
Llc Reference Manual

Russell C. Mills

Columbia University
Computer Science Department

17 May 1990

C-lCL<;- Lg2--lSi
Abstract

Lie is an extension of C lor hierarchically parallel processing on diSlributed·memory parallel processors.
In an Ilc program, a single conI rolling processor invokes operations in parallel in subsets of a set of
attached processors, which themselves can invoke parallel operations in remaining processors. This
manual succintly describes the language syntax and the implementation-independent aspects of its
semantics.

Copyright © 1990 Russell C. Mills and The Trustees 01 Columbia

University in the City 01 New York. All rights reserved.

This research was conducted as part of the Dado project . It was supported in part by the New York
Slate Science and Technology FoundaHon NYSSTF CAT(88)-5 and by a grant from Hewlen-Packard.
The author is an AT&T Graduate Fellow.

1

1 Introduction
Llc is an extension 01 C lor hierarchically parallel processing on distributed-memory parallel processors.

In Ilc, a single controlling processor invokes operations in parallel in subsets of a set of attached

processors, which themselves can invoke parallel operations in remaining processors.

2 Retinues and Evaluating Retinues
An IIc program executes on a partially-ordered pool 01 processors with a single minimal processor, the

principal processor--in effect, a tree with the principal processor at the root. Each processor executing IIc
code can invoke computations that proceed in parallel in a subset of the processors higher in the partial
ordering. At program startup, only the principal processor is active.

Each processor executing part of an IIc program has associated with it a retinue of processors higher in
the partial ordering that receive instructions from it, as well as an evaluating retinue of processors actively
executing these instructions. Each processor is the director (or directing processor of its retinue.

The principal processor's retinue is the remainder of the processors. If Q is a processor in P's
evaluating retinue for an operation M, Q's retinue, and its evaluating retinue. during its evaluation of M is
the subset of P's retinue greater than Q in the partial order on the set of processors and not greater than

any processor Q' in P's evaluating retinue that is itself greater than Q. In other words, each processor
takes control of as many descendant processors as it can reaCh, but it cannot reach past a processor
taking control of its own descendants.

Code executed by a processor is called self code. Code executed by a subset of a processor's retinue
is called retinue code. Code executed by a processor's director is called director code. These terms are
relative, since a processor's self code is director code to the processor's retinue, and a processor's

retinue code is self code to members 01 the retinue. Retinue code can be embedded in self code in the
following places:

• The par statement (section 4)

• The initializer of a retinue-tuple (section 2)

• The operand of a reduction operator (section 11 and the" operator (section 5)

• An evaluating retinue selector with (section 8) or :: (section 9)

• A function argument, if the corresponding formal parameter is a retinue-tuple

• A return statement in a function returning a retinue-tuple

Director code can be embedded in self code in the following places:

• The seq statement (section 6)

• The operand of the !" (sequentia~ operator (7).

A processor's retinue and evaluating retinue are preserved across function calls. That is, if a processor
is executing a function f, and calls g, the processor's retinue and evaluating retinue at entry to g are the

same as they were during the processor's execution of f. Further, the processor's retinue and evaluating
retinue are restored at exit from g.

2

L1c has no explicit communications primitives, but some IIc constructs cause communication of values

from one processor to another. Different processors in the machine executing an Ilc program need not
have the same data formats, but Ilc automatically performs appropriate format conversions:

• Llc converts atomic types (char, short, int, long, float, double) from one format to the other;
this conversion may entail a loss of precision or of data.

• L1c converts pointer types, but a communicated pointer does not point to the same storage
as the original pointer, since all pointers in IIc point to storage in the processor storing the
pointer.

• L1c converts struct types by converting each component. L1c converts array components by
converting each element of the array.

• In general, IIc converts union types by converting the first component. If a union is a
component of a struct, and the preceding component is of integral type, IIc treats that integer
as a type tag for the union, and converts the union by converting the indexed component.

L1c has SIMD-like execution semantics, explained in more detail in section(4). Parallel code executes

as if all processors in a given processor's evaluating retinue executed all operations synchronously.

3 Declarations
L1c allows a programmer to declare retinue-tuples of objects. A retinue-tuple contains one element in

each processor in the declaring processor's retinue. To the standard ANSI C constructs for declaring
derived types, namely,

• () function returning

• 0 array of

• • pointer to

IIc adds a single construct,

• 1\ retinue-tuple of

The 1\ operator is a prefix unary operator with precedence that of n, and can be combined with the other
declarator-forming constructs subject to the following restrictions:

• A struct or union can not contain retinue-tuples.

