
Dictionaries for Language Generation
Accounting for Co-occurrence

Knowledge

Frank Smadja
Computer Science Department

Columbia University
New York NY 10027

Arpanet: smadja@cs.columbia.edu

Length of paper: 4800 words.
Area of submission: C1, natural language.*

February 20, 1989

Abstract

Many wording choices in English sentences cannot be accounted for
on semantic or syntactic grounds. They can only be expressed in terms
of co-occurrence relations. Co-occurrence knowledge has been tradition­
ally overlooked in the past, but should be included in lexicons as it is an
inherent part of the language. In this paper, we demonstrate the impor­
tance of co-occurrence knowledge for language generation and we show
how to include it in computational dictionaries. Using co-occurrence
knowledge in the dictionary provides the generator with the informa­
tion necessary for handling many lexical decisions that were previously
ignored. We focus here on the process of building the dictionary. and
we show how co-occurrence knowledge can be systematically entered in
lexicons. Lexical relations are first identified by a cooccurrence com­
piler, EXTRACT. Then. domain specific semantic information is used as
a criterion for classifying them. We exemplify our approach in the bank­
ing domain and we explain how it can be used by a natural language
generator .

• Keywords: Co-occurrence knowledge. lexical relations. language generation, lexical
knowledge

1

1 Introduction

The fact that people prefer saying "drink a strong tea" to "a powerful tea ", and
prefer saying "drive a powerful car" to "a strong car" cannot be accounted for
on pure syntactic or semantic grounds. There are other kinds of constraints
that need to be introduced in order to filter out such oddities when producing
English. Consider the following example sentences:1

(1) * "John offered Mary a hint"
(3) * "Afary perpetrated suicide"

(2) "John gave Marya hint"
(4) "Mary committed suicide"

In these sentences, '1I,int" and "suicide" co-occur with the verbs "give" and
"commit" rather than with other verbs, the sentences are collocation ally re­
stricted. This kind of behavior is unpredictable as can be seen in sentences
(5) and (6). ''It-furder'', which is closely related to "suicide" in terms of both
meaning and syntax, co-occurs with "perpetrate" as well as with "commit",
whereas "suicide" only co-occurs with "commit".

(5) "John perpetrated a murder" (6) "John committed a murder"

Native English speakers would not produce sentences like (1) or (3), whereas
such sentences account for many language learners errors. Similarly, computer
programs should definitely be provided with this information in order to avoid
such mistakes.

In addition to grammatically constrained closed class words,2 many words
we produce are mainly used for structural reasons. Their presence is required
by their environment, as "commit" is required by "suicide". The basic con­
cept is that of a lexical relation or lexical affinity due to Saussure [49]. A
lexical relation between two units of language stands for a correlation of the
common appearance of in the utterances of the language. For example, "give"
and "hint" are bound by a lexical relation. Similarly, there is a lexical rela­
tion between "commit" an "suicide", "commit" behaves as a syntactic device
operating on "suicide ".

In this paper, our primary goal is to bring co-occurrence knowledge to bear
in language generation. For this purpose we describe how to systematically
account for it in computational lexicons for language generators. Language
generators generally ignore such lexical constraints and are thus unable to
correctly handle collocationa//y restricted sentences, that is sentences involving

lThe lexically incorrect sentences are marked by a *.
2Closed class words refer to small syntactic categories, such as articles, preposition etc.

In co'ntrast, open class words are nouns,' adjectives and adverbs and are therefore much
more numerous. Closed class words are somehow reachable by grammar rules whereas open
class words are dealt with in the lexicon [Huddleston 85].

1

lexical relations. When not provided with such lexical information, a language
generator is forced to either consider the sentence as an idiom or require that
all lexical items be present in the input. We show that, in contrast, if provided
with co-occurrence knowledge, language generators can accept less specified
input structures and correctly handle such sentences.

To incorporate co-occurrence knowledge into the language generation pro­
cess there is a need for computational dictionaries taking it into account. This
is the main topic of this paper. Including lexical relations into dictionaries
actually encompasses three different activities. We use example (7) in which
"check" and "issue are bound by a lexical relation to illustrate these activities.

(7) "John issued a check"

1. Lexical relations are identified. For this we use EXTRACT a co-occurrence
knowledge compiler that produces lexical relations out of large textual
corpora. A relation such as "check-issue" is thus identified at this stage.
See Section 4.1.

2. Lexical relations are semantically interpreted. Since the process of lan­
guage generation consists of transforming a logical input structure into
natural language, we must be able to relate lexical relations to semantic
knowledge. Such a task is impracticable in general, but can performed
in a specific domain. A relation such as "check-issue", is interpreted by
relating it to a semantic predicate available in the considered domain.
See Section 4.2.

