
Testing
Reliable Distributed Applications

Through Simulated Events

Travis L. Winfrey and Gail E. Kaiser

Columbia University
Department of Compu ter Science

New York, NY 10027

CUCS-427-89

April 7. 1989

Abstract

There are many distributed applications that Incorporate application-specific reliability
algorithms which operate on top of general purpose networking. operating system and
programming language facilities. We present a framework for application-level
reliability testing suitable for a wide range of distributed applications, and desCribe
how we've applied it to one particular application, Mercury, a distributed, multi-user
programm.t.ng environment.

Copyright ~ 1989

Winfrey is supported in part by the Center for Advanced Technology. Kaiser is sup
ported by National Science Foundation grants CCR-8858029 and CCR-8802741. by
grants from AT&T. DEC. IBM, Siemens. Sun and Xerox. by the Center for Advanced
Teclmology and by the Center for Telecommunications Research.

Keywords: dlatrlbuted appUcationa, test eeneration, .lmuJated load

Table of Contents
1. Introduction
2. Testinl through Simulating Events

2.1. Overview of Testing Methodology
2.2. Simulation of Events
2.3. Scripts

2.3.1. Events
2.3.2. Appllcation-Independent Predicates
2.3.3. Action-independent Actions

3. A Specific Appllcation
3.1. Appllcation-Specific Conditions
3.2. Appllcation-Specific Actions
3.3. Pragmatics of Script Execution

4. Script Generation
4.1. Associating Properties with Processes
4.2. Specifying Timing of the Generated Scripts
4.3. Specifying Other Parameters to SG

5. Conclusions
Acknowledgements
References

1
3
3
6
7

10
11
14
16
17
18
20
21
21
22
23
23
26
26

1

1. Introduction

We are interested in devising methodologies for testing reliable distributed appUca
tions. The method we describe here is appUcable in the testing and debugging of es
sentially any message-passing application. The test data sets may be written by an
implementor or generated from the protocols themselves. Because these test data
sets. whether generated or hand-written. are not necessarily tied to any particular im
plementation. they may be used to aid in the debugging of a program as it gradually
evolves towards a working version. They may also be used in comparing separately
designed. competing implementations of the same algorithm. Finally. this method is
well-suited for performance testing. both under nonnal conditions and under abnor
mal conditions which may be difficult to artifiCially create during development.

The need for standardized testing is well-known among designers of protocols and dis
tributed systems. but general methods are currently unknown [Sartkaya 88. Haban
87]. Testing reliable. distributed applications is necessary and important - and more
difficult than testing ordinary sequential applications. 'Ibis is true for a variety of
reasons:

• The implementation of an algorithm is not the algOrithm itself. A proven
correct algorithm of any nature will not necessar1l,.r be coded well or ac
curately [Beizer 83. Myers 79]. Also. the raison d'etre of reliable systems
is coping with failure. which may be difficult or impossible to create in
such a way as to exercise a suffiCient number of paths through the code.
Code which is intended to provide reasonable responses on failure may
not be tested at all. simply because the events for which they are written
do not frequently happen .

• An application may satisfy its specifications without being usable in a
real-world environment. It is therefore necessary to test applications un
der all possible load conditions. However. it may not be feaSible to create
a high load with an application through its ordinary use. This difficulty
became apparent in our work on distributed programming environments.
It was not possible to conduct experiments with large numbers of users.
and single users could not create a high load by themselves. S1milarly. it
may be difficult or impossible to show a program's behavior during
system-wide or net-wide degradatlon .

• Simplifying assumptions are present in many proofs of reliable
algorithms [Halpern 86. Wittle 871. These assumptions may invalidate an
implementatlon's correctness or utility in real world situations. Here is a
partial Uat of common assumptions:

• lnsigrl1flcant processing time

• insignUlcant transmisSion time

• unlimited storage. e.g .. ingoing or outgoing message queues. num
ber and size of messages

• no lost messages

• no corrupted messages

2

• available services. e.g .. synchronous send and receive
These assumptions, implicit or explicit, may provide useful simplifications
while solving the problem. but programs will always be run in Situations
for which they are explicitly not designed: this Is in the nature of pro
gramming. It Is important to find the boundaries of failure during the
construction of such applications.

Ultimately. however. the most important design assumption is that the software itself
will be reliable while the hardware will be unreliable. While this may have previously
been tIue. the balance has shifted so that hardware is now Significantly more reliable
than software. Software failures are frequently more evident than hardware failures.
with an error rate as high as one bug per hundred statements [Beizer 83].

In summary. an untested implementation of a reliable distributed application is not
reliable. no matter what the underlying algorithms are. An implementation which has
been tested. even in an ad hoc fashion. will be considerably more reliable. In this
paper. we describe a framework for the testing of application-level facilities. and a
method of generating test sets from abstract descriptions of desired testing situations.
We have sought to identify all failure modes common to message-passing distrtbuted
applications. and create a system that can simulate them. We emphasize that we are
not simulating systems, we are simulating events which can occur in the environment
of such a system. nus simulation may be easUy achieved in message-passing sys
tems. and it offers a significant validity check of a distributed algorithm. Briefly, the
techniques devised here will cause all possible state tranSitions to occur in a flnite
state machine representing a process, thus exercising all code directly related to a dis
tributed algorithm. This testing cannot. in general. find all errors present in a
program. However, it is reasonable to claim that a complete test of a distributed
program will include data that will also cause all state transitions, in addition to other
tests. and that this method can find a large class of these errors. Finally, although
some of this work is relevant. we do not address testing layered architecture protocols.
such as the ISO-OSI reference model [Zimmerman 80. Rudin 87]. nus paper is
restricted to a discussion of testing applications without reference to other layers in a
network architecture.

This paper is structured as follows. In section 2. we define our testing methodology as
the simulation of events presented by an environment to a program. Later. we refine
the definition of events. and show how they may be effectively simulated in an
application-independent manner. We present scripts as a rule-based method of
dynamically changlng a process' responses to its environment, effectively testing other
communicating processes. Section 3 discusses the use of application-specific scripts
for testing the Mercury dlstrtbuted programming environment [Kaiser 87a].

By themselves, scripts may be used to validate an application under a specific range of
conditions. They may be also be used to create certain conditions while debugging an
application. In both cases. the scripts would be written by the programmer. However.
it is useful to consider the automatic generation of scripts. Our prel1.m1nary work has
been With generating scripts based on abstract specifications of testing situations.
This is discussed in detail in section 4.

3

2. Testing through Simulating Events

2.1. Overview of Testing Methodology

Before diSCUSSing our testing methodology directly. it is profitable to consider the
external view of a perfectly-tested distrtbuted application. Given that programs are
designed with a number of constraints. a well-tested application will be run success
fully over all possible combinations of the constraints. Here are some likely con
straints for a reliable distributed program:

• host failure • data-duplication rate

• network partition • message-processing time

• message-sending rate • message-transmission time

• message-missing rate • data size

• data-corruption rate • queue size

More precisely. since there will be limits in the real world on each of these parameters.
any application will be designed to be correct within a certain range for each
parameter. In examining the above list. it is clear that these parameters are effectively
input data for a distributed program. in the same manner that a sine function takes
floating-point variables as its input data. In analogy with functional testing [Howden
871. to test a distributed program properly. it is necessary to vary these parameters.

