
Extended Functional Unification ProGram mars

Michael Elhadad
Columbia University. Dept. of Computer Science

450 Computer Science Bdg.

Abstract: 190 words
Article: 4700 words

New York, NY 10027
elhadad@cs.columbia.edu

Area of Submission: C1. natural language.
Keywords: Natural Language Processing, Generation. Unification, FUGs

Abstract

Functional Unification Grammars (PUGs) are popular for natural language
applications because the fonnalism uses very few primitives and is uniform and
expressive. In our work on text generation. we have found that it also has
annoying limitations: it is not adapted to the expression of simple yet very
common taxonomic relations and it does not allow easy manipulation of complex
data-structures like lists or sets. We present in this paper a set of extensions that
keep the desirable properties of the fonnalism but make it more flexible and
easier to use. We fIrst introduce the notion of typed fearures and typed
constituents. Types define a structure over the set of primitive symbols used by
the formalism. We then introduce extended unification: specialized unification
methcxis can be defined for user-defIned data-types. This extends the power of
the system to handle complex data-structures efficiently. Taking advantage of a
structured set of primitives and of specialized unification methods. the resulting
formalism is more flexible, easier to use and produces better documented
grammars than traditional functional unification. It can therefore be used to
address deeper levels of text generation than was possible before.

1 Introduction
Unification-based formalisms are increasingly used in linguistic theories [16] and
for natural language applications. In particular. functional unification grammars
(PUGs) are widely used for text generation [10. 12, 1, 13, 14] and are starting to
be used for parsing [11, 8]. PUGs enjoy such popularity mainly because they ally
expressiveness with a simple economical formalism. It uses very few primitives,
has a. clean .semantics [15, 9], is monotonic, and grants equal status to function
and structure in the descriptions.

Having worked with the functional unification (FU) fonnalism, we have found all
these properties very useful; but we also have met with limitations. The PU

2

fonnalism is not adapted to the expression of simple yet very common taxonomic
relations. The traditional way to implement such relations in FUG is verbose,
inefficient and not readable. We also have applied FUGs to non-traditional
applications, beyond surface generation and syntactic parsing. The task we have
investigated is the choice of connectives between two propositions - a problem at
the junction of deep and surface generation [4, 5, 13]. For this problem, we had
to express constraints between sets, check set membership, and compute set
unions and intersections. For this task, and others involving complex data
structures, the basic FU formalism is awkward, and sometimes impossible, to use.

In this paper, we present a set of extensions to the FU formalism that we have
defined and implemented. Our goal is to retain the nice properties of the
formalism but make it more flexible and versatile.

We first introduce the notion of typed features and of typed constituents. The
idea is to defme a structure over the primitive symbols used in the grammar and to
take advantage of this structure when unifying tenns. The next step is to define
specialized unification methods for user-defmed data types. Specialized
unification methods actually define procedurally a structure over non-atomic
expressions. We propose a way to smoothly integrate such methods in the overall
FU formalism. In the extended formalism, a grammar has two parts: a type
definition and a functional description. We call such a combination a
ProGrammar.

Typing the primitive elements of the fonnalism allows a more concise expression
of grammars, allows better checking of the input descriptions, and provides more
readable and better documented grammars. User-defmed unification methods
permit the unifier to efficiently handle complex data-structures like lists or sets,
and to perform computations that are beyond the power of standard unification
methods, like arithmetic operations. In general, our idea is to remove the burden
of expressing complex constraints from the formalism and put it on an
environment better suited for their expression. The problem our extension
addresses is how to properly integrate such foreign environments within the FU
formalism.

In the rest of the paper, we first describe the traditional functional unification
algorithm. We then introduce the notion of typed features and finally describe an
example of user-defined unification methods.

2 Traditional Functional Unification Algorithm

2.1 General idea
The Functional U niller (AJ) takes as input two descriptions, called functional
descriptions or FOs and produces a new FO if unification succeeds and failure
otherwise.

