
!

•

Dado2 Llc User's Manual

Russe ll C. Mills

Columbia University
Computer Science Department

17 May 1990

Abstract

LIe is an ex.tension of C for hierarchically parallel processing on distributed-memory parallel processors.
The language has been implemented on Dado2, a massively parallel Iree-structured MIMD
multicomputer. This manual explains the features 01 the language as it is implemented on Dado2, its
compilation, and execution. The manual complements the Ilc tutorial [2J. the Ilc reference manual (3J , and
the lie report [41.

Copyright © 1990 Russell C. Mills and The Trustees of Columbia

University in the Cily 01 New Vork. All rights reserved .

This research was conducted as part of the DADO project . II was supported in part by the New York
Slate SCience and Technology Foundat ion NYSSTF CAT(S8)-5 and by a grant from Hewlett-Packard.
The author is an AT&T Graduate Fellow.

1

1 Introduction

2 Dado Architecure
Dado is a massively parallel distributed-memory tree-structured multicomputer. In the Dad02 machine

([5]), a complete binary tree of 8-bit processing elements functions as a coprocessor attached to a
conventional host computer, the principal processor.

The current machine, Dad02, contains 1023 PEs connected in a complete binary tree. Each Dad02 PE
consists of an 8-bit microprocessor (an Intel 8751). 64K bytes of RAM and 4K bytes of EPROM, and a
semi-custom I/O chip designed to provide inter-PE communication. The Dad02 EPROM-resident kemel
[1] manages inter-PE communication. The host controlling computer communicates with Dad02 through

a standard interface such as an IEEE-488 (GPIB): from the point of view of the host operating system,
Dad02 is a peripheral device. A separate communications interface connects the root PE to the host
Dad02 communication channel. This interface contains its own microprocessor and Dad02 I/O chip that
communicate with the root PE, in addition to circuitry that communicates with the host computer. The
interface is designed to make the Dad02 root PE the left child of the host computer.

Dad02 has two separate communication channels, each a byte wide: one through the processor ports
and one through the I/O chip. The processor ports provide communication between a PE and its tree

neighbors (parent, left and right children). The I/O chip provides global communication via a broadcast

circuit and a resolve/report circuit (a multi-byte minimum-computing comparator). Dad02 communication
cannot be interrupt-driven; PEs must anticipate and participate actively in all communication.

The Dad02 1/0 Chip handles communication through all or part of the Dad02 tree of PEs. A memory
mapped I/O Chip register controls the connections of each I/O chip to its tree neighbors' I/O Chips. so that
any PE can disconnect itself from its parent or its children from itself. At any point in a program's
execution, the I/O chip connections divide the Dad02 machine into a number of connected components.
Within a connected component, all communication through the I/O chip is global and synchronous; all
PEs in the connected component must participate in each communication.

Dad02 is a MIMD/SIMD multicomputer in the following sense. At any point in a program's execution,
any PE (including the host computer) has a retinue of PEs that receive instructions from it. The principal
processor's retinue is the entire set of Dado PEs. The instructions that a PE sends to its retinue are
addresses in Dado code rather than machine instructions; each PE has its own stored program and
executes in MIMD mode. But a PE cannot execute arbitrary code, since it must cooperate with other PEs
in order to communicate. In the simplest mode of operation. the host computer repeatedly broadcasts
Dado function pointers; all Dado PEs read the function pointers and execute the functions. A PE may
also receive as a command the address of a function that causes it to send instructions for some time to
its own retinue. a subset of its descendant PEs.

Dado's software architecture reflects its communication constraints. The IIc language provides no
explicit communications instructions: instead. the programmer specifies operations to be performed in
parallel. The IIc compiler translates these parallel operations into code for different PEs containing calls
to kernel communication primitives. The language definition guarantees that for each communication. all
PEs required to participate in that communication actually do so.

Since the host is a conventional computer. and Dado2 PEs are 8-bit microprocessors, data formats and

sizes are different in the host and Dad02. The lie programmer need not be concerned about different

formats, since the code generated by the IIc compiler and the IIc runtime library perform any necessary

format translation, even for composite data items (struct and union types). Data sizes, however, are a
matter for possible concern: Int and double types typically have less precision in Dado PEs than in the

host. The following table presents the sizes of atomic types in Dad02 Ilc:

• char
1 byte, unsigned

• short
2 bytes

.Int
synonymous with short

• long
4 bytes

• pointer
2 bytes (64K address space)

• float
4 bytes (8-bit exponent, sign bit, 23-bit normalized mantissa)

• double
synonymous with float

3 The lie Language
This section discusses the IIc extensions to the C language. Each subsection describes a single

construct or closely related set of constructs, and corresponds to a section in the IIc reference manual [3].
The treatment here is informal and not free standing; it is meant to illuminate and complement the more
formal discussion in the reference manual. For working IIc programs incorporating these constructs, the

user should turn to the IIc tutorial [2).

