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Abstract 

We are developing an experimental programming language, MELD, that suppons a range of 
concurrent styles by supporting multiple programming paradigms at multiple levels of 
granularity. MELD integrates three granularities of parallelism: macro dataflow among 
statements within a method or among methods for flne grain concurrency, synchronous or 
asynchronous message passing among local or remote objects for medium grain concurrency, 
and transactions for large grain concurrency among users. 
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1. Introduction 
Programming language design for parallel and/or distributed systems typically follows one of 

three approaches.~ The fIrst is to parallelize and/or distribute conventional sequential languages 
such as Fortran, C and Lisp via a parallelizing compiler and remote procedure call. Although 
this may be the best approach for parallelizing existing software for a designated concurrent 
architecture, it has serious problems when the target architecture involves multiple grains of 
concurrency (e.g., a network of cubes) andlor when writing new systems because it requires a 
hide-and-seek approach to parallelism - the programmer may be cognizant of the concurrency 
issues of the architecture, but writes in a sequential style effectively hiding this knowledge from 
compiler. which must then find it again. This is clearly unlikely to lead to high productivity, 
perfonnance and reliability. 

The second approach is to add concurrent constructs to what is fundamentally a sequential 
language, as was done for Ada, Argus [16], Avalon [8] and Modula-2. Ada extended a Pascal­
like sequential language with tasks and rendezvous; Argus added guardians and actions to CLU, 
and Avalon similarly extended C++ with servers and transactions; and Modula-2 added 
processes with shared variables and signals to a modularized Pascal. In all of these cases, the 
concurrency features are a relatively small addition to an otherwise sequential language. The 
third is to design a fundamentally concurrent language, as has been done for 
ConcurrentSmalltalk [24], Emerald [3]. Mentat [7] and SISAL [18]. Both of these approaches in 
effect add a nice set of facilities for one style of concurrent programming while ignoring other 
styles. For example, Ada's rendezvous and Argus' guardian neatly match the large grain 
client/server model of distributed systems, but are not terribly useful for expressing fme grain 
parallelism. We are developing a concurrent programming language, MELD, that supports a 
range of concurrent styles by supporting multiple programming paradigms at multiple levels of 
granularity. 

MELD integrates four paradigms: 

• Object-oriented, with encapsulated classes, multiple inheritance and active objects. 
Object-oriented is the dominant paradigm. 

• Macro dataflow, where the "macro" implies the dataflow is at the source code level 
- among statements - rather than at the machine level. 

• Module interconnection, with modular units called features that bundle together 
related classes and export classes for use by other features. 

• Transaction processing, for fault tolerance and concurrency control within 
applications and among users. 

These four paradigms are combined to support sound software engineering principles 
encapsulation and reusability - for more robust software as well as several styles of concurrent 
programming. 

In this paper, we present MELD's facilities for concurrent programming and emphasize how 
the object-oriented paradigm provides the appropriate framework for multiple granularities of 
parallelism. Our previous papers [11, 12, 13, 14] focused on encapsulation and reusability 
issues, although a paper describing the MELD Debugger (MD) [9] briefly introduced concurrent 
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MELD. 

First we give a brief overview of the language, ignoring concurrency issues. Then we describe 
how MELD integrates several granularities of parallelism, in particular, concurrency among 
users, among objects, among methods and among statements. We compare MELD to a number 
of other concurrent object-oriented programming systems, and briefly describe the 
implementation. We conclude by summarizing our contributions. The appendix gives a small 
demonstration program. 

2. Overview of MELD 
MELD's four paradigms support three granularities of encapsulation and reusability: 

statements, classes and features. 