However. because these parameters reflect external events. many of them are difficult
to vary at all. while others prove difficult to vary with any precision. For instance. It
may not be possible to crash and reboot a machine within a certain intezval. which
may in tum cause certain code to go unexecuted during the entire life-cycle of a
program. Methods as crude as deliberately crashing an entire machine frequently
have other real-world repercussions. such as the sudden tennination by others of this
line of experiments. Less obtrusive methods. such as deliberately crashing an in
dividual process. are not always effective. because it is difficult to replicate the exact
tlming of the event during repeated debugging runs.

In addition to expertmental difficulties. testing should provide adequate coverage of
the program with respect to selected criteria [Weyuker 88]. Overall. there are two or
thogonal selection crtter1a for test data sets [Howden 87]: they may be chosen in order
to test the functionality of a program. according to its specifications. or they may be
chosen to test the Implementation of a program. based on the examination of its
source code.

We propose a method of functionally testing a program in terms of its underlying
Finite-State Machine (FSM) structure. Such methods of testing have been explored in
theory and practice by other researchers [Chow 78. Bauer 79]. and they show par
ticular promise for testing distributed algorithms. which are frequently implemented
at some level in terms of FSMs. or in rule-based structures which map directly to

4

FSMs [West 78. Gouda 84). Testing coverage of all paths through an FSM's operations
will provide a increased level of confidence in an application's correctness. while not
completely testing the application itself. Advantages and cUsadvantages of this method
of testing will be discussed in more detalilater in this section.

Message-passing applications are naturally suited for this type of debugging. for
reasons that we will explain. In a modular system. all ingoing and outgoing messages
will pass through a few - frequently only two. send and receive - routines which
handle their processing. A running process will undergo various changes in state be
cause of information passed through these portals. Other internal changes may oc
cur. such as a state change when a timer expires. Allowing these state changes is not
an exception. but part of the proper testing of the FSM model. Because the infor
mation handled by a cUstributed program will pass through these few choke-points. it
becomes an easy matter to control what a particular process sends and receives. and
hence. what it sees and what other processes in communication with it see. l For ex
ample. a process which neither sends nor receives messages may appear to be non
functioning to any process attempting to communicate with it. This is not generally
true: Side-effects are possIble. such as writing a file on a shared cUsk, which may in
validate the appearance of being down. "Pure" programs that communicate only by
means of a well-defined protocol will be the easiest to deceive by changing the various
send and receive routines.

According to the previous discussIon. we may instrument a program for testing simply
by changing the .end and receive prtmitlves into user-level interfaces. and by prov1d
ing a means of controlling the behavior of these interfaces. In other words. the
primary intent of this method of testing is to change the functionality of these two
routines so that their failure is under the tester's control. Although simply imple
mented. this technique is powerful enough to allow complete testing of the part of a
program's control structure devoted to implementing a protocol. Because transitions
in the finite-state machine underlying an algorithm will only occur either when a mes
sage 15 sent or received or' when a timeout occurs. all possible transitions in the FSM
can be forced by controlling the .end and receive operations and by allowing opera
tions to be performed at arbitrary times. While not conclusive. this permits testing
that strongly validates the protocol-related code empirically.

This 15 a novd approach. one which enables us to break away from applicatlon
dependent methods of testing. We're not generating test sets as they are commonly
understood. No input data in the ordinary sense will necessarily be given to any

1 We assume for the duration of thia discussion that there are the only two routines. eencl and recelTe.
We are only concerning ourselves with the sending and receMng functionality. not with any part1cular
fonn In which they may appear.

process which is being tested. 2 Instead. test sets in the form of a script which in
dicates which actions will succeed or fail. create a "crippling harness" which the
program must wear during its ordinary processing. Like blinders on a horse. the test
sets force a process to see only what it has been told to see.

Because message-passing processes are In communication with each other. what one
process does or does not do affects other processes' actions. By obtaining control over
how one process sends and receives messages. one gains implicit control over the
control-flow in all other processes communicating with it. Importantly. these other
processes need not be instrumented for testing. Any operational changes which may
be accidently introduced by the changes in send and receive in one process will not
be present in another process. which responds to messages normally.

Clearly. this method offers a number of advantages to the tester or debugger. To sum
marize:

• It uses actual implemented code. but sidesteps problems of modifying
functionality. Even when only one process is instrumented for debug
ging. Significant testing can still be performed.

• Changes are made at the application level. not at the kernel or hardware
level.

• It applies to any message-passing application.

• Arbitrary combinations of event sequences are repeatable. aiding debug
ging as well as validation. "Events" are defined later in this paper.

• Test sets may be generated from protocol specifications. providing higher
level validation of an algorithm.

• Test sets may be used with different implementations. or different ver
sions of the same implementation.

A number of dlsadvantag~ are inherent in this method as well.
• When a protocol is not based on Finite-State Machines. the degree to

which this method can perform useful testing is dUllcult to detenn1ne. It
should be stressed again that we do not claim that this method will flush
out most. or even many. errors associated with a program. We do claim
that a useful amount of testing may be performed by associating given
protocols with a script that tests their responses under various con-
ditions.

• Scripta wbJch do not create infonnation are significantly less useful than
those that do. Consider the case of a server watting for a client to ask it
something. If the server has been instrumented for testing. it will have to
watt. possibly indefinitely. for the client to initiate transactions.

2None of our application-independent operations actually create Information (i.e .. &end messages). We
provide several application-speclfic methods of creating information. of COUJ'8e. Currently. all the
application-independent operations represent dllTerent ways blocking infonnation transfer. More infor-
mation on this may be found in Section 3.

6

• Many of the benefits from using this method derive from an implicit as
sumption of a reliable network. For example. in Figure 2-3. the script for
process B will only cause the transitions in processes A and B when all
messages are correctly received. In test T3. if a Single II message from
process A isn't sent to process B because of a real network failure. the en
tire transaction will fail when it should have succeeded. Benchmarking
systems encounter the same types of problems in attempting to assure
useful results. However. the testing or benchmarking of non-reliable sys
tems does not need to consider all possible system failures. while any
such failure will affect the testing of a reliable system. It appears that
this limitation is inherent in testing reliable distributed systems. For
well-defined results. tests must either be repeated a suffiCient number of
times. or these tests must be performed with reliable message-passing.

• Our preliminary work has not uncovered problems with the granularity of
event scheduling. detailed in later sections. However. our experience has
been with relatively slow rates of message passing Oess than 500
messages/sec. much less than 1 Kbyte/message). We are cautious about
the utility of this method for applications that require very high rates of
data transfer.

• It may not be possible for application developers to change the semantics
of the send or receive routines at the application level for all processes
because of system- or language-specific reasons. We impliCitly under
stand send and receive as routines called by a process. ignoring the pos
sibility of changing system-calls in an operating system's kernel. or of
changing message-passing semantics in a language-kernel.

