1110, fails: 6
nprocs: 31, max: 1950, min: 657, avg: 1201, fails: 5
nprocs: 32, max: 2273, min: 471, avg: 1183, fails: 7
nprocs: 33, max: 2529, min: 505, avg: 1227, fails: 5
nprocs: 34, max: 2378, win: 490, avg: 1330, fails: 4
nprocs: 35, max: 1774, min: 420, avg: 1104, fails: 7
nprocs: 36, max: 1758, min: 471, avg: 1088, fails: 7
nprocs: 37, max: 2245, min: 299, avg: 1224, fails: 8
nprocs: 38, max: 2556, min: 568, avg: 1222, fails: 7
nprocs: 39, max: 1867, min: 680, avg: 1140, fails: 4
nprocs: 40, max: 2317, min: 473, avg: 1255, fails: 5
nprocs: 41, max: 2165, min: 552, avg: 1252, fails: 11
nprocs: 42, max: 2703, min: 621, avg: 1382, fails: 7
nprocs: 43, max: 2232, min: 515, avg: 1268, fails: 13
nprocs: 44, max: 2140, min: 425, avg: 1199, fails: 4
nprocs: 45, max: 2171, min: 312, avg: 1225, fails: 8
nprocs: 46, max: 1911, min: 429, avg: 1159, fails: 7
nprocs: 47, max: 2511, min: 439, avg: 1265, fails: 5
nprocs: 48, max: 2271, min: 471, avg: 1229, fails: 9
nprocs: 49, max: 2698, min: 476, avg: 1211, fails: 6
nprocs: 50, max: 3216, min: 543, avg: 1231, fails: 9

111

The timing numbers are given in units of clock ticks; there are 60 clock ticks per second

on this machine. The relations are graphed in figure 50:

Failures 2 3 2 2 1 3 3 1 3

2000-.--.

1500

1000

500

o~--------------------._------------------_.----------~

For

o 5 10

Figure 50: Varying angle versus execution time

Legend:

"*" - Minimum execution time

"@" - Maximum execution time

,. -" - Average Execution time

"Failures" - Number of choices causing failure

Times are in CPU clock tick units.

a number of processors N, the ensemble of

112

angles

0·360 1·360 (N-I)·360...
<3.0+~, 3.0+ N , , 3.0+ N > IS tned 111 parallel. The time for failures

113

is included in the averages. but the minimum time is always derived from successful exe­

cutions. The number of failures is calculated by using a counter. which is output. These

results illustrate two important facts:

1. A speedup is possible using only a few variations. For example, comparing the

average case with 4 processors to the best case gives a speedup of about 2.2. The

speedup in the two-processor case is 1.6. Of course, these measurements ignore

overhead. More importantly from the point of view of a numerical analyst. the

scheme tolerates failures.

2. Certain choices of angle result in failures. This is strikingly illustrated for 1 proces­

sor. and is due to, among other things. the condition of this polynomial. Picking the

first successful execution would work for any number of processors greater than 2

in this experiment.

4.9.2.2. Parallel Execution

The Jenkins-Traub algorithm displayed significant variance on this input and others.

Since we had a working program available, we decided to measure the performance of

our scheme on a multiprocessor system to see how much overhead arises in the complete,

end-to-end algorithm. Copies of the Jenkins-Traub algorithm were run using the parallel

version of cvaryangle.c given as Appendix XVI. Cmach.c was run on several mUltipro­

cessor systems. For an otherwise idle two processor Ardent Titan, the first six lines of cjl

produced the results:

procs max mm avg fails par

1 4.01 4.01 4.01 0 4.37

2 4.49 4.07 4.28 0 4.25

3 4.45 2.03 3.50 0 4.74

4 4.48 1.37 3.31 0 5.19

5 4.27 2.36 3.35 2 8.61

6 4.50 2.02 3.65 0 7.03

The column labeled' 'par" is the parallel execution time measured with cmach. All times

114

below the double lines were with processor contention, since the number of processes

was greater than the number of available processors.

Thus, the execution time overhead of creating two processes and running them con­

currently can be computed as 4.25-4.07 sec., or about .18 sec. But the average time was

4.28 sec, so even with the additional overhead, the parallel execution finished first.

While encouraging, the numbers suggested that more processors might yield more

impressive results. On an experimental [GarciaI989a] multiprocessor, cmach was run on

the degree 16 polynomial Z 16+ (19.800000-3.200000i)'z 15+

(176.930000-58.940000i).z 14+ (940.24600Q-494.724000i)'z 13+

(3284.874700-2495. 183000i)·z 12+

(12521.112583-19491.045162i)'z 10+

(2785.185034-327 40.983162i)·z 8 +

(-16870.986162+13554.317038i)·z6+

(-3673.995257+33389.404113i)·z4+

(1689.471245+7674. 191752i)·z2+

(7821. 151500-8375.778560i)·z 11+

(12045.424807-31405.685381i)·z 9 +

(-10378.708048-15172.462694i)'z 7 +

(-12430.788642+33571.308326i)·z5+

(1360.752190+20 180.264386i)· z 3 +

(622.122192+ 1700.277923i)'z 1+

(86.407858+168.238421i). An eight-processor configuration running MACH produced

the results illustrated in the following table:

procs max min avg fails par

1 12.1 12.1 12.1 0 12.8

2 13.1 6.2 9.6 0 6.3

3 22.9 13.1 17.1 1 12.3

4 13.4 6.23 10.7 0 6.4

5 19.9 5.8 12.2 0 6.3

6 23.0 6.2 13.8 1 11.4

7 16.9 5.9 10.1 0 7.4

When plotted yields:

115

30-

M M

20- M

A M Time

(Secs)
M M A

~ A
A II

lO- A A

" m m

0----------,.----------------.,-----------------.,---------
246

Processors

Figure 51: Perfonnance of polynomial root-finder

The legend is quite simple: M designates the maximum time of an ensemble of angles, m

designates the minimum time, A designates the mean time (excluding failures), and 1/ is

the execution time, including all overheads, required for parallel execution. The over­

head can be calculated from the gap between m and A values in the plot. The speedup

can be seen by comparing A to 1/. This legend is used for the plots of Appendix III.

For these tests. a single process was run before the testing started, in order to pre­

page the code into the multiprocessor from the host: this single process took 17.2

seconds. This was done because the ACE is attached to an IBM PCIRT host, from which

code is loaded into the ACE address space before execution. This initial load would

introduce a spurious execution timc increase, and must be removed from thc results. A

variety of polynomials were tested; this was neither the best nor worst perfomlance

observed. A number of other test sets and performance tables are given in Appendix III.

Figure 52 summarizes the speedups seen on these examples, which were chosen based on

116

the advice given in several papers on testing rootfinders. The summary statistics clearly

reflect the limited dispersion available, as illustrated in the graph.

We first calculate the speedup for a given number of processors on each polynomial

by computing the ratio of the average time to the observed time for parallel execution.

The mean of these speedups is then computed, giving the value in the table.

procs speedup

1 0.99

2 1.16

3 1.23

4 1.28

5 1.26

6 1.11

7 1.10

So, for example, the method produced, on average, a 28 percent speedup when 4 proces­

sors were utilized. This is a real speedup, since all processing overhead is accounted for

in the observed execution times.

The research contribution of this method of concurrently executing the alternative

versions of the Jenkins-Traub algorithm is significant. Certain component operations of

the algorithm can be vec tori zed, so that processors such as a Cray [Russell1978a] or

CDC 6600 [Thornton 1970a] CPU could extract some parallelism from the execution.

However, this parallelism is available to speed up all the alternatives, since they differ

only by an initial angle and not in their executable code. which is shared. Other than

exploitation of vectorizable code. or perhaps fine-grained dataflow properties. the algo­

rithm is inherently sequential, due to the use of polynomial deflation [Ralston 1978a]

when a root is found. Yet, we have shown a method by which significant speedups can

be achieved through use of multiple processors, and we have demonstrated those speed­

ups in practice.

117

4.9.3. Other Applications of the Technique

We discuss other applications of the technique. These are drawn from varying areas of

computer science.

4.9.3.1. OR-parallelism in Prolog

Logic programming is a new method of harnessing computers to solve problems. The

major idea is that the "logic program" declares what must be true, and the logic pro­

gramming system finds a way of making this tme. This results in a solution to the prob­

lem. Logic programming is discussed by Kowalski [Kowalski1979a]. Logic

programming's attraction to researchers is primarily because of the freedom from con­

straints on "how" the "what" of the program is to be achieved. Thus, schemes for

short-cuts and parallel execution abound. Much of this research activity has had as its

focus the Prolog language, to which we will restrict our attention.

The Prolog [Clocksin1984a] programming language is based on predicate logic

[Kowalski1979a], using "Horn clauses" [Rich1983a] to describe data and interrelation­

ships. Many normal operations are subsumed by the unification algorithm by which Pro­

log attempts to satisfy predicates: variables are bound during the unification process to

values which caused the predicates to become true. Thus equal (X, elrod) will

cause the variable X to take on the value elrod, as this binding is the only one which

allows the predicate equal () to be satisfied.

Progress is achieved with a goal-oriented predicate-satisfaction algorithm; a data­

base of predicate values and rules is used to construct a set of dependency relations; top­

level goals are decomposed into sub-goals using the relations between the rules, objects,

and predicates. For example. testing equality of lists implies that their elements are

equal: testing element-wise equality may then give a list of sub-goals. This gives rise to

a possibility for parallel execution, however the granularity of such parallelism seems

inappropriate. More appropriate is rule-level parallelism, which is centered on two types,

AND-parallelism and OR-parallelism. The idea with AND-parallelism is that if we have

a situation where goals A and B must be simultaneously satisfied, we can pursue the

satisfaction of A and B in parallel, and deal with the simultaneity later. This, however,

has proven possible but difficult. due to the requirement of consistent variable bindings

in A and B. The situation is similar for OR-parallelism: this is more interesting to us.

118

since it maps closely to our problem of attempting alternatives in parallel.

4.9.3.1.1. Tutorial Example

We'll start with a database of "facts," which are essentially ground literals of fIrst-order

predicate logic. The example we'll construct will be useful in understanding the Prolog

execution engine, so that we can examine what opportunities exist for parallel execution.

The knowledge base consists of the following facts:

father (charles, jonathan) .
father (frederick, charles) .
father (raymond, jacqueline) .
father (john, gertrude) .
father (charles, steven) .
mother (jacqueline, jonathan) .
mother (gertrude, jacqueline) .
mother (julia, charles) .
mother (mary, gertrude) .
father (frederick, elizabeth) .
father (~rederick, frederickjr) .
father (frederick, patricia) .

First. let's consider some queries in the sequential execution of a Prolog interpreter.

Those desiring a more detailed tutorial can consult Clocksin and Mellish's

[ClocksinI984a] book. The clause

grandfather (X, Z)

father (X, Y), father (Y, Z).

defines a predicate which defines grandfatherhood in temlS of two related fatherhoods.

The interpretation of the comma is that it combines the clauses separated by it in such a

way that all of them must be true. The' ':-" can read so that the right-hand side implies

the left hand side. Thus. both father (X, Y) and father (Y, Z) must be

119

true for grandfather (X, Z) to be true, and Y must take on the same value in

both clauses. Consider the Prolog query:

?grandfather(G, jonathan).

G=[frederick]

What has happened here is that the Prolog interpreter has taken the query and decom­

posed it into the two sub-queries. It fIrst tries to match father (X, Y), and the

fIrst match (assuming the literals are organized as shown) in the database will be the

literal father (charles, jonathan). Thus, X is instantiated as charles

and Y is instantiated as jonathan. The second clause must then match father (

jonathan, jonathan), which it does not. Since the match failed, the algorithm

backtracks to the last choice point. and the search for a value of father (X, Y)

continues, and X and Y are instantiated as frederick and charles, respectively.

Since Y has now been "bound" to charles. the database is examined for a match for

father (charles, jonathan) which it finds as the first entry. The interpreter

then sets G to frederick and prints the value of G. The interpreter also waits for an

indication that the search is to be continued, in case there are more solutions to the

query16.

Now. we have ignored the possibility of a maternal grandfather, which can be speci­

fied with the addi tional clause

grandfather (x, z)
father (X, Y), mother (Y, Z).

The existence of this clause changes the interpreter's control flow in the following way.

as a result of there being two alternative methods of demonstrating grandfatherhood.

Consider the query:

?grandfather(raymond, jonathan).

T

There is no pair of values which satisfies the first clause, so it would fail. However, there

remains a second clause which can be tried. and father (raymond, Y),

16 This presentation is more concerned with the variables and control mechanisms than with the
full unification theorem proving scheme; thus our portrayal of the process as "pattern-matching"
is sufficient

120

mother (Y, jonathan) is satisfied by Y=jacqueline, and the query is satis­

fied.

The first query offers an opportunity for parallelism in the database search. Ele­

ments satisfying the first sub-query can be matched against elements satisfying the

second: this merging process produces a result which can satisfy the original query. If

the conjunction of clauses does not share variables, then the merging is easier. Manage­

ment of the general case of these queries is difficult, since the sub-queries may have

caused shared variables to exhibit side-effects, i.e., "bindings." However, in having two

methods for "proving" grandfather (raymond, jonathan) we have intro­

duced a new opportunity for parallel execution. The query is tme if either top-level

clause results in an answer. Thus, we can attempt to process both of these queries in

parallel, since a successful sub-query in either case can cause the top-level query to be

satisfied.

One major problem, as pointed out by Warren in his survey lWarren1987al (ignor­

ing side effects) is the problem of "multiple binding environments. " What this means is

that as the clauses execute in paralleL they bind values to variables, e.g., j acquel i ne

to Y. Now. different alternatives may bind different values to the variables at different

times, and hence interfere with each other, in a way that would not be possible in the sin­

gle threaded stack-oriented interpretation style we described. How this problem can be

dealt with is a question which has inspired many researchers, and engendered many solu­

tions. A good, but somewhat dated, survey is provided by Wise [Wise1986a] who sur­

veys work in parallel logic programming for comparison with his EPILOG system.

Some of these are described in the next section.

4.9.3.1.2. Existing Solutions

The basic problem is to prevent the clauses from interfering with each other, through

side-effects. during their execution. One solution which has been examined is called

committed-choice non-determinism. Clauses are partitioned into guards and bodies, so

that they take the form:

head :- guard, body.

The guards of all clauses selected by the matching algorithm are evaluated in parallel.

From among the clauses whose guards are tme, a body is selected for execution. The

121

choice of this clause is the committed-choice. In order that they can be executed in this

fashion, the guards are often [Clark 1987a] constrained to be read-only, i.e., side-effect

free. For example, static analysis by the PARLOG [Clark1987b] compiler insures that

the clauses are read-only, before execution. The GHC [Ueda1987a] scheduling mechan­

ism blocks processes which update shared state.

Another approach is maintain the language features of Prolog, and introduce the

parallelism in a transparent fashion. This is the approach of the systems Warren

describes in his survey. They use a combination of interpreter-controlled variable

management and interpreter-controlled process scheduling to prevent updates which

would result in an inconsistent state. Processes are typically modeled as independent

threads of control working in a common address space. Thus, we could look at the

forked() sub-processes as inheriting the state of their parent process; classical resolu­

tion17 would copy all the state at each sub-node in a computation tree. A "node" is this

tree is a list of goals: for example the root node's goal is satisfaction of the initial query.

The computation consists of a series of decompositions of the initial query into clauses

which are satisfied, left to right in a traditional Prolog system. This results in a depth­

first search of the tree; search termination is achieved when a goal is "resolved." or

matched with some entry in the knowledge base. As each sub-node is executed, it con­

sists of a copy of its parent node. with the left-most clause instantiated to whatever

knowledge base entry matched it. Aside from the execution cost, the main additional

overhead here is the copying of the parent's goals. This burden of copying would occur

at each branch point, where afork would occur, in a parallel execution. Aside from this

burden, Warren points out that the approach does offer the attractive propenies of (1) the

processors can work independently on physically separate data, and (2) in all other

respects, the implementation would be the same as a sequential implementation, and

therefore would be able to take advantage of any optimizations, etc., that might apply.

A simple modification. and an optimization. is the .. Naive ModeL" where rather

than copying state, binding lists «name,value> pairs) for variables are associated with

each node in the tree. The sub-node instantiates the elements of the binding list: no phy­

sical copy need be made of an unchanged variable. To look up a variable's value, a

17 Warren's survey provides a much more in-depth discussion of what he calls the "Abstract
Model of classical resolution;" see also the discussion of resolution in Nilsson [Nilsson1980al.

122

search through the binding list must be made, as bindings fom1 a LIFO queue. The major

drawback is that the size (and hence the search time) of the binding list is not bounded.

The "Naive Model" is close to the way sequential Prolog maintains its trail stack, used

for backtracking from a failed goal.

To address this problem of unbounded lookup time for a binding list, the "binding

array" was proposed. The idea is that each processor has a binding array in local store:

there is one node per processor. The array is instantiated when a goal is selected for

resolution by a processor: it is a constant cost lookup, so that the "binding list's major

problem is eliminated. A clever implementation uses the binding array data structure to

"shadow" the contents of the binding list. as goals are executed. When a processor

begins to execute a new goal, the binding array must be set up, so that task switching

now gains more overhead; this can be considerable, depending on how many bindings

must be changed.

The" Argonne Model" uses hash table lookup to cut down the cost of searching the

binding array by a constant factor. There is in addition the idea of . 'favored" bindings.

which are local to the processor, and "unfavored," which are non-local in the sense that

they are bindings that are' 'favored" by some other processor. Non-shared variables are

denoted "private." Only" unfavored" bindings must be looked up in the hash table,

although hash tables are created for each arc of the OR-parallel tree, and are kept in a

linked "chain." Figure 4 of Disz, el aI's paper [Disz1987aJ is particularly illustrative .

. 'Private" and "favored" variables have constant times for binding (i.e. assigning)

values to variables. "Unfavored" bindings are more costly, as they involve table

accesses and updates. If most shared variables are "favored," this scheme is effective.

However, as Warren points out in his survey [Warren1987aj, the fraction of variable

references which are unfavored is high, i.e., 0.2->0.5. Disz, el al. [Disz1987a] were simi­

larly disappointed by the performance of the scheme on benchmarks which they reported.

A "context-switch" (where the processor suspends execution of the currently executing

process, and resumes the execution of some process) is expected to be cheap compared to

the context-switch cost for the' 'binding arrays" scheme. as it involves only establishing

pointers to the proper hash chain, not copying. For the "unfavored" bindings, the

lookup cost. while reduced by a large constant due to the hashing technique, can still be

(potentially) unbounded, as it remains proportional to the number of unfavored bindings.

123

The "Manchester-Argonne" model improves upon the Argonne model by applying

the observation that the Argonne model's hash chains are not necessary unless sharing

occurs. Thus, in the optimized model, allocation is postponed until a processor wants to

share an "arc;" at this point the number of relevant bindings is known and assuming a

reasonable "randomizer" the hash table technique can yield a constant-bounded time

lookup, and Warren argues that it will, with scheduling and merging techniques which he

describes.

Finally, the "Argonne-SRI" model uses the "binding array" technique of the

"SRI" model combined with the favoredlunfavored distinction between shared variables

from the "Argonne" model. The private "binding array" is used for unfavored bind­

ings only: "favored" bindings are marked with some flag indicating their status; this flag

is associated with the value. (Note that the space for this flag must be available in all

value cells. If the" space" devoted to this is greater than the fraction of shared variables,

the straight "binding-array" may be more space-efficient.) Thus, if many bindings are

"unfavored." this technique will cause an extra access (of the binding array) for each of

them, but the time will be constant. Warren's opinion of the merit of the various

schemes is summarized as:

Argonne<M anchester-Argonne
Abstracl<Naive<SRI<Argonne_SRI

Now, all these schemes make the following assumptions:

1. The Prolog implementation (compiler/interpreter) must manage its own memory.

2. If multi-processing, memory is shared.

3. The Prolog implementation is responsible for task management.

4. Variable-binding is considered to be the major problem. The implication of this is

that other concerns, e.g .. side-effects and lPe, are ignored or given short shrift.

5. Adherence to sequential Prolog syntax and semantics must be maintained. This is a

more modern version of the . 'dusty-deck" arguments associated with any changes in

an existing language.

Unfortunately, these assumptions are not always met, or in some cases, reasonable. We

will examine the assumptions point-by-point.

124

1. Unless a special-purpose Prolog machine is built, and in addition is economically

viable, the cost/utility/performance of virtual memory will dictate its inclusion in

general-purpose computers. Thus, in reality, an abstract "memory reference" must

go through two memory management schemes: Prolog's, and the hardware's virtual

addressing support (this ignores other "'transparent" architectural features such as

caches).