3.1 Retinues and Evaluating Retinues
As mentioned above, associated with any Dado PE executing part of an lie program is a retinue of PEs

that receive instructions from it, as well as an evaluating retinue of PEs actively executing those
instructions. Each PE is the director of its retinue. The principal processor's retinue is the entire set of
Dado PEs, the evaluating retinue is the entire retinue, and each Dado PE's retinue is empty. At any point
in the execution of the program, an evaluating PE's retinue consists of descendant PEs that are not

descendants of an evaluating descendant PE. In other words, when a PE P invokes parallel operations,
all PEs higher in the partial ordering than P that are not invoking parallel operations themselves are
available as retinue for those PEs that are invoking parallel operations, and the assignment of a given
non-evaluating PE to an evaluating PE's retinue is based on the partial ordering in the obvious way. If an
evaluating PE executes code that invokes parallel operations, its initial evaluating retinue for those
operations is its entire retinue. Let's clarify this discussion with a picture. PP, the principal processor, has
PEs N, P, Q, A, and S in its retinue, but its evaluating retinue consists of P and R. P and A execute a
function fO, which invokes parallel operations. The P's retinue consists of the single PE Q, and A's
retinue consists of S.

3

PP (principal processor)

N

P evaluates to

Q in P's retinue while P evaluates to

R evaluates to

S in R's retinue while R evaluates to

3.2 Declarations
Llc adds the 1\ (retinue) unary operator (3.4) to the set ot declarator-forming operators in C. A 1\

operator used in a declarator declares its operand to be a retinue-tup/e--an object of the specified type,
but with one element in each retinue PE. For instance, the declaration

int Ai;

declares I to be a retinue-tuple ot Int. It this declaration appears outside a function, I is visible for the rest
of the file, and reters to an Int in each Dado PE. If the declaration appears in a block, I is visible only

inside that block, and refers to an Int in each PE in the retinue of the PE executing the block. The 1\

operator can be combined with other declarator-forming operators. but since the 1\ operator is a unary

operator. and binds more loosely than () and O. parentheses may be necessary to enforce the desired
interpretation. Here are some examples of legal IIc declarations and their interpretations:

int (Aj) [5]; j is a

double Af();

retinue-tuple of
array of 5

int

f is a
function returning

retinue-tuple of
double

void pmemcpy(char *A, char *, unsigned int);
pmemcpy is a

function of (
retinue-tuple of

pointer to
char,

pointer to
char,

unsigned int
returning

void

Here are some iIIegallic declarations:

st:ruct s {
c~ar c;
i:1t Ai;

) ;

char A*S;

char **c;

int (Af) ()

)

3.3 Par statement
The par statement, whose syntax is

par retinue-statement

I" no

/* no

I~ no

I" no

4

retinue-tuple components *1

pointers to retinue-tuples *1

retinue-tuples of retinue-tuples *1

reti:1ue-tuples of functions *1

invokes parallel execution of retinue-statement in the evaluating retinue of the retinue of the PE executing
the code surrounding the par statement. retinue-statement can be any legal IIc statement not containing

goto. In the current Ilc implementation on Oad02, retinue-statement also cannot contain code for the
retinue PE's retinues, such as par statements, although ij can call functions that do. In other words. a
function can have only one level of syntactic parallelism, though this is a restriction of the Oad02
implementation, not the language, and will be lifted soon.

A declaration of a retinue-tuple outside retinue-statement is equivalent (except for scope) to a
declaration of a non-retinue-tuple inside retinue-statement.

3.4 1\ operator
The" (retinue) operator is the syntactic analog of the par statement, but since it is an operator,

" retinue-expression

has a type and a value. On Dad02, the" operator can cause loss of precision when communicating Int
and double values from Dado PEs to the host.

3.5 Seq statement
A seq statement,

seq director-statement

embedded in a par statement causes the directing processor, rather than its retinue, to execute
director-statement exactly once, provided that the evaluating retinue for the code containing the seq
statement is nonempty.