2.2. Slmulation of Events

From the viewpoint of any distributed system. events occur during the execution of the
programs that make up this environment. Events may be internal or externaL An in
ternal event might be an attempt to send a message to another process: an external
event would be the unnoticed crash of that same process. Clearly. external events
may occur wi thou t any notification of interested parties. Figure 2- 1 shows a time
frame with a series of events occurring while two message-paSSing processes on hosts
A and 8 attempt to communicate.

This sequence of events is interesting only in that it Is a specific instance of a much
larger class of events that any distributed system Is intended to handle. From a test
ing and performance evaluation point of view. it is useful to know if a particular dis
tributed system can. in fact. correctly deal with this and s1rn1lar groupings of events.
Accordingly. It is useful to be able to cause particular groupings of events. At the in
itial. debugging stage of development. these events may be artificially created on a
coarse scale. e.g.. processes can be stopped and started by the programmer. Quickly.
however. it becomes necessary to acquire a .finer-grain of control over the sequence
and nature of events.

Fine-grain control means that a testing system that induces events will need closer
timing to be able to reasonably exerdse all transition paths in the FSM. For example.

7

Key:
® is a message
®~B is a host sending a message to B
A~® is a host receiving a message from A
A- Is a host locally marked as down
A+ Is a host locally marked as up

A crashes A reboots

A- A~®

8 retries A marked down

t t+l

8is up

B~®B+

Alsup

Ftiure 2-1: One host crashes and reboots while another tries to send messages

manually starting. stopping. and restarting a particular process will causes processes
communicating with it to go through some changes. but this technique by itself can
not hope to test all possible states in the other processes.

Let us consider a simple example of one process forcing transitions in an another. In
figure 2-2. the transitions of a Finite-State Machine are shown as a directed acycUc
graph representing part of a two-part transaction. where unacknowledged messages
are re-sent up to three times before the transaction fails. Figure 2-3 shows 8 tests
which will force all possible transitions of the FSM in A when process B follows the
given script. Obviously. other real-world situations could arise - e.g .. corrupted. late.
or duplicate messages - which are not addressed in this example. although scripts
simulating these situati0n,s are possible. Also. no script for A is shown. yet A has
decided to send messages I} and 12 to B. A may have done so because of a driving
script. or because of other factors. e.g .. I} and 12 are generated directly by the appUca
tion.

2.3. Scripta

Scripts are the means of specifying when and how a process should alter the behavior
of its .end and recel'Ye pr1m1tives. As described here. scripts are a low-level com
mand language that a particular tester might use to create the desired behavior in the
program. While individual scripts may be written by hand. scripts may also be
produced by a Script Generator. SQ. as we will see in section 4.

Scripts are read by a portion of the application which we will call 8E. for Script
Engine. SE is conceptually one entity. but in practice. may be spread throughout all
modules that perfonn sending and receiving. It is useful to consider 8E as a separate
thread of control in a program. whether or not it is actually implemented that way.

Key:
I I' ~ are messages
AI' ~ are acknowledgements
S is a successful transaction
F is a failed transaction
T is a timeout

s

Ftiure 2-2: A tw~-part transaction. with up to three retries on failure

Scripts are stored in some internal fonnat. and executed as described below by SE.
Applications will read scripts at arbitrary Urnes. which mayor may not affect the
script's actions. Any necessary synchronization can be handled by the script. using
the predicates described later. The same script may be read by multiple instantiations
of the same process. All commands in a script can apply to all processes. or com
mands in a sc:r1pt may be l1mJted to a particular sets of processes.

Scripts cons18t of events. predicates. and actions. Scripts are parsed and stored as
events. Events (section 2.3.1) are pairs of predicates and actions. 3 SE sweeps
through the list of events. testing each one to see if it should run or not. Any number
of events may "fire." or be eligible to execute. at the same time. If this happens. order
ing on the execution of events is imposed by SE according to the given actions. as
described in later sections. Once a script is read and stored internally as events. all

~e descrtption of events resembles certain types of rule-based protocol spectficatlona [Mackert 87).
No use is currently made of this s1m1la.r1ty. but It does suggest later work.

9

Chanie in Key:
I I R is a received message
A1S is an acknowledgement sent

Test Process A Process B Process B Script

TO lIS' AIR' 12S ' ~R' S IIR' A Is· 12R· ~S <nothing>

Tl lIS' lIS' AIR' 12S' ~R' S IIR' A Is· 12R· ~S linore 1 mesaaae

1'2 lIS' lIS' lIS' AIR' 12S' ~R' S IIR' A ls• 12R· ~S linore 2 mesaaaes

1'3 lIS' lIS' lIS' lIS' AIR' 12S' ~R' S IIR' A Is · 12R· ~S linore 3 mesaaaes

T4 lIS' lIS' lIS' lIS' F <nothing> linore 4 mesaaae8

1'5 lIS' AIR' 12S' 12S' ~R' S IlR· A Is· 12R· ~s when 1 received, drop 1 msJ

T6 lIS- AIR' 12S' 12S' 12S' ~R' S IIR· A IS' 12R• ~s when 1 received, drop 2 agJs

17 I I S· Al R' 12S' 12S' 12S' 12S' ~R' S IIR' A Is· 12R• ~s when 1 received, drop 3 msJs

T8 lIS' AIR' 12S' 12S' 12S' 12S ' F <nothing> when 1 received, drop 4 msJ.

Figure 2-3: 8 different tests. the transitions. and the driving script

events will remain in a process. eligible for execution. until they are removed. Events
will be removed according to their predicates. Predicates (section 2.3.2) are objects
consisting of groups of conditions. each of which may test as true or false. according
to the current state of the system. For instance. a predicate may test the time of day.
or how many messages have been received from a certain host. Actions (section 2.3.3)
are objects which store pairs of uerbs and application-objects. which are objects in the
system being tested. such as a message queue. Actions are performed only when their
associated predicate is true.

Figure 2-4 is a sample script that describes the schedule of events for two machines.
It contains commands for both machines. each of which will parse and execute its own
commands. ignortng the others. Commands outside of a begin/end pair are always
executed. In thts case. no information 15 created by the sCript: it does not actually
cause any menages to be sent. These events are overlaid onto the normal processing
of the system. While writlng a script. it can be assumed that the applications on the
two machines w1l1 be given this script at more or less the same time. but scripts may
be written so that this assumption need not be true. e.g .. by waiting for a single mes
sage before doing anything. or by waiting for a certain time.

Scripts can be useful in many development situations when simultaneous work by
multiple developers could interfere with one another. Figure 2-5 shows an example
script. Nine workstations are identified by name and divided among three teams
(Hobbit. Orleans. and River). If all processes read this script upon startup. then each
group of machines will be partitioned 50 that they may only pass messages between

10

, basic.scr
, this .cript is executed at the same t~ by two
, proc..... on hosts qollum and frodo

t:imestaap ".xecuting basiC.Bcr" # executed on
qollum and frodo

beqin qollum
timestamp "qollum pretends to be flaky"

when massage
crash

when massaqe
boot

received 2 # after a couple of minute.
stop processinq

received 2 and + 0:00:10
wait 10 seconds
before returning
i every 100 messages

whenever (messaqes-received % 100) == 0
drop 1 messaqe * iqnore a sinqle message

end gollum

begin frodo
timestamp "frodo pretends to be slow"

when me.sag.. sent 5 i soon after starting up
set message-processing-delay 200us

I delay 200 millisec/me.sage

when me.sage. sent 25 , later, get even slower,
•• t me •• ag.-precessing-delay O.Ss

I always delaying 500u.

when mes.age •• ent 50 I after many mag., ran~y
set me •• age-precessing-delay 5. random

, take up to 5 seconds

.nd trodo

Fliure 2-4: Application-independent script causing two hosts to fall in different ways

themselves. Thus. a runaway process on machine Mojo will only distress members of
the Orleans team: it will not be able to contact any process on a machine belongtng to
the Hobbit or RIver team.