3. Lexical relations are then entered in the lexicon in a useful and coherent
way for language generators. A relation such as "check-issue ", will be
entered in the lexical entry for "check" and will point toward both the
verb "issue" and the associated semantic predicate.

In this paper, we concentrate on the second activity. We have already de­
scribed the first activity previously [Smadja 88] and we briefly discuss it in
Section 4.1. As for the third activity, we illustrate it by an example in Section
5.3. We give a general method of semantic interpretation of lexical relations
in Section 4, and we exemplify it in the domain of banking transactions in
Section 5.

2 Existing Models

Following the early incentive of Saussure, several attempts have been made at
modeling co-occurrence knowledge. Among the models, two are prominent.
The first one, due to Mel'cuk [81] is integrated as part of complete linguistic

2

model and is based on the notion of lexical function (LF). The second one, due
to Benson [86] is part of a lexicographic description of English, and is based
on the notion of L-type relation. Both models formalize the space of possible
lexical relations. Each LF or L-type relation stands for an abstracted lexical
relations into which words can enter.

LFs and L-type relations capture a very important aspect of lexical knowl­
edge. However, directly using them is not desirable for our purpose. Although
l\Jel'cuk's and Benson's models are based upon semantic criteria, in both cases,
several types of definitions are missing. As they stand, LFs or the L-type re­
lations are hard to interpret formally. Moreover, both models lack necessary
semantic definitions. A much finer granularity is needed, but it would yield
an unwieldy complexity when confronted with unlimited domains. Section 4
explains how this can be done in restricted domains, and section 5 gives an
example application in a simplified banking domain.

3 Dictionaries and Natural Language Generation:
Previous Work

Traditionally, dictionary entries are limited to semantic and syntactic infor­
mation; syntagmatic lexical relations are totally ignored. When faced with
collocationally restricted sentences such as Sentence (7), surface generators
usually adopt either one of the following two approaches:

1. The surface generator only accepts fully lexicalized input structures.
All open class lexical items must take part in the input structure (e.g.
[~1ckeown 85]). For example, in order to generate sentence (7), "John",
"check" as well as "issue" are required in the input structure. If the verb
is not specified but simply deduced by the generator, awkward or even
wrong sentences could be produced. Examples of such sentences are,
"John charged a check", "John gave a check", or "John paid a check".

2. The generator works on a lexicon containing the whole phrase in a
canned structure, as one would do for idioms. The input structure gener­
ating it is thus the logical form representing it as a whole (e.g [Jacobs 85],
[Zemik 87]). In the case of Sentence (7) this structure would represent
the act of issuing-a-check.

Both cases are not desirable in that none takes advantage of the special relation
linking '"issue" and "check". The first solution, which is the more common,
should be improved because it leads to overspecified inputs. Specifying "is­
sue" as well as" "check" introduces redundancy in the input, since the verb is
syntactically required by its environment.

3

The second solution has several flaws. First, although such cooccurrences
are not fully semantically transparent,3 they cannot be treated as semantically
atomic units and should thus allow decomposition. Encoding the whole phrase
as a single unit actually hides the lexical relation between the noun and the
verb. Moreover, without criteria that would decide on the opacity of such
sentences, this approach would lead to lexicons swamped with canned phrases.

In contrast, we argue for the use of co-occurrence knowledge in the process
of generating sentences. We claim that collocationally restricted sentences can
be correctly handled, and that less specified input structures are needed.

Some attempts are currently being made at producing sentences using dic­
tionaries with co-occurrence knowledge. Both are based on Mel'cuk's model.
Iordanskaya [88] is implementing a computational model of Mel'cuk complete
theory. The implementation makes extensive use of LFs and is intended as a
validation of Mel'cuk's linguistic model. Nirenburg et at [88], also make use of
LFs in the framework of their work on machine translation. In their work, LFs
are used in the dictionary in order to help in the process of lexical selection.
Cooccurrence constraints are not included into the grammar but are rather
used by a separate lexical-selection module mixing several types of constraints
(mostly encyclopedic) and weighing them in order to select the appropriate
lexical item. Mel'cuk based approaches present two major drawbacks. First,
LFs are very hard to use in isolation from the context into which they have
been introduced. Second, dictionary incorporating LFs are not yet available
in English. The work that we present in this paper attempts at solving both
problems. Our model is based on the simple definition of lexical relations and
we describe how to incorporate co-occurrence knowledge into dictionaries.