Classes provide medium grain encapsulation. Each MELD class defines a number of instance 
variables, methods and constraints (explained later). Instance variables are strongly typed, 
where the type is a built-in class (integer, string, etc.), a built-in constructor (array, 
sequence, set, table), or a user-defined class. An initial value may be defmed, optionally, 
for each instance variable as part of its declaration. New instances of classes are created by 
sending the Create message to the class (conceptually - MELD classes are not represented as 
objects); other methods are invoked by sending the corresponding message to the receiver object 
using the common notation "receiver.selector(arguments)". Methods take an arbitrary number of 
arguments, which are passed by reference (unique object ID), or for built-in types by value­
result, and may optionally return a value; methods may define local variables using the same 
notation as for instance variables. Each user-defined class may specify zero or more 
superclasses. Rather than give the superclasses as part of the class defmition, they are given 
separately in a merge clause; this is convenient for classes that are solely compositions of 
existing superclasses and add no new facilities of their own. As shown in Figure 2-1, the merge 
clause merges the defmitions of one or more superclasses (S, T) into a subclass (D). 

Statements provide fine grain encapsulation, smaller than methods. (MELD provides the 
standard kinds of statements: assignment, conditional, and so on; a statement can also be an 
arbitrary C subroutine call.) Statement-level encapsulation is one of the most unusual aspects of 
MELD. It is manifest in constraints and in the distinction between a sequential block and a 
dataflow block. 

A constraint is an individual statement associated with a class but not part of any method. A 
constraint typically defines a relationship among instance variables that must always hold. Each 
constraint has zero or more input instance variables and zero or more output instance variables. 
When one or more of the inputs changes in value, the constraint statement is re-executed to 
restore consistency with the outputs. Thus MELD's constraints are unidirectional rather than 
bidirectional, unlike most other "constraint" systems [15], and permit objects to behave as active 
values [23]. Those constraints with no inputs are executed only when a new object is created, as 
initialization; a constraint with no outputs may print a message or perform some other action. 
An example is illustrated in Figure 2-2. Whenever 0 executes, it recomputes the value of b. 

Whenever the new value is different from the old value, this triggers the execution of the 



/* cl.ass */ 
CLASS C ::= 

/* instance variabl.es */ 
a, b: integer; 
d: integer := 0; 
f: sequence of D; 
g: S := nil.; 

METHODS: 
constrainl 
method 

END CLASS 

/* merge cl.auses */ 
MERGE S, T AS D; 
MERGE U AS C; 
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Figure 2-1: Class 

constraint to recompute the value of a. 

CLASS C ::= a, b, d: t; 

METHODS: 
/* constraint */ 
a :=b.l!'(); 

/* method */ 
o (c, e: t) --> 
[b := c.G(); ] 

END CLASS 

/* 2nd */ 

/* 1st */ 

Figure 2-2: Constraint 

Constraints may take other forms than the simple assignment statement; another useful fonn is 
the conditional constraint, which is a conditional (iO statement that is not part of any method. In 
this case, whenever an variable in the conditional expression changes, the condition is re­
evaluated and the appropriate branch of the conditional statement is executed. In the commonest 
usage of conditional constraints, only one branch of the statement is specified; this fonn of 
constraint allows detection of, and response to, exceptional conditions in the data. 

A sequential block is a compound statement: a list of statements, which is executed in exactly 
the sequence given. Figure 2-3 gives an example. 

A dataflow block is a list of statements, which is executed in data-dependency order rather 
than in the sequence given. A dataflow block is enclosed within curly braces "{}" and a 
sequential block within square brackets "[]". Each statement in a dataflow block has zero or 
more inputs and zero or more outputs. The statements are treated as simultaneous equations, 



CLASS C ::= a, b, d: t; 

METHODS: 

o (c, a: t) --> 
a ::::::b.I!'(); 
b :::::: c.G(); 
d:= a.H(); ] 

END CLASS 

/* 1st */ 
/* 2nd */ 
/* 3rd */ 
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Figure 2-3: Sequential Block 

except that each particular statement is executed only after all its inputs (if any) have reached 
their final values. Figure 2-4 gives an example. Method 0 consists of three statements executed 
in dataflow order. In particular, "b := c.GO" must be executed before "a := b.FO" since b is the 
output of the former and the input of the latter. "d:= e.HO" can be executed before, in between, 
or after these two statements since there is no data dependency. Circularities among statements 
in a dataflow block are detected by the MELD compiler. The only exception is that circularities 
within a single statement, such as "a := a + 1 ", are permitted; a is treated as an output but not an 
input for the purposes of dataflow. 