2.3.1. beau
Events are the entities described in a script. They consist of predicates and actions.
and are executed in a manner s1m1lar to rule-based systems. Events are kept in a
schedule list according to their predicates: they are stored in the order in which their
predicates are most likely to test true. If the predicate of the first event will become
true at a certain time. then SE will run next at that Ume in order to execute it.
However. if there are no predicates which are time-dependent. then SE will only wake
up when a message is sent or received. If a predicate contains a relative time whose
exact meaning cannot be detenn1ned, SE will simply run at regular intervals.

, partition. scr ,
11

, a debugging script to enable three programming team. to
, work on their communicating programs without adversely
, a~fectinq each other's efforts.

begin gollum, frodo, bilbo # hosts used by hobbit group
echo "hobbit group is partitioned from orleans , river group"
ignore mojo, iko, longhair
ignore yang-tze, congo, nile

end gollum, frodo, bilbo

begin mojo, iko, longhair , orleans group
echo "orleans group is partitioned from river , hobbit group"
ignore gollum, frodo, bilbo
ignore yang-tze, congo, nile

end mojo, iko, longhair

begin yang-tze, congo, nile , river group
echo "river group is partitioned from orleans' hobbit group"
ignore mojo, iko, longhair
ignore gollum, frodo, bilbo

end yang-tze, congo, nile

Ftaure 2-5: Application-independent script for program development

All events which can fire at a given time will do so. They will be sequentlally executed.
according to the ordering rules given for actions. Allowing all events to fire at one time
does not obviate the need for storing the events in the order in which they are most
likely to execute. because it is important to know when a predicate is likely to fire. in
order to m1nimize time granularity problems. Details are given in section 3.3.

2.3.2. AppUcation-Independent Predicates
Predicates are logical entities which are tested to be true or false. A predicate is com
posed of various conditions. All subcomponents of a particular predicate must be true
for the entire predicate to be true. A condition might test true after a certain amount
of time has passed. or if a certain host Is marked as up. A predicate composed of
other conditions might test true for all the time before the time that a host is marked
as up. or test true while a specific number of messages have been received. None of
the appl1cat1oll-lndependent conditions use any information obtainable from the con
tents of any I1'JeIsage. However. application-dependent conditions. section 3.1. may do
so.

Conditions for predicates are given in terms of time contexts surrounding conditions.
which are listed below. Figure 2-6 shows the relation of time contexts to simple predi
cates on a timel1ne.

When condition
When the condition becomes true. execute the associated action list. then
remove the event (the predicate/action pair).

12

Before condition
The associated action list is executed before the condition becomes tnJ.e.
The event is not removed until the condition becomes true. In other
words. while the condition is false. the associated action will be executed.

After condition
nus is the opposite of Before: it is not equivalent to When. its intuitive
meaning. The associated action list will be executed. after the time that
the condition becomes false. Note that an After predicate will not be
removed automatically. However. the clear action will remove all events.

While condition
This has a obvious meaning. Before the condition becomes true. nothing
happens. During the period that the condition is true. the associated ac
tion list is executed. When the condition becomes false. the event is
removed.

Whenever condition
Whenever is similar to while in that associated actions are executed
while the specified condition is true. However. when the condition is
false. the event is not removed. but instead becomes inactive. 11lis is
used for specifying repetitive actions which may be true and false at ar
bitrary times during execution. Whenever will be most useful with ex
pressions that change value many times during the course of execution.

condit:ion and condition
condition or condition
not condition
All of these boolean operators are interpreted normally. Predicate testing
stops when it is clear that an enUre predicate will be true or false.

J.When
~ Before -. ~ While. Whenever-. After

i Condition becomes false (27 Packets)
i Condition becomes true (26 Packets)

Ftiure 2.e: TImel1ne shOwing when Before. After. While. When. Whenever
are t:n.le for a given condition. such as "26 messages received"

Conditions may be thought of as simple predicates. They may be usefully dMded into
application-sped.ftc and application-dependent conditions. The fonner group describe
conditions which may become true for any distributed program which performs
message-passing. The latter group describes conditions specific to the APL program.
the application that motivated SE and SG. Conditions may be combined in any order
in a single predicate. so that many possIble meantrigs are achievable. e.g.. "If host A is
up. and we've received 3 messages from Host B. and U's ten minutes after we started
- execute the associated action."

13

Several application-independent predicates are described below. In concept and im
plementation. they are quite simple. yet powerful enough to describe a very large
range of situations because the conditions they test are common to all message
passing systems. Further. a condition such as Messages Rec~ived n permits a better
understanding of the current state of another process: while it may be difficult or im

possible to precisely determine the real-time of another process' actions. in many
situations. testing the number of packets sent to or received from a process can
uniquely determine a process' current condition within a subset of possible con
ditions.

In the following discussion. entity-list refers to a list of hostnames or process iden
tifiers. The exact fonnat of these names depends on the operating system. In general.
however. hosts may be given by their names. addresses. or the keywords any (more
than zero). one. some (more than one). all or none. Processes may be specified with
the same keywords. plus parent. Obviously. using OS-specific or site-specific names
with this command could make a script site-dependent. limiting its usefulness.
SG-generated scripts avoid this problem because SG contains a Map command
(section 4.1) to allow for the general renaming of hostnames and process identifiers.

Messages Received n
TI1is condition is true when exactly this many messages have come from
all possible sources since the last reboot. To use this condition in a com
parative sense. the when. while. etc .. commands are used. For example,
"when menages received 25" can be combined with these commands to
mean any of the following: "before we've received 25 messages." "as soon
as we've received 25 messages." "after we've received 25 messages but
before we've received 26 messages," and "after we've received at least 25
messages."

Message. Sent n
TI1is checks messages sent from this process as opposed to messages
received by it. The exact meaning of this condition may be problematic
with broadcast messages, because the predicate may be supposed to
determine the number of messages sent to a particular host or process.
The problem arises because when a process on machine A broadcasts a
message, it carmot know all places where the message 15 actually
received.

Up entity-list
True when a specUled group of hosts or processes are marked as up by
the current program. This condition does not actually attempt to check if
the host is up or the process is running, When testing this condition, no
reference is made to the number of messages sent from any host or
process, 'That is. a process is looked up in a table kept by the application
to see if it 15 still considered up by the appUca.tion. Up and Down will not
necessartly be lmplementable with these precise semantics for applica
tions which do not keep such a table.

Down entity-list
This condition is the reverse of the previous one.