3

An FD describes a set of objects (most often linguistic entities) that satisfy cenain
properties. It is represented by a set of pairs [a:v], called features, where a is an
attribute (the name of the property) and v is a value, either an atomic symbol or
recursively an FO. An attribute a is allowed to appear at most once in a given FO
F, so that the phrase "the a of F" is always non ambiguous [10].

It is possible to deflne a natural partial order over the set of FOs. An fd X is more
specific than the FO Y if X contains at least all the features of Y (that is X ~ Y).
Two FOs are compatible if they are not contradictory on the value of an attribute.
Let X and Y be two compatible FOs. The unification of X and Y is by definition
the most general FO that is more specific than both X and Y. For example, the
unification of {year:88, time:{hour:5}} and {time:{mns:22}, montb:lO} is
{year:88, month:lO, time:{hour:5, mns:22}}. When properties are simple (all
the values are atomic), unification is therefore very similar to the union of two
sets: XuY is the smallest set containing both X and Y. There are two problems that
make unification different from set union: first, in general, the union of two fds is
not a consistent FD (it can contain two different values for the same label);
second, values of features can be complex FOs. The mechanism of unification is
therefore a little more complex than suggested, but the FU mechanism is
abstractly best understood as a union operation over FOs (cf [10] for a full
description of the algorithm). In Appendix I, we give a detailed description of the
unification algorithm.

Note that contrary to structural uniflcation (SU, as used in Prolog for example),
FU is not based on order and length. Therefore, {a: 1, b:2} and {b:2, a: 1} are
equivalent in FU but not in SU, and {a: 1 } and {b:2, a: 1} are compatible in FU but
not in SUo

2.2 Terminology
We introduce here tenns that will constitute a convenient vocabulary to describe
the algorithm and its extensions. In the rest of the paper, we consider the
uniflcation of two FOs that we call input and grammar. We define L as a set of
labels or attribute names and C as a set of constants, or simple atomic values. A
string of labels (that is an element of C) is called a path, and is noted <11 ... 10>.

An FD (functional description) can be an atom (element of C) or a set of
features. One of the most attractive characteristics of FU is that non-atomic FOs
can be abstractly viewed in two ways: either as a flat list of equations or as a
structure equivalent to a directed graph with labeled arcs [7]. The possibility to
use a non-structured representation removes the emphasis that has traditionally
been put on structure and constituency in language.

The total-FD is the FO that will eventually result from the unification. It is the
reference for all paths and contains all known information during unification.

The Meta-FDs None and Any are provided to refer to the status of a feature in a
description rather than to its value. [label:None] indicates that label cannot have

4

a real value in the total-FD. [label:Any] indicates that label must have a real
value in the total-FD. A real value is either an element of C (a constant) or a
complex FD containing at least an element of C at some level. Non real values are
meta-FDs and NIL or complex FDs containing only NIL or meta-FDs.

Alternation: FDs seen so far contain an implicit conjunction; {size:small,
color:red} describes objects that are small and red. An alternation is a
disjunctions of features. Each disjunct is called a branch of the alternation. For
example, {size:small, color:{alt:{red, blue, white}}} specifies that the color can
be either red. blue or white.

A constituent of a complex FD is a distinguished subset of features. In linguistic
descriptions, features describing a sentence as a whole need to be distinguished
from those describing a constituent of the sentence. A special label called Cset
(Constituent Set) is used for this purpose. The value of the label Cset is a list of
paths leading to all the constituents of the FD. Constituents trigger recursion in
the FU algorithm as described in the appendix. Note that Cset is pan of the
formalism, and that its value is not a valid FD.

A grammar is an FD, containing disjunctions and meta-fds. A grammar describes
the set of FDs compatible with it Traditionally, a grammar is a big alternation
containing a branch for each grammatical category. The category of an FD is
specified by the value of the special label cat. Grammar = {alt:{{cat:cl, ••• },
{cat:c2, ••• }, .•. }}.