An interesting question which has arisen ill the study of block sizes (see Deitel

[Deite1l984a] for a discussion) for page-oriented virtual memory systems is the

penalty paid for fetching data in blocks which mayor may not be well-correlated

with the problem characteristics. For example, if accesses are done on memory-word

sized units which are widely separated, each word access may require several

thousand instructions to handle the associated page fault; the same problem arises

when choosing a cache line size. While this difficulty can be reduced, if not elim­

inated, by problem-specific approaches such as overlays, these are clumsy to manage

and are not transparent to the programmer. In any case, most programs exhibit local­

ity of reference .. LISP and Prolog programs are no exception.

2. While shared-memory architectures are common and provide a nice abstraction for

the programmer, distributed computing is different with respect to the latency and

bandwidth of communication versus the latency and bandwidth of local memory

referencing [Smith 1986aj, therefore the economics of communication become much

more interesting, even if the communication is buried beneath a shared memory

abstraction lAbramson1985a. Delp 1988a. Cheriton 1986a. Li 1986a. Li1986b,

Stout 1983a, Poplawski 1987 a]. For example, locality of reference becomes much

more important because its impact on performance is so much greater. Some atten­

tion has been paid to the issue of Prolog memory referencing behavior in the litera­

ture. Tick's [Tick1988aj thesis provides a wealth of detaiL but assumes a specific

model for the abstract machine. Nguyen lNguyen1988a] uses a variety of bench­

marks for a Prolog nmning on an existing system, some of which are discussed later

in this section. Ross [Ross 1986a] discusses detailed measurements of virtual

memory access behavior for a Prolog system, and makes several suggestions for

improved performance.

While attractive in temlS of reducing unnecessary references, indirection and

pointer-based <name, value> retrieval look less attractive when the number ofremote

125

references is calculated. Crammond [Cmmmond1985a] looks at three methods of

creating an execution environment for parallel execution of disjunctions. He pro­

vides some analysis of mechanisms designed for efficient reference of shared data, in

particular the update of shared data. He studies three algorithms, which he calls

, . Directory.' ' . 'Hash Window," and "Varia ble Importation." "Directory" and

"Hash Window" do bindings (Le., variable instantiations) on demand, via pointers,

while "Variable Importation" impons everything it may need, at higher initial over­

head, but taking more advantage of locality once it performed the importation.

Crammond points out in his study that copy-based schemes ("variable importation")

for multiple binding environments, such as Lindstrom's [Lindstrom 1984a,

Lindstrom 1984b, Tinker1987al begin to look more attractive under such cir­

cumstances, since their performance is competitive with the other schemes in any

case.

3. This is not a bad assumption in intent, as the Prolog implementation's knowledge of

semantics and scheduling heuristics (which are not applicable to more general­

purpose operating system process schedulers) may make it a much more effective

scheduling tool. However, if interaction with the scheduler of a general-purpose

operating system is necessary, as we argued it would be without Prolog machines,

then heuristics will be applied based on CPU utilization rather than execution-time

performance, (they may be different, as we saw earlier in our measurements of over­

head) and due to load-balancing schemes using process migration [Ferguson 1988a],

not easily predictable. Communication between the scheduling component of the

general-purpose operating system and the Prolog implementation thus seems like an

effective strategy in these circumstances.

4. One major problem which the committed-choice non-determinism logic program­

ming languages [Shapiro1986al address is that of side-effects. How is an "all­

solutions" requirement dealt with if each solution writes a payroll check? Butler, et

ai. [Butlerl988al point out how these issues damped their initial enthusiasm

[Ciepelewski1985a] for the "Dusty Deck" solutions, and led them to include a

"commit" operator in their language [Hausman1987a, Lusk1988a]. While it could

be argued that the programmer mllst be aware of sllch possibilities and adjust for

them, this seems wrong. as experience has shown that good design of support

mechanisms enhances programmer productivity. and myriad subtleties and

126

restrictions reduce it. "Committed-choice" semantics address the issue simply: they

guarantee that only one result will be produced by the construct, and do not specify

the selection criterion in order to allow themselves full use of the degree of freedom

provided by non determinism.

5. Cost-benefit analysis usually dictates whether changes can reasonably be made, if

they are technically justifiable. When a large amount of software assuming a certain

semantics is written, this large installed base and its assumptions represents a huge

cost which must be weighed against improvements derived from the change. For

example. the perfonnance benefits of pipelining in the IBM 360 Model 91 were con­

sidered significant enough so that the architectural specification of the 360 for that

particular machine was changed to include an imprecise interrupt. Prolog has the

advantage in that it is newer. and the installed base is much smaller, and that a small

change can yield such benefits, especially when considered in the context of Point #4.

In addition, the "guarded command" structure has strong intuitive appeal, as it has

appeared independently in several settings [DijksrraI976a, Rande1l1975a,

Ledgard1981 a].

4.9.3.1.3. Discussion

What our method does is copy using virtual memory support provided by the operating

system. and since we choose only one alternative. no merging is necessary. Since there

are no extra (beyond whatever is required for sequential execution) pointer chains to

traverse on variable references, memory access is fast. Use of the method requires

changing the Prolog interpreter to detect and exploit OR-parallelism. How aggressively

available parallelism is exploited is a function of the overhead associated with maintain­

ing a process. However, once this is known (we show how to measure the overhead in

Sections 4.2-7 of this thesis). the proper granularity can be used as a factor in the decom­

position process.

We see the following advantages to our approach:

1. Virtual memory support in some form is going to be available on general purpose

computers. both because it is usefuL and because it makes a great deal of economic

sense. While Prolog machines are desirable, as were the LISP machines, it's not

clear that the performance advantages which accrue from special-purpose

127

architecUlres can overcome the steady increase in performance seen by general pur­

pose computing engines.

2. Our arguments for performance were completely general, and our example applica­

tions have been drawn from a large spectrum of computing tasks. Thus, the mechan­

ism itself is useful outside of Prolog, and thus should be made available to other

applications.

3. The workstations our measurements were made on are representative of the process­

ing components which comprise many of the commercially- produced multiprocessor

engines. For examples, see the Sequent [Beck 1985a] or Encore [Encore1985a] mul­

tiprocessor machines.

4. The problem with copying is that it's costly. But, (1) as we've shown in this thesis.

the cost can be parameterized (2) the cost can be reduced through optimizations such

as copy-on-write (3) once the copy is made, it takes full advantage of any available

per-processor cache [Smith1982a]. Following a pointer chain or indirection through

a hash table will then cost more after the first reference. Analysis of the page-fault

cost amortized over subsequent references versus the cost of following chains (much

of which may be cached as well) on each reference should be done. although the

analysis of Crammond. as discussed above. points to the fact that one implementation

of a copying scheme (not page-level) did not perform badly compared to indirection­

based schemes.

5. When considering a distributed system. as opposed to the bus-connected shared

memory mUltiprocessor which most studies have assumed, the cost of remote refer­

ences is increased to the point where copying looks increasing attractive, as the copy

which is made serves as a cache.

6. The support of Prolog OR-parallelism entails certain overheads even in interpreter­

based memory management schemes. While the more advanced schemes described

above tend to take a more demand-based approach to copying, there is overhead asso­

ciated with adding these features which is incurred by all Prolog programs running

using the augmented interpreter, e.g., extra tables. extra pointers. or restricted syntax.

Our method takes advantage of services already available under general-purpose

operating systems. and a Prolog program which does not use the features runs no

more slowly than the same Prolog program running on a system without the features.

128

It must be noted that the interpreter-controlled approaches which use their own tables to

handle multiple binding environments will be portable. while our vinual memory based

scheme will require interaction with an operating system, which may have an adverse

impact on portability. However, as we've argued, and as others have observed, solving

the multiple binding environments problem is not equivalent to managing all side-effects.

In summary, we've offered an interesting and sometimes advantageous scheme for exe­

cuting Prolog programs in parallel. In addition, since we have quantified where the

advantage will occur, measurements of program execution time combined with our over­

head figures from previous sections of this chapter will give us a good estimate for the

technique's effectiveness.

4.9.3.1.4. Measurements of Published Prolog Programs

To test the efficacy of our technique, we measured some programs from a standard Pro­

log reference, Clocksin & Mellish [ClocksinI984al. The programs are different algo­

rithms for sorting, applied to variolls data sets. The sources for the sorting programs are

given as Appendix IV. The programs were applied to three data sets. those of Appen­

dices V, VI, and VIII. The data of Appendix VII was used to indicate the growth rate of

the execution time with the data set size for a naive" generate-and-test" sorting strategy.

The results of sorting the large data set of Appendix V are shown in the following table.

Sort CPU

Name Sec.

qsort 24.4

quisortxt 5.283

quisort 41.1

insort 6097.0

busort:j: 65.9

sort 00

These results show an incredible amount of variation, although the strategy would prefer

t Failed, no explanation. * Failed. stack overflow

129

qsort on this size of list. The naive sort took 2811.8 seconds of CPU time for 9 ele­

ments (X38) which is indicative of why it has so much trouble. If the "random selec­

tion" picked this algorithm for a large list, execution time would be infinite for all practi­

cal purposes. Smaller lists exhibit more variation. For example the small ordered list

benchmarks are shown in the next table.

Sort CPU

Name Sec.

qsort a.267

quisortx a.267

qui sort a.233

in sort 0.100

busort a.a83

sort a.133

Ordered lists were chosen because the implementations of quicksort are known to have

trouble with them, and for this task it is obvious. The win on a small "random" list is

not so dramatic, although there is some variance:

Son CPU

Name Sec.

qsort a.117

quisortx a.133

quison a.117

inson 0.117

buson 0.633

* sort 00

These simple tasks used a significant amount of CPU time, and the cases that exhibited

* After 21,500 minutes (= 358 hours, or more than 14 days) of CPU time (HP9000/350) this pro-
cess had not printed a result. I gave lip.

130

usable variance used little memory. For the larger lists, more memory was used, imply­

ing more copying. This is due to the deeper recursion.

Nguyen and Despain fNguyen1988al have compiled a series of tables containing

memory access statistics for Prolog programs applied to standard benchmarks. The

statistics indicate that much of the traffic is to stack data segments (Stack+ Trail)

(min=14.6% for cmatch_strA , max=77.9% for cdeep_bakA, mean=46.1 %); the rest is to

the heap (mean=23.4%) and H2. H2 is used for control of parallel execution. Other

statistics breaking the accesses down into reads and writes show that on average, the

benchmarks write to the heap about 7.7 percent of the time. What these results indicate

is that for almost all the benchmarks, there was more write traffic to the stack(s) than to

the heap. This is imponant to Ollr method, since stack writes will occur after the

al t _spa wn () , and hence will be local to whatever processor the process is executing

on, rather than causing the extra traffic caused by the copy which must be made when the

heap is written to. Writes to the heap are the major source of copying in the address

space model used by our method. Thus, the copy-on-write technique can save by a factor

of 100 or about 13 in the amount of state which mllst be copied. Thus, we expect the
7.7

combination of "copy-on-write" and' 'fastest-first" OR-parallel execution to produce a

significant speedup for many programs.

4.9.3.2. Polyalgorithms

PolyalgOrithlllS [Rice1968a, Symes1971 a] have been suggested as a method for encapsu­

lating a numerical analyst's knowledge into a system for solving numerical problems.

The basic idea is that several methods are combined IRice1969a] along with infonnation

about the circumstances under which a method is likely to be successful. As different

methods are tried and faiL infom1ation about the problem is built up until either there are

no successful solutions, or a solution method succeeds (for example, discovering multiple

zeros in a failing root-finder may be useful to the next solution method).

Our scheme could be used by creating anificial . 'altematives" with the available

solution methods. Each "altemative" trys a different solution method "first," to create

alternative versions of the polyalgorithm. ' 'Fastest first" scheduling could improve the

response time properties of a system such as NAPSS [Rice 1973a], especially since the

perfom1ance of the system was perceived to be a problem [Rice 1988a].

131

We should note that Traub [Traub1964al mentioned such an idea (exploring multi­

ple solution methods) as a direction for future work in his book on iterative methods.

4.9.3.3. Simulation

Simulation tasks are attractive applications for speculative methods, as some success has

already been demonstrated by Jefferson [Jefferson 1985a, Jefferson1987a], in his "Vir­

tual Time" scheme, which uses rollback-recovery to mask unsuccessful speculations.

Note that we delete unsuccessful speculation by deleting the processes which contain its

results. Consequently, we never roll back.

132

5. Related Work

Exploring alternatives in parallel is far from a new idea; hardware engineers looked to it

as a way of maintaining pipeline 1B utilization in some high-speed computers, most not­

ably the IBM 360 Model 91 [Anderson 1967a]. Their approach was to pre fetch com­

ponents of both possible branch paths until either the results of the conditional execution

are available (in which case the correct stream can be chosen and the other discarded) or

an irreversible side effect (such as instruction execution) would occur. One possible

approach is to prefetch components of both possible branch paths until either the results

of the conditional execution are available (in which case the correct stream can be chosen

and the other discarded) or an irreversible side effect (such as instruction execution)

would occur. This approach is analyzed by Riseman and Foster fRisemanI972a]. who

conclude that speedups are possible if the correct branch is taken; their results are from a

set of 7 programs run on the CDC 3600 computer. In the architecture setting, there is the

problem that hardware is needed for each execution path and all paths must be explored,

leading to a combinatorial explosion which affects even small values of the number of

conditionals. Our management of side effects lets us go further.

Bernstein [Bernstein1980a] points out two problems with Hoare's esp proposal.

The first is that a programmer may want to have some method for choosing between

alternatives with open guards: he solves this with priorities. The second is that CSP

guards cannot contain output expressions: Bernstein solves this by use of the fact that the

I/O primitives name a specific process; thus. guards specifying that process can be

delayed until the specified process is ready. This is essentially a scheduling trick.

Version control systems such as sees [Rochkindl975aJ and RCS [Tichy1985a] use

the idea of deltas to store multiple versions of data. More related to our predicates is the

idea used in the PEDIT [Kruskal1984aJ parametric line editor. Associated with each line

18 A pipeline in a computer architecture is a logic implementation based on the principle of an as­
sembly line. That is, there are a series of specialized functional units which solve a portion of the
problem; these can be made rapid, and ideally all the functional units can be kept busy at the same
time. Analogously, the ideal case is realized when everything is predetermined. As Henry Ford
said,

"You can have any color you want, as long as it's black."

Difficulty is caused by conditional statements which can take one of two paths, thus inhibiting pre-fetching
of instruction components. There are sevcral approaches to resolving this difficulty; Lilja's [Lilja1988a]
survey discusses the stratcgies.

133

of text is a set of parameters, hence the name parametric editor. These parameters are

state variables, e.g. SYSTEM=UNIX, VERSION=SysV, et cetera. The line is selected

for display if the mask set in the view of the file matches the settings of the state vari­

ables; thus, the viewer of a source program in a particular environment might see the

source without the obscuring effect of various conditional compilation directives. Each

setting of the state variables gives a distinct version, but in practice most of the text is

shared between the versions.

Our method uses predicates to detect conflicts, but delays their resolution as long as

is possible. Thus, it is optimistic in the sense that each timeline assumes that it will

succeed. At each point where this success may come into question, it generates a predi­

cate. These predicated processes are similar to (he possibilities and dependencies dis­

cussed by Reed [Reed 1978a] in his thesis: however. his NAMOS system was further

from realization than the methods described here.

The notion of multiple alternatives is orthogonal to the transaction concept: if we

view an alternative '"block" as effecting a transaction on the system state, the specifica­

tion is a description of how to accomplish the transaction reliably. It could also be

viewed as a set of "competing" transactions, at most one of which will take effect.

One significant feature of our use of predicates is that there is as little waiting as

possible in the system: each process which could only execute under a set of assumptions

simply makes that set of assumptions. until some conflict with the correctness policies

results. In other settings, such methods are called optimistic [KungI981a. Stroml987a]

because they assume that delay-causing or failure-causing conditions happen infre­

quently. Thus. normal operation is made cheap, at the expense of more expensive han­

dling when the assumption is wrong. In our setting. the operant optimistic assumption is

that the executing alternative is the one which will complete successfully. Thus, the

predicates indicate that a process assumes that it will complete sllccessfully; rather than

waiting, it continues under that assumption. Strom and Yemini's [Strom1985a] depen­

dency vectors behave much like our predicates.

Distribution of computation across several nodes offers attractive possibilities for

both reliability and performance. Cooper L Cooperl985a] discusses the use of replicated

distributed programs to take advantage of this potential. Cooper's CIRCUS

[Cooper1984aj system transparently replicates computations across several nodes in

134

order to increase reliability. Goldberg [Goldberg1987a] has also discussed process repli­

cation, with a foclls more on performance than fault tolerance. Replication is different

than the problem we have examined, mainly because we cannot count on all the con­

current alternatives exhibiting the same behavior, e.g., reading and writing. For example,

when managing I/O for replicated computations, only one read operation can be per­

formed, and its results buffered for subsequent readers of the same data. Thus. idempo­

tency of some source state can be forced through buffering.

Transparent replication can easily be combined with the use of parallel execution of

several alternatives for increases in performance. reliability. or both.

135

6. Conclusions

This thesis has carefully examined problems for which there are multiple alternative

solutions. When all such solutions are equally acceptable, the strategy of executing all

alternative solutions concurrently has some benefits. In particular, this thesis has exam­

ined selecting the first successful computation as an approach to improve response time.

We described scheduling strategies and memory management policies to ensure con­

sistency and correctness. To restrain the growth in state required for concurrent execu­

tion of "Multiple Worlds" we suggested the use of "copy-on-write" storage m,maged in

units of pages. External interactions are controlled by (1) an extension of the page

management scheme to include slower storage, i.e .. files: and (2) an extension of the

page management scheme to interprocess communication, where interacting processes

are also' 'copy-on-write."

The results of this thesis are dependent on achieving an improvement in response

time. We first identified the overhead of concurrent execution using the algorithms of

Chapter 3. Using this model of overhead, we provide a measure of the perfomlance

improvement (PI) which can be used to compare execution strategies. We use the meas­

ure of performance improvement to identify opportunities for response time improve­

ment. The best situation (discussed formally in Chapter 2) for the approach presented

here is one where:

• Alternatives require a significant amount of computation time, as encapsulated in
-'>.

"(emean,x) .

• Each alternative changes a small amount of the state of the calling process, thus

reducing the penalty "(overhead).

• There is enough difference between the execution times of the alternatives that

choosing the fastest and killing the others is worth the overhead of spawning the

copies and deleting the slower siblings.

We made the observation that the speedup is dependent on both the execution time

devoted to overhead and the dispersion exhibited by the execution times of the alterna­

tives. The implication is that if overhead can be understood and controlled, there is an

opportunity for speedup roughly proportional to the dispersion: thus superlinear speed-

ups, where the execution time is less than O(~) for N processors, are possible under this

136

scenario.

Since the potential for speedup is sensitive to overheads, we examined these in Chapter

4. Copying is the major overhead in the creation and maintenance of concurrent execu­

tions. There had been no previous work examining the efficacy of' 'copy-on-write;" our

results indicate that the technique is extremely effective in practice. The thesis provides

several useful measurement tools to gather execution time data. These tools are used to

adapt the measurements we reported here to new computers; thus, with a few measure­

ments the domain for performance improvement using this method can be delimited. We

have implemented a system which perfonns a "remote fork," which is similar to process

migration with the exception that two processes exist when the operation is successfuL

rather than one migrated process. The measurements confmned that the major cost in

overhead was copying, and further. offered empirical proof that child processes could be

"spawned" in a distributed execution environment. Response time is affected by the

response times of several system components; we examined two subcomponents, the disk

and the network, in Chapter 4. The final overhead was "sibling elimination," which we

modeled on a multiprocessing timesharing system. This should represent the worst case

execution. and the results were encouraging. as they show the elimination to be remark­

ably cheap. and insensitive to process behavior. Thus, they are predictable and can be

used in deciding whether to apply the concurrent execution scheme.

After identifying the opportunities with analytic work and measurements, some

applications were. Distributed Execution of Recovery Blocks and parallel execution of

logic programming languages are well-matched to the semantics of our execution

scheme, and both can benefit from the higher performance. In each case. there are some

restrictions imposed by the setting. Parallel implementation of logic programming

languages provides an appropriate environment, because the computation is data-driven,

and thus the execution time and control flow can vary greatly with the input. The way in

which unification operates (as a "sophisticated pattern matcher") leads to an

overwhelming preponderance of read references made to page-managed memory: while a

high percentage of references are writes, these are mainly to the stack, and thus locality

should be high: stack "growth" can be handled locally, reducing copying. Many logic

programs have a great degree of parallelism, so that appropriate opportunities must be

identified with respect to the overheads implied by our scheme. In particular, coarse­

grained parallelism is better to exploit than fine-grained parallelism. Major advantages

137

of the "Multiple Worlds" scheme are that (1) it deals with side-effects other than vari­

able binding, and (2) it can run efficiently on general-purpose hardware.