14

Hosts hostUst
True when one or more hosts has satisfied all assocIated conditions such
as being up or down. or having sent or received a particular number of
messages. If this condition is not paired with any other. then it will only
check if the remote host appears to be up. For naming conventions with
this and the process predIcate. see the above discussion of entity-Usts.

Process entity-list
Process is similar to the Hosts command. It appUes to individual
processes which are running on the same host.

Time time TIlls condition becomes true when the specified time is greater than the
current time. It may be given as a relative time. which will be relative to
the time of parsing of the script which contained this command. The time
may be given down to the millisecond. although such precise granularity
may not be possible to achieve. The time may also include the date.

expression Expressions are any mathematical expressions involving constants. SE
variables. a number of artthmetic and logical operators. e.g .. +. -. %. ==.
1=. and parentheses. The following SE variables are representative. but
do not exhaust all possibilities. Other variables. such as data-corruption
rate. are also conceivable.

messages-received
The number of messages received since the last process
"reboot" (see the boot command in the next section).

messages-sent

Ume-up

The number of messages sent since the last reboot. In some
cases. this may represent the number of times the send
routine has been called. given the previously discussed
problems with broadcast messages.

The time. in microseconds. since the last reboot. TIlls vari
able is zero when the program beginS executing.

Ume-down The time. in microseconds. since the last cram action
(oescribed in the next section). TIlls variable Is zero until the
first crash.

2.3.3. AcUon-lDdependent AcUons
The action component of an event is perfonned when the associated predicate has
tested true. Actions are verbs: they will always change something in the system. Note
that iteration 18 not an action. but Is implicitly contained in the predicate system. with
While. When"er. and so forth. An action is only removed according to the rules for
its associated predicate. In the event that several events are read to be executed at
the same time. actions will be executed in the order given in the following list. chosen
to minimize conflicts between actions which might countermand each other. The or
dering is particularly important with the Clear command. because it affects when
other events execute.

15

The followtng application-independent actions are supported. Note that that all of
these actions block the passage of messages in some manner. None create infor
mation or cause messages to be sent. For actions that force messages to be sent. see
the application-specific actions. described in section 3.2.

Boot

Crash

The application appears to have rebooted. All relevant variables are
cleared. and any initialization (such as "online" broadcast messages) is
performed.

Boot is useful for synchronizing sCripts. as well as for simulating the
start of a process.

The application will read, but not respond to, all messages from all
sources. Other than SE's continued execution. no other processing will
take place. If the application would execute any processing on a nonnal
exit. e.g .. deleting temporary files. these actions will not take place. The
decision to read messages and discard them was based on operating sys
tem requirements: a certain number of unread messages would crash the
UNIX system we were using. Because messages are read without
response. this will create the appearance that the machine, not the ap
plication. is down. However. the application cannot control all infor
mation related to a host. In particular. the status of a particular host
may be obtainable from other methods. e.g., a shared me system. or the
ICMP protocol in the TCP lIP set of protocols [ICMP 811.

This command simulates total failure of an application. Remotely. the
application appears to have stopped running.

Iinore entity-list
All messages received from the specified hosts will be read and discarded.
The list may not be empty.

This Is dUTerent from Crash. as it simulates network partition rather than
an application failure. It Is used to implement the Partition command of
SG (Section 4. 1). and sample usages of both are shown In the figures 4-1
and 4-2. Ipore All has the same effect as Crash.

Recall entity-list
This is the opposite of IiDore. allowing normal processing of messages
from the specUled hosts. Recall is used to implement the ReUable com
mand in SO (Section 4.1).

Dropn Do not process the next n incoming messages. This simulates unreliable
net"NOrks.

For&et n Do not process the next n outgoing messages. The only distinction be
tween For&et and Drop will occur in systems with side effects. e.g .. up
dating a visual display. or altering a file on a shared disk.

SetlXl1iable

meuace-proceulna-delay
1111s variable may be set to a particular time value (in
milliseconds) to delay the processing of each message. or it
may indicate the modulus for a randomly-determined delay.
TIlat is, a random delay will occur each time before the
processing of the message. The delay will occur after the
message is read.

16

It is used to Simulate slow processing under a high load.
such as on an overburdened processor.

meuage-transmission-delay
As above. but the delay will occur before sending the mes
sage. TIlls variable Simulates transmission delay in the net
work. As with Drop and Forget. any differences between
this variable and message-transmission-delay will only be
apparent on systems with side effects.

Echo string The string is printed to the tenninal or to an output file. Scripts may use
this command to indicate errors or their current stage of execution.

Timestamp string
Like Echo. the string is printed to the tenninal or to an output file. The
time and date at the moment of execution is printed along with the string.

Abort Immediately halt the instrumented process. If possible. a core dump of
memory is saved.

Clear Clear is the only action which affects all other actions. All events are
removed from the event queue. effectively cancelling the execution of all
scripts running in the process.

3. A Specific AppUcation

Our work on testing was originally motivated by our work in distributed programming
environments. Here we deSCribe relevant details of the program environment before
cliscussing the preclicates and actions which apply only to this application. The
reliability component of the programming environment work is described in detail else
where [Kaiser 87b. Hseush 881.

In the Mercury programming environment. users write programs in Mercury-created
eclitors. Detailing all that 'these eclitors do would detract from the the purpose of this
paper. During the editing process. eclitors communicate with each other by passing
attributes about their programs through an attribute propagation layer. or APL. For
the purposes of this discussion. attributes consist of five parts: a sequence number. a
timestamp. a system name. a module name. and a data segment. Sequence numbers
and timestampe are used to determine the validity of a particular attribute. 1b.1s is
cliscussed in more detail below. There may be multiple systems. and multiple modules
in each system. Attributes store infonnation for each module in the data segment:
there is currently one attribute associated with each module. The data segment is
used only by the Mercury editor. it is not examined by the APL. Attrtbutes are repli
cated at each APL in an attribute cache. Hence. the APL behaves as a simple dis
tributed database.

Figure 3-1 displays the layering of the information structure. If the Mercury editor 2.
which is running on machine A creates an attribute. it will send it to the local APL
process. The APL process running on A will decide whether or not to pass it on to B

17

after examining the sequence number and timestamp. Upon receiving the message. B
will also check the sequence number and timestamp in order to decide whether or not
to update its cache with the new information. B always acknowledges the reception of
the information. whether or not it uses it. It also updates internal tables indicating
that host A seems to be up. and so its APL should receive any new attributes
generated on B. There will always be only one APL process per host. and any number
of Mercury processes in communication with each APL. Mercury processes automati
cally communicate with the local APL database: the user is usually unaware of it. At
tributes may be sent arbitrarily frequently during the course of an editing session.
depending on the nature of the editing.

When a new APL process starts. it asks all other existing APL processes for the con
tents of their caches. and updates its cache with the correct information. Since all
APLs possess their own cache of all attributes in the system. and an arbitrary number
of host and message-passing failures may have occured. there may be conflicting in
formation reported from each APL. When this is noted. the newly-created APL process
gives all the out-of-date APLs the new information. This process repeats until quies
cence. which is guaranteed to occur provided the network ever achieves suffiCient
stability.