3 Typed features and constituents

3.1 A limitation of FUGs: no structure over the set of values
In FU. the set of constants C has no structure. It is a flat collection of symbols
with no relation between each other. All constraints among symbols must be
expressed in the grammar. In linguistics, however, grammars assume a rich
structure between properties: some groups of features are mutually exclusive;
some features are only defined in the context of other features.

Cc •

DMlCDat%ati ..
Quantified

... ..
Figure 1: A system for NPs

5

Let's consider a fragment of grammar describing noun-phrases (NPs) (cf figure
1). We use here the systemic notation given in [17]. The configuration illustrated
by this fragment is typical, and occurs very often in grammars. 1 The schema
indicates that a noun can be either a pronoun, a proper noun or a common noun.
Note that these three features are mutually exclusive. Note also that the choice
between the features {question, personal, demonstrative, quantified} is relevant
only when the feature pronoun is selected. This system therefore forbids
combinations of the type {pronoun, proper} and {common, personal}.

«cat noun)
(an « (noun pronoun)

(pronoun
«alt (qu •• tion peraonal de.cnatrativ. quantified»»)

«noun proper»
«noun OO~)

(cCGIDOn «ut (count _u»»»»

Figure 2: A faulty FUG for the NP system

«alt « (noun prccoun)
(a~ JIot)e)

(pronoun
«alt (qu .. tica peraOD&l ~atratiTe quantified»»)

«noun~) (pronoun ~.) (OO"OD .ca.»
«noun C~ a)

(pronoun .ca.)
(a~ «ut (count _aa»»»»

The input rD deaar1.bi.nq a peraocal. proDOUD 1a t.Aec:
«cat noun)

(noun pronoun)
(proaoun pa%aClD&l»

Figure 3: A correct FUG for the NP system

The traditional technique to express these constraints in a FUG is to define a label
for each non terminal symbol in the system. The resulting grammar is shown in
figure 2. This grammar is, however, incorrect, as it allows combinations of the
type «noun proper) (pronoun question» or even worse «noun proper) (pronoun
zouzou». In order to enforce the correct constraints, it is necessary to use the
meta-fd None as shown in figure 3.

There are now two problems with this corrected FUG implementation. First, both
the input FD describing a pronoun and the grammar are redundant and longer than

IWe have implemented a grammar similar 10 [17. appendix B] containing 94 systems. In this
grammar. men than 40% of the systems were similar 10 the one described here.

6

needed. Second, the branches of the alternations in the grammar are
interdependent: you need to know in the branch for pronouns that common nouns
can be sub-categorized and what are the other classes of nouns. This
interdependence prevents any modularity: if a branch is added to an alternation,
all other branches need to be modified. It is also an inefficient mechanism as the
number of pairs processed is 0 (nd) for a taxonomy of depth d with an average of
n branches at each level.

3.2 Typed features
The problem thus is that FUGs do not gracefully implement mutual exclusion and
hierarchical relations. The system of nouns is a typical taxonomic relation. The
deeper the taxonomy, the more problems we have expressing it using traditional
FUGs.

(~j.,oe-t~ Doun (ProDOWl prope: ClCI_. »
(~j.,oe-t~ proDOWl
~aOD.&~-procoun qu.atiOD-ProDOWl
"-'=atrati -pronoWl quantUied-proaoun»

(de.fj.,oe-type c~ (count-noun _aa-noun»

'fhe gr.-r beoo8ea:
« cat DOWl)
(aU « (cat proDOWl)

(cat «ut (qu .. tiOD-ProDOWl peraOD.&~-proaoun
~atratiye-proaoun quantified-proDOUD»»)

«cat proper»
«cat c~)
(cat «dt (OOUDt-noWl _.a-DOWl»»»»

ADd the j.,opgt: «cat peraonal-procoun»

Figure 4: Using typed features

We propose extracting hierarchical information from the FUG and expressing it
as a constraint over the symbols used. The solution is to define a subsumption
relation over the set of constants C. One way to define this order is to define
types of symbols, as illustrated in figure 4.