Distributed execution of recovery block alternates uses the "fastest-first" behavior

in an attempt to find a rapid failure-free path through the computation. The restriction

imposed by recovery blocks is that they are designed for fault-tolerance. Thus, there may

be further requirements beyond fast execution time; by using our RB language and sug­

gested modifications to the concurrent execution scheme which increases the amount of

state available in a system to facilitate recovery.

Numerical Analysis is rich with examples for which the choice of solution method

or the parameters of a particular solution method are free variables. The Jenkins-Traub

polynomial root finding scheme was executed in parallel on mUltiprocessors: both

speedup and fault-tolerance were observed across a selection of polynomials. The distri­

bution of execution times did not show sufficient dispersion for a linear speedup, but the

results were extremely promising. In particular, the overhead of the prototype "Multiple

Worlds" execution scheme was very small for this problem.

We also briefly mentioned applications to simulation. These example applications

are from vastly different areas of computer science. and illustrate the general utility of

the scheme. Throughput is clearly traded away for improved response time in our

scheme. since the number of processors doing useful work (work that will eventually be

used) at any given time will be $l. This method may be particularly useful in real-time

systems, where the bias is clearly towards response time, and the sibling elimination can

be carried out asynchronously with respect to result delivery.

A question which remains is the effectiveness of exploring alternatives in parallel

(which is speculative computation using serial algorithms) versus other methods for util­

izing available processors. Now, for a problem which is easily divided into subproblems

(although this division may not be complete, and thus the sequential portion will be sub­

ject to the .. Amdahl limit' '), the parallel execution will most likely show an improved

response time proportional to the number of processors. which means that our method

will improve performance when

138

for N processors.

Does this happen? It's clear that it can happen, through choice of a particularly poor

algorithm to parallelize. To focus the discussion, let's look at an example.

Problem:

Operators:

Given two sorted lists, L 1 and L2, find an element in their intersection.

There are two operators available for the problem solution. Operator

element(L,i) returns the i -th element of L. or an indication of failure if i is

greater than size(L). A call to elementCL,i) takes 1 unit of time. Operator

search(L,x) is a boolean operator which returns success when x is an ele­

ment of L, and failure otherwise. Since Ll and L2 are sorted lists, for a

list of size N. search(L,x) requires time O(log2(N»: to ease calculation we

can assume the calculation takes exactly 10glO(N).

Algorithm F For each x in LI, search L2 for x.

Algorithm B For each x in L2, search L1 for x.

If there are two processors, the data parallel algorithm will apply Algorithm F (or Algo­

rithm B; it's clear that it doesn't matter) to two half-lists. The two alternatives, Algo­

rithm F and Algorithm E, are run in parallel. The following table compares the perfor­

mance LInder various size assumptions for the lists:

size(Ll) 10 100 100

size(L2) 100 100 10

Parallel 10 100 50

F 20 200 100

B 100 200 20

Of course, the operators are rather constrained: for example it's clear that if testing for

the size of the lists was easy, then the smallest list would always be used for the linear

search,

There are several issues which concern implementation on existing processors, or

processors similar to these. First, it might be argued that memory contention caused by

several algorithms accessing the same data simultaneously will cause shared memory

multiprocessors or like architectures to be slowed. We expect that this will not be true in

139

practice. There are three reasons:

• There is typically a cache memory per processor in such a system, to allow the existing

memory technology to support more processors.

• Once the first reference is made which forces a copy of the storage, the storage will be

local and accessed through the local cache.

• When the instruction stream requires memory access on a cache miss, there will be

less temporal locality exhibited by the distinct instruction streams. Thus, the likeli­

hood of undesirable interactions between the degree of parallelism and such memory

properties as the cache size, the memory interleaving factor, and the cache line size.

are reduced. Whatever locality is exhibited by the algorithms can be taken advantage

of in the local caches, while there will not be problems if the parallel processing is

slightly out of lockstep, causing repeated' 'miss-fill-replace-miss" sequences to occur.

These caching arguments can hold in a distributed setting as well. For example,

rfork() used UNIX systems connected by a network file system. When shared memory is

accessed over a network, each child process will be a "'client," and there will be one

. 'server," the parent or spawning process. As the children begin executing, state will be

copied to their processors as necessary. If the parent has accessed the instructions or

data, the state is likely to be in a buffer cache in main memory: such caches are useful in

maintaining perfomlance [Nelson 1988a] in distributed systems. Main memory caches of

disk objects are most often managed in LRU fashion, so that temporal locality will result

in common requests being serviced by the cache. The essence of the cache argument is

that if the clients access different data. there will be less contention. If they access the

same data, and there is more contention, fast caches will resolve the performance prob­

lem. This effect will hold true in networks, where main memory serves to cache slower

portions of the storage hierarchy.

Thus, we expect that the contention is at most only slightly worse for the MISD case than

the SIMD case. The point of this is that if there is an opportunity for superlinear speedup

in the execution times of the alternatives, we will not be prevented from exploiting it by

some architectural difficulty. This means that applying N processors to a problem can

give superlinear speedup if the execution time variance is sufficient, i.e.,

140

and that the execution time overhead of this approach is comparable to SlMD parallel

approaches. The speedup is a property of the algorithms involved and the availability of

processing units. If there are fewer processors than algorithms available, the' 'speedup"

must be adjusted to reflect multiprocessing or delays if scheduling is non-preemptive. If

there are exactly as many processors as needed, the speedup follows our analysis. If

there are more processors than algorithms, there will be unused processors which some

other form of parallel execution might be able to take advantage of. However, in several

applications that we examined, the number of available tasks can be controlled dynami­

cally. OR-parallelism in Prolog can keep the number of tasks proportional to the number

of processors by using the Prolog interpreter to schedule sub-computations. The

Jenkins-Traub algorithm's non-deterministic component allows for an arbitrary number

of alternatives to be created.

141

7. Directions for Future Work

Future work can proceed from this thesis in several significant directions. In the theoreti­

cal domain, the relationship between the distribution of execution times and the speedup

should be analyzed. For example, the properties of an execution time distribution neces­

sary for a given speedup could be very useful; experimental work would determine how

such a distribution might be generated.

Algorithmic work and analyses should compare optimistic and pessimistic stra­

tegies, e.g., by predicting abort costs, the number of aborts, and estimate delays due to

waiting on locks. The synchronization scheme should be compared to other

commit/synchronization mechanisms. Some measure of cost, such as the number of

messages. could be used to refine and optimize the protocols.

Page-oriented management of binding environments for Prolog programs should be

compared to the variable-oriented schemes which are currently used to maintain multiple

binding environments.

The technique does not preclude having an alternative identify itself with a state

variable. Systems could be constructed which apply the concurrent execution of alterna­

tives to an appropriately chosen subset of the data in order to see which was fastest.

Several trials could be done. The results could then be used to "predict" which alterna­

tive would be fastest on the complete data set. Thus, the system could "learn" from

samples to favor alternatives which perform better.

Finally, a complete system for concurrent execution of alternatives should be built.

This thesis identifies the opportunities and provides enough of a roadmap so that the

implementation should be straightforward; source code for the RB processor and rfork()

are already available. The completed system should provide a chance to develop better

execution strategies and further, refine the boundaries of the domain for which perfor­

mance improvements are possible.

142

8. References

[Abramson1985a] D.A. Abramson and J.L. Keedy, "Implementing a large virtual

memory in a distributed computing system," in Proceedings of the Eighteenth Annual

Hawaii International Conference on System Sciences (1985), pp. 515-522.

[Anderson1967a] D. W. Anderson, F. 1. Sparacio, and R. M. Tomasulo, "The IBM Sys­

tem/360 Model 91: Machine Philosophy and Instruction-Handling," IBM Journal of

Research and Development. pp. 8-24 (January 1967).

[AT&T1986a] AT&T, WE 32101 Memory Management Unit Information Manual, Call

1-800-432-6600; Select Code 307-731, November 1986.

[BachI986a] M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall

(1986).

[Barak1985a] Amnon Barak and Amnon Shiloh. "A Distributed Load-balancing Policy

for a Multicomputer," SOFTWARE - PRACTICE AND EXPERIENCE 15(9), pp. 901-

913 (September 1985).

[Bartlett1978a] J. F. Bartlett. "A NonStop Operating System," in Proceedings, Eleventh

Hawaii International Conference on on System Sciences (1978), pp. 103-117.

[Bartlett1981a] 1. F. Bartlett. "A NonStop Kernel," in Proceedings. Eighth ACM Sym­

posium on Operating Systems Principles (1981), pp. 22-29.

[Beck1985a] Bob Beck and Bob Kasten, . 'VLSI Assist in Building a Multiprocessor

UNIX System," in USENIX Proceedings (June 1985), pp. 255-275.

[Beckerl984a] Richard A. Becker and John M. Chambers, S - An Interactive Environ­

ment for Data Analysis and Graphics, Wadsworth, 1984.

[Bernstein 1980a] Arthur J. Bernstein, "Output Guards and Nondeterminism in "Com­

municating Sequential Processes"," ACM Transactions on Programming Languages

and Systems 2(2). pp. 234-238 (April, 1980).

[Bobrow1972a] D. G. Bobrow. J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson,

"TENEX, a Paged Time Sharing System for the PDP-lO." Communications of the

ACM 15(3), pp. 135-143 (March 1972).

[BorgI983a] Anita Borg. 1. Baumbach, and S. Glazer, "A message system supporting

fault tolerance .. " in Proceedings. Ninth ACM Symposium on Operating Systems

143

Principles (ACM Operating Systems Review) (1983), pp. 90-99.

I Bourne1978aJ S.R. Bourne, "The UNIX Shell," The Bell System Technical Journal

57(6, Pan 2), pp. 1971-1990 (July-August 1978).

IBSD1982a] BSD, UNIX User's Manual. 4.2 BSD, University of California, Berkeley

(1982).

[Buder1988al Ralph Butler, Terry Disz, Ewing Lusk. Robert Olson, Ross Overbeek, and

Rick Stevens, .. Scheduling OR-Parallelism: An Argonne Perspective," in Proceedings

of the Fifth International Conference and Symposillm on Logic Programming, ed.

Robert A. Kowalski and Kenneth A. Bowen (1988), pp. 1590-1605. MIT Press

[Cha1987a] S. D. Cha, N. G. Leveson, T. J. Shimeall, and J. C. Knight, "An Empirical

Study of Software Error Detection Using Self-Checks," in Digest of Papers, The Seven­

teenth International Symposium on Fault-Tolerant Computing. Pittsburgh, Pennsylvania

(July 6-8, 1987),pp. 156-161.

[ChambersI983a] John M. Chambers, William S. Cleveland. Beat Kleiner, and Paul A.

Tukey, Graphical MethodsJor Data Analysis, Duxbury Press, 1983.

[ChangI989a] Y. F. Chang, "Coefficients of wilk13." Personal Communication (Febru­

ary 9. 1989).

[Cheriton1986a] D. R. Cheriton, "Problem-oriented Shared Memory: A Decentralized

Approach to Distributed System Design:' in Proceedings. Sixth International Confer­

ence on Distributed Computing Systems (1986), pp. 190-197.

[Ciepelewski 1985a] Andrzej Ciepelewski and Seif Haridi, "Execution of Bagof on the

OR-Parallel Token Machine," in Proceedings of the International Conference on Fifth

Generation Computer Systems (November 1985), pp. 551-562. rCOT

[Clark1987a] Keith Clark and Steve Gregory, "A Relational Language for Parallel Pro­

gramimg," in Concurrent Prolog (Collected Papers), ed. Ehud Shapiro (1987), pp. 9-

26. MIT Press

[Clark1987bJ Keith Clark and Steve Gregory. "PARLOG: Parallel Programming in

Logic," in Concurrent Prolog (Collected Papers), ed. Ehud Shapiro (1987), pp. 84-139.

MIT Press

[Clocksin I 984a] W. F. Clocksin and C. S. Mellish, Programming in Prolog (2nd Edi­

tion), Springer-Verlag (1984).

144

[Cohenl979al Jacques Cohen, "Non-Detenninistic Algorithms," ACM Computing Sur­

veys 11(2), pp. 79-94 (June 1979).

[Cooperl984a] Eric Charles Cooper, "Circus: A replicated procedure call facility," in

Proceedings of the 4th Symposium on Reliability in Distributed Software and Database

Systems (October 1984), pp. 11-24.

[Cooperl985al Eric Charles Cooper, "Replicated Distributed Programs," Ph.D. Thesis,

University of California, Berkeley (1985).

[CrammondI985a] J. Crammond, "A Comparative Study of Unification Algorithms for

OR-Parallel Execution of Logic Languages," IEEE Transactions on Computers C-

34(10). pp. 911-917 (October 1985).

[Deite11984a] H.M. Deitel. An Introduction to Operating Systems (Revised First Edi­

CiOIl), Addison-Wesley (1984).

[DelpI988a] Gary Delp. Ravi Sethi, and David Farber, "An analysis of Memnet: An

experiment in high-speed shared-memory local networking." In

Proceedings,SIGCOMM' 88 Symposium, Stanford (August, 1988).

[DeWitt1973a] Bryce DeWitt and R. Neill Graham, The Many Worlds Interpretation of

Quantum Mechanics. Princeton University Press, 1973.

[DijkstraI976a] E. W. Dijkstra, A Discipline of Programming. Prentice-HalL Englewood

Cliffs. N.J. (1976).

[DiszI987a] Terry Disz. Ewing Lusk. and Ross Overbeek. "Experiments with OR­

Parallel Logic Programs." in Proceedings of the Fourrlz International Conference on

Logic Programming. ed. Jean-Louis Lassez (1987), pp. 576-600. MIT Press

[Encore1985a] Encore, Multimax Multiprocessor System, Encore Computer Corporation

(1985). Sales Literature

[Eswaran1976a] K. P. Eswaran. J. N. Gray, R. A. Lorie, and I. L. Traiger, "The notions

of consistency and predicate locks in a database system," Communications of the ACM

19, pp. 624-633 (November 1976).

[Fellerl970aJ W. Feller. An Introduction to Probability Theory and Its Applications.

Wiley, New York (1970).

[Ferguson1988a] Donald Ferguson, Yechiam Yemini, and Christos Nikolaou,

"Microeconomic Algorithms for Load Balancing in Distributed Computer Systems,"

145

8th International Conference on Distributed Computing Systems, San Jose, CA,

pp. 491-499, IEEE Computer Society (June 1988).

[FeynmanI963a] Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The

Feynman Lectures on Physics. Addison-Wesley, Reading, MA (1963).

[Galarnbos1987a] J. Galambos, The Asymptotic Theory of Extreme Order Statistics. 2nd

Edition. Krieger (1987).

[Garcia1989aJ Armando Garcia, Richard Freitas, and David Foster, The Advanced Com­

puting Environment Multiprocessor Workstation, IBM Research Division (March 22,

1989).

[Goldberg1987a] Arthur P. Goldberg and David R. Jefferson, "Transparent Process

Cloning: A Tool for Load Management of Distributed Programs," in Proceedings,

International Conference on Parallel Processing (1987), pp. 728-734.

[Gray1988a] Jim Gray, "Why do systems fail?," Columbia Computer Science Depart­

ment Lecture (Fall 1988).

[GrayI978a] J. N. Gray, "Notes on Data Base Operating Systems." in Operating Sys­

tems: An Advanced Course, ed. G. Seegmueller (1978), pp, 393-481. Springer

[Gray1981a] J. N. Gray, "The transaction concept: Virtues and Limitations," in

Proceedings. VLDB Conference. Cannes, France (September 1981).

[Hausman1987a] Bogumil Hausman, Andrzej Ciepielewski, and Seif Haridi, "OR­

parallel Prolog Made Efficient on Shared Memory Multiprocessors," Tech. Report,

Swedish Institute of Computer Science (1987).

[HechtI979a] H. Hecht, "Fault-Tolerant Software," IEEE Transactions on Reliability,

pp. 227-232 (August 1979).

[Horningl974aJ J.J. Horning, H.c. Lauer, P.M. Melliar-Smith, and B. Randell, "A pro­

gram structure for error detection and recovery.," in Proceedings, Conference on

Operating Systems: Theorerical and Practical Aspects (April 1974), pp. 177-193.

[Jefferson 1987a] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. DiLoreto, P.

Hontalas, P. Laroche, K. Sturdevant, J. Tupman, V. Warren, J. Wedel. H. Younger, and

S. Bellenol. "Time Warp Operating System," Proceedings of the Eleventh ACM Sym­

posium on Operating Systems Principles, Austin, TX, pp.77-93, In ACM Operating

Systems Review 21:5 (8-11 November 1987).

146

[Jefferson 1985a] David R. Jefferson, "Virtual Time." ACM Transactions on Program­

ming Languages and Systems 7(3), pp. 404-425 (July, 1985).

!lenkins1970a] M. A. Jenkins and J. F. Traub, "A Three-Stage Variable-Shift Iteration

for Polynomial Zeros and its Relation to Generalized Rayleigh Iteration," Numer.

Math. 14, pp. 252-263 (1970).

[Jenkins1972a] M. A. Jenkins and J. F. Traub, "Algorithm 419: Zeros of a Complex

Polynomial," Communications of the ACM 15, pp. 97-99 (February, 1972).

[Johnson 1987a] Thomas D. Johnson, Jonathan M. Smith, and Eric S. Wilson, "Disk

Response Time Measurements," in Proceedings, Winter 1987 USENlX Technical

Conference, Washington, DC (January. 1987), pp. 147-162.

[Joy1982a] W. Joy, 4.2BSD System Manual, 1982.

[Kowalski 1979a] Robert Kowalski, Logicfor Problem Solving, North-Holland (1979).

fKruskal1984a] V. KnlskaL "Managing Multi-version Programs with an Editor," IBM

Journal of Research and Development 28(1), pp. 74-81 (January, 1984).

[Kung1981a] H. T. Kung and John T. Robinson, "On Optimistic Methods for Con­

currency ControL" ACM Transactions Oil Database Systems 6(2), pp. 213-226 (June,

1981).

[Lampson1981a] Butler W. Lampson. "Atomic Transactions." in Distributed Systems

- Architecmre and Implementation (An Advanced Course), ed. H. J. Siegel, Spring­

Verlag (1981), pp. 246-265.

lLeach1982a] PJ. Leach, B.L. Stumpf. J.A. Hamilton, and P.H. Levine, "UID's as

internal names in a distributed file system," in Proceedings of the 1st Symposium on

Principles of Distributed Computing (1982), pp. 34-41.

[Leachl983a] PJ. Leach, P.H. Levine. B.P. Douros. J.A. Hamilton, D.L. Nelson, and

B.L. Stumpf, 'The architecture of an integrated local network," IEEE Journal Selected

Areas of Communication. pp. 842-856 (1983).

[Ledgard1981aJ Henry F. Ledgard, Ada. An Introduction, Springer-Verlag (1981). in

same volume: Ada Reference Manual, (July 1980)

[Leffler1984al Samuel J. Leffler, Michael J. Karels. and Marshall Kirk McKusick,

"Measuring and Improving the Performance of 4.2BSD." in Proceedings. Summer

1984 USENlX Technical Conference. Salt Lake City, Utah (June 12-15. 1984),

147

pp.237-252.

[LelandI986a] Will E. Leland and Teunis 1. Ott, "Load-balancing Heuristics and Pro­

cess Behavior." in Proceedings. ACM SigMetrics Performance 1986 Conference

(1986).

[LelewerI987a] Debra A. Lelewer and Daniel S. Hirschberg, "Data Compression,"

ACM CompUling Surveys 19(3), pp. 261-296 (September 1987).

[LiI986a] Kai Li and Paul Hudak, "Memory Coherence in Shared Virtual Memory Sys­

terns," in Proceedings. 5th ACM Symposium on Principles of Distributed Computing

(August, 1986), pp. 229-239.

[LiI986b] Kai Li. "Shared Virtual Memory on Loosely Coupled Multiprocessors," in

Proceedings. International Conference on Computer Languages, Miami, FL (October,

1986), pp. 98-106.

[LiljaI988a] David J. Lilja, "Reducing the Branch Penalty in Pipelined Processors,"

IEEE Computer 21(7). pp. 47-55 (July 1988).

[Lindstroml984al Gary Lindstrom and Prakash Panangaden. "Stream based execution

of logic programs." in Proceedings. International Symposium on Logic Programming,

IEEE. Atlantic City, NJ (February, 1984), pp. 168-176.

[Lindstrom 1984b] Gary Lindstrom, . 'OR -Parallelism on Applicative Architectures," in

Proceedings, Second International Logic Programming Conference. Uppsala Univer­

sity, Uppsala, Sweden (July 2-6, 1984), pp. 159-170.

[Lusk1988aJ Ewing Lusk. Ralph Butler. Terrence Disz. Robert Olson. Ross Overbeek.

