
Data Migration in an
Object-Oriented Software Development

Environment

iVIichael H. Sokolsky
Columbia University

Technical Report CU CS-424-89

April 18, 1989
MS Thesis

Thesis Committee: Professors Gail E. Kaiser and Calton Pu

©1989, Michael H. Sokolsky
All Rights Reserved

Abstract

As software systems grow from small systems developed by a handful of
people to large. complex systems developed by hundreds of people, the envi­
ronment in which they are developed evolves. Large software systems contain
vast quantities of data that must migrate to new development environments.
Object-Oriented software development environments (OOSDEs) have received
research attention recently, and seem destined to become commonplace for
software development of these large systems. System growth involves data
migration, a problem that must be solved before OOSDEs become practical
tools. Data migration includes immigration (import) of systems developed us­
ing traditional facilities, reorganization of systems supported by object-oriented
databases (objectbases), and schema evolution as the class structure of the ob­
jectbase changes. This thesis presents graphics-oriented tools - Marvelizer and
Organ - that solve the first two problems for the Marvel OOSDE. ~Iarvelizer
and Organ have been implemented and used on Marvel itself.

Tills research is supported by National Science Foundation grants CCR-8858029 and CCR-8802741, by grants
from AT&T, DEC, IBM, Siem~, Sun and Xerox, by the Center for Advanced Technology and by the Center (or
Telecommunications Research.

Sokolsky is supported in part by the Center (or Advanced Technology.

1

Contents

1 Introduction

1.1 Immigration

1.2

1.3

1.4

Reorganizat ion

Schema Evolution

1] ser Interfaces . .

·

·

·

2 Marvel

3 Background Research

3.1 'Why Organ and the Marvelizer?

3.2 \Vhy ~:Iarvel?

4 Related Work

5 An Example: C/Marvel

6 Design: The Marvelizer

6.1

6.2

6.3

6.4

The Immigration of a Software System

Design Requirements .

Implementation . .

Schema Evolution

1

2

3

3

4

5

11

11

11

13

16

17

18

19

20

27

7 Design: Organ

7.1

-? , .-

7.3

7.4

Design Requirements of Organ

The Organ Commands

7.2.1 Add. ·

... ?? 1._.- Copy. ·

7.2.3 Move ·

7.2.4 Join . ·

Rename ·

7.2.6 Delete . ·

Implementation of Organ Commands .

7.3.1 Naming Conflicts

7.3.2 Speed Analysis .

7.3.3 Graphics interface

7.3.4 Line Oriented Interface

Organ Completeness

8 Design: User Interfaces

8.1 Design Requirements of the User Interface

8.2 Graphics Interface . . .

8.2.1 Window Layout.

8.2.2 Print Command

11

27

28

29

30

31

33

33

34

34

37

37

37

39

39

40

40

41

41

42

47

8.2.3

8.2.4

The Browser . . .

Change Command

50

51

8.2.5 Commands Which are not Relevant in the Graphics Interface 54

8.3 Line Oriented Interface. .. 54

9 Future Research Areas

9.1 Marvel.

9.2 Organ

9.3 The ·~vlarvelizer

9.4 Schema Evolution

9.5 User Interfaces

55

56

56

57

57

59

9.6 Real Objectbase Managers. .. 59

10 Conclusions 60

A C/Marvel Objectba.se 65

B C/Marvel Rule.s: AllTooz., 69

11l

List of Figures

1 Class Hierarchy in C/Mar1Jel 9

2 Suffixes needed to Marvelize Marvel. 21

3 A dialogue with the Marvelizer 23

4 A Marvel objectbase before Marvelizing. 24

5 The same object base after Marvelizing. 25

6 An objectbase after four add conunands .. 32

7 A ~larvel objectbase before join. . 35

8 The same object base after the join 36

9 Layout of the Marvel Graphics Interface 43

10 The Status 'Window . 43

11 The Display Window . 46

12 The Main Marvel Conunand 1-lenu .. 48

13 The C /Marvel Rules Menu. 49

14 Print Command Options. . 50

15 The browser, showing info.

16 The browser, showing info and zoomin .. 53

lV

1

1 Introduction

Software development environmentJ (SDEs) are tools that attempt to remove

much of the menial work of software development engineers, thus allowing engi­

neers to focus on the more creative and important issues of software development.

Much of the recent work on SDEs assumes object-oriented database support [RW89],

because objects provide an excellent platform for managing the vast quantities of

heterogeneously formatted data normally associated with developing and maintain­

ing a large software system. Such environments are henceforth called OOSDEs.

Data migration of software systems involves the general process of moving, re­

arranging and reformatting some or all of the different parts of a software system.

More specifically, Immigration is the process of moving a software system (or a part

of one) into an OOSDE, either when starting to use an OOSDE for the continued

development and maintenance of an existing software system or when reusing parts

of one software system in another. Reorganization is the process of rearranging a

software system within the framework of an OOSDE as the modular structure of

the software system evolves during its lifetime. Schema evolution is the process

of reformatting a software system as the OOSDE itself evolves, either statically as

different views are employed by the users, or dynamically as the definitions of these

views and their underlying object classes are revised over time.

This thesis discusses data migration in an OOSDE, and presents the imple­

mentation of immigration and reorganization tools for a specific OOSDE - Mar­

vel [KFP88]. The tools are called the Marvelizer and Organ. Both tools are fully

integrated into Marvel's new graphics interface, also presented in this thesis.

2 1 INTRODUCTION

1.1 Immigration

The driving desire for software migration is the ability to move on to more powerful.

time saving and higher quality environments. Due to short term needs, a decision

to change to a new environment and face a long period without productivity is

often put off, and old, cumbersome environments persevere. Adequate software

immigration tools can minimize the difficulty of moving to a new environment.

Often, immigration to a new environment does not result in any immediate net

improvement in the software, but rather in long term improvement. Such long term

gain is often difficult to justify with pressing short term needs. :';Iost development

environments available today do not support an easy immigration path to their

internal format, thus immigration is a tedious exercise.

Immigration tools have a positive impact on software reuseability. If software is

more accessible, it is likely to be reused, either as is, or with minor modification.

Reuse is getting more and more attention from software engineering researchers

today. This thesis is not concerned with reuse in an object-oriented sense, where

reuse is motivated by an object's hidden structure and implementation [OHK87]. It

is concerned with the accessibility of small pieces of software for incorporation into

new software systems, where the small pieces might and might not change slightly

from some original application.

Immigration can be either 3tatic or dynamic. Static immigration does not in­

volve changing the structure of the system being immigrated, whereas dynamic

immigration does. The Marvelizer provides a framework for static immigration of

software systems to Marvel, in order to access systems which reside in other SDEs,

especially those degenerate SDEs composed of collections of Unix tools. The Mar­

velizer does not attempt to understand any internal formats built on top of the Unix

1.2 Reorganization 3

file system. Dynamic immigration is a form of schema evolution, discussed below.

1.2 Reorganization

Continual reorganization of software is commonplace as software systems become

larger. Initial views and goals of systems change, design decisions change and

management changes. Often, the entire nature of a system changes during its

lifecycle. Small systems often get swallowed up by larger ones, or several small

systems get merged into one large one. Reorganization is often necessary to make

overgrown systems more clear, space efficient, easy to debug, and easy to maintain.

In most current software development environments, such reorganizations are a

tedious, time consuming process.

There are very few SDEs that can generate a visual "picture" of a system, to help

make it clear what reorganization is needed. Organ provides visualization through

the Marvel graphics interface. Users pick objects and their new locations from a

graphical picture of the object base.

Reorganization can be either static or dynamic. Static reorganization takes place

within a particular structural framework of a system, whereas dynamic reorganiza­

tion takes place when a system grows enough to make older structural methodolo­

gies inefficient. Organ is a tool for static reorganization. Dynamic reorganization

is another kind of schema evolution, discussed below.

1.3 Schema Evolution

Organ and the Marvelizer are tools which in themselves are complete, but yet

do not provide facilities for complete schema evolution. Such facilities include:

4 1 INTRODUCTION

• External tool support, to allow activi ties such as parsing of files and extraction

of data;

• dynrunic reorganization, or schema evolution of an existing objectbase, to

allow an old schema be converted to a new schema;

• and dynamic immigration, or schema evolution capabilities during immigra­

tion.

Dynamic immigration differs from dynamic reorganization in timing, however they

both involve schema evolution. Dynamic immigration takes place while moving a

system to a new SDE, either because the system's structure is not compatible with

that of the new SDE, or because part of the immigration is to change to a more

appropriate structure due to progrrun growth or other outside factors, such as a lack

of structure. Dynamic reorganization takes place more gradually, as an SDE and a

system being developed in that SDE grow. This might happen, for example, when

a document set is integrated with a software system. New structures and links must

be developed for the SDE to manage this new part of the system.

1.4 User Interfaces

Organ in particular derives much of its power from a visual interface, where users

can "see" what they are doing, rather then just doing it. In order to provide this

visual interface, this thesis includes a new graphics user interface for Marvel. With

the graphics interface, users have a "drawing board" in which they can perform

software engineering tasks.

It is important to note that this graphics interface is specifically hand generated

for Marvel, and t~at an exhaustive search of available graphics user interfaces was

5

not conducted. Furthermore, an exhaustive search of appropriate graphics interface

and human factors literature was not conducted. While graphics user interfaces are

unquestionably an important and interesting research area, they are not the major

focus of this research.

The remainder of this thesis is organized as follows: section two provides an

overview of Marvel; section three discusses why Marvel is an appropriate basis for

development of immigration and reorganization tools; section four presents related

work; section five describes an example which \vill be used throughout this thesis; the

next three sections describe the design the ~Iarvelizer, Organ and the user interfaces

which support Organ and Marvel in detail; following this is a discussion of some

future research areas motivated by this research; finally, conclusions are presented.

Appendices containing the text of the example are included for completeness.

2 Marvel

Marvel is a knowledge-based software development environment that provides

assistance in all phases of software development that contain repetitive, automat able

tasks. Marvel is capable of generating a wide variety of environments tailored to

support the specific needs of a wide variety of software projects. Marvel itself

does not assume knowledge about any particular kinds of environments or software

development methodologies, rather it is a kernel which provides facilities to generate

specific environments.

First, a .5upellJ,.5er writes a high level description of a software project called a

Marvel environment. Marvel environments are written in a special-purpose object-

6 2]v!.4.RVEL

based language called the Marvel Strategy Language (MSL)l. Marvel environments

can be written for a wide variety of things, for example, developing "e" programs,

developing Pascal programs, writing books or theses, developing project manage­

ment tools or even doing VLSI design.