CLASS C ::= a, b, d: t; 

METHODS: 

o (c, a: t) --> 
a := b.F(); 
b .- c.GO; 
d:= a.HO; } 

END CLASS 

/* 2nd */ 
/* 1st */ 
/* any time */ 

Figure 2-4: Dataflow Block 

We developed the dataflow block as a solution to the "multiple inheritance" problem. When 
a class inherits from multiple superclasses, it may inherit methods with the same name from 
more than one ancestor. There are three standard approaches to solving this problem that appear 
in other object-oriented languages. One is to require the class to explicitly choose one of the 
inherited methods. Another is to flatten the ancestor graph into a precedence list (for example, 
left to right depth first up to joins) and choose the first or last occurrence. The third is to execute 
all occurrences of the method, in the order given by a precedence list In MELD, all the inherited 
methods are executed, but interleaved in the order implied by the dataflow dependencies among 
the statements in the methods; this is why we claim statements as a level of encapsulation. This 
makes most sense when there are semantic assumptions among the methods of a superclass, that 
is, when those methods depend upon one another's side effects, which is almost always the case. 
It is not correct to override some but not all of these interdependent methods due to the (often 
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incidental) precedence ordering; the resulting violation of assumptions can cause other methods, 
not overridden, to behave improperly. (The programmer can, however, change this behavior if 
necessary; MELD achieves many of the goals of the other schemes with a complicated but very 
flexible system of attaching default, insist and override keywords to inherited and 
overriding methods.) 

CLASS Sl ::= a, b: t; 
METHODS: 

o 0 --> 
{a :=b.FO;} 

END CLASS 

CLASS S2 ::= d: t; 
METHODS: 

o (w: t) --> 
{ d := w.JO; } 

END CLASS 

MERGE Sl, S2 AS C; 

CLASS C ::= a, b, d: t; 
METHODS: 

o (c, e: t) --> 
{ b := c.GO; 

d:= e.HO; } 
END CLASS 

/* 2nd */ 

/* any time * / 

/* C ~.rits from Sl and S2 */ 

/* 1st */ 
/* il.l.eqal. */ 

Figure 2-5: Multiple Inheritance 

Method interleaving is illustrated in Figure 2-5. Class C inherits from 51 and 52, since they 
are specified as its superclasses by the merge clause. The 0 methods from each of these three are 
interleaved in dataflow order. Combining these methods, each with a different number of 
parameters, is legal because the subclass C simply specializes its superclass 52' s method by 
adding an additional parameter; the parameters w in 52 and cine are two equivalent names for 
the first parameter passed to the 0 method. 52's method, declared with only one parameter, 
ignores the second parameter, and the code inherited from 51, whose 0 method takes no 
parameters, ignores both parameters passed to the combined method. 

Ignoring the second statement of the 0 method from C, b is computed from argument c and 
then a from the new value of b. d would be computed from w if it were not for the illegal 
conflict with the separate assignment of din e's method for O. This would be detected as a fatal 
error at compile-time. 

This solution to the multiple inheritance problem permits every class to be written 
independently in most cases, since only the set of instance variables updated by each method 
must be made public. Other languages either require subclasses to be cognizant of the details of 
their ancestors or potential ancestors of the same subclass to be aware of each other's 
implementation details. Since many possible interactions are invariably overlooked, the 
resulting software is likely to be unreliable and difficult to debug. 

------ ------ -----
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Dataflow blocks may be nested inside sequential blocks and vice versa, and both dataflow and 
sequential blocks may trigger constraints. The intricacies of interactions between constraints, 
dataflow blocks and sequential blocks are discussed in our previous papers. 

Features provide large grain encapsulation. Classes are the standard unit of reusability in 
object-oriented languages, but we believe classes are too small - the cost of retrieving and 
adapting the reusable unit is likely to be larger than the cost of developing it from scratch. A 
practical reusable unit consists of related classes bundled together to provide a coherent 
functionality. MELD's feature construct is a modular unit with a public interface consisting of an 
export clause, an imp0rl clause, a remotes clause (our rather simplistic means for naming remote 
objects, not discussed in this paper), and a private implementation. The export clause lists those 
classes defined in the implementation that may be used externally for types of instance variables 
or as superclasses. The import clause lists those features whose exported classes may be used 
internally. The implementation part consists of global object definitions, classes and merge 
clauses. 