Rick Stevens. David H. D. Warren. Alan Calderwood, Peter Szeredi, Seif Haridi, Per

Brand, Mats Carlsson, Andrzej Ciepielewski. and Bogurnil Hausman .. 'The Aurora Or­

Parallel Prolog System," Technical Report, Swedish Institute of Computer Science

(April 29, 1988).

[Maguire,Jr.l988a] G. Q. Maguire,Jr., "PACS for those interested in image processing:

an expert configuration system," in Les Entretiens de Lyon - Computer Science and

Life: Medical Imaging and Experts Systems Applied to Medicine (1988). S.E.E.,

C.E.R.F., and S.F.B.M.N.

[McKusick1985a] Marshall Kirk McKusick, Michael J. Karels, and Samuel J. Leffler.

"PerfoTInance Improvements and Functional Enhancements in 4.3BSD," in

148

Proceedings. Summer 1985 USENIX Technical Conference. Portland. Oregon (June

11-14,1985), pp. 519-532.

[Nelson1987a] David Nelson, Network Computing (videotaped lecture), University

Video Communications, Stanford, CA (1987). P.O. Box 2666

[Nelson1984a] D.L. Nelson and PJ. Leach, "The Architecture and Applications of the

Apollo Domain," IEEE Computer Graphics, pp. 58-66 (April 1984).

[NelsonI988a] M. Nelson, B. Welch, and J. Ousterhout. "Caching in the Sprite Network

File System," ACM Transactions on Computer Systems 6(1), pp. 134-154, Originally

presented at the Eleventh ACM Symposium on Operating Systems Principles (February,

1988).

[NguyenI988a] T.M. Nguyen, Y.P. Srini, and A.M. Despain, "A Two-Tier Memory

Architecture for High Performance Multiprocessor Systems," Proceedings of the 1988

ACM International Conference on Supercomputing, Saint-Malo, France (July 1988).

[NilssonI980a] N. J. Nilsson, Principles of Artificial Intelligence. Tioga Publishing

Company. 1980.

[OrganickI972a] Elliott 1. Organick. The Multics System. Massachusetts Institute of

Technology Press (1972).

[PoplawskiI987a] D.A. Poplawski and D.O. Rich, . 'Code Paging on Hypercubes:' in

Proceedings of the 1987 International Conference Oil Parrallel Processing (August 17-

21, 1987). Pennsylvania State University Press

[Ralston1978a] Anthony Ralston and Philip Rabinowitz, A First Course in Numerical

Analysis (2nd Edition), McGraw-Hill, 1978.

[Rande1l1975aJ B. RandelL' 'System structure for software fault tolerance." IEEE Tran­

sactions on Software Engineering SE-t pp. 220-232 (June 1975).

[Reed1978aJ David P. Reed. "Naming and Synchronization in a Decentralized Com­

puter System," Technical Report 205 (ph.D. Thesis) (September, 1978). MIT LCS

[RiceI968a] J. R. Rice, "On the Construction of Polyalgorithms for Automatic Numeri­

cal Analysis," in Interactive Systems for Experimental Applied Mathematics, ed. J.

Reinfelds (1968). pp. 301-313.

[Rice 1969a] John R. Rice. "A Polyalgorithm for the Automatic Solution of Nonlinear

Equations." in Proceedings, ACM National Conference (1969), pp. 179-183.

149

[RiceI973a] John R. Rice, "NAPSS-like systems: Problems and Prospects," 10

Proceedings, National Computer Conference (1973). pp. 43-47.

[RiceI988a] John R. Rice, Private Communication on NAPSS, October. 1988.

[Richl983al Elaine Rich. Artificial Intelligence, McGraw-Hill (1983).

[Riseman 1972a] Edward M. Riseman and Caxton C. Foster, "The Inhibition of Potential

Parallelism by Conditional Jumps," IEEE Transactions on Computers C-21(12),

pp. 1405-1411 (December 1972).

[Ritchie 1978al D.M. Ritchie and K.L. Thompson, "The UNIX Time-Sharing System,"

Bell System Technical.lournal 57(6), pp. 1905-1930 (July-August 1978).

[Robbins1975a] Herbert Robbins and John Van Ryzin, Introduction to Statistics, SRA

(1975).

IRochkind1975a] M. J. Rochkind, "The Source Code Control System," IEEE Transac­

tions on Software Engineering SE-l. pp. 364-370 (1975).

[RossI986a] M. L. Ross and K. Raman10hanarao, "Paging Strategy for Prolog Based

Dynamic Virtual Memory," in IEEE Symposium on Logic Programming, Salt Lake

City, UT (1986). pp. 46-57.

[Russell1978a] Richard M. Russell, . 'The Cray-l Computer System." Communications

of the ACM 21(1), pp. 63-72 (January 1978).

[SacerdotiI974a] E. D. Sacerdoti, "Planning in a Hierarchy of Abstraction Spaces,"

Artificial Intelligence 5 (1974).

[Sandberg1985a] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and R. Lyon, "The

Design and Implementation of the Sun Network File System," in USENIX Proceedings

(June 1985), pp. 119-130.

[Schneider1982a] Fred B. Schneider, . 'Synchronization in Distributed Programs:' ACM

Transactions on Programming Languages and Systems 4(2). pp. 179-195 (April 1982).

[SchneiderI983a] F. B. Schneider and Richard D. Schlichting, "Fail-stop processors: An

approach to designing fault-tolerant computing systems," ACM Transactions on Com­

puter Systems 1(3), pp. 222-238 (August 1983).

[Shapiro1986a] Ehud Shapiro, "Concurrent Prolog: A Progress Report," IEEE Com­

puter 19(8), pp. 44-58 (August 1986).

150

[SmithI982a] A. J. Smith, "Cache Memories," ACM Computing Surveys 14(3),

pp. 473-530 (September 1982).

lSmith1986a] Jonathan M. Smith, "Approaches to Distributed UNIX Systems," Techni­

cal Report CUCS-223-86. Columbia University Computer Science Department (1986).

[Smith 1988b] Jonathan M. Smith, "A Survey of Process Migration Mechanisms," ACM

SIGOPS Operating Systems Review, pp. 28-40 (July, 1988).

[SmithI988c] Jonathan M. Smith and Gerald Q. Maguire,Jr.. "The RB Language,"

Technical Report Number CUCS-364-88, Columbia University Computer Science

Department (1988).

[Smith 1988a] Jonathan M. Smith and Gerald Q. Maguire,Jr.. "Effects of copy-on-write

memory management on the response time of UNIX fork operations," Computing Sys­

tems 1(3), pp. 255-278 (1988).

[SmithI989a] Jonathan M. Smith and John Ioannidis, "Implementing remotefork() with

checkpoint/restart," IEEE Technical Committee on Operating Systems Newsletter,

pp. 12-16 (February, 1989).

[Stallman 1986a] Richard Stallman, GNU Emacs Manual, Fourth Edition. Version 17.

Free Software Foundation, Inc., 100 Mass Ave., Cambridge, MA 02138 (February

1986).

[StoutI983a] Q. F. Stout, .. Mesh-Connected Computers with Broadcasting," IEEE

Transactions on Computers 32(9). pp. 826-830 (September 1983).

[Strom1985a] R. E. Strom and S. Yemini, "Optimistic Recovery in Distributed Sys­

tems," ACM Transactions on Computer Systems 3(3), pp. 204-226 (August 1985).

[Strom1987a] R. E. Strom and S. Yemini. "Synthesizing Distributed and Parallel Pro­

grams through Optimistic Transformations." in Current Advances in Distributed Com­

puting and Communications (1987). Computer Science Press

[SymesI971a] L. R. Symes. "Evaluation of NAPSS Expressions Involving Polyalgo­

rithms, Functions, Recursion, and Untyped Variables," in Mathematical Software, ed.

John R. Rice, Academic Press (1971), pp. 261-274. (Based on the proceedings of the

Mathematical Software Symposium held at Purdue University. Lafayette. Indiana. April

1-3,1970)

[TheimerI985a] Marvin M. Theimer. Keith A. Lantz. and David R. Cheriton,

151

"Preemptable Remote Execution Facilities for the V -System," in Proceedings, 10th

ACM Symposium on Operating Systems Principles (1985), pp. 2-12.

[ThomasI979a] R. H. Thomas. "A Majority Consensus Approach to Concurrency Con­

trol for Multiple Copy Databases," ACM Transactions on Database Systems 4(2),

pp. 180-209 (June 1979).

[Thornton1970a] J. E. Thornton, Design of a Computer: The CDC 6600, Scott, Fores­

man & Co., Glenview, IL (1970).

[TichyI985a] W. Tichy, "RCS - A System for Version Control," Software - Practice

and Experience 15(7), pp. 637-654 (July, 1985).

[Tick1988a] Evan Tick, Memory Performance of Prolog Architectures, Kluwer, 1988.

[Tinker1987a] Peter Allmond Tinker .. 'The Design and Implementation of an OR­

Parallel Logic Programming System," Ph.D. Thesis, University of Utah (August 1987).

[Traiger1982a] I.L. Traiger, J. Gray, C.A. Galtieri, and B.G. Lindsay, . 'Transactions and

Consistency in Distributed Database Systems." ACM Transactions on Database Sys­

tems 7(3), pp. 323-342 (September 1982).

[Traub 1964al 1. F. Traub. Iterative Methodsfor the Solution of Equations, Prentice-Hall,

Englewood Cliffs, NJ (1964). Appendix F

LTrotter1941a] W. Trotter. Collected Papers of Wilfred Trotter, Oxford University Press.

1941.

[UedaI987a] Kazunori Ueda, "Guarded Hom Clauses," in Concurrent Prolog (Col­

lected Papers), ed. Ehud Shapiro (1987), pp. 140-156. MIT Press

[Warren1987a] David H. D. Warren. "Or-Parallel Execution Models of Prolog," in

Proceedings of the International loint Conference on Theory and Practice of Software

Development, ed. H. Ehrig, R. Kowalski. G. Levi, and U. Montanari, Pisa. Italy (March

1987), pp. 243-259. Springer-Verlag

[Weinberger 1 984aj PJ. Weinberger, "The Version 8 Network File System:' in

USENIX Proceedings (June 1984), p. 86.

[Wisel986aJ Michael 1. Wise, PROLOG Multiprocessors, Prentice-Hall, 1986.

[Young1987a] M. Young. A. Tevanian, R. Rashid, D. Golub. J. Eppinger, J. Chew, W.

Bolosky, D. Black. and R, Baron, "The Duality of Memory and Communication in the

Implementation of a Multiprocessor Operating System," Proceedings of the Eleventh

152

ACM Symposium on Operating Systems Principles, Austin, TX, pp.63-76, In ACM

Operating Systems Review 21:5 (8-11 November 1987).

IZayas 1987aj E. Zayas, "Attacking the Process Migration Bottleneck," Proceedings of

the Eleventh ACM Symposium on Operating Systems Principles, Austin, TX, pp. 13-24,

In ACM Operating Systems Review 21:5 (8-11 November 1987).

9. Appendix I: do Jork.c

#include <errno.h>
#include <sys/param.h>

#ifndef NBPC
#define PAGE SIZE 2048
#else
#define PAGE SIZE NBPC
#endif

#ifndef NULL
#define NULL °
#endif

main(argc, argv
int argc;
char *argv [] ;
(

int count = 0, heap_size = 0, pid, status;
double atof(), write_fraction = 0.0,

write count = 0.0, write size = 0.0;
register char *ptr;
char *malloc () ;
extern int errno;

if(argc > 1)
{

count atoi(argv[l));
if(argc > 2)
{

heap_size atoi(argv[2]);
if((ptr malloc(heap_size))

== (char *) NULL)
error ("Insufficient memory available. Exiting.\n");

if(argc > 3)
{

write fraction = atof(argv[3));
if(write_fraction < 0.0 I I write_fraction> 1.0)

error("0.0 <= writes <= 1.0; Exiting.\n");
write size write fraction * (double) heap_size;

while (count> 0)
{

switch ((pid = fork ())
(

case -1: /* failed. If EAGAIN, wait. */
if(errno == EAGAIN)

waitt &status);
break;

153

case 0: /* child. make refs if needed, and exit */
while(write count < write size)
{

*ptr ,: , ';
ptr,: &ptr[PAGE_SIZE];
write_count +,: (double) PAGE SIZE;

exit (0);

default:
count 1;

exit (0);

error(string
char *string;
{

write(2, string, strlen(string));
exit (1);

154

10. Appendix II: netrand.c

#include <sys/types.h>
#include <sys/param.h>
#include <sys/times.h>

long times();
struct tms tbuf;

#include <stdio.h>

main (argc, argv
int argc;
char *argv[);
{

long start, diff;
int count;
FILE *fp;

if(argc < 2)
{

fprintf(stderr, "number required.\n");
exit (1);

count = atoi(argv[l));
if(count <= 0

exit (1);
if(argc > 2)
{

fp = fopen(argv[2), lOr");
if(fp == (FILE *) NULL)
(

else
fp

start

perror (argv [1));

exit (1);

stdin;

times (&tbuf);

random_read (fp, count);

diff = times (&tbuf) - start;

155

printf("elapsed time, %g seconds. \n", (float) diff / (float) HZ);
exit (0);

random read(fp, count)
FILE *fp;
int count;

int i, fd, block_no, bytes;
char page[NBPG_M320];

Hfdef DEBUG
FILE *lfp;

lfp = fopen ("/tmp/RANDBLOCKS", "w");
if(lfp == (FILE *) NULL)

lfp = stdout;
#endif

fd = fileno(fp);

fore i = 0, block_no = random (times(&tbuf)) % count;
i < count;
block no = random(0) % count, i = i + 1

lseek(fd, block_no * sizeof(page), 0);
bytes = read(fd, page, sizeof(page»;

#ifdef DEBUG
fprintf (lfp, "block_no: %d, bytes read: %d\n",

block_no, bytes);

fclose(lfp);
ifelse

l
ifendif

return;

int
random (start
int start;

static int last val;

if (start ! = 0 l
last val = start;

last_val = (17*last_val+123l ~ 65521;
while (last_val < 0)

last val += 65521;

return (last val);

156

157

11. Appendix III: Further Jenkins-Traub executions

11.1. Polynomial #1

Degree 43 polynomial:

(-0.140045104-0. 161369678£)·z41+

(-o.743821643-o.5810837248£)·z39+

(1.41763432806+0.29981366628£)· Z 37 +

Z43+ (1.890-0. 19491576i)·z42+

(-0.1274642064-0.381680467 £)·z 40 +

(-0. 16752870876-0.10043831986£)·z 38+

{1.23799211445-o.106982985377£).z 36+

(-o.189267174496-0.34407932181i)·Z35+ (-o.152123766242+O.23618681012li)·z34+

(-o.198013830239+O.2807423521790·z33+ (-o.342742413912+O.83786997252£).z 32+

(-0.37460901644-0.30 1901877085i)·z31+ (-o.195080181222-o.100059575279f).z 30+

(-0.94732085290-0. 90223058904i)· z 29 + (1.27282343436-0.57440498715i).z 28+

(1.24271198674-o.3724963179£)·Z27 + (1.682559499-o.7237864131i)·z 26+

(-o.1528494152-o.397912167i).z 25+ (1.63349391+O.237887291i).z 24+

(1.27878345+0.0897986i)·z23+ (1.080232~0.1101871i)·z22+ (-o.I0+0.0i).z 21+

(1.890-0.194915760·z 20+ (-0. 140045104-0. 161369678i)·z 19+

(-0. 1274642064-o.381680467i)·z 18+ (-o.743821643-o.58108372480.z 17 +

(-0. 16752870876-0.10043831986£)·z 16+

(1.2379·9211445-0.106982985377£)·z 14+

(1.41763432806+0.29981366628i).z 15 +

(-0. 189267174496-0.34407932181i)·z 13+

(-o.152123766242+O.23618681012li).z 12+ (-0. 198013830239+O.280742352179£)·z 11+

(-o.342742413912+O.83786997252£)·z 10+ (-o.37460901644-o.301901877085i)·z9+

(-o.195080181222-o.100059575279£).z 8+ (-0.94732085290-0.90223058904£).z 7 +

(1.27282343436-0.57 440498715i)· z 6 +

(1.682559499-0.723786413li)·z4+

(1.63349391 +0.237887291 £).z 2+

(1.0802320-0.1101871i)

(1.24271198674-o.3724963179i)·Z5+

(-0.1528494152-0.397912167i)·z3 +

(1.27878345+O.0897986i).z 1 +

158

25-

M

20- M
M

A A
M

15 -. M l} A A W
Time W rVI m II

m
(Sees)

10-

5-

O--------'�---------------.�--------------~I~------
246

Processors

11.2. Polynomial #2

Degree 43 Polynomial:

Z43+ (I.Oe 1.890+1.0e -0. 19491576i)-z42+

(1.0e -0.140045104+ 1.0e-o.161369678i)·z41+

(1.Oe-0.1274642064+ 1.0e -o.381680467i)·z40+

(I.Oe -0.743821643+ 1.0e -o.5810837248i)·z39+

(1.Oe-o.16752870876+ 1.0e-o.l0043831986i)·z38+

(1.0e 1.41763432806+ l.Oe 1.29981366628i)·z37 +

(l.Oe 1.23799211445+ 1.0e-D.106982985377i)·z36+

(1.0e -0.189267174496+ I.Oe -0.34407932181 i)·z 35 +

(l.Oe -0.152123766242+ l.Oe 1.23618681012li)·z34+

(l.Oe -0.198013830239+ 1.0e 1.280742352179£)·z33+

(1.0e-0.342742413912+ 1.0e 1.83786997252£)·z32+

(1.0e -0.37460901644+ l.Oe -0.3019018770850· z 31 +

(1.0e-0.195080181222+ 1.0e -o.100059575279£)·z30+

(I.Oe -0.94732085290+ 1.0e -0. 90223058904i)·z 29 +

(1.0e 1.27282343436+ 1.0e -0.57440498715i)·z28+

(1.0e 1.24271198674+ 1.0e-o.3724963179i)·z27 +

(1.0e 1.682559499+ 1.0e -0.7237864131 i)· z 26 +

(1.0e-0.1528494152+ 1.0e-o.397912167i)·z25+

159

Cl.Oe 1.63349391+ 1.0e 1.23788729li)·z 24+ C 1.0e 1.27878345+ 1.0e 1.08979860·z 23 +

(l.Oe 1.0802320+1.0e-0.1101871i)·z22+ (l.Oe-o.10+1.0e 1.0i)·z21+

(1.0e 1.890+ 1.0e-0.19491576i)·z20+ (1.0e-o.140045104+ l.Oe-o.161369678i)·z 19 +

C1.0e -0.1274642064+ 1.0e -0.38 I 680467i)·z 18+

(1.0e-0.743821643+ 1.0e-o.5810837248i)·z 17 +

(1.0e-o.16752870876+ 1.0e-o.10043831986i)·z 16+

(l.Oe 1.41763432806+1.0e 1.29981366628i).z 15+

(1.0e 1.23799211445+ 1.0e -0.106982985377 £). z 14 +

(1.0e -0.189267174496+ 1.0e-o.3440793218li)·z 13+

(1.0e -0.152123766242+ 1.0e 1.236 I 86810121i)·z 12+

(1.0e -0.198013830239+ 1.0e 1.280742352179£)·z II +

(1.0e-0.3427424l3912+ 1.0e 1.83786997252£)·z 10+

(l.Oe-o.37460901644+ 1.0e-o.30 I 901877085£)·z 9+

(l.Oe -0.195080181222+ 1.0e -o.100059575279i)·z 8+

(1.0e -0.94732085290+ 1.0e -o.902230589040·z 7 +

(1.0e 1.27282343436+ 1.0e -0.57440498715£)· z 6 +

(1.0e 1.24271198674+ 1.0e -o.3724963179i)· z 5 +

(1.0e 1.682559499+ 1.0e -0.723786413li)·z4+

(1.0e -0.1528494152+ 1.0e-o.397912167i)·z3+

(1.0e 1.63349391+1.0e 1.23788729li)·z2+

(1.0e 1.0802320+ 1.0e-O.110187 I i)

(l.Oe 1.27878345+ 1.0e 1.0897986i)·z 1+

160

30-

M M M M M M

A

m

20- II A
A

A A

II
A II

II
Time m

11
m

~ m
m

(Sees)

10-

O--------~I--------------~I--------------~I~------
246

Processors

11.3. Polynomial #3

Degree 16 Polynomial: Z 16+

(9400.2460+4944.7240i)'z 13+

(78211.15150+83755.778560i)'z 11 +

(199.80+33.20i)'z 15+ (1766.930+588.940i)'z 14+

(32844.87470+24955. 1830i)'z 12+

(125211.112583+ 194911.045162i)·z 10 +

(120455.424807+314055.68538li)·Z9 +

(103788.708048+ 151722.462694i)·z 7 +

(l24300.788642+335711.308326i)·z5+

(13600.752190+201800.264386i)·z3+

(27855. 185034+3274oo.983162i)·z8+

(168700.986162+ 135544.317038i)·z 6 +
(36733.995257+333899.404113i)·z4+

(16899.471245+ 76744. 191752i)·z2+

(6222.122192+ 17000.277923i)·z 1+ (866.407858+ 1688.238421i)