The l.. :scription of a Marvel environment can be modularized into units called

strategies, where each strategy contains a subset of the complete Marvel environment

description. MSL contains a mechanism to import and export facilities between

strategies. :Marvel includes facilities to dynamically load, unload and merge indi­

vidual strategies to produce a target Marvel environment. Thus, one environment

can contain several development scenarios to suit managers, software developers,

test engineers, and so forth. Allowing different users to have different views of the

environment builds in foundations of security to the system.

The two basic components of a Marvel environment are objectbase definitions

and rules.

Objectbase definitions define the structure and contents of a Marvel environ­

ment. The structure is defined with classes and attributes. Classes are object

groupings2 . Attributes define the details of classes, and define a hierarchical struc­

ture for a ~larvel objectbase. Attributes are a priori divided into small, medium

and large attributes. Small attributes are simple entities such as integers, strings

or enumerated values. Medium attributes are collections of small attributes, such

as text or binary files. Large attributes are collections of medium attributes, such

as sets of files. They are analogous to directories.

The contents of a Marvel object base are instantiations of the classes. We shall

1 A syntax directed editor has been previously available to assist in writing these strategies

2In the literature, class and type are often used interchangeably.

refer to these instantiations simply as objects. The state of an object is defined by

instantiated attributes. Objects are managed by a simplistic object base manager

that maintains all important managerial information about each object in memory;

and stores the contents, or data, associated with each object in standard Unix files

and directories. \Ve call these files and directories Marvel's physical data space. The

object base manager knows how to navigate through the objectbase, create, delete

and move objects about, and find the part of Marvel's physical data space that

stores an object's data. The object base manager consults the file system only when

reading or writing an actual data file. Searches and displays of the objectbase are

therefore quite fast. Ivlarvel is currently a single user system, so the object base

manager does not handle any issues of concurrency. One of the future plans for

Marvel is to incorporate a "complete" objectbase manager as part of a multi user

model.

\Ve define some additional terminology that will be used throughout this thesis.

An object's master class is the class from which that object was instantiated. A

class's attributes are called template attribute", to distinguish them from the at­

tributes of an object. Objects can have children. Children are objects linked to

their parent by large attributes of the parent. These linking attributes are called

owner attribute" from the child's viewpoint.

Marvel objects are simplistically "clustered" by maintaining an alphabetical

ordering amongst a class's objects. Additionally, a second alphabetical ordering is

maintained amongst an instantiated large attribute's objects. At runtime, the name

of the object is used to maintain these orderings, rather then two seperate pieces of

information. An extra numerical index is saved in between sessions to regenerate

the second ordering.

8 2 ~\fARFEL

An example clarifies this discussion. Figure 1 depicts a class structure of a "C"

programming environment called C/Marvel. The bubbles are classes, and the bold

names are large attributes that connect the classes. Smaller italicized names to the

right of the classes are small attributes, that help describe the state of an object.

Items in small letters are medium attributes; in this example these refer to .c, .h

and . a files. 'Ve can see that a C/Marvel objectbase has GROUP objects that can

have sets of PROJECT objects. Each project can contain a set of LIB objects, a

set of PROGRAM objects. and so forth.

:\1arvel objects are persistent. Once created. they can only be removed by specif­

ically deleting them. It is mandatory that work not be lost when a system crashes,

or in the unlikely event of a Marvel crash. Persistence is achieved by maintaining

an up to date state of the object base at all times, as well as maintaining the ap­

propriate Unix files to which Marvel objects map. The state of the objectbase is

automatically checkpointed after each Marvel command that changes it, therefore,

old states of the object base can be recovered. All these previous checkpoints are

easily recoverable, however Marvel leaves management of its physical file space to

the tools and operating system which operate on it; thus this part can be difficult,

if not impossible to restore.

The objectbase manager maintains many threads through the objectbase, m

order to facilitate fast queries. See section 7.3.2 for more details.

Marvel maintains a concept of a current object in the objectbase. The current

object is generally the object that was most recently added. Users can change the

current object to be any object in the object base.

Rules define the activities one can do in a Marvel environment. Rules consist

of preconditions, activities and postcondition". Preconditions of a rule narrow the

projects

docs

libl object
modules cfHes documents

cfIles versions
file format

files

exec
hfiles

versions

vfile vfile
versions versions

vfile vfile

Figure 1: Class Hierarchy"in G/Marvel

9

file

10 2 .MAR\/EL

set of objects a rule focuses on by specifying a characteristic set of objects, and

then limits this set further by specifying a set of attributes of these objects that

must have some specified values. Postconditions specify values of attributes to be

set. There can be multiple postconditions. Once the preconditions of a rule are

all satisfied (true), the activity part of the rule fires. Firing means executing the

activity part. This is done with an envelope. An envelope is a COTS3 tool or Unix

shell script. Postconditions are asserted based upon the results of the envelope.

Thus envelopes act as a liaison between the ~Iarvel objectbase and the Unix file

system.

The Marvel kernel is a controlled automation engine. It uses the preconditions

and post conditions of rules to form a network of possible automatic multi-rule

activities. Once an initial rule is manually invoked, other rules will be invoked as

needed to satisfy the original rule's preconditions. This is called backward chaining.

Backward chaining is essentially what the make [Fe179] family of tools does. After

the target rule is finished, other rules are invoked if their preconditions have since

been satisfied by the assertion of the original rule's postconditions. This is called

forward chaining. Backward and forward chaining continues opportunistically (as

the opportunity arises) until there are no more possible chains.

Marvel has a menu based, mouse driven graphical interface. This interface is

presented in detail in section 8.2. A command line driven line oriented interface is

also maintained for those not fortunate enough to possess a graphics workstation.

All the facilities of Marvel are available from either interface. Section 8.3 and [B588]

describes the line interface.

3Commercial Off the Shelf

11

3 Background Research

This section discusses the background research that led to the conception of

Organ and the Marvelizer. Included is a discussion of why Marvel was chosen as

a platform for implementation of Organ and the Marvelizer. Several other systems

are mentioned which provide the beginnings of the facilities provided by Organ and

the Marvelizer.

3.1 Why Organ and the Marvelizer?

The idea of visual databases is not new [BL86], but its practical application to

SDEs is. This comes as a surprise, considering the state of graphics systems. How­

ever, the surprise is diminished when one considers the state of SDEs. A major prob­

lem with SDEs is the commitment to the tools they provide. The potential power

of toolsets such as Unix is taken away with the commitment to an SDE. There have

been several SDEs which provide a paradigm for programming [Sun88,SKHA86],

yet it is unclear whether these environments scale up to the task of large, evolv­

ing systems. Evolution appears as one of the least considered elements of these

environments. For a system to evolve, reorganization and migration are needed.

3.2 Why Marvel?

Most software development environments provide a "canned" environment for a

certain task. for example, SMILE [KF87] is a "e" programming environment. How­

ever, development methodologies and requirements for software vary widely from

one organization to the next, so these "canned" environments often compromise

12 3 BACKGROUND RESEARCH

power in exchange for convenience. This is unacceptable. This might happen, for

example, in a system that contains a mixture of source code languages and docu­

mentation strategies, or in a system where management imposes stringent controls

on development. Many organizations choose to create and recreate their own envi­

ronment in parallel with their system's development, rather then use a commercially

available4 software development environment. This leads to great wastes of rede­

velopment time. Marvel provides facilities for the parallel development of a system

and an environment with reduced environment development and modification time.

Architects of software development environments often create their own tools for

certain familiar tasks, such as automatic program compilation. This is somewhat

problematic, because it forces the user who might be familiar with a common tool to

learn something new. Many of these new tools do one specific part of some older tool

very well, but are not as complete. As an example, consider Unix's make [FeI79] tool.

~Iake is not especially sophisticated, in that it knows nothing about the process of

any kind of software development. Yet numerous similar tools have been developed

that try to perform make's task better, such as DSEE [LRPC84j and Space [ML88],

but are only questionably successful.

With Marvel, the development time to develop a "custom" system is reduced

to the time it takes to modify a set of strategies and envelopes to match local

design methodologies. Initial indications are that this task is much less difficult

than starting from scratch. As Marvel is used more, the base of strategies and

envelopes available should be large enough that this task becomes very simple.

The Marvel kernel provides a methodology for using standard system tools,

rather then starting from scratch. Furthermore, Marvel environment's can be tai-

40r semi-commercially available, at least.

13

lored to match the needs of different individuals and groups. Additionally, sets of

strategies can be developed to allow arbitrary side by side development of program

source code, documents, or any other large body of work which requires repetitive,

menial tasks to be performed during it's development.

Thus Marvel provides many of the facilities needed to be an effective SDE.

\Vhile immigration and reorganization tools still do not necessarily make Marvel

"complete", they make it a practical environment for software development. Mar­

vel's architecture is open, as discussed above, so reorganization and immigration

tools can be general, and easily applied to other SDEs or objectbases.

4 Related Work

I know of no SDE's, object-oriented or otherwise, that have acceptable facilities

for immigration and reorganization, as described in this thesis. Many environments

incorporate some of the ideas of this thesis. Following is a description of the relevant

features of of these environments. I have tried to encompass much of what exists

in this area in the following several examples.

110st SDEs ignore the fact that a developing system will undoubtedly have to

undergo major reorganization before it appears in final form. Consider Unix, which

many software developers use instead of an SDE. Most Unix facilities for reorgani­

zation consist of operating system level commands for organizing projects. Relevant

Unix commands include mv, cp, In, Is, tar and cpio [Sun86]. Unix provides

very little visual assistance in reorganization tasks. On a local site by site basis,

Unix shell scripts that utilize these commands are often written to help perform

basic reorganization of software projects. These scripts tend to be unsupported

14 4 RELATED 1VORK

and have errors, because developers would rather be doing "real" work, instead of

taking time out to work on software development tools. As ad hoc environments

develop, more and more time is invested in writing "custom" scripts and programs

to suit a system's needs. Such "custom" tools are often recreated from system to

system. Rarely are any of these tools visual in any way.

SMILE [KF87] has a concept of experimental databases, which are conceptual

"copies" of an entire system, in which specifically reserved objects can be updated.

They can be used as entities for reorganization by appropriate manipulation of

experimental databases, and by a retrieval feature which allows incorporation of

a module from another SMILE database. However, in SMILE this is very cum­

bersome. SMILE does not have any specific facilities for conversion to their format

(which is far from trivial by hand), thus in SMILE it is difficult to reuse components

from older systems, or immigrate systems already under development.