Once typeS and a subsumption relation are defined. the algorithm needs to be
adapted (the atom-unify function in the appendix). The atoms X and Y can be
unified if they are equal OR if one subsumes the other. The result is the most
specific of X and Y.

With this new definition of unification, taking advantage of the strucrure over
constants, the grammar and the input become much smaller and more readable as
shown in figure 4. There is no need to introduce artificial labels. The input FD
describing a pronoun is now a simple «cat personal-pronoun» instead of the
redundant chain down the hierarchy «cat noun) (noun pronoun) (pronoun
personal». Because values can now share the same label cat, mutual exclusion is

7

enforced without adding any pair [1:None].2 Note that it is now possible to have
several pairs [a:vi] in an FD F, but that the phrase "the a of F" is still non
ambiguous: it refers to the most specific of the vi' Finally, the fact that there is a
taxonomy is explicitly stated in the type deflnition section whereas it used to be
buried in the code of the FUG. This taxonomy can be used to document the
grammar and to check the validity of input FDs.

3.3 Typed constituents
A natural extension of the notion of typed features is to type constituents: typing
features restricts the possible values of the feature; typing constituents restricts the
possible features of a constituent Typing declares that only certain features are
relevant for a given constituent

Type declarations:
(datin.-oon.tituect det.%m1D.r
(~1Dit. diatanoe d.moD.trat1Te po ••••• i .. »

(~in.-t .. ture detinite (y.. no»
(~1D.-t .. ture cl1atance (tar near»
(~in.-t .. ture dew>n.trati". (y" no»
(datin.-t .. ture po d.. (y.. DO»

Input FD dacrtbln&. determJDer:
(deterJainer «detinite Y ••)

(diatanoe tar)
(~.trati". no)
(po i .. DO»)

Figure S: A typed constituent

Figure 5 illustrates the idea. The define-constituent statement allows only the
four given features to appear under the constituent determiner. Similarly, the
define-feature statements specify the allowed values for the given features.
These statements say what the grammar knows about determiners.
Define-constituent is a completeness constraint as defined in LFGs [6]; it tells
what the grammar needs in order to consider a constituent complete.

Note that expressing such a constraint is impossible in the traditional FU
formalism. It would be the equivalent of putting a None in the attribute field of a
pair as in None:None.

Typing constituents is necessary to implement the theoretical claim of LFG that
the number of syntactic functions is limited. It also has practical advantages. The
first advantage is to provide good documentation of the grammar. Typing also

2In this example, the grammar could be a simple f1a1 altemat.ion «cal «alt (noun proroun
personal-pronoun ... common mass-noun count-noun»)))), but this expression would hide the
Stru:lure of the grammar.

8

allows checking the validity of inputs as defined by the type declarations.

The second advantage is that it can be used to defme more efficient data
structures to represent FOs. As suggested by the defmition of FOs, two types of
data-structures can be used to internally represent FOs: the flat list of equations
(which is more appropriate for a language like Prolog) and a structured
representation (which is more natural for a language like Lisp). When all
constituents are typed, it becomes possible to use arrays or hash-tables to store
FOs in Lisp. The manipulation of FOs is then much more efficient. We are
currently investigating alternative internal representations for FOs.

4 Extended unification

4.1 An example: list handling
List or set values are often useful in grammatical descriptions. For example, to
describe the use of conjunctions like "and" or "or," it is convenient to
manipulate lists. A conjunction creates a complex syntactic group out of a list of
constituents of the same category. For example, from the noun groups "Bill and
Joe" and "Mary and Janet," one can create the single group "Bill, Joe, Mary and
Janet." Similarly if a list of verb groups all share the same tense and mood, it is
possible to conjoin them. One way of modeling this phenomenon is to represent
the original phrases in lists and compute the resulting complex phrase as the
"append" of these lists.