161

M M M
lO-

II M
A

A A , A M
m M II m
II)\ A

Time
m m

(Secs5 _ II
m m

O--------'�--------------·�--------------~I-------
2 4 6

1l.4. Polynomial #4

Degree 43 Polynomial

(-0.140045104-0. 161369678£)·z41 +

(-o.743821643-o.5810837248i)·z39 +

(1.41763432806+ 1.29981366628£)·z37 +

Processors

Z43+ (1.8900000-0. 19491576i)·z42+

(-0. 1274642064-o.381680467£)·z40+

(-0. 16752870876-0. 100438319860·z 38+

(1.23799211445-0.106982985377 £). z 36 +

(-0.189267174496-0.34407932181 £)·z35+ (-0.152123766242+ 1.23618681012li)·z34+

(-0.198013830239+ 1.280742352179i)·z33+ (-0.342742413912+ 1.83786997252i)·z32+

(-o.37460901644-o.301901877085£)·z31+ (-0. 195080181222-o.100059575279i)·z30+

(-o.94732085290-0.90223058904i)·Z29+

(1.24271198674-0.3724963179 £). Z 27 +

(-0.1528494152-0.397912167 i)'z 25 +

(1.27282343436-0.57 440498715i)' Z 28 +

(l.682559499-o.723786413li)·z26+

{1.63349391 + 1.23788729li)·z 24+

(1.27878345+ 1.0897986i)·z23+ (l.080232D-O.11018711)·z22+ (-0. 10+1.0i)·Z21 +

(1.89o-D.19491576i)'z 20 +

(-D. 1274642064-D.381680467i)·z 18+

(-D.16752870876-D.10043831986i)'z 16+

(1.23799211445-D.106982985377j).z 14+

162

(-D. 140045104-D.161369678i)·z 19 +

(-D.743821643-D.5810837248i)'z 17 +

(1.41763432806+ 1.29981366628i)·z 15+

(-D. 18926717 4496-D.34407932181 i)'z 13 +

(-D. 152123766242+ 1.23618681012li)·z 12+ (-D. 198013830239+ 1.2807423521790'z 11+

(-D.342742413912+ 1.83786997252i)·z 10+ (-0.3746090 1644-0.301901877085i)·z 9 +

(-D. 195080181222-D.100059575279i)·z8+ (-0.9473208529O-0.90223058904i)'z 7 +

(1.27282343436-0.57440498715i)·z6+ (1.24271198674-0.3724963179i)·Z5+

(l.682559499-0.7237864131i)·Z4+

(1.63349391+ 1.23788729li)·z2+

(1.080232o-0.110187li)

20-

M
A
W

15~

Time

(SedP-

5-

M

M A

A 1\

m

llh

(-D. 1528494152-0. 397912167 i)' Z 3 +

(1.27878345+ 1.0897986i)·z 1 +

M

M
A

M

II
A

A II

lib m m

O--------~I--------------~I--------------~I-------
2 4 6

Processors

163

11.5. Polynomial #5

Degree 16 Polynomial: Z 16+

(94002.460+49447.240i)'z 13+

(1998.0+332.0i)·z 16+ (17669.30+5889.40i)'z 14+

(328448.7470+249551.830i).z 12+

(782111.5150+837557.785600'z 11+

(1204554.24807+ 3140556.85381i)'z 9 +

(1037887.08048+ 1517224.62694i).z 7 +

(1252111.12583+ 194911O.45162i)·z !O +

(278551.85034+3274oo9.83162i)·z8 +

(1687009.86162+ 1355443. 17038i)·z6+

(1243007.88642+3357113.08326£)·Z5+ (367339.95257+3338994.04113i)·z4+

(136007.52190+2018002.64386i)·z3+ (168994.71245+ 767441.91752i)·z2+

(62221.22192+ 170002.779230·z 1+ (8664.07858+ 16882.384210

20-

M M M M

15 -tl A

* 1\
M M m

A

A
Time

A A 10-
(Sees) II

II

II

I~
m m m

5-
m

O--------~I---------------.I---------------rl -------
246

Processors

164

11.6. Polynomial #6

Degree 21 Polynomial: z21+ (8.90+19.4915760·z 20+ (1400045104+161.369678i).zI9+

(1274.642064+381.680467i)·z 18+ (743.821643+581O.837248i).z 17 +

(16752.870876+ loo43.831986i)'z 16+

(23799.211445+ 106982.985377i)'z 14+

(152123.766242+236186.810 121i).z 12+

(342742.413912+837 86.997252i)· Z 10+

(195080.181222+ l00059.575279i)·z8+

(27282.343436+57 440.498715i)· Z 6 +

(682.559499+7237.864131 i)oz4+

(41763.432806+29981.366628i)'z 15+

(189267. 174496+34407.932181i)·z 13+

(198013.830239+280742.352179i)'z 11 +

(37460.901644+ 301901.8770850·z 9 +

(94732.085290+90223.058904i)'z 7 +
(24271.198674+3724.963179i)·z5+

(1528.494152+ 397.912167 i)·z3 +
(63.349391+237.887291i)·Z2+ (27.878345+O.897986i)·z 1 + (0.802320+ 1.101871i)

20-

M M M M M M

15~ II

A

A
m A A

Time A
10-

th II (Sees)
rib

II

m m m
5-

0--------'1--------------'1--------------11-------
246

Processors

11.7. Polynomial #7

Degree 43 Polynomial:

(-0. 140045104-0. 161369678£)·z41 +

(-o.743821643-o.5810837248£)·z39+

(0.41763432806+0.29981366628i)·z37 +

165

Z43+ (0.890-0. 19491576i)·z42+

(-0.1274642064-0.381680467 i)'z 40 +

(-o.16752870876-0.10043831986i)·z38+

(0.23799211445-o.106982985377i)·z36+

(-0.189267174496-0.34407932181 i)·z35+ (-o.152123766242+o.23618681012li)·z34+

(-o.198013830239+0.280742352179£)·z33+ (-o.342742413912+o.83786997252i)·z32+

(-o.37460901644-o.301901877085£)·z31+ (-o.195080181222-o.100059575279i)·z30+

(-o.94732085290-0.90223058904i)'z 29 + (0.27282343436-0.57440498715£)'z 28 +

(0.2427119867 4-0.3724963179i)·Z 27 + (0.682559499-0. 723786413li)' Z 26 +

(-o.1528494152-o.397912167i)·Z25+ (0.63349391+O.237887291i)·z 24+

(0.27878345+0.0897986i)· Z 23 + (0.0802320-0.110 1871 i)' Z 22+ (-0.1 O+O.Oi).z 21 +

(0.8900000-0. 19491576£)·z20+ (-0. 140045104-0. 161369678i)'z 19+

(-0. 1274642064-o.381680467i)·z 18+

(-o.16752870876-0.10043831986i)'z 16+

(-o.743821643-o.58108372480'z 17 +

(0.41763432806+0.29981366628i)'z 15 +

(0.23799211445-0.106982985377 i)' Z 14 + (-0.189267174496-0.34407932181 i)·Z 13 +

(-o.152123766242+O.236186810121i)'z 12+ (-0. 198013830239+O.280742352179i)·z 11+

(-o.342742413912+O.83786997252i)'z 10+ (-o.37460901644-O.301901877085i)·Z9+

(-O.195080181222-o.100059575279i)·z8+ (-0.94732085290-0.90223058904i)-z 7 +

(0.27282343436-0.57 440498715i)' Z 6 + (0.2427119867 4-o.3724963179i)·z5 +

(0.682559499-O.7237864131i)·z4 +

(0.63349391 +0.237887291 i)'z 2+

(0.0802320-0.110 1871 i)

(-0.1528494152-0.397912167 i)' z 3 +

(0.27878345+0.0897986i)'z 1 +

166

30-

M

M
20-

Time * M M A
~ W A 1/ A (Sees) A

IKJ m II
m

m
lO-

O--------,�--------------'�--------------~I-------
2 4 6

11.8. Polynomial #8

Degree 43 Polynomial:

Z43+ (0.890+0.19491576i).z42+

(0.1274642064+0.381680467 i)· z 40 +

(0.1675287087 6+0.10043831986i)· z 38 +

(0.23799211445+0.106982985377 i)·z 36 +

(0.152123766242+0.236186810121 i)·z34+

(0.3427 42413912+0.83786997252i)· z 32+

(0.195080181222+0.1000595752790. z30+

(0.27282343436+0.57 440498715i)· z 28 +

(0.682559499+0.7237864131 i)· z 26 +

Processors

(0. 140045lO4+O. 1613696780·z 41 +

(0.743821643+0.581 0837248i).z 39 +

(0.41763432806+0.29981366628i)·z37 +

(0. 189267174496+0.3440793218li)·z35+

(0.1980 13830239+O.280742352179i)·z 33 +

(0.37460901644+0.30 1901877085i)·z31 +

(0.94732085290+0.902230589040·z 29 +

(0.24271198674+O.3724963179i)·z27 +

(0. 1528494152+O.3979121670·z 25+

167

(0.27 878345+O.0897986i)·z 23 + (0.63349391 +0.2378872910' z24 +

(0.0802320+0.110187lf)·z22+

(0.1400451 04+0.161369678i)·z 19 +
(0.1 0+0.Oi)·z21 + (0.890+0. 19491576i)-z 20+

(0.743821643+0.581 0837248i)'z 17 +

(0.41763432806+0.29981366628£)'z 15 +

(0.189267174496+0.34407932181 i)' z 13 +

(0.198013830239+0.2807 42352179i)' z 11 +

(0.37460901644+O.301901877085i)·Z9 +

(0.94732085290+0.90223058904i)'z 7 +

(0.24271198674+0.3724963179i)·Z5+

(0. 1274642064+O.3816804670·z 18+

(0.16752870876+0.1 0043831986i)'z 16+

(0.23799211445+0.1 069829853770'z 14 +

(0. 152123766242+O.23618681012li)·z 12+

(0.342742413912+O.83786997252i).z 10 +

(0.195080181222+0.10005957 5279i)' Z
8 +

(0.27282343436+0.57440498715£)' Z 6 +

(0.682559499+0.7237864131 £). z4 +

(0.1528494152+O.397912167i)·Z3+ (0.63349391 +0.237887291 i)·z2+

(0.27878345+0.0897986i)'z 1+ (0.0802320+0.1101871i)

30-

M M M M M M

A
20-

A A
II A

Time A II
m

II
A

(Sees)
m

m II
lO- rn

O--------~I--------------,I--------------,I-------

2 4 6
Processors

12. Appendix IV: Source, Prolog Sorts

/*
* Naive sort
* Clocksin & Mellish, P. 155
*/

sort(L1,L2) :- permutation(L1,L2), sorted(L2), I

permutation (L, [H IT]) :­
append (V, [HIU],LI,
append(V,u,w) ,
permutation (W,T) .

permutation([], []).

sorted(L) :- sorted(O,LI.

sorted(_, []).
sorted(N, [HIT] I N =< H, sorted(H,TI.

/*
* Insertion sort
* Clocksin & Mellish, p. 156
*/

insort ([] , []) .
insort ([X I L] , MI : - insort (L, N), insortx (X, N, M) .

insortx (X, [A I L] , [A I M])
insortx (X, L, [X I L] I .

/*
* Bubble sort

A =< X, !, insortx(X,L,M).

* Clocks in & Mellish, p. 156
*/

busort (L, S) .
append (X, [A,BIY],L),
B < A,
append (X, [B,AIYj,M),
busort(M,S) .

busort(L,L) .

/*
* Quicksort #1 from
* Clocks in & Mellish,
*/

split (H, [AIX], [AIY], ZI
split (H, [AI X], Y, [AI Z] I
spli t (_, [] , [] , []) .

quisort ([1, []).
quisort([HIT), S)

split(H,T,A,BI,
quisort (A, AI) ,

p.157

A =< H, split(H,X,Y,ZI.
A > H, split(H,X,Y,Z).

168

qui sort (B, B1) ,
append (AI, [HIBl), S) 0

/*
* Quicksort #2 from
* Clocks in & Mellish, polS7
*/

quisortx ([H I T) , S, X) :­
split(H,T,A,B),
quisortx (A, S, [H I Y]) ,
quisortx(B,Y,X) .

quisortx([),X,X) 0

/*
* Quicksort
* from DEC-IO library
*/

qsort ([X I LJ , RO, R) :­
partition(L,X,Ll,L2),
qsort(L2,RO,Rl),
qsort(Ll, [XIRl),R) 0

qsort ([] , R, R) .

partition ([X I L] , Y, [X I Ll] , L2)
partition(L,Y,Ll,L2) .

parti tion ([X I L] , Y, Ll, [X I L2])
partition(L,Y,Ll,L2) 0

parti tion ([] , _, [] , [)) .

/* define append() 0 */
append([), L, L) 0

append ([HIT], L, [HIV]

169

X =< Y, I . ,

X > Y, I
o ,

append (T, L, V) .

13. Appendix V: Timings, Prolog Sorts, Large Lists

statistics.

qsort([4,4,8,6,7,9,1,6,6,1,1,9,0,4,3,3,3,4,7,9,4,9,5,9,4,7,0,3,1,1,
7,0,7,5,9,2,1,9,5,1,2,9,5,7,0,7,7,1,0,8,7,3,7,3,3,3,1,7,9,3,1,4,3,3,
1,1,0,9,2,3,5,3,1,4,0,5,7,1,9,4,1,6,3,6,5,2,4,0,9,0,7,5,1,8,1,1,8,2,
8,5,0,4,9,5,5,7,1,8,3,6,1,5,9,0,0,5,7,0,9,9,1,7,9,1,9,1,4,9,7,3,3,7,
3,5,2,7,8,9,1,4,3,6,4,0,2,0,4,6,3,8,4,2,6,0,2,7,2,6,3,7,5,4,8,7,5,2,
7,6,4,3,4,1,4,9,7,5,6,9,2,0,2,0,2,0,0,0,7,9,3,4,6,2,5,5,6,6,6,6,1,5,
1,6,6,5,1,5,2,5,8,2,9,1,9,3,9,3,1,3,4,3,3,9,1,2,2,2,2,6,1,4,6,2,1,2,
4,2, 0,1,4,1,5,3,3, 6,5, 0,3,7,2, 8, 6, 8,3,3, 6, 6,2,9,2,1,1, 8, 6,2,9, 0,4,2,
3,5,4,7,7,8,9,6,6,3,7,8,3,7,8,5,4,6,7,8,9,3,0,1,2,6,3,8,0,4,1,0,8,2,
1,4,3,7,8,5,4,8,7,3,9,8,8,6,6,4,8,7,9,9,2,3,4,1,1,7,9,9,4,8,5,0,4,3,
3,8,6,6,7,7,8,1,2,5,5,9,4,5,4,1,3,4,7,2,4,6,5,2,4,6,2,3,1,1,9,4,8,8,
1,4,0,1,3,1,6,0,7,1,6,2,8,4,2,7,2,8,1,7,1,3,0,4,2,2,4,7,8,6,9,1,8,5,
6,3,1,2,0,0,1,9,2,3,3,3,6,9,8,9,6,6,9,3,3,5,4,4,3,6,1,6,2,9,3,9,1,3,
1,1,0,4,1,7,3,0,9,5,6,5,0,1,6,9,4,6,6,2,7,5,4,5,5,8,8,7,5,6,4,4,3,4,
5,1,9,1,2,6,9,2,7,9,6,0,0,6,9,3,5,5,1,8,0,9,2,7,1,9,5,6,4,5,0,2,6,4,
2, 9, 4, 0, 9, 2, 8, 5, 7, 4, 1, 0, 8, 2, 8, 3, 5, 3, 5, 1, 1, 8, 8, 2, 7, 5], [), X10).

statistics.

170

quisortx([4,4,8,6,7,9,1,6,6,1,1,9,0,4,3,3,3,4,7,9,4,9,5,9,4,7,0,3,1,1,
7,0,7,5,9,2,1,9,5,1,2,9,5,7,0,7,7,1,0,8,7,3,7,3,3,3,1,7,9,3,1,4,3,3,
1,1,0,9,2,3,5,3,1,4,0,5,7,1,9,4,1,6,3,6,5,2,4,0,9,0,7,5,1,8,1,1,8,2,
8,5,0,4,9,5,5,7,1,8,3,6,1,5,9,0,0,5,7,0,9,9,1,7,9,1,9,1,4,9,7,3,3,7,
3,5,2,7,8,9,1,4,3,6,4,0,2,0,4,6,3,8,4,2,6,0,2,7,2,6,3,7,5,4,8,7,5,2,
7,6,4,3,4,1,4,9,7,5,6,9,2,0,2,0,2,0,0,0,7,9,3,4,6,2,5,5,6,6,6,6,1,5,
1, 6,6,5,1,5,2, 5, 8,2, 9, 1,9,3, 9,3,1. 3,4,3,3,9,1,2,2,2,2, 6,1,4,6,2,1,2,
4,2,0,1,4,1,5,3,3,6,5,0,3,7,2,8,6,8,3,3,6,6,2,9,2,1,1,8,6,2,9,0,4,2,
3,5,4,7,7,8,9,6,6,3,7,8,3,7,8,5,4,6,7,8,9,3,0,1,2,6,3,8,0,4,1,0,8,2,
1,4,3,7,8,5,4,8,7,3,9,8,8,6,6,4,8,7,9,9,2,3,4,1,1,7,9,9,4,8,5,0,4,3,
3,8,6,6,7,7,8,1,2,5,5,9,4,5,4,1,3,4,7,2,4,6,5,2,4,6,2,3,1,1,9,4,8,8,
1,4,0,1,3,1,6,0,7,1,6,2,8,4,2,7,2,8,1,7,1,3,0,4,2,2,4,7,8,6,9,1,8,5,
6,3,1,2,0,0,1,9,2,3,3,3,6,9,8,9,6,6,9,3,3,5,4,4,3, 6,1,6,2,9,3,9,1,3,
1,1,0,4,1,7,3,0,9,5,6,5,0,1,6,9,4,6,6,2,7,5,4,5,5,8,8,7,5,6,4,4,3,4,
5,1,9,1,2,6,9,2,7,9,6,0,0,6,9,3,5,5,1,8,0,9,2,7,1,9,5,6,4,5,0,2,6,4,
2,9,4, 0,9,2, 8,5,7,4,1, 0, 8,2, 8, 3,5,3,5,1,1, 8, 8,2,7,5], [), X11).

statistics.

quisort ([4,4, 8, 6,7, 9,1,6, 6, 1, 1, 9, 0,4, 3,3,3,4,7, 9,4,9, 5, 9,4,7, 0,3,1,1,
7,0,7,5,9,2,1,9,5,1,2,9,5,7,0,7,7,1,0,8,7,3,7,3,3,3,1,7,9,3,1,4,3,3,
1,1,0,9,2,3,5,3,1,4,0,5,7,1,9,4,1,6,3,6,5,2,4,0,9,0,7,5,1,8,1,1,8,2,
8,5,0,4,9,5,5,7,1,8,3,6,1,5,9,0,0,5,7,0,9,9,1,7,9,1,9,1,4,9,7,3,3,7,
3,5,2,7,8,9,1,4,3,6,4,0,2,0,4,6,3,8,4,2,6,0,2,7,2,6,3,7,5,4,8,7,5,2,
7,6,4,3,4,1,4,9,7,5,6,9,2,0,2,0,2,0,0,0,7,9,3,4,6,2,5,5,6,6,6,6,1,5,
1,6,6,5,1,5,2,5,8,2,9,1,9,3,9,3,1,3,4,3,3,9,1,2,2,2,2,6,1,4,6,2,1,2,
4,2,0,1,4,1,5,3,3,6,5,0,3,7,2,8,6,8,3,3,6,6,2,9,2,1,1,8,6,2,9,0,4,2,
3,5,4,7,7,8,9,6,6,3,7,8,3,7,8,5,4,6,7,8,9,3,0,1,2,6,3,8,0,4,1,0,8,2,
1,4,3,7,8,5,4,8,7,3,9,8,8,6,6,4,8,7,9,9,2,3,4,1,1,7,9,9,4,8,5,0,4,3,
3,8,6,6,7,7,8,1,2,5,5,9,4,5,4,1,3,4,7,2,4,6,5,2,4,6,2,3,1,1,9,4,8,8,