MELD provides additional facilities to export a particular view [6] of each class, which defines 
which instance variables and methods of each exported class are visible to external subclasses 
and clients. Some other object-oriented languages provide similar facilities [21]. MELD also 
supports generic features analogous to Ada's generic packages. This support for reusability is 
explained in our previous papers. An example feature is shown in Figure 2-6. 

FEATURE F 

INTERFACE: 

EXPORTS C: 

IMPORTS G, H: 

IMPLEMENTATION: 

/* global variables */ 
OBJECT: 

a: array[lb .. ub] o~ X: 
b: string :- "xyzzy": 

/* classes and merges */ 
CLASS C .•• 

MERGE S, T AS D; 

END FEATURE 

Figure 2·6: Feature 
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3. Integrating Parallel and Distributed Programming 
MELD's multiple paradigms also lead to three granularities of concurrency: 

• Macro dataflow for fine grain concurrency. Two statements in the same dataflow 
block are ordered when an output of one statement is among the inputs of another; 
otherwise, they are unordered and may execute in parallel. When multiple methods 
execute simultaneously in the same object, concurrency is maximized at the cost of 
nondeterminism. Atomic blocks solve this problem by enforcing critical sections 
with respect to the object; atomic blocks may be either dataflow or sequential. 

• Objects for medium grain concurrency. MELD supports both synchronous and 
asynchronous message passing among local or remote objects. 

• Transactions for large grain concurrency. Transactions appear to execute atomically 
and in serial order with respect to other transactions; their data cannot be corrupted 
by other MELD code executing concurrently. They are much more powerful than 
atomic blocks, since they can cut across methods and objects. 

A MELD method may be invoked synchronously or asynchronously. In the synchronous case, 
the caller waits for return with respect to its own thread of control; this uses the standard notation 
"receiver.selector(arguments)". In the asynchronous case, the caller continues and the invocation 
creates a new thread of control; this uses the distinct notation 
"SEND selector(arguments) TO receiver". MELD programs may involve an arbitrary number of 
threads, which may be created dynamically during program execution. Several threads may 
operate within the same address space and one thread may operate across multiple address 
spaces, in the sense that the local thread suspends while until the new remote thread returns 
control. In either case, the invoked method runs concurrently with any other methods currently 
active on the same object. These other methods may be reading and writing the same instance 
variables. The default synchronization among such methods is done by dataflow, as within a 
single method as described in the previous section. 

CLASS D ::= a , b , d: t: 

METHODS: 
M () --> 
( b := d.G(); 

N (c: t) --> 
( a := b.J'(); 

d := c.HO; 

END CLASS 

/* 2nd */ 

/* 3rd */ 
/* 1st */ 

Figure 3-1: Concurrent Methods 

There is a serious problem with this approach. The program illustrated in Figure 3-1 operates 
as indicated in the comments if M and N happen to begin execution at exactly the same time, due 
to "simultaneous" arrival of messages M and N from other objects. d is computed from the value 
of c given as argument to N, b is computed from the new value of d, and a from the new value 
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of b. However, if message N arrives a bit later than M, then b is computed from the old value of 
d, and then the new value of d is computed from the argument C and a is computed from the 
new value of b. In this case, both statements in N could be executed concurrently since there is 
no dataflow between them. On the other hand, if message M arrives a bit later than N, then b may 
be computed from either the old or new value of d and a may be computed from either the old or 
new value of b, depending on race conditions. This may be rather bewildering for the 
programmer, since it is necessary that the resulting computation be deemed 'correct' in all of 
these cases. 

CLASS D ::= a, b, d: t; 

METHODS: 
M () --> 
[ b : = d. G () ; 

N (c: t) --> 
[ a := b.F(); 

d := c.H(); 

END CLASS 

/* 1st */ 

/* 2nd */ 
/* 3rd */ 

Figure 3·2: Concurrent Methods with Sequential Blocks 

Sequential blocks remove concurrency within methods, making them easier to write without 
the need for the single-assignment mindset, but do not affect concurrency among methods. The 
comments in Figure 3-2 indicate the ordering if M and N happen to start at the same time. b is 
computed from the old value of d, a from the new value of b and then the new value of d from 
the argument c. But if there is a race condition - which is more likely than not - a may see 
the new value of b or b may see the new value of d, but not both. 