4.2 A limitation of FUGs: expression of complex constraints
FUGs can currently be used to express this kind of complex constraint, but we
argue that they should not be used for that The FU formalism defines complex
constraints by composing simple constraints and conflations3 using conjunction
and disjunction (negation is also sometimes allowed [7]).

Figure 6 shows this scheme applied in a grammar implementing append that
behaves exactly like its Prolog counterpan (it is bidirectional). This grammar
works but it is not very readable. We give here just a few indications of how it
works. Lists are represented as FOs with the constituents car and cdr in a
classical manner, but with the FO None playing a role equivalent to the Lisp atom
NIL. lbe notions of environment and variable in Prolog correspond to the notion
of total-FO and path in FU. The total-FO contains the environment of a
computation. Variables are then just places or positions within the total-FO, and
are referred to using paths. Finally, constituents in FU play the role of arguments
to procedures. For example, the procedure append has three arguments, X, Y and

3A conflation is a feawre of the form <ll...ln>=o<kl...km>. It forces the value of the two paths
to be Wlified.

z.

« cat appeDd)
(alt

9

;; lat branch: append([),Y,Y).
« (z Bone) (a (A y»)
;; 2nd branch: append([X/XaJ,Y, [X/Z» :-appeod(Xa,Y,Z).
;; l:eaurai". ca.l~ to append with n_ a~ta z, y.
«c .. t (a»

(a «C&J: (A A Z C&%»
(cdr «cat append)

(z (A A A z cdJ:»
(y (" " A y»»»»)

" JIoJ:lll&l.iae: append Dlat contain OR aDd CDR of the :r:..u~t.
(cal: (" I: C&%»
(cdr (A I: cdr»).

append([),Ya,Ya) .
append ([XIXa), Ya, [XI Za)) : - append(Xa, Ya, Za) •

Figure 6: A grammar for append and the equivalent Prolog program

The main problem with this implementation, not to mention its readability, is that
there is no notion of "environment" besides the total-FD. Therefore, when a
program works recursively, all the local variables that are normally stacked in an
external environment are stacked within the total-FD. At the end, the total-FD
contains the whole stack of the computation, and is pretty awkward to manipulate.
Even when we are just interested in computing a result. the FUG implementation
will return the whole computation leading to the result

4.3 Extended unification
When introducing typed features, we have defined a structure" over the set of
constants C, but we have also modified the unification algorithm (the atom-unify
function). In other words, we have defmed a new unification method, distinct
from the classical default method. and specialized in handling atoms. There are
actually other specialized methods built into the traditional algorithm: Csets and
patterns, which express ordering constraints between the constituents and have a
special syntax, are handled by distinct specialized procedures. as their values are
not "legal" FDs. It is a narural idea to extend this behavior to user-defined data
types. We explain now how to allow the definition of new unification methods
specialized in handling user-defined data-typeS.

Figure 7 illustrates the approach we have taken to integrate non-FD items within
the FU algorithm. In exactly the same way as patterns are unified by a special
function, we can define new functions (written in the underlying language, in our

.",. ~ A ia \>led far nsIacvw~. a.ua.. poIdIoI IN t-l 7 I .. oil -'-;.t.wmc ebB p.ps i.,...w .. rim aI PD.. To I!Dd
tbo rCt1taX>O aI • !daaYe pa1h ill • pwph. II&ft II 11M pmmm ~ pall ~ rbom 10 ex. an: up (ar ...:II A ODd ~ (allow dDwD
tbo u izIdif:alIld by tbo label&. Raaan pelbI _ izaparIaa "" mab .-•• ~ ••

10

Type declarations:
(def1De-type 1iat :..tbod 1iat-uai~ :eemn.r ia-1iat)
(defuD 1iat-uni~y (11 12 ~ai1 aucceaa) <body o~ function»
(daf1m ia-Uat (1) <body o~ predicate»