1,4,0,1,3,1,6,0,7,1,6,2,8,4,2,7,2,8,1,7,1,3,0,4,2,2,4,7,8,6,9,1,8,5,
6,3,1,2,0,0,1,9,2,3,3,3,6,9,8,9,6,6,9,3,3,5,4,4,3,6,1,6,2,9,3,9,1,3,
1,1,0,4,1,7,3,0,9,5,6,5,0,1,6,9,4,6,6,2,7,5,4,5,5,8,8,7,5,6,4,4,3,4,
5,1,9,1,2,6,9,2,7,9,6,0,0,6,9,3,5,5,1,8,0,9,2,7,1,9,5,6,4,5,0,2,6,4,
2, 9, 4, 0, 9, 2, 8, 5, 7, 4, 1, 0, 8,2, 8, 3, 5, 3, 5, 1, 1, 8, 8,2, 7, 5), XI2).

statistics.

insort ((4, 4, 8, 6, 7, 9, 1, 6, 6, 1, 1, 9,0, 4, 3, 3, 3, 4, 7, 9, 4, 9, 5, 9, 4, 7, 0, 3, I, 1,
7,0,7,5,9,2,1,9,5,1,2,9,5,7,0,7,7,1,0,8,7,3,7,3,3,3,1,7,9,3,1,4,3,3,
1,1,0,9,2,3,5,3,1,4,0,5,7,1,9,4,1,6,3,6,5,2,4,0,9,0,7,5,1,8,1,1,8,2,
8,5,0,4,9,5,5,7,1,8,3,6,1,5,9,0,0,5,7,0,9,9,1,7,9,1,9,1,4,9,7,3,3,7,
3,5,2,7,8,9,1,4,3,6,4,0,2,0,4,6,3,8,4,2,6,0,2,7,2,6,3,7,5,4,8,7,5,2,
7,6,4,3,4,1,4,9,7,5,6,9,2,0,2,0,2,0,0,0,7,9,3,4,6,2,5,5,6,6,6,6,1,5,
1,6,6,5,1,5,2,5,8,2,9,1,9,3,9,3,1,3,4,3,3,9,1,2,2,2,2,6,1,4,6,2,1,2,
4,2,0,1,4, I, 5,3, 3, 6, 5,0,3,7,2, 8,6, 8,3,3,6, 6,2,9,2, I, 1,8,6,2,9,0,4,2,
3,5,4,7,7,8,9,6,6,3,7,8,3,7,8,5,4,6,7,8,9,3,0,1,2,6,3,8,0,4,1,0,8,2,
1,4,3,7,8,5,4,8,7,3,9,8,8,6,6,4,8,7,9,9,2,3,4,1,1,7,9,9,4,8,5,0,4,3,
3,8,6,6,7,7,8,1,2,5,5,9,4,5,4,1,3,4,7,2,4,6,5,2,4,6,2,3,1,1,9,4,8,8,
1,4,0,1,3,1,6,0,7,1,6,2,8,4,2,7,2,8,1,7,1,3,0,4,2,2,4,7,8,6,9,1,8,5,
6,3,1,2,0,0,1,9,2,3,3,3,6,9,8,9,6,6,9,3,3,5,4,4,3,6,1,6,2,9,3,9,1,3,
1,1,0,4,1,7,3,0,9,5,6,5,0,1,6,9,4,6,6,2,7,5,4,5,5,8,8,7,5,6,4,4,3,4,
5,1,9,1,2,6,9,2,7,9,6,0,0,6,9,3,5,5,1,8,0,9,2,7,1,9,5,6,4,5,0,2,6,4,
2,9,4,0,9,2, 8,5,7,4, I, 0, 8,2,8,3, 5,3, 5, I, 1, 8, 8,2,7, 5), X13).

statistics.

bu sort ((4 , 4 , 8, 6, 7 , 9, 1 , 6, 6, 1 , 1, 9, 0 , 4 , 3, 3, 3, 4 , 7 , 9 , 4 , 9, 5, 9 , 4 , 7 , 0, 3, 1 , I,
7,0,7,5,9,2,1,9,5,1,2,9,5,7,0,7,7,1,0,8,7,3,7,3,3,3,1,7,9,3,1,4,3,3,
1,1,0,9,2,3,5,3,1,4,0,5,7,1,9,4,1,6,3,6,5,2,4,0,9,0,7,5,1,8,1,1,8,2,
8,5,0,4,9,5,5,7,1,8,3,6,1,5,9,0,0,5,7,0,9,9,1,7,9,1,9,1,4,9,7,3,3,7,
3,5,2,7,8,9,1,4,3,6,4,0,2,0,4,6,3,8,4,2,6,0,2,7,2,6,3,7,5,4,8,7,5,2,
7,6,4,3,4,1,4,9,7,5,6,9,2,0,2,0,2/0,0,0,7,9,3,4,6,2,5,5,6,6,6,6,1,5,
1,6,6,5,1,5,2,5,8,2,9,1,9,3,9,3,1/3,4,3,3,9,1,2,2,2,2,6,1,4,6,2,1,2,
4,2,0,1,4,1,5,3,3,6,5,0,3,7,2,8,6,8,3,3,6,6,2,9,2,1,1,8,6,2,9,0,4,2,
3,5,4,7,7,8,9,6,6,3,7,8,3,7,8,5,4/6,7,8,9,3,0,1,2,6,3,8,0,4,1,0,8,2,
1,4,3,7,8,5,4,8,7,3/9,8,8,6,6,4,8,7,9,9,2,3,4,1,1,7,9,9,4,8,5,0,4,3,
3,8,6,6,7,7,8,1,2,5,5,9,4,5,4,1,3,4,7,2,4,6,5,2,4,6,2,3,1,1,9,4,8,8,
1,4,0,1,3,1,6,0,7,1,6,2,8,4,2,7,2,8,1,7,1,3,0,4,2,2,4,7,8,6,9,1,8,5,
6,3,1,2,0,0,1,9,2,3,3,3,6,9,8,9,6,6,9,3,3,5,4,4,3,6,1,6,2,9,3,9,1,3,
1,1,0,4,1,7,3,0,9,5,6,5,0,1,6,9,4,6,6,2,7,5,4,5,5,8,8,7,5,6,4,4,3,4,
5,1,9,1,2,6,9,2,7,9,6,0,0,6,9,3,5,5,1,8,0,9,2,7,1,9,5,6,4,5,0,2,6,4,
2, 9, 4, 0, 9, 2, 8, 5, 7, 4, I, 0, 8,2, 8, 3, 5,3, 5, I, I, 8, 8, 2, 7, 5), XI4).

statistics.

1*
* can't be done; would take forever!!!

sort ((4,4, 8, 6, 7, 9, I, 6, 6, I, I, 9, 0,4,3,3,3,4,7, 9,4, 9, 5, 9, 4,7,0,3, I, 1,
7,0,7,5,9,2,1,9,5,1,2,9,5,7,0,7,7,1,0,8,7,3,7,3,3,3,1,7,9,3,1,4,3,3,
1,1,0,9,2,3,5,3,1,4,0,5,7,1,9,4,1,6,3,6,5,2,4,0,9,0,7,5,1,8,1,1,8,2,
8,5,0,4,9,5,5,7,1,8,3,6,1,5,9,0,0,5,7,0,9,9,1,7,9,1,9,1,4,9,7,3,3,7,
3,5,2,7,8,9,1,4,3,6,4,0,2,0,4,6,3,8,4,2,6,0,2,7,2,6,3,7,5,4,8,7,5,2,
7,6,4,3,4,1,4,9,7,5,6,9,2,0,2,0,2,0,0,0,7,9,3,4,6,2,5,5,6,6,6,6,1,5,

171

1,6,6,5,1,5,2,5,8,2,9,1,9,3,9,3,1,3,4,3,3,9,1,2,2,2,2,6,1,4,6,2,1,2,
4,2,0,1,4,1,5,3,3,6,5,0,3,7,2,8,6,8,3,3,6,6,2,9,2,1,1,8,6,2,9,0,4,2,
3,5,4,7,7,8,9,6,6,3,7,8,3,7,8,5,4,6,7,8,9,3,0,1,2,6,3,8,0,4,1,0,8,2,
1,4,3,7,8,5,4,8,7,3,9,8,8,6,6,4,8,7,9,9,2,3,4,1,1,7,9,9,4,8,5,0,4,3,
3,8,6,6,7,7,8,1,2,5,5,9,4,5,4,1,3,4,7,2,4,6,5,2,4,6,2,3,1,1,9,4,8,8,
1,4,0,1,3,1,6,0,7,1,6,2,8,4,2,7,2,8,1,7,1,3,0,4,2,2,4,7,8,6,9,1,8,5,
6,3,1,2,0,0,1,9,2,3,3,3,6,9,8,9,6,6,9,3,3,5,4,4,3,6,1,6,2,9,3,9,1,3,
1,1,0,4,1,7,3,0,9,5,6,5,0,1,6,9,4,6,6,2,7,5,4,5,5,8,8,7,5,6,4,4,3,4,
5,1,9,1,2,6,9,2,7,9,6,0,0,6,9,3,5,5,1,8,0,9,2,7,1,9,5,6,4,5,0,2,6,4,
2,9,4, 0, 9,2, 8,5, 7, 4, I, 0, 8,2, 8, 3, 5, 3, 5, I, 1, 8, 8,2, 7, 5], X15).

*
* statistics.
*/

172

14. Appendix VI: Sort Performance, Small Lists

statistics.

qsort([4,4,8,6,7,9,1,6,6,1,1,9,0], [], X30).

statistics.

quisortx ([4,4,8,6,7,9,1,6,6,1,1,9,0], X31, []).

statistics.

qui sort ([4,4,8,6,7,9,1,6,6,1,1,9,0], X32).

statistics.

ins~rt ([4,4, 8,6,7,9,1, 6,6, 1,1, 9,0], X33).

statistics.

busort([4,4,8,6,7,9,1,6,6,1,1,9,0], x34).

statistics.

sort([4,4,8,6,7,9,1,6,6,1,1,9,0], X35).

statistics.

173

15. Appendix VII: Naive Sort Performance

statistics.

sort ([4], X30).

statistics.

sort((4,4], X31).

statistics.

sort ([4,4,8], X32).

statistics.

sort([4,4,8,6], X33).

statistics.

sort([4,4,8,6,7], X34).

statistics.

sort ([4,4,8,6,7,91, X35).

statistics.

sort([4,4,8,6,7,9,11, X36).

statistics.

sort([4,4,8,6,7,9,1,6], X37).

statistics.

sort([4,4,8,6,7,9,1,6,6], X38).

statistics.

sort([4,4,8,6,7,9,1,6,6,1], X39).

statistics.

174

16. Appendix VIII: Performance on Small, Ordered Lists

statistics.

qsort([0,1,2,3,4,5,6,7,8,9,10,11,12], [], X30).

statistics.

quisortx([0,1,2,3,4,5,6,7,8,9,10,11,12], X31, [1).

statistics.

quisort([0,1,2,3,4,5,6,7,8,9,10,11,12], X32).

statistics.

ins~rt ([0,1,2,3,4,5,6,7,8,9,10,11,121, X33).

statistics.

busort ([0,1,2,3,4,5,6,7,8, 9,10,l1,12J, X34).

statistics.

sort ([0,1,2,3,4,5,6,7,8,9,10,11,12], x35).

statistics.

--------- - ~-

175

17. Appendix IX: Program to estimate memory speeds

/*
* program to estimate memory speeds.
* One argument: size of memory to {memlb)copy, once.
* Strategy:
* We page it in via the first loop.
x The loop is set up to page, and not utilize the CPU's data cache.
* Then, the time is obtained, we do the copy (in place) and,
* the resulting time is calculated.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/param.h>
finclude <sys/times.h>
#include <errno.h>
#include <memory.h>

Hfndef NBPC
#define PAGE SIZE 2048
#else
#define PAGE SIZE NBPC
#endif

#ifndef NULL
#define NULL 0
#endif

main(argc, argv
int argc;
char *argv [] ;
{

int size;
char *pl, *p2, *malloc();
struct tms tbl, tb2;
long clock, times();

if I argc <= 1)
error ("usage: mem_speed size\n");

size = atoi(argv[l));
if((pl = malloc(size)) == (char *) NULL)

error ("mem_speed: can't allocate memory. \n");

fori p2 = pl; p2 < &pl[size]; p2 = &p2[PAGE_SIZE))
*p2 = , ';

p2 = pI;

clock = times I &tbl);

176

memcpy(p2, pI, size);

clock = times(&tb2) - clock;

printf("Real: %.2f, User: %.2f, System: %.2f\n",
(1.0* (double)clock)/(1.0*(double)HZ),
(1.0*(tb2.tms_utime-tb1.tms_utime»/(1.0*HZ),
(1.0* (tb2.tms_stime-tb1.tms_stime»)/(1.0*HZ));

exit (0) ;

errore string
char *string;
(

fprintf(5tderr, "%5", string);
exit(1);

177

18. Appendix X: Lower bound affects dispersion

#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <sys/times.h>
#include <sys/time.h>

ltdefine MILLION 1000000
#define TRUE 1
#define FALSE 0
#define MAX SIZE 100000
#define CCOST 5 /*

int S [MAX_SIZE] ,
Ticks[MAX_SIZE),
P [MAX_SIZE] ,
Copy [MAX_SIZE) ,

cost

SSize = -1, PSize -1;
int Perm = FALSE;
int Least = FALSE;

/*

of comparison */

* Program to test performance of various quicksorting variations,
* but mostly the application of =andomness to partition element
* selection.

*
* Options:
* -p: generate a permutation to sort rather than a random (might
* contain duplicates) list.
* -s: specifies size of permutation or list to generate. Limited
* to value of symbol MAX_SIZE.
* -c: count of attempts to sort the list.
* -1: use element of list with smallest index as the pivot rather
* than selecting partition at random: see mysort(), below.

*
*/

main(argc, argv
int argc;
char *argv[);
(

double total, scaler, dSize, floor(), drand48();
register int i, j, k;
int min, max;
long clock;
struct timeval tvl;
struct timezone tz;

while(argc > 1
(

if(argv[argc-l)[O) !='-')
usage ();

178

switch (argv[argc-1j [1]
{

case's':
PSize = atoi (&argv [argc-1) [2]);
if(PSize < 1 I I PSize > MAX SIZE

usage() :
break;

case 'c':
SSize = atoi (&argv[argc-1) [2]);

if(SSize < 1 I I SSize > MAX SIZE
usage();

break:

case 'p': /* use random permutation rather than
* random list
*/

Perm = TRUE:
break;

case '1': /* use element of smallest index in sort
* rather than a random element
*/

Least = TRUE:
break:

default:
usage();

argc -= 1;

if(PSize == -1)
PSize = MAX_SIZE;

if(SSize == -1)
SSize = MAX SIZE;

dSize = (double) PSize:

gettimeofday(&tv1, &tz);
clock = MILLION*tv1.tv_sec+tv1.tv_usec;
srand48(clock):

if (Perm
{

TRUE

fore i = 0: i < PSize; i += 1)
p[i] = i;

fore i = 0; i < PSize; i += 1)

{

k (int) floor(drand48 () *dSize
j P [i] ; P[i) = P [k) : P[k) = j:

) ;

179

else

fore i = 0; i < PSize; i += 1)
P[il = (int) floor(drand48()*dSize);

fore i = 0; i < SSize; i += 1)
(

fore j = 0; j < PSize; j += 1
Copy [j] = P [j] ;

gettimeofday(&tvl, &tz);
clock = MILLION*tv1.tv sec+tvl.tv usec;
Ticks[i] = clock;

mysort(Copy, 0, PSize-1);

gettimeofday(&tv1, &tz);
clock = MILLION*tv1.tv sec+tv1.tv usec;
Ticks[i] = clock - Ticks[i);

/* dump statistics */
scaler = 1.0/«double) MILLION);
min = max = Ticks[O);
/* we pre-scale Ticks to prevent overflow */
total = scaler*Ticks[O);

fore i = 1; i < SSize; i += 1)
(

if(Ticks[i) < min
min = Ticks[i);

if(Ticks[i] > max
max = Ticks[i):

total += scaler*Ticks[i):

printf("min: %g sec, max: %g sec, avg: %g sec. \n",
scaler* (double) min,
scaler* (double) max,
total / (double) SSize);

exit (0);

usage ()
{

180

fprintf (stderr, "Usage: rand_qsort [-ssizel [-ccount] [-1] [-p] \n");
fprintf(stderr, "size & count <= %d\n", MAX SIZE);
exit (1);

/* implementation of quicksort which randomizes.
* There are some special tricks applied here which makes the

* code more complex (and faster) than many published versions.
* In particular, if there are more than one occurrence of the
* partitioning element, they create a "center" to the array
* which must be removed in order for the partitioning to be correct.
* "Software Tools" quicksort avoids this problem by always
* choosing the last element as the partition, and pushing
* other elements up against it.

*
* options: Least
* a random element.
*/

TRUE; choose least element rather than

mysort(array, start, finish
int array[], start, finish;
(

int i, random, pivot, hi, 10, tmp, exchanges;
double drand48(), floor();

if(Least == TRUE
start:

181

random
else

random start + (int) floor(drand48 () * ((double) (finish-start+1)));

pivot = array[random);
10 start; /* upper bnd, current set of values < pivot */
hi = finish; /* lower bnd, current set of values < pivot */

while (10 < hi
{

while ((10 < hi) && (compare (array[lo], pivot) < 0))
10 = 10+1

while((10 < hi) && (compare (array[hi), pivot) > 0))
hi = hi-1

if (10 < hi)
{

/* this block of code insures that all of
* the elements with value == pivot are
* bunched and ordered correctly.
*/

if((compare (array[hi], pivot
(compare (array[lo), pivot

o) &&
o »

exchanges = 0;
forI i = 10+1; i <= hi-I; i += 1)
(

if(compare (array[i], pivot) < 0)
(

tmp = array[lo];
array[lo] = array[i];
array[i) = tmp;

10 += 1 ;
++exchanges;

else if(compare (array[i], pivot) > 0)
{

tmp = array [hi] ;
array[hi] = array[i];
array[i] = tmp;
hi -= 1 ;
++exchanges;

if(exchanges 0)
goto recurse;

else

tmp = array[lo];
array [10] array [hi] ;
array[hil = tmp;

recurse:

1*

if(lo-start > 1)

mysort(array, start, 10-1);
if(finish-hi> 1

mysort(array, hi+l, finish);

return;

* this makes comparison costs significant compared to
* random # generation costs.
* CCOST can be altered to change significance of
* comparison costs.
*1

int
compare (i, j
int i, j;

int waste, diff;
double drand48(), floor();

forI waste = 0; waste <= CCOST; waste += 1)
diff = (int) floor (drand48 () * ((double) (waste-j)));

diff = i - j;

if (diff < 0)
return (-1);

182

if(diff > 0
return (1);

return (0);

$ for i in 1 5 10 50 100 500
> do
> rand_qsort -s500 -c${i}
> done
min: 4.88386 sec, max: 4.88386 sec, avg: 4.88386 sec.
min: 4.60353 sec, max: 5.2892 sec, avg: 4.78954 sec.
min: 4.5822 sec, max: 5.63769 sec, avg: 4.96763 sec.
min: 4.68141 sec, max: 6.8771 sec, avg: 5.49659 sec.
min: 4.58186 sec, max: 12.6386 sec, avg: 5.52683 sec.
min: 4.45218 sec, max: 14.1808 sec, avg: 5.46629 sec.