CLASS C ::= a, b, d: t; 

METHODS: 
a :=b.F(); 

o (c, .: t) --> 
( b :'" c.GO; 

d :- •• RO; 

END CLASS 

/* 2nd */ 

/* 1st */ 

Figure 3·3: Atomic Block 

Figure 3-3 illustrates an atomic block, where method 0 executes atomically with respect to the 
receiver object. Atomic blocks are indicated with parentheses "0". Both b and d are updated, 
and only after 0 terminates is the constraint triggered. Actually, the two statements in 0 may 
themselves be executed in either sequential or dataflow order, since it is necessary to include 
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them within an inner sequential or dataflow block, not shown, if the atomic block is used. In this 
case, of course, it does not matter. 

CLASS D ::=., b , d: t; 

METHODS: 
M 0 --> 
(b:=d.GO; 

N (c: t) --> 
(a := b.FO; 

d := c.HO; 

END CLASS 

/* 1st or 2nd */ 

/* 1st or 2nd */ 

Figure 3-4: Concurrent Methods with Atomic Blocks 

Methods M and N in Figure 3-4 are both atomic blocks, so they execute in the serial order 
determined by which happens to begin fIrst. MELD implements atomic blocks by locking the 
entire object at the computational grain size of individual blocks. One problem with this is that 
the critical section cannot begin in one method and end in another, which is often bad 
programming practice but sometimes is necessary. 

CLASS E ::= c: integer; 

METHODS: 
P (a , b: integer) --> 
{ c := a + b; 

return c; } 

Q (x: integar) --> 
{ C := 2 * x; } 

END CLASS 

CLASS F ::: d: B; 
a: intaqar; 

METHODS: 
R () --> 
(e := d.p(l, 2); ) 

END CLASS 

Figure 3-5: Problem with Atomic Blocks 

Atomic blocks have one serious flaw. Consider the example in Figure 3-5, where R is an 
atomic block but P is not, and R invokes P synchronously. The programmer presumably expects 
that e will be assigned to 3, but this need not be the case. Consider the case where Q is invoked 
immediately after "c := a + b" executes, but before "return c" executes. Just because R is atomic 
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does not imply anything about the other methods it invokes! 

CLASS E :: = c: intaqar; 

METHODS: 
P (a, b: integer) --> 
{ c := a + b; 

return c; } 

Q (x: integer) --> 
{ c : = 2 * x; } 

END CLASS 

CLASS F ::= d: E; 
e: integer; 

METHODS: 
R () --> 
< e := d.P(l, 2); > 

END CLASS 

Figure 3-6: Transaction Block 

The solution is serializable transactions. Transaction blocks are indicated with angle brackets 
"<>", but transactions may cut across methods using begin-transaction, 
commit-transaction and abort-transaction statements. Transactions can be 
arbitrarily nested, and can enclose arbitrarily nested dataflow, sequential and atomic blocks. The 
problematic example is repeated in Figure 3-6, where now it is guaranteed that e will be set to 3. 
Since MELD supports distributed transactions on arbitrary sets of objects, this behavior is 
guaranteed even if the objects of classes E and F are located on separate processors. 

4. Related Work 
Many systems provide a subset of the facilities provided by MELD, but we know of only one 

whose range of concurrent programming styles is comparable to that of MELD. Like MELD, SR 
[2J is based on a small number of underlying concepts, but supports a wide range of facilities 

including local and remote procedure call, rendezvous, dynamic process creation, asynchronous 
message passing, multicast and semaphores. MELD supports all these facilities and more, for 
example, multiple threads within the same object. 

MELD's dataflow blocks support finer parallelism than other macro dataflow languages. For 
example, Mentat [7] supports dataflow among the inputs and outputs of actors, which correspond 
to MELD's methods. SISAL [18] applies macro dataflow at the statement level, but differs 
substantially from MELD in being applicative and not object-oriented. 