• There are no pointers to retinue-tuples.

• There are no retinue-tuples of retinue-tuples.

• There are no retinue-tuples of functions.

However, IIc functions can have retinue-tuples as parameters, and can return retinue-tuples of any type
that C functions can return.

Declarations of retinue-tuples obey the scope and extent rules of C. Outside a function, the visibility
(lexical scope) of a retinue-tuple is the rest of the file; the object can be static or global; and its extent is
the lifetime of the program. Inside a function, a retinue-tuple can be declared at the beginning of any
block: it is visible only in the block in which it is declared: and it is static, or it is created at block entry and
destroyed at block exit. Retinue-tuples in recursive functions are handled correctly.

3

Storage declared in a processor's retinue is called retinue storage, while storage declared in the
processor itself is called self storage, and storage declared in a processor's director is called director
storage. These terms are relative, just as the terms self code, retinue code, and director code are.
Retinue storage and director storage can not be referred to in self code, even though declarations of the
storage may be lexically visible. Instead, references to retinue storage must be embedded in retinue

code, and references to director storage must be embedded in director code.

Names that do not refer to storage--names of functions, typedef names, and struct and union tags
and components-- can be used wherever they are lexically visible. The compiler evaluates constant
expressions appearing in declarations of struct and union types only once, in the context of the

processor executing the declaration.

4 Par statement
L1c uses the par construct to invoke parallel execution:

par statement

All processors in the evaluating retinue execute statement, which is any legal IIc statement not containing
goto, and is retinue code. The execution semantics of statement are synchronous on an operator-by­
operator basis; statement executes as if all processors in the evaluating retinue executed all operations in

lockstep.

Conditional constructs in retinue code (the II. &&, and 1: operators. and the If and switch statements)
execute as if the various paths through the code were evaluated in textual order, each path being
evaluated in parallel by the appropriate set of processors:

• Processors in which the left-hand side (Ihs) of a II operator is true drop out of the evaluating
retinue until the end of the right-hand side (rhs).

• Processors in which the Ihs of a && operator is false drop out of the evaluating retinue until
the end of the rhs.

• Processors in which the first operand of a 1: is true execute the second operand, then drop
out of the evaluating retinue until the end of the expression; processors in which the first
operand is false drop out of the evaluating retinue until the end of the second operand, then
evaluate the third operand.

• Similarly, processors in which an If condition is false drop out of the evaluating retinue until
the else clause or the end of the If statement.

• After executing the control expression of a switch statement, all processors drop out of the
evaluating retinue. A case label with value equal to that of the control expression, or a
default label if no case label equals the value of the control expression, restores a processor
to the evaluating retinue, while a break statement removes a processor from the evaluating
retinue. The end of the switch restores the pre-switch evaluating retinue.

Looping constructs (while, do ... whlle, and for) in parallel code execute by contracting the evaluating
retinue at each loop iteration until the evaluating retinue is empty; when the evaluating retinue is empty,
the loop terminates, and the pre-loop evaluating retinue is restored. A break statement removes a
processor from the evaluating retinue until the end of the loop; a continue statement removes a
processor from the evaluating retinue until the end of the current loop iteration.

4

5 /I. operator
The " (retinue) unary operator is the expression analog of the par statement. Processors in the

evaluating retinue evaluate the operand; the value of the " expression is one of the values from the
evaluating retinue. If the evaluating retinue is empty, the value of the expression is undefined. The"
operator can be applied to an operand of any type, even composite, and the type of the result is the type
of the operand.

6 Seq statement
lIc uses the seq construct to invoke sequential execution in the directing processor during parallel

execution in the director's retinue. The statement

seq statement

when embedded in a par statement causes statement to be executed in the processor invoking the par
statement, provided that the set of processors invoking the seq statement is not empty.

Notice that a declaration of self storage inside par statement is equivalent to a declaration of retinue
storage just outside par statement. The program fragment

{
int Ai:
statement

is equivalent to
par {

int i;
seq statement

7 !/\ operator
The !" (directot] prefix unary operator is the expression analog of the seq statement. The expression

!" expression

causes evaluation of expression in the director of the set of processors evaluating !"expression, provided
that set is not empty. The type of !"expression is the type of expression. If expression is a call to a
function that returns a retinue-tuple, the value of I"expression in each processor is the value returned by
the function in that processor. Otherwise, expression returns a single value, which is also the value of

!"expression.