3.6 I" operator
The !" (sequentia~ unary operator is the expression analog of the seq statement, but since it is an

operator,

! 1\ expression

has a type and a value. The following example demonstrates how to use the values returned by a
function that returns a retinue-tuple:

par

5

/* f returns a retinue-tuple of int */

/* che directing PS calls f, which */
/* returns a value in each */
/* evaluating retinue PE */

A variation on the previous fragment brings up two interesting points about IIc:

par (
int Af(); /* f returns a retinue-tuple of int */

f();

/* the directing PE calls f */
/* return values are discarded */
/* each evaluating retinue PE calls f */
/* return values are discarded */

First, functions in IIc, unlike storage, are accessible in any PE; the declaration of f makes f callable in the
directing PE as well as its retinue. Second, this accessibility makes it impossible for the IIc compiler to

decide which PEs execute code without the help of the I" and" operators.

3.7 With statement
The with statement, with syntax

with (retinue-expression) self-statement

restricts the evaluating retinue for self-statement 10 the set of PEs where retinue-expression is true.
Notice that self-statement is self code, not retinue code. This statement changes the director's evaluating
retinue, but only the directing PE evaluates self-statement. Thus these statements set up the evaluating
retinue. One can set up the evaluating retinue and activate it at the same time with the IIc statement

with retinue-expression par retinue-statement

which is equivalent to

par If (retinue-expression) retinue-statement

3.8 :: operator
The :: (with) operator is the expression analogue of the with statement:

self-expression :: retinue-expression

The :: operator modifies a processor's evaluating set during the evaluation of an expression. As with the
with statement, the code so modified is self code, not retinue code, although typically it contains
embedded retinue code. The:: operator is useful in syntactic contexts requiring an expression instead of

a statement. It is also useful in modifying the evaluating retinue a function inherits, since evaluating
retinues are preserved across function calls.

3.9 ? operator
The IIc ? select unary operator singles out one processor from the evaluating retinue. The operand of

the? operator is retinue code, and it returns a value in each evaluating PE in the retinue: 1 in one PE.
and 0 in the others. The? operator is useful for arbitrarily selecting a single PE from a set satisfying
some criterion. It also provides the only convenient means in IIc for iterating over a set of data: see
[2] for some programs that iterate over sets of PEs.

6

3.10 Reduction operators
Reduction operators in IIc use a commutative, associative binary operator to combine a set of values in

the evaluating retinue to produce a single value in the retinue's directing PE. See [3] for a list of Ilc's
built-in reduction operators, and [2] for several programs that use them. User-defined reduction operators

are not currently implemented, but will be soon.

3.11 Local and non local functions and function calls
The IIc compiler can often produce substantially better code if it knows that functions called from

retinue code or from directing code do not invoke any parallel operations, or call functions that do.

For example. in the statement
par int i = f();

if f might invoke operations in its retinue. all PEs in the retinue must determine whether their children are
in the current evaluating retinue, and detach any children that are evaluating f. That is, PEs not in the

evaluating retinue join the retinue of the nearest ancestor that is. Since this is a relatively time-consuming
operation, and since most programs invoke hierarchical parallelism infrequently, the IIc compiler assumes

unless it knows otherwise that functions called from retinue code are strictly local. that is, communicate
with no other PE. One way the compiler can know that a function contains retinue code is for it to compile
the function. But since separate compilation is the norm in IIc, as in C, the language provides declaration
syntax (the non local keyword) to tell the compiler that a function is nonlocal, that is, may communicate
with other PEs. see [3] for a discussion of the syntax. The IIc compiler also has a switch that allows the

programmer to force the compiler to assume that all functions called from retinue code are not strictly
local.

Similarly, in the statement
par int i = !~f();

if f might invoke operations in its retinue. all retinue PEs must be prepared to accept instructions from the
PE executing f. Again, this is a time-consuming operation. The Ilc compiler assumes by default that
functions called in the directing PE may invoke parallel operations, since after all, the function containing
the call to the function does. The language provides declaration syntax (the local keyword) to tell the
compiler that a function is purely local,

4 Compiling and Linking
Once a program is written, the next step is to compile and link it. The lice command is a generalization

of the UNIX1 ce command. Lice preprocesses IIc code with the C preprocessor, translates the result into
C code for host and Dado PEs, and invokes host and Dado compilers. assemblers, and linkers to produce
assembly, object, and executable files. Lice accepts IIc (.lIe), C (.e), assembly (.s), object (.0), and archive

(.a) files for host or Dado PEs and translates, compiles. assembles. and links them as directed.