4 Compiling Lexical Relations for Dictionaries

Compiling lexical relations into dictionaries is actually divided into two stages.
First. the relevant lexical relations are identified. Then, they are entered in
the lexicon in a useful way for language generators. Let us describe the two
stages in turn.

4.1 Extracting Co-occurrence Knowledge

In a previous paper [Smadja 88], we described a system EXTRACT that is a
co-occurrence compiler. EXTRACT derives automatically lexical relations by
performing a statistical analysis of large textual corpora. EXTRACT applies the
basic definition of lexical affinities and retrieves all pairs of words whose com-

3 An expressions is semantically transparent if it can be divided into semantic constituents
[Cruse 86).

4

mon appearance is correlated. The retrieval process consists of the following
three steps for each lexical entry, w:
Scan: Scan the whole text for each appearance of w.
Extract: For each sentence containing w, make a note of its collocates4 • It
has been shown that 98% of lexical relations are located within a span of five
[1hrtin 83]. Therefore, most of w collocates can be retrieved by examining its
environment five words before and five words after. All collocates are stored
along with their syntactic category and their frequency of appearance.
Correlate: The statistical distribution of the collocates of w is analyzed and
peaks are automatically selected. A peak is defined as a collocate of w whose
frequency of appearance is above f + ku, where f is the average frequency of
appearance, u the standard deviation, and k a factor that has to be empirically
determined according to the size and nature of the corpus. Let us call k the
co-occurrence factor. At this point, insignificant information, i.e. atypical
collocations have been filtered out, and what remains is an ordered set of
words each sharing a lexical relation with w. Each word appearing on the
collocate list of w is bound to it by a lexical relation.

The output is a set of pairs of words sharing a lexical relation, for example
the relation between "check" and "issue". EXTRACT is fully implemented and
has been tested on a 300 000 word corpus taken from the UNIXtm5 news net.
In spite of the small size of the corpus, we have been able to make useful
observations. The program has been tested on 50 nouns that appear more
than two hundred times in the corpus and more than 100 lexical relations have
been identified. Among them were: ''to make" with "decision", "to send" with
"mail", "high" with "order", "take" with "note", ''to answer" with "question".
"send" with "request", and "take" with "approach". All these pairs of words
have a co-occurrence factor above 2.5, i.e., the observed frequency of common
appearance of the two words is 2.5 u above the expected one. EXTRACT is
currently being tested on a more than 2, 500, 000 words corpus taken from
the archives of The Jerusalem Post. The corpus consists of several thousand
articles that have been published recently in the newspaper.

In Table 1, the first two columns represent potential outputs of EXTRACT

applied to large samples of texts related to the banking domain. The next
section explains how to usefully interpret lexical relations.

4.2 Interpreting Lexical Relations

A single word is often connected to several semantically distinct other words.
For example, the noun "check" co-occurs with such verbs as "issue ", '"draw",

-tBy collocate. we mean the nearby open-class lexical items.
5UNIX is a trademark of AT&T Bell Laboratories.

5

"deposit", "cancel", and '?Jounce". The problem with these co-occurrences is
that the verbs do not have the same meaning. Natural language generators
produce sentences when provided with logical representations. In order to
allow full usage of co-occurrence knowledge, lexical relations should be related
to semantic knowledge before being entered in the lexicon. For example,
assume there is a semantic predicate DEBIT that means "to reduce the balance
of some bank account". In order to correctly produce sentences such as (7), the
lexical relation "check-issue" should be related to the predicate. To perform
such an analysis, a detailed semantic description is needed. This task being
impracticable in unlimited domains, we must perform it in limited domains.

For descriptive purposes, let us assume that our domain is described by
both a thesaurus-like knowledge base and a set of logical predicates. The
predicates describe the possible actions and the thesaurus gives the semantic
organization of the domain. A particular predicate Pred with n arguments is
expressed as Pred[LRt , LR2 , ••• , LRn], where the LRis are the logical roles of
the predicate. The knowledge base contains domain specific semantic knowl­
edge.

To interpret the lexical relations identified by EXTRACT we use domain
knowledge. In this context, interpreting a lexical relation consists of associ­
ating it with a semantic predicate. For example, the lexical relation "check­
issue" is interpreted by being related to the predicate DEBIT, where "check"
corresponds to a given LRi • The method of semantic interpretation can be
described as follows:

For each word w
For each x such that x and ware bound by a lexical relation

1. Find the semantically closest predicate:
Pred[LR1 , LR2 , ••• , LRnl
describing the semantic relation between x and w

2. Determine the logical role LR i , played by w

Step 1 consists of interpreting the relation x-w. It works directly on the
knowledge base and looks in it for the predicate closest to x, that is the
most specific one. For example, for the word "issue", the predicate DEBIT

is selected. Special care is needed for general usage verbs such as "take"
or "make". These verbs are not semantically restricted and can be used in
conflicting contexts. They are duplicated in the thesaurus and can thus be
used to express several possible predicates. For example, the verb ''to make"
can be used to express the act of earning money as well as the act of paying
money. One says. "to make a purchase" as well as, "to make money".