8 With statement
lIc's with construct defines the evaluating retinue:

with (retinue-expression) self-statement

All processors in the pre-with evaluating retinue of the processor executing the with statement evaluate
retinue-expression. The processor executing the with statement then executes self-statement. which is
self code. but which may contain retinue code or call functions that contain retinue code. The evaluating
retinue for self-statement is the subset of processors where retinue-expression is true. The end of the
with statement restores the pre-with evaluating retinue. Retinue-expression can be prefaced by the
keyword all, in which case the evaluating retinue for retinue-expression is the entire retinue. If all is
included. retinue-expression may be omitted. and is implicitly 1.

5

9 :: operator
The with statement has an expression analogue, the :: (with) operator:

self-expression :: retinue-expression
All processors in the evaluating retinue evaluate retinue-expression; the evaluating retinue for
self-expression is the subset of processors where retinue-expression is true. The end of the :: expression
restores the pre-:: evaluating retinue. As in the with statement, retinue-expression can be prefaced by
the keyword all. The precedence of the :: operator is between that of assignment operators and the

sequencing operator (,),

10 ? operator
The IIc ? (selecO prefix unary operator allows the programmer to single out one processor. The?

operator can be used only in retinue code. and its operand expression must be of numeric type. The

value of

?expression
is 0 in all processors but one. and 1 in one processor in the evaluating retinue where expression is
nonzero. L1c does not specify which processor receives the non-zero value, but guarantees that ?
chooses the same processor each time from a given set of values in a set of processors.

11 Reduction operators
A reduction operator is a unary operator that operates pairwise on a set of values to produce a single

result. L1c provides a number of built-in reduction operators. described below. and also allows
programmers to define their own. The precedence of reduction operators in IIc is that of the unary
operators in C.

11.1 Built-In operators
L1c provides the collection of reduction operators shown in figure 1. Each built-in reduction operator is

the unary counterpart of a commutative. associative binary operator.

Two of these reduction operators stretch a semantic point for syntactic convenience. Strictly speaking.

II and && are not commutative operators in C. since they do not evaluate their right operands if the value
of the expression can be determined from the left operand. The reduction operators III and &&1.

however. evaluate all their operands in parallel and produce the logical OR or AND of all the values.

11.2 User-defined operators
L1c provides reduction operators corresponding to most of C's binary operators, but it also allows

programmers to define new reduction operators. Any function of two arguments may be used as the
combining code in a reduction operator. A declaration of a function named fwith

function-declarator default constant-expression;

or a definition of fwith

function-declarator default constant-expression function-body

creates a new unary reduction operator fl. Then an expression of the form

fl retinue-expression

causes fto be applied as a reduction operator to the values of retinue-expression in the evaluating retinue
of processors. If the evaluating retinue is empty, the result is the declared default value.

+1

*1

maxI

minI

II

&I

1\1

III

&&1

6

Figure 1: Reduction Operators

sum of the operands

product of the operands

maximum of the operands
(max is a built-in binary operator in IIc)

minimum of the operands
(min is a built-in binary operator in IIc)

bitwise OR of all operands

bitwise AND of all operands

bitwise exclusive OR of all operands

1 if any operand evaluates to a non-zero value; 0 otherwise

1 if all operands evaluate to a non-zero value; 0 otherwise

12 Local and nonlocal functions and function calls
An IIc compiler can often produce substantially better code if it knows whether functions called from

retinue code or from directing code contain retinue code or call functions that do. A local function
declaration or call advises the compiler that the specified function or call does not invoke retinue code; a
non local declaration or call advises the compiler that the function or call does invoke retinue code. The
local and nonlocal keywords modify a standard function declarator, and are placed before the
parentheses; the syntax mirrors that of the volatile and const pointer modifiers or ANSI C. For example,
the declaration

int f nonlocal(int i);

declares f to be a nonlocal function of one Int argument, which returns an Int. The program fragment
(

int atoi (), (*fp) () = atoi:
char *5;

par
int i !" (*fp) local (5) ;

advises the compiler that the call to 'fp invokes no retinue code.