NSE has conceptually similar experimental databases to those of SMILE which

they call private workspaces. They differ from SMILE's in that they are based

much more on the native Unix file system (NSE's base operating system), and

thus are much easier to reorganize. Any currently existing UNIX command or

tool can interact with NSE, in addition to the private workspace manipulation

provided by NSE. However, NSE maintains internal system specific information that

might be invalidated by stand alone Unix commands such as cp (copy) reorganizing

directories everywhere. It is much less cumbersome to immigrate a system to NSE

than to SMILE, allowing for easier reuse of old code. This is accomplished with a

tool NSE calls bootstrap. In practice, bootstrap is a complicated process because

NSE specific Makefiles and component description files must have been previously

generated.

15

Infuse [PK87,KP87], a change management tool, also has an indirect, but poten­

tially more powerful notion of reorganization then SMILE or NSE. Infuse partitions

sets of modules that are being changed into a hierarchy of experimental databases.

These hierarchies can be repartitioned as more appropriate partitions are found.

Thus, Infuse generalizes SMILE's experimental database concept. This could con­

ceivably be the basis for reorganization based on similarity. Infuse could be com­

bined with a system such as Marvel to gain a more complete software development

environment. It is unclear how easy this would be.

Software Project Management System (SPMS) [Hew86] provides an automatic

framework for doing hierarchical file system oriented operations based on a set of

assignable attributes, and simple logical combinations of these attributes. Actual

operations on a system, for example compiling, releasing or reorganizing an at­

tributed set of directories in a particular way, must be provided by the user, who

must often fall back on ad hoc scripts and programs.

The few object-oriented databases available commercially, such as Vbase [AH87]

and GemStone [PS871, do not yet provide specific data migration facilities for reorga­

nization or immigration. Skarra and Zdonik discuss schema evolution in an OODB

in [SZ86], and present some possible solutions. Schema evolution in OODB's today

is unquestionably a universally recognized problem, however, we know of no systems

that support the entire data migration problem.

Some operating systems and SDEs provide simple visual extensions to tools to

make them visual-oriented. A hierarchical version of 15 -R (a recursive file lister

for Unix) that tries to show the hierarchy more clearly is a good example. r.lany

systems have such a tool. There is much less available when it comes to viewing

objectbases. A visual tool for managing relational databases is presented in [BL86].

16 5 AN EX.,UvlPLE: C/MARVEL

There are many tools that support some form of program structure visualization.

PECAN [Rei84J is an example of a tool that visualizes program execution, in a nice

graphics based programming environment.

5 An Example: G/Marvel

Throughout this thesis, examples will all refer to a Marvel environment called

C/Marvel, developed by the author of this thesis and others [BK88J. C/Marvel is

an implementation of a C programming environment for Marvel.

Figure 1 contains a description of the class organization of C/Marvefs object.

base, for use as a reference in the discussions of class structure in this thesis.

C/Marvefs class structure was derived by looking at the organization of the Marvel

software itself. As a testimony to C/Marvefs functionality, Marvel can currently

be developed with C/Marvel in a single user mode.

Appendix A contains the MSL objectbase definitions used in C/Marvel, and

Appendix B contains the full set of rules used in C/Marvel. In practice, these

rules would be broken apart into several separately accessible strategies. This way,

the Marvel environment could be configured differently for different kinds of users

(such as managers and software developers) depending on individual needs. Such

configurations enforce controlled use of tools not appropriate for all users.

C/Marvel includes many important facilities C progranuners require to effec­

tively develop C programs. These facilities include:

• compiling files, with make and ee,

• analyzing files, with lint,

17

• library maintenance of modules, with ar,

• building programs, with ld (cc),

• editing text files, with a user's favorite text editor,

• viewing text files, with less,

• debugging, with dbx,

• revision control, with Res,

• and executing programs.

For more information on CjMarvel, see [BS88].

6 Design: The Marvelizer

\Ve have defined the immigration of a software system to be the process that

includes moving all the pieces of that system to a new or updated OOSDE. Most

OOSDEs assume that systems under deyelopment find their own way of immigrat­

ing from one environment to the next. This section describes the Marvelizer, an

automated tool for static immigration into ~larvel. First, a discussion of some of

issues involved in software migration is presented. Next, the design goals of the

Marvelizer are presented. Then, pertinent details on the Marvelizer's implementa­

tion are presented. Finally, a discussion of the additional facilities the Marvelizer

needs to be a truly effective tool for dynamic immigration, or schema evolution, is

presented.

18 6 DESIGN: THE l\fARVELIZER

6.1 The Immigration of a Software System

f.,Ilost SDEs assume that systems under development will just find their own way

of migrating from one environment to the next, or from one development platform

to the next. Few systems, a notable exception being Sun's NSE [Sun88], provide

any formal facilities for the immigration procedure. For most software development

environments, the immigration procedure is manual and very complex. lvlost envi­

ronments have their own sets of tools, each of which require specifically formatted

data. Furthermore. environments themselves often maintain their own data struc­

tures to represent the actual body of the system. These data structures must often

be initially derived with awkward, ad hoc methods.

Most OOSDEs have their own sets of tools, each of which require specifically

formatted data. Furthermore, environments often maintain private data structures

to represent the entire system. These data structures are often difficult to derive.

Like other SDE's, Marvel maintains an internal object base definition. However, the

bulk of the real data resides on the file system in a relatively standard hierarchical

tree of files. !vlappings to this structure, and the current values of the objects'

small attributes, are all that are maintained internally by the objectbase manager.

Nonetheless, this objectbase is not easy to hand generate, as it resides in a very

strict format computer generated file. Directory structures can be manually moved

into Marvel, however the user must be more familiar with the objectbase structure

then is otherwise required to effectively use Marvel.

Immigration is made more complicated because there is often little in common

from one organization's methodology of software development to another's. De­

signers and implementors of SDEs certainly can not be expected to support a large

collection of system organizations in their immigration procedures. All but specific

6.2 Design Requirements 19

target customers tend to have difficulty immigrating from one system to another.

because SDEs tend to support some specific set of tools and software organization in

an inflexible manner. In Marvel, there are no dedicated environment specific tools:

11arvel can support most COTS (Commercial Off the Shelf) tools and locally devel­

oped and already in use tools. Furthermore, lvfarvel allows very flexible object base

class structures, which can match to most hierarchical system organizations.

6.2 Design Requirements

The central requirement of the Marvelizer is to immigrate a software system into

~Iarvel automatically, without the user being subjected to the creation of complex

mappings or data files. Furthermore, the immigration must take place in a timely

fashion. Timely here means on the order of how long it takes to move the same

software system to a different place in the file system with a standard operating

system command. A command such as cp -r for recursive directory copying, is a

timely example in the Unix domain.

The Marvelizer must generate an appropriate Marvel objectbase, complete with

its physical file structures. It must handle entire systems, where it creates a new

objectbase; and chunks of systems, where it appends to an existing objectbase.

Handling chunks is mandatory for reuse, slight modification or incremental Mar­

velization of a system.

Easy visual verification of the results of immigration is necessary. Since very

large quantities of data can potentially be immigrated, it is important to be able to

verify that correctness of the immigration without an excessive expense in a user's

time.

20 6 DESIGN: THE lvIA.RVELIZER

Marvel keeps its data in a relatively standard hierarchical tree of files, but man­

ually moving a large body of code into Marvel's format would be oppressive, and

difficult to do without omissions and mistakes. Even if this migration were per­

formed by hand, ~ilarvel's parallel internal object base structure would not exist.

vv1llle this information is kept in a readable file, and is editable5 with a normal

text editor, this is not a reasonable expectation from any group migrating to a new,

supposedly better and more automatic SDE.

The Marvelizer must be able to run in an interactive mode, so that if it has not

been given enough information about certain choices, it can query for appropriate

answers. However, the information the Marvelizer needs from a user must be kept

simple and concise. An unreasonable requirement from a migration facility is one

which requires specific, difficult to generate input files or maps which in some way

"describe" the input being migrated.

6.3 Implementation

Prior to Marvelizing, a "Marvel Administrator" must create a Marvel object­

base structure which realizes the directory structure of the software system to be

~larvelized. This object base structure must not deviate much from the structure of

the existing system. We do not expect average users to be Marvel administrators.

An example of such a structure has been presented in figure 1.

The Marvelizer maintains a table of user supplied immigration rules. These

rules are consulted before the immigration of each object. Rules are one line entries

into a table the Marvelizer maintains. There are two kinds of rules the Marvelizer

5But this file is very cryptic, and only a Marvel guru is likely to edit this file with a chance of

making no grave mistakes.

6.3 Implementation

_ enter .all _db_ .attrUrute INffix.s. for ... cb cl.aSl.
only ODe cl.ass per lu.. pl...... ro~t 1s:

a..a.sS_N&Ia: <lNffix-l> <lNrtix-2> ... <lNffix-n>

Enter .a q when finbbed. or .lID • to o:U.
Cnter string: LIB . .lI
Cnter string: TEXTFILE .c ~.fll •. _s .to: .bib .y .l.x .h
Cnter str ing: V!:RSIOII • v
Enter string: Bn. "'l:'I'el lo.der r ... r?e deposit
Enter string: ~

Figure 2: Suffixes needed to Marvelize Marvel.

uses, as follows .

21

• First are rules which provide the Marvelizer with information about the kinds

offiles it must handle during Marvelization. These rules specify the suffixes of

all the different file types each class might contain. Suffixes can match entire

file names. These rules appear as follows:

<class-l> <suffix-l> ... <suffix-n>

<class-m> <suffix-l> ... <suffix-n>

where m ~ 0 and n ~ 1.

Figure 2 shows the suffixes needed for a complete Marvelization of Marvel.

The format of this input is discussed shortly. The input displayed in figure 2

is used for the Marvelization in figure 5.

• Second are rules which specify directories that belong to particular classes.

These rules can minimize interaction with the Marvelizer, and provide a basis

for future batch capability. These rules appear as follows:

22 6 DESIGN: THE A1.4.RVELIZER

<class-i> <directory-name-i> '" <directory-name-n>

<class-m> <directory-name-i> ... <directory-name-n>

where m ~ 0 and n ~ 1.

Several different levels of verbosity and error recovery are supported, as follows.

1. Verbose mode. The user is constantly supplied with messages saying what

the ~\'larvelizer is doing. Furthermore. if there are questions of where to place

a directory, the user is queried for either the correct large attribute of some

object, or to skip the directory.

2. Quiet mode. This mode is similar to verbose mode, however the user is not

supplied with the constant messages saying what the Marvelizer is doing. The

query facility is still there.