(define-type appc:lcl :..tbod appelld-uni~: k4% ia-appeDcl
: apeciali.e liat)

(defun appc:lcl-uni~y (11 12 ~ai1 auooeaa) <body o~ function»
(defun ia-a~ (ezpr) <body o~ pred.icate»

(def1De-~_ture a 1iat)
(def1De-~_ture b 1iat)
(define-~_ture 0 append)

UslDl tbe types list and append:
(uni~ '«a [?z ?y ?z?y)) (b [1 ? 1 2]» I «a))

--> «a [1 2 1 2]) (b <a»)
(wU~ , «a [1 2]) (b [3 4]» , «0 (<a> <b»»)

--> «a [12]) (b [3 4]) (0 [1234]»

Figure 7: Specialized method for positional unification and append

case Lisp) that perform a different unification method. We use the example of
positional unification on lists (traditional unification where ?x stands for a
variable). A type is defined by two functions: a membership predicate checks the
syntax of an expression and decides whether it is a member of the type or not; a
unification method implements a subsumption relation between the elements of
the type. For example, the type append in figure 7, is defined by the predicate
is-append. It has roughly the same syntax as Csets: it accepts lists of paths, that all
point to elements of type list, or directly a list. The type append is also defined as
a subtype of the type list by the :specialize statement.

To compute the append of two lists appearing at level <a.> and , we add a
feature [c=(<a>)] in the grammar. Note that this append is also bidirectional.
The constraint expressed by the patterns in figure 7 would be very difficult to
express with only the standard FU notation. The typeS list and append therefore
significantly increase the flexibility of the unifier and make the formalism much
more versatile.

Note that we consider user-defined types only in leaf positions within the total
FD, or in other words, the sub-components of a user-defined type are not
accessible from the outside. Conceptually, it means that all the types we define
are subsets of the set of "constants" C, and that, as far as the unifier is concerned,
the only way to build a structure is to use a legal FD. The subsumption relation
within the new defined types is defined procedurally by the unification methods.
This extension is therefore very much in the same spirit as typed features,
although it provides great flexibility from a computational perspective.

If the unification method is non deterministic, the handling of backtracking must
be well integrated with the rest of the unifier. We use the scheme of success
continuations as presented in [2] for the handling of backtracking. This is a

11

simple method. that only requires the unification method to use two extra
arguments (fail and success) which are continuations. We have written a library
of Lisp functions that facilitate the writing of such functions. The protocol of
communication is therefore well designed, and we have found it easy to write a
variety of unification methods.

5 Conclusion and future work
Functional Descriptions are built from two components: a set C of primitives and
a set L of labels. All the structuring of FDs is done by using strings of labels. We
have showed in this paper that there is much to be gained by relegating some of
the structuring power to the set of primitives. The set C is no longer considered a
flat set of symbols, but is viewed as a richly structured world, containing even
non-atomic individuals. The structure we use is a subsumption relation, that can
be defined explicitly, using discrete types of atoms, or procedurally, using a
specialized unification method. In our extended formalism, a grammar has two
components: a type definition over C and an FD. We call this combination a
ProGrammar.

The structure of C is a great resource for documenting the grammar. It can be
used as a meta-description of the grammar. the type declarations specify what the
grammar knows, and are used to check input FDs. It allows the writilg of much
more concise grammars, which perform more efficiently. It allows the expression
of complex constraints in a flexible way.

The extended fonnalism described in this paper is implemented in Common Lisp
[3]. The added flexibility of ProGrammars has allowed us to address aspects of

text generation (deep generation) that were beyond the power of standard FUGs.
Using the extended formalism, we have implemented a procedure of connective
selection [5] - a problem at the junction of deep and surface generation. Our
method involves constraints such as set intersection (to determine whether the
propositions to be connected have a topic in common), and checking that
propositions are argumentatively consistent The ProGrammar implementation of
this procedure is efficient and has been easy to design.

