
A Critique of the
IIc Parallel Language
and Some Solutions

RusseU C. Mills

Columbia University
Computer Science Department

17 May 1990

LLlc..S.-4so-lS~
Abstract

LIe is an extension of C thaI has been implemented on the Dado2 machine at Columbia university. In an
lie program, a single controlling processor invokes operations in parallel in subsets of a sel of attached
processors , which themselves can invoke parallel operations in remaining processors. lie allocates one
elemenl 01 a parallel object per physical processor. Removing this restriction allows programs to use
parallel vectors of arbitrary size without refe rence to the number 01 processors in the machine. A program
in the resulting language, mpc. contains a single main process. Each mpc process can create sets of
attached processes stat ically or dynamically by declaring arrays of process type, and can invoke
operations in parallel in these processes. Mpc retains much of IIc's power while adding generality, clarity,
and portability.

Copyright Cl 1990 Russell C. Mills and The Trustees of Columbia

University in the City of New Vorl< . All rights reserved .

This research was conducted as part of the DADO project . 1\ was supported in part by the New Vort<.
State Science and Technology Foundation NVSSTF CAT(88)·5 and by a grant from Hewlett·Packard.
The author is an AT&T Graduate Fellow.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161439436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

1 Introduction
The IIc language [1] is an extension of C that has been implemented on the Dad02 parallel computer at

Columbia university. In an IIc program, a single controlling processor invokes operations in parallel in
subsets of a set of attached processors, which themselves can invoke parallel operations in remaining
processors. This paper pOints out some of the shortcomings of IIc, both as a system-level and as a more
general-purpose parallel programming language, and proposes a new language, mpc, that addresses
these problems, while retaining most of the features and power of IIc.

L1c allocates one element of a parallel object per physical processor. Removing this restriction allows
programs to use parallel vectors of arbitrary size without reference to the number of processors in the
machine. A program in the resulting language, mpc, contains a single main process. Each mpc process
can create sets of attached processes statically or dynamically by declaring arrays of process type, and
can invoke operations in parallel in these processes. The new language adds to the capabilities of IIc the
explicit creation of parallel objects of various sizes and shapes, and hierarchical parallelism created by

declarations rather than the runtime environment.

2 Critique of IIc
As a system-level parallel language, IIc has many strong points: it has simple, powerful constructs,

provides deterministic execution, raises no artificial barriers between sequential and parallel code, does
not require the programmer to write message-passing code, and provides full and efficient use of the
Dado machine. Nevertheless, IIc has a number of problems.

One set of problems stems from the requirement that each processor contain a single element of each
parallel object (retinue-tuple in IIc terminology). with the conseqeuent impossibility of specifying the
cardinality of a retinue-tuple. Thus a program text does not express the complete meaning of the
program, and it is difficult to reason about an lie program. Another consequence is that oversized
problems--those for which the target machine does not have a processor for each data element in the
problem--do not fit well into IIc. A programmer can create retinue-tuples of arrays, but must iterate over
the elements of the arrays explicitly. Thus iteration over the data elements of an oversized problem must
contain two levels of iteration, an outer level iterating over the processors in the machine, and an in one
iterating over the data in a processor. Similarly, parallel operations on these data elements must contain
a level of iteration and a level of parallel execution. Furthermore, it is impossible to dimension arrays
properly in each processor without knowing how many processors the target machine contains. Worse,
while it is not difficult to calculate the number of processors in a given processor's retinue (set of attached
descendant processors) -- +/1 ::all does it -- +/1 is not a constant expression, and so cannot be used in
array bounds. Thus a program must use dynamic storage allocation, or the programmer, not just the
compiler, must know how many processors are in the target machine.

A similar set of problems stems from the dynamic calculation of a processor's retinue. The number of
processors controlling subsidiary parallel operations is determined by the number of processors in the
parallel machine, the partial ordering on the set of processors, and each processor's data. Again, a
program's text does not express the complete meaning of the program. A programmer wanting to have,
say, 16 computations in parallel, each controlling its own parallel computation, must explicitly select which
16 processors should execute those computations. On Dad02, a programmer typically uses the library
function self 0 to select a level of the tree.