The algorithm underlying the APL process is reliable. in that caches will be correctly
updated with the best information available. even when hosts are arbitrarily par
titioned away from one another. Any disparity between the global view and the local
view (what each APL knows) caused by machine or network failure will eventually be
resolved when APLs communicate with one another.

Machine A Machine B

APL - Outgoing-+ -+ Incoming - APL
Attrtbute cache - InCOming +- +- Outgoing- Attrtbute cach~

I Mercury 1 II Mercury 2 II Mercury 3 I I Mercury 4 II Mercury 5 II Mercury 6 I
Ftpre 3-1: Information-passing in Mercury programming envirorunent

3.1. AppUcatlon-Speclfic Conditions

The follOwing application-specific conditions are supported. They all work in combina
tion with the conditions previously defined in section 2.3.2. In designing these con
ditions for the SE. we were prtmarily concerned with determining when an error in the
reliability code had occured. and hence we only provide means of compartng attributes
against a value stored in a register. short-term variables used by SE.

18

Compare attribute register
A remotely received attribute is compared with the value contained in a
numbered register. It is true only when they are exactly equal. (See the
Load action. below.) Non-existent attributes or registers will always com
pare as false: a non-existent register and an empty attribute (1.e .. its size
is 0) will not compare as equals.

Size attribute cmp n

Editors

Checks the size of the attribute using the comparator given (e.g .. ''''. ==.
<=. >. etc.) and size given. Non-existent attributes have size -1.

Identical in function to the appUcation-independent hosts condition. The
APL program communicates with zero or more local text-editors. Editors
may not be specified by name. only by the keywords any (more than zero).
one. some (more than one). all. or none. .

There are. of course. many other conditions that could be useful for particular appUca
tions. Although the following predicates are not currently used in the Mercury ap
plication. they are useful enough to merit short descriptions.

DupUcate n
Tests if the last n messages were identical to each other.

Corrupt n Tests if the last n messages failed some test for COITIlptlon. such as a
check-sum on the contents.

Sequence-Number n
True if the last message sent or reCeived had sequence number Tl.

Timestamp [+/-) t
True if the last message sent or received had timestamp t. A plus or
minus in front of the timestamp indicates a later or earUer time.

Type protocol-mEssage-type
True if the last message had the specified message type. The specification
of a particular type might be a number stored in the message. or the sym
bolic name of that type. e.g .. INIT. LOAD. QUIT.

Size [+/-) n Compares the size of the last message to the number n. returning true if
the size Is n. A plus or minus in front of the number would indicate that
the messages size should be greater than or less than n.

Contents contents-spectjlcat1on
Compares the contents of the last message to the specification given.
1bia predicate could be structured in Umitless ways. A specification
might be a precise description of what is expected. or perhaps a regular
expression would be compared against the contents.

3.2. AppUcatIon-Speclflc Actions

As discussed previously. a script should be able to create information. so that mes
sages will be sent. The actions described in section 2.3.3 will all hinder the passage of
information. We chose to force the APL process to send messages indirectly. by caus
ing their contents to change. This method was chosen because it most closely s1mu-

19

lated the behavior of the Mercury editors in communication with the APL process. We
could have called the send routines directly. at the cost of some conceptual Simplicity:
all of the following actions are suffiCient to cause a message to be sent.

Here are the application-specific actions:

Create attribute
An empty attrtbute Is created. The specified system and module are
created if necessary. Empty attrtbutes could cause errors by their very
existence.

Delete attribute
An attrtbute Is deleted.

Update attribute
An existing attribute's contents are "slightly" changed. and Its timestamp
is updated. causing all attendant processing and message-passing to oc
cur.

Grow attribute n %
The data segment of an existing attribute is increased in Size by the
specified percentage. Percentages may be greater than 100%. but they
must be positive. Random values are used for the contents of the at
trtbute. which is formatted in a manner which the Mercury editor can
read. (These random values represent identlfler names from Mercury
editors.) Percentages are always rounded up so that any percentage size
will cause a growth of at least one byte. If an attribute is empty. then any
percentage size will cause it to increase to one byte.

Sh.rln.k attribute n %
An existing attrtbute is decreased by the specified percentage. Per
centages must be less than or equal to 100016. as well as being positive.
An attribute shrunk by 100% will be reduced to size O. but it will not be
deleted.

Load attribute n
An existing attribute is loaded into regtster n. in order to be used later by
the Compare predicate.

We chose not to include the following actions for APL. although they could serve a use
ful purpose in testing other applications.

Send contents-speqftcattDn
Send a message with the specified contents. A generate-contents func
tlon which took parameters appropriate for the application might be use
ful with this action.

Corrupt n Alter the next. n messages in such a way that they will be detected by any
error-detection code present in the appUcation.

Resend n Resend the next message n times. TIlls is useful in checking any as
sumptions about dupUcated messages.

Figure 4-2 shows an appUcation-specUlc script generated by the script generator SQ.

nus script will partition two hosts away from another. keep a moderately-heavy load

20

of message-passing on one machine for an hour by growing and shrinking a single at
tribute. and ftnally. remove the partition barriers. This script shows the utility - in
addition to correctness - of a particular program under a given set of circumstances.
No facility Is made in this script for the detection of errors during testing. Logging in
formation could be kept by the process. or this test could be performed under the su
pervision of a programmer.

3.3. Pragmatics of Script Execution

Our implementation of SE and SG is still in progress. We do have preliminary results
to report from our merging of the SE thread into the existing APL code. While the
technique of modifying send and receive is a general one. the details of installing
these changes will vary considerably from application to application.

It was found necessary to make the following general changes in our code:
• Changes in data structures to install message counters and an 19nore

host list for each host-record.

• Changes in the three routines where send or receive were implemented.
Four different variables were used: two flags to allow or disallow sends
and receives. arrl two variables which contained the amount of time to
sleep before see .ng or after reading a message. These changes are
simple. yet allow all the functionality described above.

• Changes in the timeout code. which interfered with proper SE execution.

The last change resulted from using a system call to perform a blocking read which
timed out after a dynamically-computed timeout interval. Event which depended on
being executed at a certain time were forced to wait longer than was strictly necessary.
Computation of the timeout interval had to considerthe SE module. If it had been
possible to implement SE as a separate thread of control. blocking would not have
been a concern.

Other problems resulted from the interval timer granularity problems pre-existent in
UNIX. forcing us to to develop heuristics to allow time-dependent events to run within a
small interval of accuracy. Obviously. we do not expect that these granularity
problems are Umited to UNIX. To give an example. two events may be scheduled to
start at a certam time. one event within a few milliseconds of another. It may not be
possible to set a timer With such accuracy. Faced with a chOice between executing
one event a few mtlliseconds earlier than scheduled. or waiting for possibly hundreds
of milliseconds to pass. the scheduler should arrange for execution of the first event.
then perform the second without waiting for the precise time to arrive. This will ex
ecute one event closer to the time at which it would have ideally executed. and it could
reduce the overhead of SE.