3. Silent mode. In silent mode, if there are questions about where a directory

belongs, it is quietly skipped. While this in not an optimal policy, it allows

for a skipped directory to be later ~vlarvelized without first having to cleanup

improper actions on the :tvlarvelizer's part. This mode is useful if a user is sure

of the success of something, and does not want to be present to answer queries.

This mode is provided to allow future batch Marvelizations; it currently allows

a methodology for automatic Marvelization.

A dialogue with the Marvelizer is presented in figure 3. This dialogue is from a

Marvelization of 1farvel itself, using the CjMarvel environment mentioned earlier.

User responses are in italics. Figure 4 shows a mostly empty objectbase. Figure 5

shows the final results of the Marvelization of 1>Iarvel, as described in figure 3.

6.3 Implementation

Enter the file system root to be marvelized: /example/marvel

Enter target class for lexample/marvel: PROJECT

(v)erbose, (q)uiet or (s)ilent mode? (any other key to exit):v

Now enter all medium attribute suffixes, for each class.

Only one class per line, please. Format is:

CLASS_HAME <suffix-l> <suffix-2> ... <suffix-n>

Enter a q when finished, or an e to exit.

Enter string: FILE.c.o Makefile

Enter string: VERSION ,v

Enter string: q

How enter multiple classes and objects for any given level of hierarchy.

Only one class per line, please. Format is:

MULTIPLE_CLASS_HAME <object-l> <object-3> '" <object-n>

Enter a q when finished, or an e to exit.

Enter string: PROGRAM martIe/loader

Enter string: q

Ready to marvelize lexample/marvel. Are you sure [yin]: y

Figure 3: A dialogue with the Marvelizer.

23

24 6 DESIGN: THE A1ARVELIZER

~ ::
I~ i I

~~
..

Ii ji ·1 I t "II

I ~ ~
..

I ~ ~~
.. , "II , ~ f ~~ ~~

.. oS A- t I oS ! .. I~ a~ ~j i i ... i ! J! I ! 8 a 0 .,
~ g. I .. ~ ! ~~ r; A- .a " A- " " " . ..

¥
.a
0 ..
c • e

...
• !
N

~ If l ~
..

" • " 1
..

J l i .. • • >C
.a •
~t2
.. ~ ~ "II •
• oM
N .. "!
'i" .. 0

33~
.I " .. -• OoM ~.,
g ... a
.. .a
~.II
0
"0-s .. !.

• !. " 0 !O ...
U" 0

j .. ,.=.
S"D" • ".:1-..

I !J I8
l

~ .. " .. -
~ aa!

Figure 4: A Marvel objectbase before Marvelizing.