Concurrent object-oriented languages typically provide synchronous or asynchronous message 
passing. but not both. Eden [1] and ConcurrentSmalltalk [24] do provide both options. 
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MELD's constraints permit active objects, but in an essentially passive manner. Most other 
active objects are like those of Emerald [3], where there is a process continually running within 
each object. This process is written as sequential code and can carry out arbitrary activities -
but in practice does little except wait for messages to arrive. Another difference between MELD 
and Emerald is the latter's type system is built on the notion of type conformance - only 
interfaces, not implementations, can be shared between classes. In contrast, MELD provides the 
standard fonn of implementation hierarchy - the only novel aspect of inheritance is the 
interleaving of multiply inherited methods. 

MELD is like Argus [16] in that it executes each incoming message to an object in a separate 
thread. Meld objects, however, are much smaller than typical Argus guardians. Guardians are 
servers, with one multi-threaded guardian per heavyweight process; smaller objects within the 
guardian are implemented as CLU clusters. In contrast, MELD would implement a server as one 
or more features, each consisting of many objects, within a common address space. MELD uses 
the same object model to represent the interface object (not discussed in this paper) 
corresponding to the Argus guardian as it does to represent the smaller objects corresponding to 
the clusters within the guardian, and so is likely to execute many more parallel threads than the 
equivalent guardian. MELD also differs substantially from Argus in concurrency control: where 
Argus has atomic and non-atomic objects, binding concurrency control to one level of 
implementation, MELD allows "free-form" concurrency control at any level and gives the 
programmer the flexibility to combine atomic and non-atomic actions on the same object. 

Although Clouds [4] is an operating system rather than a programming language, there are 
many similarities between Clouds and MELD. Clouds also uses a single object model for all 
granularities of objects. Its concurrency control is not bound to the object level, and atomic and 
non-atomic operations on an object may be mixed. Clouds objects, however, are completely 
passive; there is no facility corresponding to MELD's constraints. The Clouds object model is 
also compromised by processes, which are not associated with or "inside" any object. In MELD, 
all executable code is declared either as a method of some object class or as a constraint. 

Mach [10], another operating system, also provides many facilities useful in the construction 
of distributed programming systems: ports to represent objects, messages for communication 
between objects, remote procedure calls, and multiple threads of execution within a task. A 
distributed transaction facility, Camelot [22], has been implemented under Mach; Avalon 
[5] provides language support for Camelot. The Avalon model of concurrency control was 

heavily influenced by Argus, and also binds atomicity to the object: each class may be a subclass 
of resilient, atomic or dynamic, which are themselves in a linear hierarchy. Executable code is 
written in C++, and parallelism is available only if the C++ code explicitly starts up multiple 
threads. In MELD, parallelism is always available, reduced only when necessary by the 
particular synchronization facilities employed. 

Hybrid [20] uses a single granularity of encapSUlation, the object (type) level. Its concurrency 
facilities are less flexible than MELD's. Hybrid allows only a single thread of control within a 
domain, as opposed to MELD's multiple threads within each object. Hybrid binds thread creation 
to particular operations designated as "reflexes"; other operation invocations cannot start a new 



12 

thread of control. Hybrid has an atomic block construct which provides atomicity across 
multiple objects, but blocks other code from executing within any of those objects until the 
atomic block commits or aborts. MELD's atomic blocks work similarly, but on single objects 
only; MELD's transactions provide atomicity across multiple objects, but pennit much more 
concurrency. 

Most other object-based systems provide only a single form of concurrency control; for 
example, Coral3 [19] uses only two-phase locking, while GemStone [17] uses only an optimistic 
approach. 

5. Implementation Status 
The fIrst implementation of MELD was completed in March 1988. This implementation was 

missing several vital features, notably inheritance, which has been added since via a 
preprocessor, and a reasonable distributed name service, which is in progress (we're also 
working on a design for a general query language). This mainline version supports only atomic 
methods, not serializable transactions; a separate version of MELD with transactions diverged in 
early 1988 and is now being integrated. Currently, both atomic methods and transactions are 
implemented purely for concurrency control, and crash recovery is not supported. 