183

19. Appendix XI: do clim Script

if [! -f do_elim 1
then

fi

echo "Making do elim."
make do elim

if [! -f do_elim
then

fi

echo "No do elim. Exiting."
exit 1

echo "si ze do elim:"
size do elim
if [-f /tmp/niceit 1
then

fi

rm -f /tmp/niceit
exec nice -20 script

for Groups in 0 1
do

for Files in 0 5 10 15
do

for Asynch in 0 1
do

for Work in 0 1
do

for Size in 0 1000 3162 10000 31622 100000
do

for Dirty in 0 1
do

for Procs in 1 2 4 8 16
do

Output='do_elim\
-gS{Groups} \
-fS{Files}\
-sS{Size}\
-wS{Work}\
-as{Asynch}\
-dS{Dirty)\
-pS{Procs: '

echo\
"do elim\
-gS{Groups}\
-fS (Files 1\
-sS{Size)\
-w${Work}\
-a${Asynch}\
-dS{Dirty}\
-pS{Procs} :\
$ {Output I" 1\

sed -e '5/ */ /g'

184

done
done

done
done

done
done

done

185

20. Appendix XII: do _ elim.c

#include <errno.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/times.h>
#include <sys/signal.h>
#include <sys/stat.h>

#ifndef NPRoe
#define NPRoe 100
#endif

#Hndef NBPe
#define PAGE SIZE 2048
#else
#define PAGE SIZE NBPC
#endif

Hfndef NULL
#define NULL 0
#endif

#define EOS '\0'
#define EVER "
#define HUGE OxIOOOOOOO
#define TRUE 1
#define FALSE 0
#define TMP PREFIX "/tmp/d_eFXXXXXX"
#define REP COUNT 100

int
ProcIdTable[NPROe),
Groups = 0,
Files = 0,
Size = 0,
Nork = 0,
Asynch = 0,
Dirty 0,
Procs = 0;

char *TmpFileNames[NOFILE);

/*
* do elim:
* To evaluate costs of sibling elimination.
* Eliminates siblings with a SIG INTR signal (no dump)
*
* flags:
* -g[Ol]: I-use process group feature of kill(). Default: 0
* -p[n]: # of processes to spawn. Default: 0
* -s[n]: bytes of memory to allocate. Default: 0
* -f[n]: open files per process. Default: 0

186

*
*
*
*/

-w (01) :
-a [OlJ :
-d [01] :

work mix: sleep vs. sleep + busy idle loop. Default: 0
asynchronous: (kind of hard to measure!). Default: °
dirty all pages (to defeat c-o-w management). Default: °

main(argc, argv
int argc;
char *argv[];
{

struct tms tb1, tb2;
long clock, times(), real_t, user_t, sys_t;
double scaler;
int i;
char *osbrk, *sbrk();

for(++argv, --argc: argc > 0: ++argv, --argc)
{

if (argv [0) [0] ! = '-'
usage () ;

switch (argv[O] [1]
(

case' g' :
Groups getnum(&argv [0] [2], 0, 1);
break;

case' p' :
Procs = getnum(&argv[O) [2), 0, NPROC);
break;

case's' :
Size=getnum(&argv[O] [2], 0, HUGE);
break;

case 'f':
Files = getnum(&argv[O) (2), 0, NOFILE);
break;

case 'w':
Work = getnum(&argv [0] [2], 0, 1);
break;

case' a' :
Asynch
break;

case 'd':

getnum(&argv(O] (2), 0, 1);

Dirty = getnum(&argv(O) [2), 0, 1);
break;

default:
usage();
break;

187

int

/* set up new process group so that our parent not killed */
if (setpgrp () < 0)

fail("Can't set new process group.\n");

/* timing phase; do repetitions help? */

fore i = 0, real t
i < REP COUNT:
i += 1)

startup() :

user t

clock = times (&tbl);

eliminate () ;

clock = times (&tb2) - clock;

real t += clock;

0.0;

user_t += (tb2.tms_utime-tbl.tms utime);
sys_t += (tb2.tms_stime-tbl.tms_stime);

cleanup():

scaler = 1.0/«(double) HZ»:

printf("Real: %.3f, User: %.3f, System: %.3f\n",
«double) real_t)*scaler,
«double) user_t)*scaler,
«double) sys_t)*scaler);

exit(O);

getnum(str, min, max)
char *str;
int min, max;

int val;

val = convt(str);
if(val < min I I val> max)

usage();
return (val);

usage ()
{

fail ("Usage: do elim [-g] [-p] [-s] [-f] [-w] [-d] [-a] \n");

int

188

convt{ str
char *str;

int i;

fore i = 0; *str != EOS; ++str)
{

if{ *str >= '0' && *str <= '9'
i = 10*i + (*str - '0');

else
return (-1); /* invalid char. */

return (i);

startup ()
(

char *ptr, *emalloc(), *temp_file();
int i, pid;

ptr = emalloc(Size);

fore i = 0; i < Files; i += 1)
{

TmpFileNames[i) = temp_file{);
if(create TmpFileNames[i) , 0) < 0)
{

perror(TmpFileNames[i));
fail("Can't create temporary file.\n");

/* set up signals so message not ignored */
signal(SIGTERM, SIG_DFL);

fore i = 0; i < Procs; i += 1)
{

switch ((pid = fork ()))
{

case -1:
fail ("Can't fork. \n");
break;

case 0: /* in child. Dirty and Work if necessary */
if (Dirty)

write_it (ptr, Size);

fore EVER)
{

if(Work
iterate (10000);

sleep (1);

break;

189

default:
ProcldTable[i] pid;
break;

/* only the Parent should ever be able to get here */
free(ptr);
return;

iterate (count)
register int count;
(

while(count--

return;

eliminate ()
(

int i, status;

if(Groups)
(

/* set up signals so *we* don't get eliminated */
signal (SIGTERM, SIG_IGN);
if(kill(0 , SIGTERM) < 0)

fail ("Group kill failed. \n");

else

for(i = 0; i < Procs; i += 1)
(

if(kill(ProcldTable[i), SIGTERM) < 0)
fail ("Kill of proc failed. \nn);

if (Asynch
return;

else
{

for(i = Procs; i < 0; i i-I
(

if(wait(&status) < 0
{

if(errno == ECHILD
continue;

else
fail ("Wait failed, ! ECHILD\n");

if ((OxFFFF & status) ! = SIGTERM)

190

return;

int
cleanup ()
{

int i;

printf ("status: Ox%x\n", status);
fail ("Process terminated, wrong reason. \n");

fore i = 0; i < Files; i += 1
{

unlink (TmpFileNames[ij);
free (TmpFileNames[ij);
close (i+3); /* ??? */

while (waite &i) >= 0)

if(errno != ECHILD)
fail("Cleanup: Wait failed, != ECHILD\n");

return;

char *
strsave(str
char *str;

char *p, *emalloc();

p = emalloc(strlen(str) + 1);
strcpy(p, str);
return (p);

char *
temp_file ()
{

char *s, *strsave();
void unique_temp();

s = strsave(TMP PREFIX);
unique_temp (s);
return (s);

void
unique_temp (s)

191

char *s;

static long random;
long work:
char *p;
register i;

p = &s[strlen(s)-6];

do
I

random = (random + 32647 + getpid()) * 32653;
work random;

fore i=O; i<6; i++)
{

p[ij
work

"abcdefghijklmnopqrstuvwxyz012345"[work & OxlF];
work » 5;

while(exists (s)

return;

int
exists(name
char *name;

struct stat sb;
int ret;
extern errno;

ret = state name, &sb);
if (ret < 0)

if(errno == ENOENT
return (FALSE);

return (TRUE);

char *
emalloc(size
unsigned int size;
(

char *ptr, *malloc();

TRUE);

if ((ptr
I

malloc (size)) (char "") NULL

fail ("No Memory. bailing out! \n");

return (ptr);

192

write_it (mem, size
char *mem;
int size;

double write count = 0.0, write_size 0.0;

write size = 1.0 * (double) size;

while(write_count < write size
(

*mem = EOS;
mem = &mem(PAGE_SIZE);
write count += (double) PAGE SIZE;

return;

fail (string)
char *string;
(

writer 2, string, strlen(string));
exit(1);

193

21. Appendix XIII: "e" version of Jenkins-Traub algorithm

/*

*
~ This is the Jenkins-Traub root-finding
* algorithm from CACM, February 1972, V 15, Number 2,
* pages 97-99. It is listed as "Algorithm 419:
* Zeros of a Complex Polynomial"
*
* The algorithm has been recoded in "C",
* which necessitated some changes.
* To activate the debugging statements,
* compile with -DEBUG.

*
* the machine constants have been changed to
* reflect the IEEE floating point standard,
* rather than the IBM/360.
* a minor bug in cmod() was repaired; it had
* divided by zero if given the complex origin
* as an argument.
* added angle (in radians) as an argument to cpoly().
* all changes noted in ACM corrigendum (CACM 3/74)
* have been applied.
* the number of fixed and variable shifts has been
* increased so that the algorithm is more effective
* at mUltiple roots.

*
* if you find errors, contact me, Jonathan M. Smith,
* at 450 Computer Science, Columbia University, NY, NY 10027
* or jms@close.cs.columbia.edu, on the ARPAnet

*
* remainder is straight out of listing:
* finds the zeros of a complex polynomial.
* opr, opi - double precision vectors of real and
* imaginary parts of the coefficients in
* order of decreasing powers.
* zeror, zeroi - output double precision vectors of
* real and imaginary parts of the zeros.
* fail - output logical parameter, true only if
* leading coefficient is zero or if cpoly
* has found fewer than degree zeros.
* the program has been written to reduce the chance of overflow
* occurring. if it does occur, ttere is still a possibility that
* the zerofinder will work provided the overflowed quantity is
* replaced by a large number.
*/

/* includes */
#include <math.h>
finclude <stdio.h>

/* definitions */
#define MAX DEGREE 50 /* biggest polynomial it can solve */

194

#define TRUE 1
#define FALSE 0
#define dabs (_x)
#ifndef M_SQRT2
#define M_SQRT2
#define M_SQRT1 2
#endif

/* Globals */

1.41421356237309504880
0.70710678118654752440

double smalno, sr, si, tr, ti, pvr, pvi, are, mre, eta, infin,
base, errev(), cmod(), scaler), cauchy(), sqrt(), cos(), sin(),
pr [MAX_DEGREE] ,
pi[MAX_DEGREE],
hr [MAX_DEGREE] ,
hi[MAX_DEGREE],
qpr[MAX_DEGREE],
qpi[MAX_DEGREE],
qhr [MAX DEGREE],
qhi [MAX_DEGREE] ,
shr(MAX_DEGREE] ,
shi[MAX_DEGREE];

int nn;

cpoly(opr,opi,degree,zeror,zeroi,fail,angle)
double *opr, *opi, *zeror, *zeroi, angle;
int *fail, degree;

double xx,yy,cosr,sinr,xxx,zr,zi,bnd;
int i, conv, cntl, cnt2, idnn2;

mcon () ;
are = eta;
mre = 2.0*M_SQRT2*eta;

Hfdef EBUG
printf ("mre=%e, are=%e\n", rnre, are);

#endif
xx = M_SQRTl 2; /* 0.70710678 */
yy = -xx;
cosr = cos(angle); /* -.069756474 */
sinr = sin(angle); /* .99756405 */
*fail = FALSE;
nn = degree+l;

195

if(opr[O] != 0.0 II opi[O] != 0.0) /* fail if lead coeff. zero */
{

/* remove any zeros at origin */
while (! (opr[nn-1] ,= C.O II opi[nn-l] != 0.0))

idnn2 = degree-nn+2;
zeror[idnn2-1] 0.0;
zeroi[idnn2-l] = 0.0;
nn = nn - 1;

else

*fail = TRUE;
return;

/* copy coefficients */
for(i = 1; i <= nn; i += 1)
(

pr[i-l] = opr[i-l];
pi [i-I] = opi [i-I];
shr[i-l] = cmod(pr[i-l], pi[i-l]);

/* scale the polynomial */
bnd = scale(shr);
if (bnd ! = 1. 0)
(

for(i=l; i <= nn; i += 1)

pr[i-l]
pi [i-I]

bnd*pr[i-l];
bnd*pi[i-l];

/* start the algorithm */
while(nn > 2)
(

for(i=l; i <= nn; i += 1)
(

shr[i-l] = cmod(pr[i-l], pi[i-I]);

bnd = cauchy (shr, shi);

/* 2 major passes, different sequences of shifts */
for(cntl = 1; cntl <= 2; cntl += 1)

noshft(5); /* first stage, no shift */

/* inner loop to select a shift */
for(cnt2 = 1; cnt2 <= 9: cnt2 += 1
{

/* shift is chosen with modulus bnd
* and amplitude rotated by angle
* degrees from the previous shift
*/

xxx = cosr*xx-sinr*yy;
yy sinr*xx+cosr*yy;
xx xxx;
sr bnd*xx;
si bnd*yy;

196

#ifdef EBUG

printf ("shift: %g+ %gi \n",
sr,si);

#endif

/* 2nd stage, fixed shift */
fxshft(lO*cnt2, &zr, &zi, &conv);
if(conv)
{

idnn2 = degree-nn+2;
zeror[idnn2-l] zr;
zeroi[idnn2-l] = zi;

Hfdef EBUG

printf ("zero: %g+ %gi \n", zr, zi);
#endif

*fail = TRUE;

return;
found root:

if (nn >= 1)

nn = nn-l;
for(i = 1; i <=nn; i += 1)
{

pr[i-l]
pi[i-l]

qpr[i-l] ;
qpi [i-I] ;

goto found_root; /* necessary evil */

cdi vid (-pr [1], -pi [1], pr [0], pi [0 I ,
&zeror[degree-l], &zeroi[degree-l]);

Hfdef EBUG

printf ("nn was %d at return. \n", nn);
#endif

return;

/*
* computes the derivative polynomial as the initial h
* polynomial and computes 11 no-shift h polynomials.
*/

noshft (11)
int 11;
{

double xni,tl, t2, dn;
int i, n, nml, j j, j;

n = nn - 1;
nm1 = n - 1;
dn = (double) n;

197

for(i
{

1; i <=n; i += 1

xni = (double) (nn - i);
hr[i-1) xni*pr[i-1)/dn;
hi[i-l) = xni*pi[i-1)/dn;

for(jj = 1; jj <= 11; jj += 1
(

if(cmod(hr[n-1),hi[n-1]» eta*10.0*cmod(pr[n-l),pi[n-1))
(

else

return;

cdivid(-pr[nn-1],-pi[nn-l),hr[n-1],hi[n-1),&tr,&ti);
for(i 1; i <= nml; i += 1)

(

hr[O)
hi[O]

j nn-i;
t1 = hr[j-2]:
t2 = hi[j-2);
hr[j-l) tr*t1-ti*t2+pr[j-1);
hi[j-1) = tr*t2+ti*tl+pi[j-l);

pr (0) ;
pi [0] ;

for(i=1; i <= nml; i += 1)

I

j = nn-i;
hr[j-1)
hi[j-1)

hr[O) 0.0;
hi (0) 0.0;

hr[j-2) ;
hi [j-2) ;

/*
* computes 12 fixed-shift h polynomials and tests for
* convergence
* initiates a variable-shift iteration and returns with the
* approximate zero if successful.
* 12 - limit of fixed shift steps
* zr,zi - approx zero if cony is .true.
* cony logical indicating convergence of stage 3 iteration
*/

fxshft(12,zr,zi,conv)
int 12, *conv;
double *zr, *zi;
(

double otr,oti,svsr,svsi;
int testfpasd,bool;
int n, if j;

198

n = nn-1;
polyev(nn,sr,si,pr,pi,qpr,qpi,&pvr,&pvi); /* evaluate p at s */
test = TRUE;
pasd = FALSE;
calct(&bool); /* 1st t = -p(s)/h(s) */

/* main loop, 2nd stage step */
for (j = 1; j <=12; j += 1)
(

otr = tr;
oti = ti;
nexth(&bool); /* next polynomial */
calct(&bool); /* new t */
*zr sr+tr;
*zi = si+ti;

/* convergence test */
if (bool I I (! test) I I j 12)

continue;

199

if{ cmod{tr-otr,ti-oti) >= .S*cmod{*zr,*zi» /* weak conv. */
{

pasd = FALSE;
continue;

if (! pasd)
{

pasd = TRUE;
continue;

for{ i = 1; i <=n; i += 1
(

shr[i-1)
shi(i-l)

svsr = sr;

hr[i-l];
hi[i-l];

svsi = si;
vrshft{60,zr,zi,conv);
if (*conv)

return;
test FALSE;
for{ i = 1; i <= n; i += 1)

hr[i-l)
hi[i-l)

sr = svsr;

shr[i-l];
shi[i-l];

si = svsi;
polyev{nn,sr,si,pr,pi,qpr,qpi,&pvr,&pvi);
calct{ &bool);

vrshft{SO, zr, zi, conv);
return;

1*
* carries out the third stage i~eration
* 13 - limit of steps in stage 3.
* zr,zi - on entry contains the initial iterate, if the
* iteration converges it contains the final iterate
* on exit.
* conv - .true. if iteration converges

*1

vrshft(13,zr,zi,conv)
int 13, *conv;
double *zr, *zi;

double mp,ms,omp,relstp,rl,r2,tp, twenerr;
int b,bool;
int i, j:

*conv = FALSE;
b = FALSE;
sr *zr;
si = *zi;

ififdef EBUG
printf("shift (stage 3): %g+ %gi\n", sr,si);

ifendif

for(i=l: i<=13: i += 1)
{

polyev(nn,sr,si,pr,pi,qpr,qpi,&pvr,&pvi);
mp = cmod(pvr,pvi);
ms = cmod(sr,si);
twenerr = 20.0*errev(qpr,qpi,ms,mp,are,mre);

#ifdef EBUG

#endif
printf("mp: %g, twenerr: %g\n", mp, twenerr);

if(mp <= twenerr)
{

*conv = TRUE:
*zr = sri
*zi = si;
return;

if(i > 1)

{

if (b I I mp < omp I I relstp >= .05)
{

else

if(mp*.l > omp)return:

tp = relstp;
b = TRUE;

200

/*

if(relstp < eta
tp = eta;

rl sqrt (tp);
r2 sr*(l.O+rl)-si*rl;
si sr*rl+si*(l.O+rl);
sr r2;
polyev(nn,sr,si,pr,pi,qpr,qpi,&pvr,&pvi);
fore j = 1; j <=5; j += 1)
{

calct(&bool);
nexth(&bool);

omp = infin;

omp = mp;
calct(&bool);
nexth(&bool);
calct(&bool);
if(!bool)
{

return;

relstp = cmod(tr,ti)/cmod(sr,si);
sr sr+tr;
si = si+ti;

* computes t = -p(s)/h(s).
* boo 1 - logical set true if hIs' is essentially zero.
*/

calct(bool)
int *bool;

double hvr,hvi;
int n;

n = nn-l;
polyev(n,sr,si,hr,hi,qhr,qhi,&hvr,&hvi); /* hIs) */
*bool «cmod(hvr,hvi) <= are*10.0*cmod(hr[n-l],hi[n-l]»

? TRUE: FALSE);

if (*bool)
{

else

tr 0.0;
ti 0.0;

cdivid(-pvr,-pvi,hvr,hvi,&tr,&ti);

201

return:

/*
* calculates the next shifted h polynomial.
* bool - logical, if .true. h(s) is essentially zero
*/

nexth(bool)
int *bool;

/*

double tl,t2;
int n, nml, j;

n = nn-I:
nml = n-I;
if (*bool)
{

for (j = 2: j <= n; j += I)
{

else
{

hr[j-I]
hi[j-I]

qhr[j-2];
qhi[j-2];

hr [0] = 0.0;
hi [0] = 0.0;
return;

for(j = 2; j <=n; j += I)

hr[O]
hi[O)

t1=qhr[j-2]:
t2 = qhi[j-2]:
hr[j-I] tr*tl-ti*t2+qpr[j-I];
hi[j-IJ = tr*t2*ti x tl+qpi[j-I];

qpr[O];
qpi [0];

return;

* evaluates a polynomial p at s by the horner recurrence
* placing the partial sums in q and the computed value in pv.
*/

polyev(n,sr,si,pr,pi,qr,qi,pvr,pvi)
double *pr, *pi, *qr, *qi, sr,si, *pvr, *pvi:
int n;

int i;

202

double t;

qr[O] =pr[O];
qi [0] = pi [0] ;
*pvr qr[O];
*pvi qi[O];
fort i 2; i <= n; i += 1)
{

t = (*pvr)*sr-(*pvi)*si+pr[i-l];
*pvi = (*pvr)*si+(*pvi)*sr+pi[i-l];
*pvr = t;
qr[i-l]
qi[i-l]

return;

*pvr;
*pvi;

/*
* bounds the error in evaluating the polynomial by the horner
* recurrence.
* qr,qi - the partial sums
* ms - modulus of the point
* mp - modulus of the polynomial value
* are, mre - error bounds on com?lex addition and multiplication
*/

double errev(qr,qi,ms,mp,are,mre)
double *qr, *qi, mS,mp,are,mre;
{

int i;
double e;

e = cmod(qr[O],qi[O])*mre/(are+mre);
fort i 1; i <= nn; i += 1)
(

e = e*ms+cmod(qr(i-l],qi[i-l]);

return (e*(are+mre)-mp*mre);

/*
* cauchy computes a lower bound on the moduli of the zeros of a
* polynomial - pt is the modulus of the coefficients
*/

double cauchy(pt,q)
double *q, *pt;
{

double x,xm,f,dx,df;
int i, n;

n = nn-l;
pt [n] = -pt [n] ;

203

/* upper estimate of bound */
x = exp((log(-pt[n]) - log(pt[O]))/((double)n));
if (pt [n -1] ! = O. 0)
{

xm = -pt[n]/pt[n-1];
iff xm<x) x = xm;

fort f = 1.0; /* kluge */ f > 0.0; x xm)
{

xm = x*O.l;
f = pt [0] ;

fort i 2; i <=nn; i += 1)
{

f f*xm+pt[i-1);

/* Newton iteration until x converges to two decimal places */
dx = x;

while(dabs (dx/x) > 0.005)
(

q[0) pt [0) ;

fort i = 2; i <=nn; i += 1)
{

q[i-1)

f q[n);
df = q[O];

q[i-2)*x+pt[i-1];

fort i = 2; i <= n; i += 1)
(

df = df*x+q[i-1);

dx f/df;
x = x-dx;

return (x);

/*
* returns a scale factor to multiply the coefficients of the
* polynomial. the scaling is done to avoid overflow and to avoid
* undetected underflow interfering with the convergence
* criterion. the factor is a power of the base.
* pt - modulus of the coefficients of p
* eta,infin,smalno,base - constan~s describing the
* floating point arithmetic.
*/

double scale(pt)
double *pt;
{

204

double hi, 10, max, min, x, sc, 1;
int i;

/* find largest and smallest moduli of coefficients */
hi = sqrt(infin);
10 = smalno/eta;
max = 0.0;
min = infin;
fore i 1; i <= nn; i += 1)
{

x = pt[i-1);
if(x > max)

max = x;
if(x != 0.0 && x < min

min = x;

/* only necessary with very large or very small components */
if(min >= 10 && max <= hi)

return (1.0) ;

x = lo/min;
if(x > 1.0)

{

sc = ;, .. : ;

if(infin/sc > max)

sc = 1.0:

else

sc = 1.0/(sqrt(max)*sqrt(min));

1 ceil(log(sc)/log(base));

return (pow(base,l));

/* complex division, avoiding overflow */

cdivid(ar,ai,br,bi,cr,ci)
double ar,ai,br,bi,*cr,*ci;

double r,d;

if (br ! = 0.0 I I bi ! = 0.0)
{

if(dabs (br) >= dabs(bi)I
{

else{

r = bi/br;
d = br+r*bi;
*cr = (ar+ai*r)/d;
*ci = (ai-ar*r)/d;
return;

205

r = br/bi;
d = bi+r*br;
*cr = (ar*r+ai)/d;
*ci = (ai*r-ar)/d;
return;

else /* division by zero, c
(

mcon() ;
*cr = infin;
*ci = infin;
return;

infinity * /

/* modulus of a complex number, avoiding overflow */

double cmod(r,i)
double r,i;
(

double ar, ai;

ar = dabs(r);
ai = dabs (i);
if (ar > ai)

return (ar*sqrt(l.O+(ai/ar)*(ai/ar)));
else

if(ar < ai)
return (ai*sqrt(l.O+(ar/ai)*(ar/ai)));

else
return (ar*M_SQRT2);

/*
* mcon provides machine constants used in various parts of the
* program. the user may either set them directly or use the
* statements below to compute them. the meaning of the four
* constants are -
* eta the maximum relative representation error
* which can be described as the smallest positive
* floating-point number such that 1.0dO + eta is
* greater than I.OdO
* infiny the largest floating point number
* smalno the smallest positive floating-point number
* base the base of the floating-point number system used
* let t be the number of base-digits in each floating-point
* number(double precision). then eta is either .5*b**(I-t)
* or b**(I-t) depending on whether rounding or truncation
* is used
* let m be the largest exponent and n the smallest exponent

206

* in the number system. then infiny is (l-base**(-t»*base**m
* and smalno is base**n.
* the values for base,t,m,n below correspond to the ibm/360.