When lice processes an IIc file, it creates a pair of C files distinguished by their suffix: .e for the host
code and .cS1 for the Dado code, and at each subsequent processing stage. IIcc produces another pair of
files. LIce treats each such pair of files as a unit. By default, lice assumes that any file referred to on its

lUNIX is a trademark of AT&T Bell Laboratories

7

command line is an IIc source file. or a (host. Dado) pair of files. described in the table below. and referred

to by the host file name:

IIcc host Dado

C file.c file.c51

assembly file.s file.s51

object file.o file.051

archive file. a file.a51

executable file file.e51

Since IIcc treats each pair of files as a unit. the host file name can be used as a target in makefiles. It is
also possible to inject host-only or Dado-only C. assembly. Object. and archive files into the compilation

process.

Recall that functions. once declared explicitly or impliCitly. can be called in any PE. so conceptually at

least. each function must be compiled for both host and Dado. and loaded into each Dado PE. But it
would be wasteful to compile and load a function into Dado PEs that can be called only in the host. Since
a typical IIc program contains many such functions. lice assumes by default that any function in an IIc

source file should be compiled only for the host. and provides two C preprocessor directives to override

this assumption:
itpragma retinue
itpragma self

The #pragma retinue directive instructs lice to compile the next function only for Dado PEs; the two
directives together instruct lice to compile both for host and for Dado PEs. It is up to the programmer to

ensure that all functions called in host and Dado code actually get compiled and linked for host and Dado;
undefined functions produce link-time error messages.

The IIc translator converts an IIc function into two C functions. one for the directing PE and one for the
retinue PEs; the function in the directing PE controls the execution of the function in the retinue PEs by

broadcasting code addresses that the retinue PEs read and jump to. The function in the directing PE
retains its IIc name. and can be called from IIc. C. or assembly code. just as any C function can. The

function in the retinue PEs is effectively anonymous. and can be called only by the corresponding function
in the directing PE. Likewise. extern functions called from IIc code can be defined in IIc, C. or assembly
code. Thus. a function compiled only for Dado PEs (#pragma retinue) and containing no retinue code is
equivalent to the same function in a C file compiled only for Dado.

The translator converts a declaration of retinue-tuple storage of a type into a declaration in the retinue
of storage of that type. The storage retains its IIc name. and can be referred to in IIc. C, or assembly
code. Likewise. extern storage referred to in IIc code can be defined in IIc. C. or assembly code. Thus. a
global retinue-tuple object declared in an IIc file is equivalent to the same (non-retinue-tuple) object
declared in a C file compiled only for Dado.

LIce also has a compilation mode for IIc files that converts IIc code into host-only C code; except for

differences stemming from word sizes and data formats. this C code executes in the host exactly as the
original IIc code executes in the host attached to a 1-PE Dado machine. This mode makes it possible to

a

debug most of an IIc program using any debugger available on the host and without using a Dado
machine. Also, compiling for the host alone is much faster than for host and Dado, since IIcc does not
need to invoke the Dado C compiler, assembler, or linker.

5 Library Functions
Llcc automatically links every program with a library (/ibllc.a) containing useful IIc and C functions for

host and Dado PEs. Below are ANSI C declarations for these functions and a brief description of each.
int gprintf (char *format, ...);
int eprintf (char *format, ...);

Dado PEs have a connection to stdout and stderr in the host PE through gprlntfO and eprlntf(}. The
set of conversion specifications supported is (cdflsux).

int self ();
int parent();

Each PE (including the host) has a unique ID given by a breadth-first numbering starting with 0 in the
host. The self 0 function returns this number, while parentO returns the ID of a PEs parent (and returns 0
in the host).

void pmemcpy(char *~to, char *from, unsigned int length);

The pmemcpy function is a parallel memcpy. It copies length bytes from the directing PE to the
evaluating retinue PEs. Because the host and Dado machines typically have different word sizes and
data formats, calls to pmemcpy in the host should operate only on arrays of char.

char *~demand(char *name);

LIce produces a single Dado executable file that gets loaded into all Dado PEs. In some programs it may
be important to give different code to different PEs. The demand function provides run-time linking and
loading of Dado code. When passed the name of a Dado symbol such as a function name, demandO
searches a Dado object-code library built by the programmer and loads any new code required to resolve
the symbol reference into the evaluating PEs at an address returned locally by malloc. demand then
returns in each PE the symbol's address. In a typical application of demand, many functions are to be
distributed one or more per PE, and are to be called locally through a function pointer initialized to the
value returned by demand. It is up to the programmer to distribute the functions according to any
appropriate criteria. For technical reasons, the functions in the Dado object library must be C functions,
not IIc functions; that is, they must not contain any parallel constructs.

void in it timer(void);
void zero-timer(void);
void start timer (void) ;
unsigned long stop timer(void);
unsigned long read=timer(void);