21

4. Script Generation

The SCript-generator SG takes a simple set of commands as input. and produces
scripts tailored for the specified machines. The base idea is that processes are defined
as having abstract properties. and testing sCripts are created which cause those
processes to simulate the possession of those qUalities. At the moment. our design of
SG involves a simple understanding of message-passing protocols and various input
parameters which would allow a programmer to tailor SO-generated sCripts for a par
ticular set of tests. For the algorithms similar to the one implemented in our applica
tion. this is acceptable. although more general methods based on protocol specifica
tions need to be studied. Despite the limitation of not understanding general protocol
specifications. SG is a useful tool in that it enables testing to be perfonned at a higher
level of abstraction.

After describing the types of properties that may be associated with a process. section
4.2 shows how the timing of these scripts can be controlled. and section 4.3 describes
input parameters for SG such as the desired message-sending rate.

4.1. Associating Properties with Processes

The following group of commands describe hosts and processes in terms of properties.
such as being slow. unreliable. or partitioned. The generated scripts will cause events
to occur in the appropriate application which will cause behavior that merits the given
description. For example. a script for an unreliable host will lose a certain number of
messages every few transactions. stepping through all possible combinations of loss.
Properties given for a host will apply to any process on that host.

Host. { enUty-u.t }
The entity-list is a list of names to be used in all generated sCripts. The
command Host. (A. B. C. D. E) means that scripts will be generated for
hosts A throl;]gh E. provided the Map command does not substitute
names in the output script.

Processetl (enUty-U.t)
Processes are also specified for a generated script. and Map may be used
to rename a process in the generated script.

Map { enUty-Hat }
Map changes the hostnames or process identities which are output in the
generated scripts. It allows scripts to contain general plan of testing par
tition. high-load. etc .. while specific hostnames are given in only one
place. Hosts may be given as hostnames or internet addresses. Process
identities may be specified in an OS-specific fonnat. The mapping is per
fonned according to the order in the entity-list.

Slow (enUty-Un)
The named processes will be slowed in the generated scripts. If this com
mand is repeated. it doubles the effect.

Generate { nameu.t }
The named hosts will create a "moderate" load on the system. in terms of

22

sending packets. The load ls 1s determined by the Sending-Rate com
mand. described in later sections.

Unreliable (nameliat }
The named hosts will become unreliable: at pre-set intervals they will
crash. reboot. and drop packets. The same series of failure will be
repeated for all "unreliable" hosts. but not in the same order. In other
words Host A and Host B might both be told to fail after receiving one
message. but this failure will not occur at the exact same point in both of
their scripts. The intervals between these events will not be random.

Random (namelist)
Random is similar to Unreliable. except that the named hosts will be
come crash. reboot. and drop packets at random intervals. Two com
mands are necessary for this. because debugging programs which are
failing in predictable ways will be more fruitful than the reverse. On the
other hand. random testing over a period of time constitutes a different
type of check for correctness.

Partition (namelist) (namelist) [... I
Two or more sets of hosts will be partitioned from each other. That is.
Partition { A, B } { C, D, E } will separate the first two hosts from the last
three hosts. However. A and B will be able to communicate with each
other: likewise for C. D. and E.

ReUable (namellst)
Reliable reverses any failing properties placed on any specified host by
the Unreliable. Random. or Partition commands. Unreliable hosts will
become rellable. partitioned hosts will be able to communicate with each
other. and so on. It will not affect any loads created by Generate (or any
actual failures!).

Quiet { nameliat }
Any named hosts which are generating loads will cease to do so. This will
not affect the processing of messages created by ordinary use of the sys
tem.

4.2. Specifying TimiD, of the Generated Scripts

The following commands control the tlm1ng in the generated sCripts. SG generates
scripts which are sequentlally executed. subject to t1m1ngs imposed by the following
commands. lbat is. if a host Is marked as UnreUable. it will stay in that mode until 1t
runs out of commands (in the generated script). or until the effects of a ReUable com
mand in the SO input appear to reverse it. Commands such as Sleep may be used to
delay the effects of commands listed in the previous sectlon.

Sleep n Any conditions prevtously set up in scripts generated by SO will continue
without change until the specified number of seconds passes. Fractional
seconds may be specified. which will be executed up to millisecond ac
curacy. This is a relative time command which may appear more than
once in the SG input.

23

Walt time As with Sleep. Wait will not dIsturb any condItions previously set up un
til the specified time arrives.

Stop { nameUa }
All events are removed on the specified hosts. halting the execution of
scripts on those machines. If no hostnames are listed. then all hosts will
cease executing their list.

4.3. Specifying Other Parameters to SG

The follOwing SG commands are parameters indicating the types of testing perfonned
in the generated scripts.

Retry n This tells SG how many retries on failure are likely to occur in the course
of executing the algorithm. That is. if the application running on Host A
receives no reply from Host B after sending a message. it will resend its
message n Urnes.

Umit n Control the number of combinations of failure for the UnreUable and
Random properties. An unreliable host will fail in up to r?- different ways.
by dropping 1. 2. or n packets after the first. second. and nth
packets. Each iteration through these combinations of types of failure
will constitute a separate. but not necessarily unique test.

Delay n This is a time in milliseconds. which says how long each application is
Wcely to delay before resending an unacknowledged message.

Message-sending-rate n
This is the rate at which the Generate command will cause messages to
be set. It is given in units of messages/ second. N may be given as a frac
tional rate.

Data-miuing-rate n
This is the rate at which the UnreUable command will cause messages to
be forgotten on each individual host. It is given as a percentage. which
represents the maximum number of messages dropped over a given period
ofUme.

Down-time-delay n
This is the time. in seconds. of how long a host which has "crashed" will
stay down. It affects the ou tpu t of the UnreUable command. N may be
glven as a fractional rate.

Figure 4-1 shows input for SO which will generate scripts for three different machines.
testing partition of three hosts into two groups while one host is continuously generat
ing infonnation. The output SCIipt from SG is shown in Figure 4-2.

5. Conclusions

The prirnaIy contribution of this paper is the development of a testing methodology for
rellable distributed applications. The testing methodology described here is suitable
for a wide range of applications. both because t is contained in a general method of

t load-partition.aq

Boat. { A, B, C }
Map { Gollum, No jO, Frodo }
Generate { A }
Partition { A, B } { C }
Sleep 3600
Reliable { A, B, C }
Sleep 900
Stop

24

i symbolic names
, the real hoat name.
, make A create info
, divide into 2 qroup.
, wtit one hour
• let them talk aqain
i wait 15 minutes
• stop the simulation

Figure 4-1: Input file which perfonns some simple load and partition tests

instrumenting applications in terms of their send and receive operations. and be
cause the idea of testing protocols in tenns of an explicit or underlying Finite-State
Machine structure is a useful one. We also describe the beg1nn1ngs of a general
method for automatlcally generating testing scripts in tenns of abstract properties on
processes. Design testing from a high level of abstraction has been shown to be useful
in a number of testing disciplines. including automatic compiler testing [Bazzichi 82].
[Demillo 87).

We note the following open problems in our work. Other limitations were discussed In
the introduction.

• It is currently difficult to specify the failure or success of a script in terms
of the script itself. External methods. such as logs or human supervision.
must be used. Our methods are well-suited for burn-out testing: that is.
running a program hard until it breaks.