6.3 Implementation 25

n n n l • • • • •
~~~ff!! 

.. 
f~~li" 

~ ... 
.. s ....... r i ......... 1 f 
2.t; .. 2.2. 8- ...... 2.2- .. .. ~ ...... ""'",...,.""' .... • . ,. .. ~~~~:: 0-. ., .. .. ""... .. .. :I .. 

~ :.~ .. -=-=. ~ 

9 ~~g i lJ P.!Ii£~g ... 
... £ ... ~r"I--~p ~ 

0 

~ ,I ~ .... ii~ -• ! .. ,,,. .. .. :=. I ... 
i 

...... ,. ........ 
~i~ '~i~ 

A. ! 
" ! ~ • .. ". E .. ~ i 1 i 

". ,. .. 
I 

Figure 5: The same object base after Marvelizing. 



26 6 DESIGN: THE rvIARVELIZER 

The Marvelizer uses the Unix C library functions for reading directories6 to do 

a preorder traversal of the directory tree being immigrated. A parallel preorder 

traversal of the Marvel objectbase is done, starting at the root class specified. Mar­

velization is accomplished in a single, read only pass of this directory tree. 

The root object is treated specially. It has been verified during the initial query 

stage, so the Marvelizer immediately adds it using the add command (discussed 

later). This new object is set to be the system's current object. Then the traversal 

of the directory being immigrated begins. 

When a file is encountered, the Ivlarvelizer looks to see if the file's suffix matches 

a rule in the table, and if that rule's class belongs to either the current class, or 

a large attribute of the current class. In the first case, the file is simply copied 

into an appropriate place in Marvel's physical data space. In the second case, a 

child object in the rule's class is hierarchically added, deriving its owner attribute 

from the current class' large attributes. Then the file is copied to that child object. 

Refer to figures 1 and 3 for an example. If the current class is MODULE, and a . C 

file is encountered, an object of class TEXTFILE is added, using the cfile3 large 

attribute of the current object as an owner attribute. Then the. c file is copied to 

the new object. Files not found in the rules are ignored. Messages specifying the 

ignored files are generated, depending upon the verbosity level. 

\-Vhen a directory is encountered, the Marvelizer first looks to see if there is a 

rule specifying it. If there is such a rule, and if the rule's class is a member of the 

current class' list of collection attributes, then a hierarchical object is added, as 

described in the second case above. Otherwise, the Marvelizer determines the set 

of possible classes this directory could be an instantiation of, based on the current 

6opendirO and readdirO. 



6.4 Schema Evolution ?"" _I 

class' template attributes. If there is more than one element in this set, the user 

is queried about possible class choices. The user picks a class (possibly ignoring 

the directory is an option) and the object is added as above. The system's current 

object is moved (hierarchically down) to the newly added object, and the Marvelizer 

creates an appropriate directory in its directory structures. Recursive processing 

continues. 

The display is updated after Marvelization. At this point, any problem directo-

ries can be Marvelized again, using different starting points in the Unix file system 

and the objectbase. A problem directory has a structure that does not match Mar-

vel's objectbase definition. The Marvelizer skips such directories. The program 

structure can be changed in this fashion. 

6.4 Schema Evolution 

Implementation of the Marvelizer h~ shown that migration of software is a 

difficult task. The most serious limitation of the Marvelizer is the lack of ability 

to comprehensively restructure a software system on the fly. vVe refer to such 

restructuring as dynamic immigration, or schema evolution. 

During the implementation of the Marvelizer, several ideas for dynamic immi-

gration in Marvel have come up. These ideas are discussed in section 9.4. 

7 Design: Organ 

This section describes the core of the Organ system. First, initial design re-

quirements are presented. Second, each command is presented in detail. Third, 



28 7 DESIGN: ORGAN 

some interesting details of the Organ command set implementation are presented. 

Finally, an examination of the necessity and completeness of the Organ command 

set is presented. 

7.1 Design Requirements of Organ 

The basis of the Organ command set is the command set offered by Unix for 

reorganizing file systems. The relevant Unix commands include mv, cp, 1n, 1 s , 

tar and cpio. Unix provides very little visual assistance in reorganization tasks. 

The basic premise of the Organ command set is to provide a more powerful set of 

commands then Unix offers specifically for reorganization of software systems, with 

complete visual assistance to users who have an appropriate graphics display. For 

users on a standard terminal, the system is intended to have full capabilities, but 

without the assistance of the object base display facility and graphics browser. 

Organ commands all assure internal consistency of the in-memory objectbase 

upon completion. All routes to failure are examined prior to any actual manipu­

lation of the objectbase. The object base is checkpointed immediately prior to the 

start of any Organ command, and upon completion of each command. Commands 

do not modify Marvel's physical data space until the in-memory objectbase is suc­

cessfully updated. Thus, an Organ command is an "atomic" transaction, where 

recovery from a system crash or network failure simply involves the restoration of 

the previous state of the objectbase, which is kept on disk in a readable text file. 

Organ does not currently address operating system or network failures that can 

corrupt ~vlarvel's physical data space. Success is otherwise assured, because of the 

successful completion of the manipulation of the in-memory objectbase. 



The Organ Commands 29 

Organ commands are menu and mouse driven when using the graphical interface. 

Users are constantly informed of a command's status, and when a command is 

waiting for input. 

The text based versions of the Organ commands are similar, except that all 

objects must be chosen by specifying qualified paths. In practice. the graphics 

display seems to be a great aid to the reorganization task. 

The time limiting components of the Organ command set must all be the actual 

operating system time involved in carrying out the physical disk activity specified. 

Thus, the objectbase design must be efficient enough to allow searches for objects 

in O( c) time, rather then searches down potentially long lists of objects. 

Organ commands are not fragile. As appropriate, they resolve duplicate name 

conflicts on the fly, warning users as need be. In general, if it is less work to rename 

an object after an Organ command, Organ will generate an appropriate, unique 

name. Otherwise, Organ will fail, and the command must be reexecuted. This 

name resolution methodology avoids repeating more complex commands. 

However, Organ commands do not assume intelligence about what the user had 

in mind. Thus, if two objects are chosen whose relationship is unclear, Organ will 

specify the problem as accurately as possible, and return control to the user without 

invalidating the objectbase. The user can then reissue the command appropriately. 

7.2 The Organ Commands 

Organ commands allow users to add ob jects , copy ob jects (and all their children) 

to other objects, move objects (and all their children) to other objects, join the 

children of two objects, rename an object, and delete an object (and all of its 



30 7 DESIGN: ORGA.S 

children). 

In the following discussion, the source object is acted upon and the target object 

receives the activities of the command. Commands which operate on two objects 

do so by first specifying a source, and then specifying a target. Those which operate 

on just one object specify only the target. 

Organ commands all have a consistent user interface as follows: 

1. Pick the desired Organ command from the menu. 

2. Pick an object in the display window after the prompt. 

3. If the command operates on a source and a target, pick a target in the display 

window after the prompt. 

4. Wait for the command to complete and the display to refresh itself. 

5. Either pick Done, or repeat the above steps. 

7.2.1 Add 

Add creates an object in the Marvel object base. It is a fundamental command, 

all other Organ commands are built upon this basic facility. Add must be used when 

initializing an object base. It can then can be used to add children to that object, 

according to the currently defined class structure of the objectbase. 

Add supports the addition of new objects horizontally and hierarchically. Hori­

zontal addition adds the new object to the current class. The new object becomes 

the current object. Hierarchical addition adds a child object to the current object 

using one of the current class's large template attributes as an owner attribute. This 



-? , .- The Organ Commands 31 

large attribute need not be instantiated in the target yet. A link from the current 

object through the specified attribute to the new object is created. 

The user interface to add is an anomaly amongst the Organ commands. \Vhile 

it is concievable to point to names, classes or parent objects to provide add with 

information, it is impossible to always provide enough information in this fashion. 

Instead, the user is queried for directions on doing a horizontal or hierarchical add, 

and then the user supplies an object name and (for a hierarchical add) an attribute 

name. Instances are added relative to the current object, which eliminates the need 

to pick objects on the display. Only one object can be added with each invocation 

of add. 

As an example, consider an empty objectbase in the C/Marvel environment. 

The following commands create a top level GROUP object called software-system.!, 

with three children, all of whom are PROJECT objects. The commands are shown 

with their line oriented interface flags for clarity. Figure 6 shows what the object base 

looks like after execution of these commands. 

add software-systems 

add -a projects marvel 

add -a projects meld 

add -a projects mercury 

7.2.2 Copy 

Copy nondestructively copies a source and all of its children to a .target. The 

target's master class must have a large template attribute that the source can use 

as a linking owner attribute. This large attribute need not be instantiated in the 



32 7 DESIGI\l: ORGAS 

[ :: .. ... i : I ... 
i~ 

.. Ii ~ ~, I t 
~ I j i i , ~ ~ .. s. ~ S. 3 1;;1 !i~ ill 

~.a~ .. oS t Q, t , II .. J ~l f:::::. I i j a ~ .. ... ... .. ... .. ... .. I § 8 i 0 ~ ! ~ s- I .. : ! -3 e ~. =-3 IJj~ ..... Q, .Q II to .... Q, ~ II ~ • I .. 
~ 
I • .. 
! .. 
i i .. 
~ -.Q 
0 .. 
~ • .. ... 
a 

J 

I 
" l i -

; 
0 ... 
N 

g ... 
• .. , 
... 
J .. 
~ 

Figure 6: An object base after four add commands. 



Tbe Organ Commands 33 

target object yet. This restriction prohibits coercing objects of one type into objects 

of another type. Such coercion may be desirable, and is discussed later. An object 

is not allowed to be copied to itself. 

Copy repeatedly calls add to create all the new objects below the target from 

the source. Marvel's physical data space is then updated. The object base manager 

supplies appropriate mappings to files and directories to do this. Copy has no 

difficulty with end cases such as an entire object base or a simple leaf object. 

7.2.3 Move 

Move destructively moves a source and all of its children to a target. The user 

interface and restrictions for move are identical to those for copy. 

The difference lies in the actual work move does. Move simply unlinks the source 

and relinks it in the target. Recursive moving of the source's children is automatic, 

because the links of Marvel's objectbase extend to the next level of hierarchy down 

or up. 

7.2.4 Join 

Join destructively joins two objects. To be joined, both the source and the 

target must be members of the same class. The source disappears, and all of its 

children become part of the tree rooted in the target's parent. Join is undefined 

for top level objects. It should be noticed that Join is fundamentally different from 

a relational database join operator. 

Join is a move of each of the source's children to the target, and is implemented 

as such. An example from the CjMarvel environment shows the power of join. 



34 7 DESIGN: ORGAN 

Joining two instances of the class LIB could potentially involve movmg many. 

many modules, because libraries are often vast. This is too time consuming without 

a command such as join. 

Figure 7 shows an object called 8rc, belonging to class LIB. A join command 

has just started, and the object Organ, belonging to class MODULE has been 

picked as the source. Next, x/ace is picked (also belonging to class MODULE) as 

a target. Figure 8 shows the results of the join command. 

7.2.5 Rename 

Rename renames a target object. In order to assure (alphabetical) order in the 

objectbase, a renamed object must be completely unlinked from its old location, 

and relinked into its new position, relative to its new name. 1Iaintenance of order is 

necessary to guarantee fast objectbase access. The actual object is never destroyed. 

This way, all of the renamed object's children are moved automatically with the 

object. Since many components of an objectbase might change location relative to 

each other with one rename, the visual effect of rename is often larger then one 

might expect. Marvel's physical data space is unchanged except fro a rename of 

a directory. The operating system maintains its own data structures for locating 

directories and files. 