2

While the single-element-per-processor restriction and the data-dependency of hierarchical parallelism

create problems for the IIc programmer, they do provide an advantage in the form of potential efficiency at
the expense of program elegance and portability. lIc gives the programmer complete control of the
placement of data and independently parallel tasks. A programmer can distribute subtasks in order to
maximize effective parallelism, and for oversized problems, can assign data to selected processors in

order to balance the processing load.

A further problem arises because retinue-tuples are not arrays, so the language does not allow a
program to iterate over the elements of a retinue-tuple with array subscripts or pointers. It is in fact
possible to iterate over the elements of a retinue-tuple, but the code required to do so is clumsy:

{
int -not done = TRUE;

while (I I/not done) (
with (?not done)

user code;
not done FALSE;

lIc suffers from a number of other problems as well:

• Although IIc is suitable for hierarchically parallelizable computations, the language does not
express any notion of hierarchy in its data declarations. Thus there are no retinue-tuples of
retinue-tuples.

• One can legally communicate a pointer using I" and /, and IIc allows the communicated
pointer to be dereferenced, but in general, dereferencing a communicated pointer is
meaningless. If p is a pointer, the types of p and lAp should be different, and lAp should point
to the processor where .p resides, as well as the address within that processor. The problem
of communicating pointers is related to the difficulties in iterating through the elements of a
retinue-tuple.

• lIc makes no provision for shared memory. In fact, the design of the language forbids it,
since pointers cannot point to objects in other processors. While shared memory cannot be
implemented on Dado, a richer language might offer a shared-memory construct consistent
in spirit with the language subset implementable on Dado.

• Since the IIc compiler cannot know how a program decomposes hierarchically, it cannot
create different executable images for different processors. All Dado processors must
receive all distributed code. Since memory at each PE is limited, and since Dado has no
virtual memory, it is wasteful and limiting not to produce different executable images for
processors that execute different pieces of code.

3 Mpc
This section proposes a new language, named mpc (nultiply parallel C), which retains most of the

features of IIc, and which solves the problems described in the previous section. In mpc, objects to be
operated on in parallel are not tied to specific processors. By removing the one-element-per-processor
restriction, mpc allows programs to use parallel vectors of arbitrary size without reference to the number
of processors in the machine. An mpc program contains a single principal process, created when the
program begins executing. Each mpc process can create sets of attached processes statically or

3

dynamically, and can invoke operations in parallel in these processes. A set of processes is created
simply by a declaration of an array of objects of process type, and has the same lifetime as an ordinary
object: for a local declaration, the block in which it is declared, and, for a static or global declaration, the

duration of the program. Since process sets are created by declarations rather than the interaction of
data with the execution environment, mpc programs are clearer and more portable than IIc programs.

The design of mpc owes much to C' for the Connection Machine [2], although mpc is not an extension
of C·. Mpc retains much of the syntax and flavor of IIc. There follows below a brief description of mpc
syntax and semantics where mpc and IIc differ. For an example of mpc code, see Appendix I.

3.1 Processes
An mpc program consists of a number of processes. Each process is created by a declaration of a

process object. A process type is akin to a C++ class, and is declared much like a class, except that
separate statements can declare different components of a process type. A process declaration with a
process tag (like a struct or union tag in C) declares the name of the process type; the process tag
becomes a typedef name, and can be used in further declarations. Later declarations of pieces of the
process type use only the process tag. Names of process types obey the usual C scoping rules, so it is
possible to redeclare a process tag in an inner block, in which case it becomes the name of a new

process type.

As in C++, process types have member functions, which are declared with C++ syntax. Functions
belonging to no process type implicitly belong to the (unnamed) type of the principal process, of which
there is but a single instance, namely the principal process.

A declaration of part of a process type can also declare objects of process type; the syntax is identical
to that used for declaring objects of struct or union types. A declaration of a process or of an array of
processes creates a number of processes of that type. A set of processes created by a single declaration
is called a process set, and is the domain of parallelism in mpc.

An IIc program with only a single level of parallel operations corresponds roughly to an mpc program
with a single named process type and a single array of processes, one for each processor in the principal
processor's retinue.