We are currently investigating other extensions to the FU fonnalism, and
particularly, ways to modify the control over grammars: we are working on
indexing schemes that will allow a more efficient search through the grammar.

12

Acknowledgments
This work was supponed by DARPA under contract #NOOO39-84-C-0165 and
NSF under contract #. I would like to thank my advisor Kathy McKeown for her
guidance on my work and precious comments on earlier drafts of this paper. I
also want to thank Bob Kasper for originally suggesting using types in FUGs.

13

I. The Unify algorithm
The main function of the unification algorithm is unify(input, grammar). We
give here a detailed description of important auxiliary functions. Graph-unify is
the most complex function. It unifies two FOs at the top-level. Basically,
graph-unify enriches the input FO with all attribute-value pairs of the grammar
that are not already in the input and recursively unifies the values of pairs that
exist in both the input and the grammar. Graph-unify traverses the whole
grammar depth-flrst, and calls the appropriate specialized function when it
reaches the leaves: Atom-unify is called when one of the FOs is an atom. It
succeeds if the two FOs are equal; it also implements the semantics of the meta
fds; Pattern-unify is a specialized function to handle patterns, which are special
ordering constraints and have a fonn similar to Csets; Cset-unify handle Csets.
Most of the complexity of Graph-unify is due to the handling of conflations.

Unify calls first graph-unify on its arguments, performing a flrst sweep of
unification through the input. Then, it identifies the constituents of the result of
the first sweep (the Cset) , and recursively unifies each of them. All the
constituents of the total-FD, at all levels are therefore traversed in a breadth-first
manner and unified with the grammar, each according to its grammatical
category. It is therefore possible to describe recursive structures in the RJ
fonnalism. Note that Graph-unify is non-deterministic.
UnJfy(lDput, anmmar)

input : an FD with no diJjunctionI lind no meta-fda.
gnmm.ar : 111 FD.

Let total-FD be vapb-IUlJfy(J.Dput, p-ammar, <»
cset be the consO!Uenl Jet of total-FD

for elCh of the conJotuenlJ in cset do
let fd = IRPb-unJty(ctIO.IUtueat, p-ammar, ~th)
let cset = append(cset. cseqfd))

Grapb-unJry(rdl, rcU, path)
fdl : Alb-fd of inp1t
fd2 : 111 Cd with pouible diJjunctionl lind meta-fda
path: level of fdl in total-FD

If atom(fd2) rerum alocD-UD1ty(rdl, rd1, pada)
eiJe for each pair of fd2. \abe1;v alue2 DO

if (label .. AL 1') aJt-a1Iy(toaJ-FD, YaJuel, ~)
eiJe
if there iJ no pair in Cdt arlc:b(totaJ.FD. label:valae1, patIa)
eiJe there iJ a pm label:valuel in Cdl

if (label - PA 1TERN)
'- value be hnln-ultJ'(.allMl, .aluel)

..ndI(tDtaJ-FD, labeI:vaJue. paUl)
(lDI-CSET)

'-nlae be Cat...rt)(valIMI. vaJuel)
artda(totaJ. ro, CMt: val_, patb)

(value t ill padl end value2 iJ a path)
let pI be the Cd poinred ID by valuel in IDw·FD

p2 be the Cd poinred to by value2 in total-FD
value be Gnpb-wUty(pI, pl, valIMI)

eDric:b(totaJ-FD. vaJlM l=vallM)
eDric:b(totaJ-FD, padazvaJue I)
eDric:b(totaJ-FD, vaJuel=vallM I)

(vaJue 1 iJ a path lind value2 iJ not a path)
let pI be the FD pointed to by value I in 1Dtal-FD

value be Gnpll-waJfy(pI, vaJoel, valDel)

14

eDJicb(total-FD, value I=value)
eDJicb(totaI-FD, pathsvalue I)