7.2.6 Delete 

Delete deletes a target object and all of its children from the object base. Delete 

can potentially remove an entire object base in this fashion. Due to the severity of 

delete's actions, the user is asked to be certain of the deletion. 



If) 
M 

Do .... 

Pick an object to join, or pick cIoI». 

join 



36 

.s 

.A ..... 

7 DESIGN: ORGAN 

! 
!~I~~~--~~~~~~~~~~~~~~~~~~ 

a 
.. 1--...... 
1 
i .. 
I 
8 

.s 
o .,..., 

~ 
..; 
II 
.2 
• .. , 
... I 
~ g 
~ 

I 
.a 
~ .. 
Do .. 
0 

ci .... 
·0 
.~ 

I.S 
J .. "w w~ 
~.A 

'So 
J~ 
~~ 
~;: 

Figure 8: The same object base after the join. 



7.3 Implementation of Organ Commands 37 

7.3 Implementation of Organ Commands 

The previous sections described the overall operation of each Organ command. 

This section focuses on the remaining details of implementation appropriate to this 

thesis. Further details can be found in [Sok89]. 

7.3.1 Naming Conflicts 

In all commands except add and rename, name conflicts are handled without 

failure. Upon discovery of a name conflict, a unique name is generated for the 

source. The unique name has the same root as the original name, hence it is easy 

to pick the object out and rename. A warning is issued when Organ must generate 

a unique name. Targets are never renamed. Organ's name conflict resolution policy 

is to automatically resolve name conflicts with a unique name (rather then exiting 

in error) when it is less work for a user to rename an object than to repeat the 

command with some other name. It is unclear that this is the best name resolution 

policy. 

7.3.2 Speed Analysis 

The objectbase manager maintains links and tables in the object base to allow 

O( c) graphics search, insert and delete time and O( n) non-graphics search, insert 

and delete time. c represents the constant few simple calculations needed to trans­

late a pair of graphics coordinates into indices of an object lookup table maintained 

as part of the objectbase. n represents the number of objects in the objectbase. 

The non-graphics search time is slower because the object must be specified by a 

fully qualified M arvei path. A fully qualified Marvel path is one which describes 



38 7 DESIGN: ORGAN 

the location of an object by specifying all if the objects hierarchically between the 

object in question and the current instance (see section 2). The current instance 

must be hierarchically above the objects being dealt with. 

Marvel's ordering of objects is then used \\;th this Marvel path to descend the 

object hierarchy to the correct object. In practice, the limiting factor of the line­

oriented interface has been how fast a user can figure out what the current status 

of the system is, and what to do next. 

The preserved ascii format objectbase must be read into memory whenever Mar­

vel starts up. The initial startup time is a one time cost of O(n2 ) to generate the 

links and tables mentioned above. This would be reduced to O(n) with a binary 

copy of the object base being stored. Still, it is a small cost for hours of speed. For 

more details of the Marvel object base, see [Sok89]. 

The time complexity design constraints mentioned in section 7.1 are realized 

in the graphics interface, but not the line oriented interface. In reality, however, 

it is unclear just how many objects must be in an objectbase in order for the line­

oriented interface search time to become significant factor compared to the physical 

disk transfer time. This is so because objects tend to represent large chunks of data 

in soft ware systems. A rigorous time analysis is difficult here, because there are 

so many possible factors, such as how much information is being transferred, how 

large the objectbase is, the speed of disk access versus in memory searches, and so 

forth. In practice, the limiting factor of the line oriented interface has been how 

fast a user can figure out what the current status of the system is, and what to do 

next. 



7.3 Implementation of Organ Commands 39 

7.3.3 Graphics interface 

The graphics interface for the Organ command set is implemented in a con­

sistent, event based style. All commands except add allow multiple invocations 

without restarting the command. Furthermore, full information on what actions 

(mouse picks) the system is waiting on are displayed. After each cycle of a com­

mand, the resulting objectbase is updated and redisplayed. User input for the entire 

command set is via the mouse, except for new names necessary for add and rename. 

7.3.4 Line Oriented Interface 

The line interface of the Organ commands follow a simple, single action model. 

Command lines are as follows: 

add [-a <attribute-name>] <instance-name> 

rename <target-object> <instance-name> 

delete <target-object> 

move <initial-object> <target-object> 

copy <initial-object> <target-object> 

join <initial-object> <target-object> 

For <obj act> and <target-obj ect>, fully qualified Marvel paths must be sup­

plied. For example, the syntax for the join command resulting in figure 8 is: 

join software_systems/marvel/lib/load sOftware_systems/marvel/lib/dbman 



40 8 DESIGN: USER INTERFACES 

7.4 Organ Completeness 

The Organ command set provides most of the ability to do full scale reorganization 

to a large system. Below are features Organ does not have that seemed desirable 

during the implementation and testing of Organ. 

Just as the Unix commands mv. cp. ln and so forth can be thought of as 

building blocks for shell scripts that do more complex things, the Organ commands 

can be imagined as building blocks for }.Iarvel command scripts. While Marvel 

currently only supports command scripts upon startup, a generalized facility for 

executing Marvel command scripts is a simple extension. With such a facility, 

Organ commands could be combined to be more powerful and automatic. 

Organ lacks a general undo facility. While most of the commands can effectively 

be undone by repetition of a reversed set of commands (for example, a join can be 

undone by a series of moves), there is no facility to undelete an object. The need 

to answer a query before a delete takes place is a partial solution to this. 

Furthennore, Organ lacks capability to reorganize parts of an object, such as it's 

attributes, without reorganizing the whole object. Use for such a facility is certainly 

conceivable. 

8 Design: User Interfaces 

This section discusses the design of the user interfaces for Marvel, Organ and 

the Marvelizer. Emphasis is placed on the graphical interface. This discussion is in­

cluded because the graphical interface has a large impact on the usability and speed 

of Organ, rather than as the implementation of some research on user interfaces. 



8.1 Design Requirements of the User Interface 41 

8.1 Design Requirements of the User Interface 

In order to satisfy a variety of hardware facilities, the user interface for Organ 

is made up of two separate, equivalent parts. The first is a graphics interface, and 

the second is a line oriented text interface. The command sets are almost identical, 

with changes only where one environment or the other makes certain commands 

inappropriate 

8.2 Graphics Interface 

The Marvel graphics interface is a menu and mouse driven interface built with 

X-ll version 3 Xlib primitives. No specific graphics toolkits are utilized. The main 

purpose of the interface is to facilitate a visualization of the Marvel object base, and 

a platform for the efficient implementation of the Organ command set. 

An attempt has been made to stay clear of the concerns of the "leading edge" 

III user interface research, but rather focus on a simplistic, but fully functional 

interface. It is the author's opinion that much work on user interfaces is highly 

personal, rather then based on some set of quantitative measures, and thus this 

issue has been left alone as much as possible. "Wizzy" features have been added 

only where they have a direct influence on the usability of Marvel and Organ. 

The interface is designed to be static, and is not especially tolerant of heavy 

user manipulation, such as resizing, iconization, and lowering of windows. Since all 

information displayed is disposable, a redraw can always return a user to a state 

where (s)he was previous to some window manager operations. Most importantly, 

such window operations can not cause a loss of data. 

The following sections describe the layout of the various windows, and then the 



42 8 DESIGN: USER INTERF.4.CES 

print and browse commands, which both heavily utilize the graphics interface. 

8.2.1 Window Layout 

The graphics interface contains five windows, as indicated in figure 9. 

There is a window called menu containing all commands built into Marvel (in­

cluding the Organ commands and the Marvelizer) in a static menu. Submenus 

overlay this menu for appropriate commands. There is another window for Marvel 

rules called rules. The entries in this menu change dynamically as the user loads, 

unloads and merges strategies (see [BS88]). The largest window is the display win­

dow, which shows the entire objectbase upon startup. There is a browser for the 

display window, and objects can be directly picked when appropriate. Below the 

display window is the text window, and above it is a long thin status window. These 

windows are all statically placed, and of fixed7 size. 

1. Status Window 

The status window (Figure 10) describes the system's current status. If a 

command is being executed, its name appears in the center of the status 

window. The version of ~larvel being used appears in the right part of the 

window, and the current object (section 7.2.1) appears in the left part of the 

window. 

2. Display Window 

The display window provides a graphical drawing board for display of the 

objectbase8 •. The display is created in a two pass preorder traverse of the 

7The configuration is trivial to change in the code, of course. 

8In the future it will also be used for display of rule chaining. 



8.2 Graphics Interface 

I status 

marvel menu 

text rules 

Figure 9: Layout of the Marvel Graphics Interface 

current 

verSlOn 

current 

command 

Figure 10: The Status Window 

current 
object 

43 

I 



44 8 DESIGN: USER LVTERFACES 

objectbase. No disk access is required, as all crucial class and attribute in­

formation is always in memory. Information displayed is strictly hierarchical, 

and the internal computations are done via levels, starting at zero for the root 

of the current display. Since zooming in and out and panning are allowed, the 

number of levels in the display and the display's root change dynamically. 

There is a concept of a valid display. The display must be valid for the 

browser and Organ commands to operate. In general, the display is always 

valid, because all commands which update the object base cause a redisplay. 

If an Organ command fails with some sort of internal error, it is possible the 

display will be left invalid. To re-validate it, a print all command must be 

executed. 

'When a display must be redrawn, the procedure is as follows. Two preorder 

traversals of the object base to be displayed are performed. The first pass 

generates all the information needed for calculation of physically where to 

display each instance. This information is kept on a display structure that 

is directly accessible via level information available during the traversal, and 

in each instance. The size of this structure is just a fraction of the size of 

the entire objectbase, so no heavy tolls in space are extracted. The second 

pass actually draws the information on the screen, using the precalculated 

information in the display structure to decide what to draw where. Using 

this methodology, complex objectbases can be rapidly displayed. The time 

complexity of display is O(2n), where n is the number of objects in the tree 

being displayed. This root object is should be a root for a small subset of the 

objectbase, as display of the entire object base often overly crowds the display. 

Access to all components of the display is achieved with no searching. This 



8.2 Graphics Interface 45 

speed minimizes the waiting time for display updates, and browsing. This 

is done by first transforming the y coordinate of a display mouse pick into a 

level (via a simple linear transform) and then using this level to index into the 

appropriate level of the display structure. The actual instance is then found 

by a simple linear transformation of the x coordinate of that same mouse 

pick. to get the position of the instance in question in the calculated level. 

This position is then used as a second index into the display structure, that 

contains a pointer to the actual instance in the objectbase. 

Figure 11 depicts an objectbase in the display window. The structure of the 

object base shown matches that for the CjMarvel project shown in figure 1. 

This example objectbase contains two complete versions of Marvel, or roughly 

525 objects. \Vhen objects get too close together, as in the last two levels of 

figure 11, object names are left out. 

3. Text 'Window 

The text window is used to communicate with the user. Both input and output 

pass through this window. Output is paged for operations which have more 

then one screens' worth of output, such as many print commands, and the 

help commands. A menu pick allows repeat viewing of all next and previous 

pages. For interactive commands such as the Marvelizer, output is paged to 

keep important information from running off the screen before the user can 

read it. 

A complete scrolling facility is currently under development as part of a larger 