3.2 Parallel Code
Parallel operations over a process set in mpc are invoked with the the par statement together with the

name of a process set. Thus if pset is the name of a process set,

par (pset) parallel-statement

causes the parallel execution of parallel-statement in all processes in pset.

Mpc allows a programmer to make local declarations of parallel objects over process sets, while it

requires global declarations of parallel objects to be over process types. Why the distinction? Because a
local declaration of a parallel object should be equivalent to a local declaration of a sequential object
within a par statement, which act over process sets. Furthermore, a local declaration of a parallel object
effectively invokes a parallel operation, namely the allocation of stack space for the object, while a global
declaration of a parallel object causes the compiler to set aside space for that object in the data space of
each instance of the process.

4

Mpc provides Ilc's set of reduction operators, but the mpc program must specify the domain of

application of the operator:

reduction-operator process-set-name. parallel-expression

3.3 Parallel Arguments and Return Values
Mpc functions can have parallel arguments and return parallel values, as can IIc functions. The

declaration syntax required for parallel arguments and return values is more complicated in mpc than in
IIc, because a function may be called from different places with different process sets. Here is an

example:
int (p pset[]) .f(int); pset is an array of

process type p
f is a

3.4 Addressability

function of
int

returning
pset of

int

When one process refers to the value of a pointer in another process, the resulting pointer has as part
of its value the location of the second process, as well as the address of the object within that process. In
analogy with C++, which gives a pOinter to a class member a type containing the member's class, a
communicated pointer has as part of its type the process type pointed to. This convention makes objects

within a process set addressable from the parent process, thus making it possible to iterate easily through
the elements of a parallel object. As a special case, addressable processes make shared memory
possible, provided the communication network of the machine is sufficiently highly connected.

3.5 An Implementation Scheme for Dado
Not all of mpc can be implemented efficiently on Dado, since on a tree-structured machine, general

pointers between processors cannot be handled well. However, with some restrictions on inter-process
pointers, which would still allow a process to iterate through process sets it creates, it should be possible
to implement most of mpc.

The translation scheme envisioned for mpc on Dado does not assume an infinite supply of virtual
processors supported by hardware. Instead, it maps a number of processes to each physical processor
and converts parallel code into loops over the processes assigned to a processor. Provided that the
number of processes assigned to each processor is fairly large, this should provide a measure of load
balancing. Furthermore, the mpc compiler will be able to create different executable programs for

different processors, to the extent that the pattern of process creation is statically determined. This will
save precious memory in a massively parallel MIMD machine.

4 Conclusion
This paper points out some of the shortcomings of IIc, both as a system-level and as a more general

purpose parallel programming language, and proposes a new language, mpc, that addresses these
problems, while retaining most of the features and power of IIc. The new language adds to the
capabilities of IIc

~ . ~--'. ,.

5

• the explicit creation of parallel objects of various sizes and shapes,

• hierarchical parallelism created by declarations rather than the runtime environment,

• the capability to iterate through elements of parallel objects. even on a limited machine like
Dado,

• and general interprocess pointers on a parallel machine with a more complete
interconnection network.

6

I. An Example in lie and mpe
This section presents a simple but illustrative example coded in IIc and in mpc. Each program

computes the minimum of a set of maxima of a set of integers. First is the IIc code.
static int "i;

int main(int argc, char *argv(J)

initialize () ;
with (id() >= 16 && id() < 32) {

printf ("min max %d\n", min/maximum ()) ;

return (0);

int ("maximum) ()

return (max/i);

In contrast, the mpc code is more transparent:
process q {

int i;
} ;

process p (
int maximum () ;
q qset [16J ;

} pset[16];

main(int argc, char *argv[J)
{

initialize();
printf("min max %d\n", min/pset.(maximum(»);

int p: : maximum ()

return (max/qset. (i»;

7

References

[1] Mills, R. C.
The IIc Parallel Language and its Implementation on DAD02.
Technical Report, Department of Computer Science, Columbia University, 1989.

[2] Rose, J. R., and Steele Jr., G. L.
C'; An Extended C Language for Data Parallel Programming.
In Second International Conference on Supercomputing, pages 2-16. International

Supercomputing Institute, Inc., May, 1987.

--------------------------------------~.~ ..