Monitoring parallel programs is even more important than monitoring sequential programs, since the
major reason for writing them is execution speed, and since performance bottlenecks can be subtle and

difficult to detect. This set of functions provides a simple interface to a stopwatch-style timer that
measures time in microseconds. The resolution of the timer in Dado PEs is 1 microsecond, but on a
typical UNIX host it is 10 milliseconds. The timer must be set up with a one-time call to Inlt_tlmer; after
that it can be started with start_timer, reset with zero_timer, read with read_timer, or stopped and read
with stop_timer.

vo~d in~t clock{void);
vo~d zero-clock (void) ;
v~~d star~ clock{void);
u~signed lo~g stop clock(void);
u~signed long read::::clock (void) ;

9

This set of functions provides a second independent, functionally identical Ii mer.

6 Running a Program
Finally, after a program compiles and links successfully, it's time to run it. The /lcrun command runs an

IIc program. Command-line options specify which Dado machine to use, the number of Dado PEs to use

(it not the entire machine), and whether to run the communications protocol that allows messages sent by

Dado calls to gprlntfO and eprlntfO to reach the host.2 Llcrun assumes that if file is the name of the host

executable, file.e51 is the name of the Dado executable, and file.a51 is the name of the Dado object

library searched in calls to demand. L/crun loads the Dado executable into the specified number of PEs
and execs the host program. During program execution, the host communicates with the Dado PEs

across a standard interface. Run-time routines on the host perform format conversion on data sent to and

received from Dado.

2Not running this protocol causes each PE to discard any messages it generates.

10

I. Efficiency Considerations
A number of factors affect how fast an IIc program runs on Dad02, and how efficiently it uses the

available processing power.

Although IIc has synchronous semantics, the Dad02 implementation provides asynchronous
computation and synchronous communication. Any synchronization reduces an IIc program's efficiency,
since the slowest PE holds back all the others, and because synchronization is effected through global
communication, which itself takes time. Each IIc operator that moves data between PEs enforced a
synchronization, since the entire retinue, not just the evaluating retinue, must participate in the
communication that implements the operator. Synchronization by Ilc operators is most pernicious in
flow-of-control constructs (If and switch) in retinue code. If the various branches contain only local code,
they can be executed by different PEs in parallel, but if they contain nonlocal function calls or IIc
operators, the branches must be executed sequentially, as described in [31. Looping constructs (while,
for, and do) that contain non local code force a synchronization at each loop iteration.

Certain IIc operations are well supported by the Dad02 hardware, while others are not. The compiler
uses Dad02 110 chip communication to implement the I" and" operators, so these are quite efficient: the
I/O chip can move data upward or downward in Dado at about 50 kilobyteslsecond with no startup cost to
slow down small transfers; the transfer rate is independent of the number of Dad02 PEs participating in
the communication. The? operator and the reduction operators mini, maxI, III, and &&1 are
implemented with 110 chip communication, so these too are fast, but the other reduction operators, +1, *1,
1&, &1, and "I, use processor-port communication, which takes time proportional to the number of levels in
the director's retinue.

Moving a struct as a unit is faster than communicating each component separately. Packaging an
array in a struct lets the compiler generate more efficient code to move the array.

The compiler and runtime library handle nonlocal function calls inside retinue code (hierarchical
parallelism) as well as they can, given the language definition and the constraints of the Dad02
architecture, but in retinue code, a nonlocal function call is much more expensive than a local one. At the
very leas!, a nonlocal function call is a synchronization point, while a local one is not. Careful use of the
local and nonlocal keywords can minimize the synchronization and communication overhead.

Finally, the communications protocol that allows messages sent by Dado calls to prlntfO and eprlntfO
to reach the host adds time proportional to the number of levels in the Dado machine and to the total
message length to each host-Dado communication.

{1]

{2]

{3]

{4]

{5]

11

References

Mills, R. C., Radouch , Z .. and Maguire Jr., G. Q.
A New Kernel for the DAD02 Parallel Computer.
Technical Report, Department of Computer Science, Columbia University , June, 1987.

Mills, R. C.
A Tutoria l Introduction to lie.
Technical Report , Department of Computer Science, Columbia University , 1989.

Mills, R.C.
Ue Reference Manual.
Technical Report , Department of Computer Science, Columbia University, 1989.

Mills, R. C.
The lie Parallel Language and its Implementation on DAD02.
Technical Report, Department 01 Computer Science, Columbia University, 1989.

Stolfo, S. J., and Miranker, D. P.
The DADO Production System Machine.
Journal of Parallel and Distributed Computing 3(2):269-296, 1986.