project by a project student, and should be in place by the close of this 

semester. 

All keyboard input for the graphics user interface comes from the text window. 



46 8 DESIGN: USER INTERFACES 

Figure 11: The Display Window 



8.2 Graphics Interface 47 

A cursor will appear when the system is waiting for input, at which point all 

keyboard events are focused into that window. Thus, the mouse need not be 

moved. A carriage return, Ctrl X, or Ctrl C ends an input string, the later 

two resulting in empty strings. 

4. Menu Window 

Menus in the graphics interface are all static. This is to allow the user to 

focus on the real problem at hand, namely how to develop some software, 

rather then how to get through a complex menu system. All the functions 

available at any given moment are always visible. Figure 12 depicts the main 

menu. Submenus overlay the main menu at appropriate times. Submenus are 

described in sections 8.2.2 and 8.2.3. 

5. Rules vVindow 

The currently available rules are accessible in the rules window. This menu 

is dynamic, in that it changes whenever the current set of rules changes due 

to a load I unload or merge command; however it is static in the sense that 

it is always available without a mouse pick to bring it up (or put it down). 

Figure 13 shows the rule window when the AIiTools strategy of G/Marvel is 

loaded. 

8.2.2 Print Command 

The print command facilitates printing of the object base, and the currently 

available rules, relations, and class structures. Both the text window and the display 

window are used. See figure 14 for all the options available with print. 

In order to display the entire objectbase, choose the all option. The objectbase 



48 8 DESIGN: USER INTERFACES 

print 

browse 

add 
change 

? 

help 
usage 

load 
merge 

unload 
copy 

move 
.. 
Jom 

rename 

delete 

marvelize 
quit 

set 
prompt 

save 

readob 

Figure 12: The Main Marvel Command Menu. 



8.2 Graphics Interface 49 

deposit 
reserve 

edit 
VIew 

viewAerr 
analyze 

viewCerr 
compile 

archive 
archiveall 

debug 

build 

buildall 

release 

Figure 13: The CJ1-1arvel Rules Menu. 



50 8 DESIGN: USER INTERFACES 

current 
string 

rels 

rules 

inst 

class 

all 

Figure 14: Print Command Options. 

is displayed, and the text window is put into page mode with a textual version of 

the displayed object base. The functionality of the other options maps directly to 

the single letter options provided in the line oriented user interface, and is described 

in [BS88j. 

8.2.3 The Browser 

The browser is a facility only available in the graphics interface. The browser 

allows a user to visually browse the objectbase, getting information about objects in 

the display as desired. In order to enter the browser, the display must be valid. In 

general all objects mentioned in the descriptions below get picked with the mouse 

in the display window. The logical boundaries of an object in the display window 

include the imaginary boundary half way between the object and it's neighboring 

objects. A mouse pick anywhere in this region is acceptable to select the object. 

Following is a description of the specific facilities available in the browser. 

Zoomin Zoomin shows details of a particular part of the display. The picked in­

stance will become the new root of the display. The display is recalculated 



8.2 Graphics Interface 51 

and redisplayed. 

Zoomout Zoomout enlarges the current display by one level of hierarchy. This is 

accomplished by finding the parent object of the picked object, and making 

it become the new root of the display. The display is then recalculated and 

redisplayed. 

Pan Pan pans left or right from a picked instance in the object base. This is accom­

plished by finding the object picked in the display structure, then making the 

previous (left) or next (right) element in the display structure the new root. 

The display is then recalculated and redisplayed. A limitation of pan is that 

panning can take place only between objects currently in the display. 

Info Info gets information about a particular object in the display. Including the 

name of the object, all it's attributes are listed, as well as it's owner attribute 

and master class. 

Done Done exits the browser. 

Figure 15 shows part of a C/Marvel objectbase being browsed. Information 

about the displayed root is given in the text window. Figure 16 shows the same 

objectbase, after zooming in on object organ. Information on object organ is given 

in the text window. 

8.2.4 Change Command 

The line oriented syntax of the change command is awkward, because fully 

qualified Marvel paths 7.3.2 must be specified to describe a unique object. In the 

graphics interface, this is reduced to a simple pick of an instance in the display. 



52 

I ... 
0 ..... 
u ... 
• ..... .. 
e ... 
; 
..... 
~ 

I ... 
i 
... 
¥ .... 
8 ... 
c • ... ... a 

I ... 
.Q 

II .. 
§ .. 

.oJ 
::I 

I .. c 0 ... 
It .s 

8 DESIGN: USER INTERFA.CES 

! .a 

III ... 
.:I 

Figure 15: The browser, showing info. 



8.2 Graphics Interface 53 

II ... 3- a =' .. .. 
I 0 I 0 ! .... c: ow u a. ! ~ w .. .. • .... • ... , r .. 

i .... 
t • I .. 
i 
... 
~ ..... 
A 
0 ... 
c: 
I ... 
a 

I ... 
A 

i 
• • 
" ... 
u .. 
I 

" • , I .. 

iiii-5 .; 
i:;~ 8 .. u ... 
... " I ...... .. ~"" 
"'u" .! I ~ ~J : 0 ... 
:!I~~i N 

II 0 
i.!;;I~.1 .. 

• ... ..... , ] , 01 ..... 
... .. ... -5! .. = "" ......... , ¥ 110" 1101 ... ~ =1! i A .... 

0 UDo 

Figure 16: The browser, showing info and zoomin. 



54 8 DESIGN: USER INTERFACES 

8.2.5 Commands Which are not Relevant in the Graphics Interface 

Some built in Marvel commands do not have much meaning in the graphics 

interface. These include set, ? and Usage. Set sets various settings for the line 

oriented print facility, thus is not often used in the graphics interface. However, these 

settings are reflected in the text window. ? prints a list of commands available at 

the current time. Since the static menus are always visible, ? is meaningless. Usage 

is of limited use, as the graphics interface of all the commands are interactive to the 

point where either they just need to be chosen, or if extra input is necessary, full 

explanation is provided on a step by step basis. Usage always prints out usage of a 

command in line oriented mode, if the command is different in the two interfaces. 

The usage of a command in the graphics mode can always be found by just execting 

the command. The system will give instructions. Usage is not intended to provide 

explaination of a command (that is the purpose of hel p, so this is acceptable. 

8.3 Line Oriented Interface 

The line oriented interface contains all the above commands, except as noted, 

with Unix like command line options rather then graphical interactions. A major 

difficulty in the line oriented interface comes about in uniquely identifying the ob­

jects in question. This is difficult because names are not necessarily unique within 

the objectbase. Thus, fully qualified Marvel paths 7.3.2 must be supplied for each 

object. Since Marvel is designed to map to the Unix file system, names are expected 

in path form from a uniquely identifying root. The line oriented interface is further 

documented in [BS88]. 

This search methodology for finding objects is breadth first. The worst case 



55 

search time will be on the order of the size of the objectbase. In general, the search 

speed in this case is much faster, for two reasons. First, most conunands do not need 

to search near the leaves of the tree, which tend to be much more populated then the 

internal nodes, and therefore the true time bottleneck. Second, the instances of each 

class in the object base are maintained in alphabetical order, to avoid unnecessary 

search time. Section 7.3.2 discusses this issue in mOre detail. 

As a general note on speed, many of the operations defined above have the 

potential to copy large (physical) quantities of data. Because of this, analyses of the 

sort used to develop the worst case figures above break down, and the linear factor 

of code movement and operating system overhead becomes a greatly overriding term 

in the net time complexity of each operation. 

It is furthermore worth noting that in addition to raw search speed, the graphics 

interface has a more important factor which makes it 8eem faster then the line 

interface. This is the look and feel of the environment, which accounts for many 

graphics interfaces "feeling" faster then their equally functional line interfaces. 

9 Future Research Areas 

In the course of this research, many areas for future research have been dis­

covered. The subjects include weaknesses in Marvel which have been made clear 

because of the addition of Organ and the Marvelizer, and weaknesses in Organ and 

the Marvelizer themselves. Research into graphics interfaces is certainly another 

area that has been ignored in this thesis. Use of Marvel has shown the need to re­

search the interface question in Marvel in more detail, however the ad hoc interface 

created for Marvel is unquestionably an enhancement. 



56 9 FUTURE RESEARCH ARE.4.S 

9.1 Marvel 

~iIarvel does not fully utilize information provided by medium attributes. These 

are attributes that describe things on the granularity of a :lIe. A seLof medium 

attribute might be very helpful to ease the awkwardness of describing the structure 

of many software projects. Such an attribute would alleviate the proliferation of 

directories needed to physically define a structure such as a module, that tends to 

contain a set of files or procedures that need not all be separated by directories, 

but can rather just be files. In the !vIarvel objectbase, communication with the 

file system is strictly via large attribute (directory) names, rather then large and 

medium attribute names. 

Furthermore, the MSL language is a powerful language for defining environ­

ments, but is quite awkward to use. A better interface to MSL would ease future 

development of dynamic immigration and reorganization, as it would provide a basis 

for class structure modification. 

There are many, many other enhancements that would make Marvel better, but 

most of them are not as directly related to this thesis as those above, and thus are 

not mentioned. 

9.2 Organ 

Organ is a static reorganizer. Static refers to reorganization that takes place 

within a particular class structure. The problem is when reorganization of the class 

structure is desired in addition to reorganization of the actual object base. This is 

called dynamic reorganization, or schema evolution. While static reorganization is 

unquestionably an important facility which has not been realized in other SDEs, 



9.3 The 1vlarvelizer 57 

full dynamic capabilities are needed to provide all the facilities of the underlying 

operating system, and more traditional relational database facilities. 

Organ focuses on programming in the large, versus programming in the many. 

Thus, as with Marvel, the entire issue of multiple users and concurrency has been 

left as an open research issue. 

Organ (and the Marvelizer) were designed with the thought of moving to a 

"real" object base and object base management system. The main features that 

they depend upon are the class and attribute structure enforced by the current 

objectbase. With an object base system with similar facilities, the new tools should 

be easily ported. 

9.3 The Marvelizer 

\Vhile the Marvelizer is a powerful immigration tool, it provides no facilities for 

schema evolution. If a project is being developed with an awkward physical layout 

on disk, the Marvelizer will not greatly improve matters. Solutions to schema evolu­

tion in object-oriented databases have been presented by Skarra and Zdonik [SZ86]. 

Whether these solutions are applicable to schema evolution in Marvel remain yet 

to be seen. 

9.4 Schema Evolution 

Some possible enhancements of the Marvelizer and Organ that would provide facil­

ities for schema evolution tool are presented now. 



58 9 FUTURE RESEARCH AREA.S 

• A class and attribute editor for 1-larvel's objectbase structure can be created. 

Such an editor could utilize the user interface "drawing board" mentioned 

earlier and allow users to dynamically specify changes to the current class 

structure. In addition to graphically displaying changes, the editor would 

propagate the changes around the objectbase. Alternatively, a non graphical 

version of the editor could accept files similar to current strategy descriptions 

(except providing mapping from old to new classes), and merge new classes 

and changed classes in with existing classes. 

• A Meta-Marvelizer for the Marvelizer can be created. Such a tool would 

apply a process similar to what the current Marvelizer does to the structure 

of a Marvel object base, and then perform an appropriate Marvelization on 

the current object base to convert it into the new format. 

• Hooks in the Marvelizer to allow interaction with locally available tools, such 

a parsers, seem necessary. Such tools allow a software project to be managed 

at a finer granularity. A general interface to such tools is also necessary. 

Much more research needs to be completed on the general subject of schema 

evolution in object-oriented environments, and on the specific areas the above 

ideas mention. 

• If the Marvelizer were able to generate an ad hoc, on the fly class structure, it 

would be able to complete successful Marvelizations in every case. Then class 

structures could be modified with one of the above dynamic schemes, and 