MELD is translated into C. Both the translator and run-time support are written in C and run on 
Berkeley Unix, using sockets for interprocess communication. The current implementations 
simulate the multi-threaded dataflow parallelism within a heavyweight process in order to share 
the address space, but objects may be distributed across a network of Sun, MicroV AX, and IBM 
RT workstations1. Eventually, we plan to reimplement MELD on Mach, taking advantage of 
Mach's abilities to have multiple threads of control sharing the same address space rather than 
simulating this in the runtime system, and to allow true parallelism by running the separate 
threads of a task on separate processors of a multiprocessor machine. 

6. Conclusion 
In our initial work on MELD, we took one simple idea - encapsulation - and applied it at 

several granularities within an object-oriented programming framework. The result addressed 
two important problems: multiple inheritance and scale of reusable components. More recently, 
we took another simple idea - a block of statements as the unit of synchronization policy -
and again applied it at several granularities. The result was support for a wide range of 
concurrent programming styles. 
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I. Example 
This program is intended for two Sun 3 workstations sitting side by side, each displaying a 

single large window. There is a "hand" in each window and they play catch by tossing a "box" 
back and forth, apparently from screen to screen. A square box rather than a round ball is used 
for simplicity in graphics hacking. The windows, hands and box are objects and all interactions 
are done by message passing. Another copy of the toss feature currently must be compiled 
separately with the roles of boxl, handl, window I and box2, hand2 and window2 reversed, for 
the two different machines. $WORKST A TION is a place holder which, in an actual program, 
would be replaced by the name of the "other" machine; this location information is temporarily 
required due to the lack of a distributed name service. 

FEATURE toss 

INTERFACE: 
EXPORTS box, window 
REMOTES boxl : box at $WORKSTATION 

handl : hand at $WORKSTATION 
windowl : window at $WORKSTATION 

IMPLEMENTATION: 

OBJECT: 
box2: box; 
hand2: hand; 
window2: window; 
gravity: double := 0.12; 
get_number() : double; 

CLASS box :: = 

METHODS: 

active inteqer:= 0; 
center x : double :z 2028.0; 
center-y : double :- 300.0; 
speed_x: double := 0.0; 
spead-y : double : - 0.0; 
status : inteqer :- 0; 

{* set up the path between standard input and this object. *} 

path(O, $selt); 

if(active = 1) then status :- window2.box(center_x, center-y, 1); 

"help"--> { 
printf("\nBOX::\n (1) x speed = d (between 1.0 and 100.0)\n 

(2) y speed = d (between -20.0 and 20.0)\n\n"); 
printf ("Box position : (x = %If, Y = %1£) \nBox speed 

(x = %1£, Y = %1£) \n\n" , center_x, center-y, speed_x, speed-y); 
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impe1(x, y: doub1e)-->( 
i£(speed_x - 0.0 " speed-y = 0.0 " (x != 0.0 I I y !zO.O» than 

send move() to $se1£; 
speed_x :=- x; 
speed-y := y; 

set_x-y(x, y :doub1e)-->(center_x := x; center-y .- y;) 

move () --> 
( 

hand2.1ight(center_x, center-y); 
i£(speed_x != 0.0 I I speed-y != 0.0) then [ 

speed-y +:= gravity; 
( center_x +:= speed_x; center-y +:= speed-y; 
i£(status = 1) then send move() to $se1£; 
e1se ( 

i£(status = 0) then { 
speed-y .- 0.0; speed_x .- 0.0; 

else ( 
i£ (boxl. activate (center_x, center-y, speed_x, speed-y) = 1) 
then { 

active := 0; 
window2.box(center_x, center-y, 0); 

(* send box(center_x, center-y, 0) to window2;*} 

activate (cx, cy, x, y: double)--> 
i£(active = 1) then return(O); 
else ( 

i£(window2.box(cx, cy, 1) = 1) then { 
center x := cx; 
center-y := cy; 
active := 1; 
speed_x := x; 
speed-y : = y; 
if(speed_x !- 0.0 I I speed-y !3 0.0) then send move() to $sel£; 
return(l); 

else ( 
printf("activate: box is not inside the window\n"); 
return (0); 