*
* *NOTE* revised for IEEE floating point

*
*/

mcon()
(

base 2.0:

#ifdef vax

#else

eta = pow(base,-54.0):
infin = pow(base,126.0);
smalno = 1.0/infin;

eta = pow {base, (1.0-52.0»:
infin = pow{base,1023.0);
smalno = 1.0/infin;

#endif

#ifdef EBUG
printf ("eta=%e, 1.0+eta=%e, infin=%e, smalno=%e\n",

eta, 1.0+eta, infin, smalno):

#endif
return;

207

22. Appendix XIV: cvaryangle.c

#include <stdio.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/times.h>

#define MAX DEGREE 50

/*
* batch interface program for j-t method,
* found in this directory in file "cjt.c"
*/

main (argc, argv, env
char *argv[l, *env[);

long clock, times(), min, avg, max, user, nprocs;
struct tms tbl, tb2;
int i, degree, flflag, count, fail_count;
double init, coeffr[MAX_DEGREE1, coeffi[MAX_DEGREE1,
resulr[MAX_DEGREE) , resuli[MP~_DEGREE), offset;

scanf("%d", °ree);
hfdef EBUG

fprintf(stderr, "degree: %d\n", degree);
#endif

if(degree> MAX_DEGREE-l I I degree < 0
(

fprintf(stderr, "0<= degree <= %d", MAX DEGREE-l);
exit(1);

fore i = 0; i <= degree; i += 1)

scanf(" %If, %If'', &coeffr[i), &coeffi[i]);

#ifdef EBUG
fore i=O; i <= degree; i += 1)
(

#endif
/*

fprintf(stderr, "%g, %g\n", coeffr[i), coeffi[i));

* apply the method for a sequence of angles
*1

fore nprocs=l; nprocs <= 50; nprocs += 1)
(

fail count = count = min = max avg = 0;
offset = (double) 360.0/nprocs;
fore init=3.0;

init <= 360.0; init += offset

208

lfifdef FAIL

#else

#endif

#ifdef VERBOSE

#endif

209

count += 1;
clock = times(&tb1);

cpoly(coeffr, coeffi, degree, resu1r, resuli, &flflag,
(init/180.0)*3.I4I59265358979323846);

clock = times (&tb2) - clock;
user = tb2.tms utime - tb1.tms utime;

if (flflag)
(

fprintf(stderr,
"cpoly() failed on input. Exiting.\n");

exit(1);

fail count += 1;

printf("\nangle: ltg, time %d ticks, zeros at:\n",
init, user);

for(i=O; i <= degree-I; i += 1)
(

printf("%e, %e\n", resulr[i), resuli[i));

if(min 0 && ! flflag)

min user:
if(user < min && ! flflag)

min user;
if(user > max)

max user;
avg += user;

avg = avg / count;

printf("nprocs: %d, max: %d, min: %d, avg: %d, fails: %d\n",
nprocs, max, min, a'Jg, fail count);

exit(0);

23. Appendix XV: r2p.c

#include <stdio.h>

#define MAX DEGREE 50
#define EOL '\n'
#define BUFSIZE 512
#define EOS '\0'

struct complex
double r;
double i;

) ;

typedef struct complex COMPLEX;

COMPLEX tmp[MAX_DEGREE) ,
roots [MAX_DEGREE) ,
coeff[MAX_DEGREE);

main (argc, argv, env
int argc;
char *argv[], *env[];

FILE *fp;

if(argc > 2)
usage();

if(argc == 2)
{

else

fp = fopen(argv[l], "r");
if(fp == (FILE *) NULL)
{

perror(argv[l]);
exit(1);

fp = stdin;

load_roots (fp);
close(fp);
computeyoly();
printyoly ();
exit(0);

usage ()
(

fprintf(stderr, "Usage: r2p [filename]\n");
exit (1);

210

printyoly ()
(

int deg;
register int i;

deg = degree(coeff);
printf("%d\n", deg);

for(i = 0; i <= deg: i += 1)
{

printf(H%f, %f\n", coeff[ij.r, coeff[ij.i);

return;

load_roots (file)
FILE *file;

int i, getline():
char line[BUFSIZE], *line_ptr, *get float();

for (i = 0:
getline(line, BUFSIZE) > 0;
i += 1)

lineytr line;
lineytr get_float (lineytr, &roots[i].r);
get_float (lineytr, &roots[ij.i);

#ifdef EBUG
printf("load_roots: got %g+%gi\n",

roots[i].r, roots[ij.i);
#endif

}

return;

compute_poly ()
{

int i;
int deg;

deg = degree (roots);

coeff[1] .r
coeff[l] .i
coeff[O] .r
coeff[Oj .i

-roots[O] .r;
-roots[O] .i;
1. 0;
0.0;

fori i = 1: i <= deg; i += 1)
{

211

roots[il.r = -roots[il.r;
roots[il.i = -roots[il .i;
do_root (&roots[il);

return;

do root(root)
COMPLEX *root;
(

register int i;
int deg;
COt-1..PLEX c;

deg = degree(coeff);
cprod(root, &coeff[degl, &c);
tmp[deg+l].r = c.r;
tmp[deg+ll.i = c.i;
tmp [0 1 . r 1 • 0 ;
tmp [0 1 . i = O. 0 ;

fore i = 1; i <= deg; i += 1)
(

cprod(root, &coeff[i-ll, &c);
csum(&coeff[i], &c, &tro.p[il);

fore i = 0; i <= deg+l; i += 1)
coeff[il = tmp[il; /* needs structure assign. */

return;

cprod(a, b, c)
COMPLEX *a, *b, *c;
(

c->r = a->r*b->r - a->i*b->i;
c->i = a->i*b->r + a->r*b->i;
return;

csum(a, b, c)

COMPLEX *a, *b,
(

c->r = a->r
c->i = a->i
return;

int
degree (poly)
COMPLEX *poly;
{

*c;

+ b->r;
+ b->i;

212

register int i;
int deg;

fore i = 0; i < MAX DEGREE; i += 1)
if(poly[i).r !=O.O II poly[i).i != 0.0)

deg = i;

#ifdef EBUG
printf("degree: returning %d\n", deg);

#endif

return (deg);

/*
* safe "gets()"
* leaves terminating newline
* always returns null-terminated string.
*/

int
getline(buf, size
char *buf;
int size;

int c, counter;

if(buf == (char *) NULL)
return (0);

fore counter
{

0; counter < size-l;)

c = getcha r () ;
if(c == EOF)

break;
buf[counter++1 c;
if(c == EOL)

break;

buf[counter) = EOS;
return (counter);

char *
get_float (str, dub)
char *str;
double *dub;
(

char copy [BUFSIZE), *ptr;

if(str == (char *) NULL)
return ((char *) NULL);

while(*str != EOS

213

if (*str >= , 0' && *str <= , 9')
break;

if((*str == '+' II *str == '-' II *str == , .') &&

(* (str+l) >= , 0' && * (str+l) <= '9')
break;

++str;

ptr = copy;

while (*str ,= EOS)
{

if((*str < ' 0'
&& *str !=
&& *str !=
&& *str '=
&& *str !=

*ptr = EOS;
#ifdef EBUG

II *str > ' 9')

'+'
, -'
, ,

'e'

printf ("copy was: %s\n", copy);
#endif

sscanf(copy, ''%If'', dub);
return (str);

*ptr *str;
++ptr;
++str;

return (str);

214

24. Appendix XVI: cmach.c

#include <stdio.h>
finclude <sys/param.h>
#include <sys/types.h>
finclude <sys/times.h>
ifinclude <sys/signal.h>
ifinclude <sys/time.h>

ifdefine MILLION 1000000
ifdefine MAX DEGREE 50
#define FILE NAME LEN 128
char sema_file[FILE_NAME_LENJ;

/*
* "parallel" batch interface program for j-t method,
* found in this directory in file "cjt.c"
*/

maine argc, argv, env
char *argv[], *env[];

int catcher();
long clock, user, nprocs;
struct tms tb1, tb2;
int i, fd, degree, flflag t count, pid, ppid, status;
double init, coeffr[MAX_DEGREE]t coeffi[MAX_DEGREE],
resulr[MAX_DEGREE], resuli[MAX_DEGREE), offset;

#ifdef SYSTEM FIVE
long times();

#else
struct timeval tvl, tv2;
struct timezone tz;

#endif

scanf ("%d", °ree);

if(degree> MAX DEGREE-l I I degree < 0)
{

fprintf(stderr, "0<= degree <= %d", MAX DEGREE-1);
exi t (1);

fore i = 0; i <= degree; i += 1)
{

scanf (" %If, %If'', &coeffr [i], &coeffi [i]);

/*
* apply the method for a sequence of angles
*/

pid fork();

215

switch (pid
{

case -1:
fprintf(stderr, "Can't fork; exiting!\n");
exit (1);

case 0:
break;

default:
while (waite &status) >= 0)

_exit (1);

fore nprocs=l; nprocs <= 6; nprocs += 1)
(

#ifdef SYSTEM FIVE

#else

#endif

clock = times (&tbl);

gettimeofday(&tv1, &tz);

setpgrp () ;
ppid = getpid();
get sema();
signal(SIGTERM, catcher);
offset = (double) 360.0/~procs;

fore init=3.0;
init <= 360.0; init += offset

pid = fork () ;

switch(pid
(

case -1:
fprintf(stderr, "Can't fork, exiting!\n");
exit(1);

case 0:
cpoly(coeffr, coeffi, degree,
resulr, resuli, &flflag,
(init/180.0)*3.14159265358979323846);

if (flflag)
(

_exit (1);

lock serna();
signal (SIGTERM, SIG IGN);
ki1l(O, SIGTERM);
break;

default:
break;

216

if(pid == 0
break;

if (pid ! = 0)
{

while(waite &status) > 0)

#ifdef SYSTEM FIVE

#else

clock = times (&tb2) - clock;
print f ("nprocs: %d, tine: %d ticks \n", nprocs, clock);

gettimeofday(&tv2, &tz);
/* adjust as per manual page */
if(tVl.tv_usec > tv2.tv_usec)
{

tv2.tv_usec += MILLION;
tv2.tv sec -= 1;

clock = MILLION*(tv2.tv_sec-tvl.tv sec)+
(tv2.tv_usec-tvl.tv_usec);

printf("nprocs: %d, time: %d usec\n", nprocs, clock);
#endif

}

exit(0);

#ifdef HPUX

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int Sernid;
struct sernbuf Sops(I];
ushort Sinit(I];

key_t k;
int ret;

sprintf(serna_file, "/tmp/CMACH%d", getpid());
k = ftok(serna file, 'A');
ret = semget(k, 1, IPC CREAT J 0600);
if (ret < 0)
{

fprintf (stderr, "get of semaphore failed. Exiting. \n");
exit(1);

Semid = ret;

217

Sinit[O] = 1;
if(semctl(Semid, 0, SETALL, Sinit) < 0)
{

fprintf (stderr, "set of semaphore failed. Exiting. \n");
exit(1);

Sops[O) .sem_num = 0;
Sops[O) .sem_op = -1;
Sops[O] .sem_flg = IPC_NOWAIT;

if(semop(Semid, Sops, 1) < 0)
_exit (1);

else
return;

free sema ()

#else

semctl(Semid, 0, IPC_RMID, Sinit);
return;

get sema ()
(

int fd;

sprintf(sema_file, "/tmp/CMACH%d", getpid());
if((fd=creat(sema_file,0)) < 0)
(

else

fprintf(stderr, "Can't creat %s; exiting!\n",
sema file);

exit (1);

close (fd);

return;

218

if(unlink(serna file -1)
(

exit(0);

return;

#endif

int catcher (sig

if(sig == SIGTERM
{

signal (SIGTERM, catcher);
#ifdef EBUG

#endif
fprintf (stderr, lipid %d, caught SIGTERM\n", getpid ());

exit(1);

else
return;

219

25. Appendix XVII: Extremal exploitation of randomness

rand search.c:
#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <sys/times.h>
#include <sys/time.h>

#define MILLION 1000000
#define TRUE 1
#define FALSE 0

Hfdef EBUG
ltdefine PERM FILE "/tmp/permutation"
#endif

#define MAX SIZE 100000

int S[MAX_SIZE],
Ticks[MAX_SIZE],
P [MAX_SIZE] ,
SSize = -1, PSize -1;

main(argc, argv
int argc;
char *argv[];

double total, scaler, dSize, floor(), drand48();
register int i, j, k;
int min, max;
long clock:
struct timeval tv1;
struct timezone tz;

while (argc > 1
{

if(argv[argc-l) (0) != '-'
usage();

switch(argv[argc-1) [1)
{

case's' :
PSize = atoi (&argv[argc-l) [2]);
if (PSize < 1 I I PSize > MAX SIZE

usage();
break:

case 'c':
SSize = atoi (&argv[argc-lj [2)):
if(SSize < 1 I I SSize > MAX SIZE

usage () ;
break;

220

if(

if(

default:
usage ();

argc -= 1;

PSize == -1)

PSize = MAX SIZE;
SSize == -1)

SSize = MAX SIZE;

dSize = (double) PSize;

gettimeofday(&tvl, &tz);
clock = MILLION*tvl.tv sec+t~l.tv_usec;
srand48(clock);

fort i = 0; i < PSize; i += 1
p[i) = i;

/* this might have to be done better */
fore i 0; i < PSize; i += 1
(

k (int) floor(drand48()*dSize);
j p[i); P[i) = P[k); P[k) = j;

Hfdef EBUG

FILE *fp;

fp = fopen (PERM_FILE, "'N");

if(fp == (FILE *) NULL)
(

221

fprintf(stderr,"Can't open %s for writing. Exiting\n",
PERM_FILE);

#endif

exit (1);

fprintf (fp, "Elements: %d\n", PSize);
fore i = 0; i < PSize; i += 1)

fprintf(fp, "%d%c", P[i), (i%lO)?',':'\n');
fclose(fp);

k = (int) floor(drand48 ()*dSize);

fore i = 0; i < SSize; i += 1)
(

S[i) = (int) floor(drand48()*dSize);

gettimeofday(&tvl, &tz);
clock = MILLION*tv1.tv_sec+tv1.tv_usec;

int

Ticks[i] = clock;

if(P[find_index(k, Sri])] != k
fprintf(stderr, "find_index failed. continuing.\n");

gettimeofday(&tv1, &tz);
clock = MILLION*tv1.tv sec+tvl.tv_usec;
Ticks(i] = clock - Ticks(i]:

/* dump statistics */
scaler = 1.0/«double) MILLION):
min = max = Ticks(O):
/* we pre-scale Ticks to prevent overflow */
total = scaler*Ticks(Ol:

fore i = 1; i < SSize: i += 1
{

if(Ticks[i) < min
min = Ticks[i]:

if(Ticks[i] > max)
max = Ticks[i]:

total += scaler*Ticks[i]:

printf("min: %g sec, max: %g sec, avg: %g sec.\n",
scaler* (double) min,
scaler* (double) max,
total / (double) SSize);

exit(0):

find_index (element, start)
int element, start:

int i, offset, half Size;

half Size = PSize/2;

fore offset = 0: offset <= half Size: offset += 1)
{

i = start - offset:
if(i < 0

i += PSize;
if(equal(p[i], element))

return (i):
i = start + offset:
if(i >= PSize)

i -= PSize:
if(equal(P[il, element))

return (i);

222

return (-1);

int
equal (i, j
int i, j;

if (i == j)
return (1);

return (0);

usage ()
{

fprintf (stderr, "Usage: rand search [-ssize] [-ccount] \n");
fprintf(stderr, "size & count <= %d\n", MAX SIZE);
exit(1);

script:
for i in 1 2 5 10 20 50 100 200 5eO 1000 5000 10000 50000 100000
do

rand search -c${i)
done

results:
min: 0.361704 sec, max: 0.361704 sec, avg: 0.361704 sec.
min: 0.038728 sec, max: 0.158708 sec, avg: 0.098718 sec.
min: 0.019244 sec, max: 0.606028 sec, avg: 0.385311 sec.
min: 0.022124 sec, max: 0.68992 sec, avg: 0.249112 sec.
min: 0.020452 sec, max: 0.698092 sec, avg: 0.456766 sec.
min: 0.031444 sec, max: 0.70512 sec, avg: 0.330535 sec.
min: 0.00248 sec, max: 0.71294 sec, avg: 0.330925 sec.
min: 0.00034 sec, max: 0.739772 sec, avg: 0.3693 sec.
min: 0.002532 sec, max: 1.18184 sec, avg: 0.383545 sec.
min: 0.001124 sec, max: 0.710796 sec, avg: 0.35026 sec.
min: 0.00024 sec, max: 2.53285 sec, avg: 0.356609 sec.
min: 0.000164 sec, max: 2.85144 sec, avg: 0.367076 sec.
min: 0.000176 sec, max: 8.0722 sec, avg: 0.371924 sec.
min: 0.00012 sec, max: 2.39245 sec, avg: 0.358988 sec.

223

224

26. Biography

Jonathan Michael Smith was bom on October 10, 1959 in Taunton, Massachusetts,

where he attended elementary and secondary school. He received his Bachelor of Arts

degree in Mathematics, Magna Cum Laude, from Boston College, Chestnut HilL Mas­

sachusetts in May. 1981. Jonathan's senior Honors thesis in number theory was on "Full

Period Primes," which are prime numbers whose unitary fraction has the longest possi­

ble repeating decimal expansion.

After graduating. Jonathan was employed by Bell Telephone Laboratories. From

September 1982 until May 1983. he was supported in his studies towards a Master of Sci­

ence in Computer Science in the Laboratories' One Year on Campus graduate studies

program. Columbia University granted the M.S. degree in May of 1983. On January 1

of 1984. Jonathan became an employee of Bell Communications Research. Inc. as a

result of the AT&T divestiture. He returned to Columbia University in September of

1984 in order to pursue a Doctor of Philosophy degree in Computer Science.