the user would have a perfectly customized objectbase. Of course, strategies 

and envelopes would have to be modified to work with this new objectbase, 

however a ~vlarvel envelope language more sophisticated then the Unix shell 

could take care of much of this automatically. \fuch more research needs to 



9.5 User Interfaces 59 

be done on this idea. 

9.5 User Interfaces 

The subject of user interface has been approached in a seemingly incomplete 

fashion here. This is because the intent of this research is not to focus on state of 

the art research on user interfaces (or state of the emotions, as the case may be), 

but rather on software organization. At this point, it is clear that there are more 

then emotional issues brought up by the implementation of the Marvel graphics 

interface. 

9.6 Real Objectbase Managers 

Since the class and attribute structure of Marvel is relatively standard, that 

part of a port to some "real" objectbase manager should not present any difficulty. 

However, many objectbase managers do not use the file system in a normal fashion 

to maintain data. This raises an issue of usability of COTS tools, that can not 

be determined generally before examination of specific objectbases. If we adopt an 

object base manager which is "real" only in the sense that it provides concurrency 

control, and an external object model based upon the file system, rather then a 

sophisticated object manager, it is unclear that we will have an improvement over 

what we currently have. 



60 10 CONCLUSIONS 

10 Conclusions 

Marvel, the Marvelizer and Organ together provide a powerful integrated soft­

ware development environment which is easily tailored to the development of a large 

variety of software systems. The environment is designed to grow as the project 

being developed grows, through environment changes and Organ's reorganization 

capabili ties. 

The Marvelizer is an immigration tool for software systems. This tool allows 

arbitrarily complex systems to be immigrated into 1vlarvel after the creation of an 

appropriate Marvel environment. The claim of the ~'Iarvelizer is that it is much 

simpler to create a Marvel environment and Marvelize a system, then do the mi­

gration process by hand. This was demonstrated by the creation of the C /Marvel 

environment, and the actual Marvelization of Marvel. 

If a project was being developed with an awkward physical layout on the disk, 

the Marvelizer will not greatly improve matters. As users desire to deviate the 

object base structure from the original file system layout, the need for a schema 

evolution tool appears. I envision such a tool as a Meta-Marvelizer, a Marvelizer 

for Marvel's objectbase structures. Schema evolution here differs from dynamic 

reorganization mainly in the timing of its application. 

Organ is a facility that provides core software reorganization tools in an in­

tegrated software development environment (Marvel). The core commands allow 

object addition, copying, moving, joining, deleting and renaming. This function­

ality is provided in a sophisticated, easy to use fashion, in contrast to previous ad 

hoc methods. Sophistication comes because of a graphical interface which gives the 

user a picture of the software being manipulated, and then allows the user to work 



REFERENCES 61 

by directly manipulating that picture. Organ is a static reorganizer, and does not 

support dynamic reorganization, which involves reorganization of the objectbase's 

class structure, or schema evolution. Static reorganization is unquestionably an 

important facility which has not been realized in other SDEs. However, dynamic 

reorganization will become necessary in the future to support a complete data mi­

gration facility. 

Acknowledgments 

\Vork on the initial implementations of l-.Iarvel are detailed in [BK88]. Marvel 2.01, 

which represents an significant re-implementation of the initial work, was completed 

by Naser S. Barghouti and myself in November 1988. Organ, the Marvelizer, and 

the supporting graphics interface were completed in February 1989 by myself. The 

current release of Marvel is now Marvel 2.10. 

References 

[AH87] 

[BK88] 

Timothy Andrews and Craig Harris. Combining language and database advances 

in an object-oriented development environment. In OOPSLA '87 Proceedings, 

pages 430-440. ACM, October 1987. Special issue of SIGPlan Notices, 22(12), 

December 1987. 

Naser S. Barghouti and Gail E. Kaiser. Implementation of a knowledge-based 

programming environment. In 21st Annual Hawaii International Conference on 

System Sciences, volume II, pages 54-63, Kona HI, January 1988. 



62 

[BL86J 

[BS88J 

REFERENCES 

Arthur J. Benjamin and K arl ~1. Lew. A visual tool for managing relational 

databases. In 1986 Intemational Conference on Data Engineering, pages 661-

668. IEEE Computer Society, February 1986. 

Naser S. Barghouti and ~vlichael H. Sokolsky. Marvel Users Manual, l'ersion 

2.01, CUCS-371-88. Columbia University Department of Computer Science, 

November 1988. 

[Fel79J S.L Feldman. ~lake - a program for m"intaining computer programs. Software 

- Practice and Experience, 9( 4 ):25,5-26.5, April 1979. 

[Hew86] Hewlett Packard Laboratories. Palo Alto CA. SPMS Software Project Afanage­

ment System User's Manual, version 1.0 edition, 1986. 

[KF8i'] Gail E. Kaiser and Peter H. Feiler. Intelligent assistance without artificial in­

telligence. In 32nd IEEE Computer Society International Conference, pages 

236-241. San Francisco CA, February 1987. IEEE Computer Society Press. 

[KFP88] Gail E. Kaiser, Peter H. Feiler. and Steven S. Popovich. Intelligent assistance 

[KP87J 

for software development and maintenance. IEEE Software, pages 40-49, May 

1988. 

Gail E. Kaiser and Dewayne E. Perry. Workspaces and experimental databases: 

Automated support for software maintenance and evolution. In Conference on 

Software Maintenance. pages 108-114. Austin TX, September 1987. 

[LRPC84J David B. Leblang and Jr. Robert P. Chase. Computer-aided software engineer-

ing in a distributed workstation environment. In SIGSoft/SIGPlan Software En­

gineering Symposium on Practical Software Development Environments. pages 

104-112,_ Pittsburgh. April 1984. Special issue of SIGPlan Notices, 19(5), May 

1984. 



REFERENCES 63 

[ML88] Axel Mahler and Andreas Lampen. An integrated toolset for engineering soft­

ware configurations. In SIGSoft/SIGPlan Software Engineering Symposium on 

Practical Software Development Environments. pages 191-199, Boston. MA, 

November 1988. ACM. Special issue of SIGPlan Notices. 24(2), February 1989. 

[OHK87) Patrick O'Brien, Daniel C. Halbert, and 1fichael F. Kilian. The trellis program­

ming environment. In OOPSLA '87 Proceedings, pages 91-102. ACM. October 

1987. Special issue of SIGPlan Notices, 22(12), December 1987. 

[PK87] Dewayne E. Perry and Gail E. Kaiser. Infuse: A tool for automatically man­

aging and coordinating suurce changes in large systems. In ACM 15th Annual 

Computer Science Conference, pages 292-299, St. Louis MO, February 1987. 

[PS87] 

[Rei84] 

[RW89] 

Jason D. Penney and Jacob Stein. Class modification in the gemstone object­

oriented dbms. In OOPSLA '87 Proceedings, pages 111-117. ACM. October 

1987. Special issue of SIGPlan Notices, 22(12), December 1987. 

Steven P. Reiss. Graphical program development with pecan program devel­

opment systems. In ACM SIGSoft/SIGPlan Software Engineering Symposium 

on Practical Software Development Environments, pages 30-41, Pittsburgh PA, 

April 1984. ACM. Special issue of SIGPlan Notices, 19(5), May 1984. 

Larry Rowe and Sharon Wensel, editors. 1989 ACM SIGMOD Workshop on 

Software CAD Databases, Napa CA, February 1989. 

[SKHA86] Barbara J. Staudt, Charles W. Krueger, A.N. Habermann, and Vincenzo Ambri-

[Sok89] 

ola. The gandalf system reference manuals. Technical Report CMU-CS-86-130, 

Carnegie Mellon University, Department of Computer Science, May 1986. 

Michael H. Sokolsky. Marvel implementation guide. Technical Report CUCS-

428-89, Columbia University in the City of New York, 1989. 



64 

[Sun86] 

[Sun88] 

[SZ86] 

REFERENCES 

Sun Microsystems. Unix Reference Manuals, sun os version 3.5 edition. July 

1986. 

Sun Microsystems, Inc, Mountain View CA. Network Software Environment: 

Reference Manual, version 1.1 edition, October 1988. 

Andrea H. Skarra and Stanley B. Zdonik. The management of changing types 

in an object-oriented database. In OOPSLA '86 Proceedings. pages 483--194. 

ACM, October 1986. Special issue of SIGPlan ~otices, 21(11), November 1986. 



A G/Marvel Objectbase 

This appendix contains object base definitions for C / M arvei. 

STRATEGY: objectbase_def; 

Imports: none; 

Exports: all; 

ObjectBase: 

GROUP :: superclass: ENTITY: 

printname : string ; 

status: (Active,NotActive) ;: "Active"; 

projects : set_of PROJECT ; 

END 

PROJECT :: superclass: ENTITY: 

printname : string ; 

status: (Release,Maintenance,Development) ;: "Development"; 

allbuilt (Allbuil t ,NotAllbuil t) ;: "NotAllbuil t" ; 

programs set_of PROGRAM 

libs sat_of LIB 

docs set_of DOC 

bins sat_of BIN 

incs set_of INC 

END 

65 



66 

PROGRAM :: superclass: ENTITY: 

printname ; string ; 

built : (Built ,NotBuilt) = "NotBuilt"; 

cfiles set_of TEXTFILE 

object binary 

END 

LIB :: superclass: ENTITY: 

printname : string 

A. C/MARVEL OB.JECTBASE 

uptodate : (Uptodate,NotUptodate) = "NotUptodate"; 

modules : set_of MODULE ; 

libl : binary ; 

END 

MODULE :: superclass: ENTITY: 

printname : string ; 

archived: (Archived,NotArchived) = "NotArchived"; 

cfiles set_of TEXTFILE ; 

END 

TEXTFILE superclass: ENTITY: 



printname : string ; 

compiled (Compiled,NotCompiled) 

analyzed (Analyzed,NotAnalyzed) 

reserved (Reserved,NotReserved) 

versions set_of 

file : text ; 

END 

VERSION ; 

VERSION :: superclass: ENTITY: 

printname : string 

vfile : text ; 

END 

DOC :: superclass: ENTITY: 

printname 

documents 

END 

string 

set_of DOCUMENT 

DOCUMENT :: superclass: ENTITY: 

string ; 

= INotCompiled"; 

= INotAnalyzed"; 

= "NotReserved"; 

printname 

formatted (Forlilatted,NotFormatted) = lNotFormatted"; 

files : set of TEXTFILE ; 

67 

------ - -



68 

format binary 

END 

INC :: superclass: ENTITY: 

printname : string 

hfiles : set_of TEXTFILE 

END 

BIN :: superclass: ENTITY: 

printname : string 

executable : binary ; 

END 

END ObjectBase 

A. C/MARVEL OBJECTBASE 



B G/Marvel Rules: AllTools 

This appendix contains a strategy for C/MaT1Jel called AllTools. 

STRATEGY: all_tools; 

Imports: objectbase_def; 

Exports: all; 

ObjectBase: 

RELEASE :: superclass: TOOL: 

release: string = "release"; 

END 

BUILDALL :: superclass: TOOL: 

buildall : string = "buildall"; 

END 

BUILD :: superclass: TOOL: 

build: string = "build"; 

END 

DEBUG :: superclass: TOOL: 

debug: string = "debug"; 

END 

ARCHIVEALL :: superclass: TOOL: 

archiveall : string = "archiveall"; 

END 

ARCHIVE:: superclass: TOOL: 

archive: string = "archive"; 

END 

COMPILE superclass: TOOL: 

69 



70 

compile 

END 

string = "compile"; 

VIEWCERR :: superclass: TOOL: 

vievCerr : string = "vievCerr"; 

END 

ANALYZE :: superclass: TOOL: 

analyze: string = "analyze"; 

END 

VIEWAERR :: superclass: TOOL: 

vievAerr : string = "vievAerr"; 

END 

EDIT :: superclass: TOOL: 

edit: string = "editor"; 

END 

VIEW:: superclass: TOOL: 

viev : string = "viever"; 

END 

RESERVE :: superclass: TOOL: 

reserve: string = "reserve"; 

END 

DEPOSIT :: superclass: TOOL: 

deposit: string = "deposit"; 

END 

END ObjectBase 

rules 

B CjMARVEL RULES: ALLTOOLS 



release[?t:PROJECT]: 

forall PROGRAM ?p 

suchthat 

(member [?t.programs ?p]) 

(?p.allbuilt = Allbuilt) 

{ RELEASE release ?t } 

(?t.status = Release); 

(?t.status = Maintenance); 

(?t.status = Development); 

buildall[?t:PROJECT] : 

forall PROGRAM ?p 

suchthat 

(member [?t.programs ?p]) 

(?p.built = Built) 

{ BUILDALL buildall ?t } 

(?t.allbuilt = Allbuilt); 

(?t.allbuilt = NotAllbuilt); 

71 



B C/MARVEL RULES: ALLTOOLS 

build[?p:PROGRAM]: 

suchthat 

{ BUILD build ?p } 

(?p.built = Built); 

(?p.built = NotBuilt); 

debug[?p:PROGRAM] : 

suchthat 

{ DEBUG debug ?p } 

archiveall[?l:LIB] : 

forall MODULE ?m 

suchthat 

(member [?l.modules ?m]) 

(?m.archived = Archived) 

{ ARCHIVEALL archiveall ?l } 

(?l.uptodate = Uptodate); 

(?l.uptodate = NotUptodate); 



archive [?m:MODULE] : 

forall TEXTFILE ?f 

suchthat 

(member [?m.cfiles ?f]) 

and«?f.analyzed = Analyzed)(?f.compiled = Compiled» 

{ ARCHIVE archive ?m } 

(?m.archived = Archived); 

(?m.archived = NotArchived); 

compile[?f:TEXTFILE]: 

suchthat 

and«?f.analyzed = Analyzed)(?f.compiled = NotCompiled» 

{ COMPILE compile ?f } 

(?f.compiled = Compiled); 

(?f.compiled = NotCompiled); 

viewCerr[?f:TEXTFILE] : 

suchthat 

and«?f.analyzed = Analyzed)(?f.compiled = Compiled» 

73 



74 

{ VIEWCERR viewCerr ?f } 

analyze[?f:TEXTFILE]: 

suchthat 

(?f.analyzed = NotAnalyzed) 

{ ANALYZE analyze ?f } 

(?f.analyzed = NotAnalyzed); 

(?f.analyzed = Analyzed); 

viewAerr[?f:TEXTFlLE] : 

suchthat 

(?f.analyzed = Analyzed) 

{ VIEWAERR viewAerr ?f } 

view[?f:TEXTFILE]: 

B C/~IARVEL RULES: ALLTOOLS 



suchthat 

{ VIEW viev ?f } 

edit[?f:TEXTFILE] : 

suchthat 

{ EDIT edit ?f } 

75 

(?f.analyzed = NotAnalyzed) (?f.compiled = NotCompiled); 

reserve[?f:TEXTFILE] : 

suchthat 

{ RESERVE reserve ?f } 

(?f.reserved = Reserved) 

(?f.reserved = NotReserved) 

deposit[?f:TEXTFILE] : 

suchthat 

---------------------------- -- -- -



76 

{ DEPOSIT deposit ?f } 

(?f.reserved; NotReserved) 

B CjMARVEL RULES: ALLTOOLS 