END CLASS box 

CLASS window ::= 
left : integer := 1050; 
right : integer := 2100; 
up : integer := 50; 
down : integer := 850 ; 



METHODS: 
fb_open(); 
path(O, $se1f); 

"help"--> 
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integer := -1; 

printf ("window = (left = %d, right = %d, up = %d, down = %d) \n" , 
left, right, up, down); 

box(x, y : double; flag: integer)-->{ 
box(x - left, y, flag); 
return ($self. inside (x, y»; 

hand(x, y : double)-->{ 
if(open_side = 1) then right_hand(x - left, y); 
else left_hand(x - left, y); 

inside (x, y : doub1e)-->{ 
if(x >= left " x <= right " y >= up " y <= down) then return(1); 
else ( 

if(open_side = 1 " x > right) then return(-1); 
else ( 

if(open_side = -1 " x < left) then return(-l); 
else return(O); 

END CLASS window 

CLASS hand :: = 
center_x: double :- 2029.0; 
center-y : double :- 300.0; 
speed_x: double := -35.0; 
speed-y : double := -2.0; 
dx double; 
dy : double; 
y1 : double; 
t : double; 
range : double : - 20; 
status : integer :- 0; {* 1 = grasp; 2 = toss; 0 = not both *} 

METHODS: 

path(O, $se1f); 
send hand (center_x, canter-y) to window2; 

"he1p"-->{ 
printf("Hand position: (X" %If, y'" %1f)\n\n (1) hand x = d\n 

(2) hand y s d\n (3) toss\n", center_x, canter-y); 

"x*speed*=*\n"--> ( 
speed_x := get_number($selector); 
printf ("x speed = %1f\n", speed_x); 
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"y*speed*=*\n"--> ( 

} 

speed-y := qet_number($selector); 
printf ("y speed = %If\n'', speed-y); 

"hand*x*=*\n"-->{ 

} 

center x := get number($selector); 
printi"C"hand x -; %If\n'', center_x); 

"hand*y*=*\n"-->{ 
center-y := get_number($selector); 
printf ("hand y = %If\n'', center-y); 

"init"-->{ 
send set_x-y(center_x -
send impel«double) 0.0, 
status := 1; 

"toss"-->{ 
i£(status = 1) then ( 

1.0, center-y) to box2; 
(double) 0.0) to box2; 

send set_x-y(center_x - 1.0, center-y) to box2; 
send impel(speed_x, speed-y) to box2; 
status := 2; (* toss *) 
send signal(center_x - 1.0, center-y, speed_x, speed-y) to handl; 

light (x, y: double)-->{ 
if(x < center_x + range " x > center x - range " 

y < center-y + range " y > center-y - range) then 
if(status = 2) then raturn(O); 
else { 

else 

status := 1; {* grasp *} 
box2.impel«double)O.O, (double)O.O); 
printf("I catch the OOx\n"); 
return (1) ; 

status :- 0; 
return (0) ; 

signal (x, y, sx, sy : double)-->( 
print£ ("signal (%If, %lf t %If, %1£) \n", x, y, sx, sy); 
t := (center_x - x)/sx; 
if(t > 0) then 

y1 := y + sy * t + gravity * t * t / 2.0; 
if (window2. ins ida (center x, y1) = 1) then 

send move_to (centar_x,-y1) to $sel£; 
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elsa print:f(III am not qoJ.nq to catch the box\n"); 

move_to (x, y : double)-->[ 
if (center_x + 10 < x) then dx .- 10; 
else dx := x - center_x; 
if(center_x - 10 > x) then dx := -10; 
else dx := x - center_x; 
if (center-y + 6 < y) then dy .- 10; 
else dy := Y - center-y; 
if(center-y - 6 > y) then dy := -10; 
else dy := y - center-y; 
if(dx != 0 I I dy != 0) then [ 

center x +:= dx; 
center-y +:= dy; 
send move_to (x, y) to $sel£; 

END CLASS hand 

END FEATURE toss 