(valuel is not a path and value2 is a path)
let p2 be the Cd pointed to by value2 in total-FO

value be Gnpb-unJty(pl , value1, valoel)
eDJicb(totaJ-FD, valuel=v.lue)
enrkb(total-FD, path=v.luel)

(nannal. cue: valuel lind value2 Ife valid fds)
let value be Grapb-mlity(valuel, v.fuel, p.thPabel)
eDJicb(totaJ-FD, label:value, path)

Atom-un1fy(Cdl. Cd2, paIh): Cd
Cd 1 : arbitrary sub-Cd oC input
Cd2 : atom - element of A or NIL or a meta-Cd
path: level of fdl in the total-FO

if (fdl = fd2) return fdt
(fd2 = NIL) return fdt
(fd2 = Any) if fdl is a real-value return fdl else mark Any-P{path) and return Any
(fd2 = None) if fdt is a real-value rall ELSE return None
(fd2 = Given) if value-4-path(lnput, patb) is a re.al-value return Cdl else rall

elserall

15

References

[IJ Appelt, D.E.
Planning English Sentences.
Cambridge University Press, Cambridge, England, 1985.

[2J Carlsson, M
On Implementing Prolog in Functional Programming.
In Symposium on Logic Programming, pages 154-159. IEEE,1984.

[3J Elhadad, M
The FUF Functional Unifier: User's manual.
Technical Report, Columbia University, June, 1988.

[4J Elhadad, M. and McKeown, K.R.
What do you need to produce a 'but'.
Technical Repon CUCS-334-88, Columbia University, January, 1988.

[5] Elhadad, M. and McKeown, K.R.
A Procedure for the Selection of Connectives in Text Generation.
1989.
Submitted to ACL conference 1989.

[6] Kaplan, R.M. and J. Bresnan.
Lexical-functional grammar: A formal system for grammatical

representation.
The Mental Representation of Grammatical Relations.
MIT Press, Cambridge, MA, 1982.

[7] Kantunen, L.
Features and Values.
In Coling84, pages 28-33. COLING, Stanford, California, July, 1984.

[8] Kasper, R.
Systemic Grammar and Functional Unification Grammar.
Systemic Functional Perspectives on discourse: selected papers from the

12th International Systemic WorJc.shop.
Ablex, Norwood, NJ. 1987.

[9] Kasper. R. and W. Rounds.
A Logical Semantics for Feature Structures.
In Proceedings of the 24th ~eting 0/ the ACL. ACL, Columbia

University. New y~ NY. June, 1986.

[10] Kay. M.
Functional Grammar.
In Procudings o/the 5th ~eting o/the Berkely Linguistics Society.

Berkeley Linguistics Society. 1979.

[11] Kay, M.
Parsing in Unification grammar.
Narural lAnguage Parsing.
Cambridge University Press, Cambridge, England, 1985, pages 152-178.

-

16

[12] McKeown, K.R.
Text Generation: Using Discourse Strategies and Focus Constraints to

Generate Natural Language Text.
Cambridge University Press, Cambridge, England, 1985.

[13] McKeown, K. and M. Elhadad.
Comparison of Surface Language Generators: a Case Study in Choice of

Connectives.
Proceedings of the 4th Workshop on Language Generation.
Fonhcoming, 1988.
Fonhcoming.

[14] Paris, C.L.
The Use of Explicit User models in Text Generation: Tailoring to a User's

level of expertise.
PhD thesis, Columbia University, 1987.

[15] Pereira, F. and S. Shieber.
The Semantics of Grammar Formalisms Seen as Computer Languages.
In Proceedings of the Tenth International Conference on COmpUlationai

Linguistics, pages 123-129. ACL, Stanford University, Stanford. ~
July, 1984.

[16] Shieber, S.
CSLJ Lecture Notes. Volume 4: An introduction to Unification-Based

Approaches to Grammar.
University of Chicago Press, Chicago, n, 1986.

[17] Winograd. T.
Language as a Cognitive Process.
Addison-Wesley, Reading, Ma, 1983.