• We provide no means to translate from arbitrary protocols to a Finite
State Machine representation. and hence no means of using this FSM
representation in SG to generate correct scripts automatically.

There are alternative metbods for testing distributed applications similar to the one
described. which we brtefly discuss:

• Central pass-through points have been suggested as a means of controll
ing the testing. Messages sent from process A to process B would always
pass through a central point. which would log the message and somehow
decide whether or not to pass the message on to B. There may be no need
to change Individual processes. provided kernel or hardware modifica
tions can be installed to create the necessary message diversion. The
primary benefit of th.ts method is that centralized control moves the test
ing closer to a "global knowledge" of what is happening in each process.
Also. the semantics of individual processes remain unchanged. However.
this method is not necessarily better. even apart from the scope of making
the necessary kernel changes. Changing the message-passing would re
quire per-process semantics of the .end and receive system calls in order
to provtde the behavior possible from our testing methodology. The
timing of the Rnd and receive system calls are likely to be no less per
turbed by this scheme than they are by changing the send and receive
calls at the application level. Also. practically speaking. it is better to
manage this infonnation at the process level.

215

t script qenerated by SG
t version 0.5, on Thu Mar 23 03:33:25 1989
t each machine will execute its own part of the script

beqin goll WIl

timestamp "procesainq load-partition.aq on qollWll"
boot t pretend to beqin
create ("aya", "mod", 0) , qenerate load
when aize ("aya", "mod", 0) = 0

while size ("aya", "mod", 0) < 2000
qrow ("aya", "mod", 0) 10

while true
when aize ("aya", "mod", 0) > 1900

ahrink ("ays", "mod", 0) 80
iqnore frodo t partition
when +1: 00 , after an hour,

. recall frodo # back to normal.
when +1:15 , fifteen minutea

time at amp "finished processinq load-partition.sq"
when +1:15 , finish all proceaainq

clear
end qollWll

beqin mojo
timestamp "proceaainq load-partition.aq on mojo"
boot
iqnore frodo
when +1:00

t partition

recall frodo t back to normal.
when +1:15

timestamp "finished proceasinq load-partition.sq"
when +1:15

clear
end mojo

beqin frodo
timestamp "processinq load-partition. sq on frodo"
boot
ignore qollua, mojo t partition
wheD +1:00

neall qollum, mojo t back to normal.
wbeD +1:15

~.tamp "finished processinq load-partition.sq"
vb. +1:15

cl.ea.r
end frodo

FfIure 4-2: Output from SG

• All of our predicates passively check the state of the system. 11lat is. they
execute their tests without generating any new messages. Clearly. much
useful infonnatlon could be passed between a testing module and its
duplicate on a remote host: but just as clearly. this would add unaccep
tablly to the complexity of the testing problem.

26

Acknowledgements

We would like to thank Dan Duchamp. Josephine Micallef. and Rob Lelunan for their
discussions of this paper. as well as the Mercury progranuners who implemented APL.
thus motivating this work.

References

[Bauer 79]

[Bazzlchi 82]

[Beizer 83]

[Chow 78]

[Demillo 87]

[Gouda 84]

[Haban 87]

[Halpern 86]

[Howden 87]

Jonathan A. Bauer and Alan B. Finger.
Test Plan Generation Using Formal Grammars.
In Proceedings of the 4th International Conference on Software

Engineering. IEEE Computer Society. Long Beach. CA. Sept ..
1979.

Franco Bazzlchi and Ippolito Spadafora.
An Automatic Generator for Compiler Testing.
IEEE Transactions on Software Engineering SE-8(4):343-353. July.

1982.

Boris Beizer.
Software Testing Techniques.
Van Nostrand Reinhold. New York. 1983.

Tsun S. Chow.
Testing Software Design Modeled by Finite-State Machines.
IEEE Transactions on Software Engineering SE-4(3): 178-187. May.

1978.

Richard A Demillo. W. Michael McCracken. et al.
SoftwareThsting~E~~
Benjamin/Cummings. Menlo Park. CA. 1987.

M. Gouda and Y. Yu.
Synthesis of Conununicating Finite-State Machines with

Guaranteed Progress.
IEEE Transactions on Comnumicattons COM-32(7):779-788. July.

1984.

Dieter Haban.
DTM - A method for testing distributed systems.
In SIxth Symposium on Reliability in Distributed Software and

Database Systems. pages 45-55. ACM Press. New York. March.
1987.

Joseph Halpern (editor).
Flfth Symposium on Reliability in Distributed Sojh.oore and Database

Systems.
ACM Press. New York. 1986.

WUllam E. Howden.
Software Engineering and Technology: Funct1Dnal Program Testing

& Analysis.
McGraw-Hill Book Co .. New York. 1987.

[Hseush 881

[ICMP 811

[Kaiser 87al

[Kaiser 87b1

[Mackert 87]

[Myers 79]

[Rudin 871

[Sartkaya 88]

[West 781

[Weyuker 881

[Wittie 87]

27

Wenwey Hseush and Gail E. Kaiser.
A Network Architecture for Reliable Distributed Computing.
IEEE Network 2(4):28-44. July. 1988.

J. Postel (editor).
Internet Control Message Protocol
Technical Report RFC 792. USC/Infonnation Sciences Institute.

September. 1981.

Gail E. Kaiser. Simon M. Kaplan and Josephine Micallef.
Multiuser. Distributed Language-Based Environments.
IEEE Software :58-67. November. 1987.

Gail E. Kaiser and Simon M. Kaplan.
Reliability in Distributed Programming Environments.
In Sixth Symposium on Reliability in Distributed Software and

Database Systems. pages 45-55. ACM Press. New York. March.
1987.

L.F. Mackert and I.B. Neumeier-Mackert.
Corrununicating Rule Systems.
In Proceedings of the IFIP WG 6.1 Seventh International Conference

on Protocol SpecificatiOn, Testing. and Verification. pages 77-88.
May. 1987.

G. J. Myers.
The Art of Software Testing.
John Wiley & Sons. New York. 1979.

Harry Rudin and Colin H. West. (editors).
Proceedings of the IFIP WG 6.1 Seventh International Conference on

Protocol Specification. Testing. and VerificatiOn.
Elsevier Science Publishers. Amsterdam. The Netherlands. 1987.

Behc et Sartkaya.
Protocol Test Generation. Trace Analysts. and Vertftcation Tech

niques.
In Second Workshop on Software Testing. Verification. and Analysis.

pages 123-130. July. 1988.

C. West.
All Automated Technique of Corrununicatlons Protocols Validation.
IEEE Transactions on Communications COM-26(8): 1271-1275.

AUgust. 1978.

Elaine J. Weyuker.
The Evaluation of Program-Based Software Test Data Adequacy

Criteria.
CoTT11TU.U11cations of the ACM 31(6) :668-675. June. 1988.

Larry Wittie (editor).
Sixth Symposiwn on Reliability in Distributed Software and.

Database Systems.
ACM Press. Kingsmill - Williamsburg VA. 1987.

28

[Zimmennan SO) H. Zimmennan.
The ISO Model of Architecture for Open Systems Interconnection.
IEEE Transactions on Communications COM-28(4), April. 1980.