Step 2 consists of determining the logical role played by w within the pred­
icate previously identified. This information is easily retrieved from examples
sentences.

6

We are currently working on the implementation of the above method for
noun-verbs and adjective-noun lexical relations. After having been applied,
this method produces interpreted lexical relations that can be entered in the
lexicon. Section 5 applies this method on a simplified banking domain and
presents our lexical representation with the help of an example lexical entry.

5 A Simplified Example: the Banking Domain

5.1 Description of the Domain

Consider an example in the domain of banking transactions. To simplify here,
we assume a single bank account which is represented by its balance. \Ve limit
the actions that can be performed on the account to DEBIT or CREDIT. DEBIT

lowers the balance, and CREDIT raises it. A logical action is expressed as

Pred[Agent, Amount, Form, Exchange]

where Pred is the logical predicate, in our case, either DEBIT or CREDIT, the
logical roles are the following:
• Agent is the agent initiating the transfer of funds
• ,4mount is the amount of money transferred
• Form is the actual Form of transfer, such as Ucash" or "check"
• Exchange is what is bought or sold in exchange of money, examples are

"car" or Uinsurance".
The set of objects involved in the domain comprises all money-transfer re­

lated words, such as, "cash", "check", "credit card". The objects are depicted
in a knowledge base describing the relationships into which they enter along
with their meaning. A very common classification scheme in this domain cen­
ters around the liquidity of the assets. For example, if we classify the objects
in Table 1 according to this cri terion, "cash" and "checks" are quickly cashed
and thus considered liquid as opposed to "interests" and "loans". Several other
properties can be considered and their combination results in a thesaurus-like
knowledge base describing the considered domain. In this paper, for clarity
reasons, we do not describe our model to that extent but assume that such a
description is available.

5.2 Linking LRs with Semantic Primitives

Table 1 represents some of the words involved together with their collocates
and the semantic interpretation of the relation. The first column contains the
considered words, the second column contains their collocates. In the third
column. for each collocate, the semantic predicate associated to the lexical

I WORD I COLLOCATES I SEMANTIC PREDICATE

cash take debit
withdraw debit
deposit credit

check draw debit
Issue debit
sign debit
deposit credit
cash credit

credit card charge debit
loan, ad vance take debit

reimburse credit
payment * make credit, debit
insurance take out debit
interests pay debit

earn credit
prize win credit
tax pay debit
fees charge debit

pay credit
purchase make debit
goods buy debit

return credit

Table 1: Some words with their collocates semantically tagged.

8

relation is given. In all these examples, the logical role played by the words is
Form. To simplify the table, the logical roles have not been represented in it.

Table 1 has been obtained by the hand application of the method described
in the previous section. As an example, consider the lexical relation "issue­
check". "Issuing a check" actually means "to pay something by signing a
check". Interpreting the lexical relation consists in saying that it is associated
with the predicate DEBIT and that the logical role played by "check" is that
of Form. Some verbs such as "make", marked by a * in Table 1 can be used
in several situations referring to different predicates.

Such a table gives precise information for selecting lexical items in the
process of generating. The act of debiting your account can be expressed
in different forms depending on how the logical roles (the LRiS) are lexical­
ized. The choice of the verb is determined by the LRjs. For instance, you
"withdraw" cash from your account whereas you "issue", "draw" or "make" a
check. Similarly, you "buy" a car whereas you "take out" insurance6 policies,
or "make" a purchase. The semantic description of the domain, as given here
doesn't distinguish among all those possibilities. The distinction is introduced
at the lexical level. Let us note that, these lexical decisions are not intertwined
with conceptual decisions as suggested by Danlos [87]. In contrary, both types
of decisions can be successfully pipelined.

5.3 An Example Lexical Entry

Once this analysis has been performed, the next stage is to compile the infor­
mation in the dictionary. To each lexical entry is associated a set of colloca­
tional restrictions which are entered along with their semantic interpretation.
See previous section. Figure 1 gives a simplified example of a lexical entry
for the word "check". The formalism chosen for expressing collocational con­
straints is that of Functional Unification Grammars [Kay 79], because of its
power of expression and its uniformity. In this formalism, lexical entries are
considered as functional descriptions and can thus be used by the grammar.
This allows a uniform treatment of lexis as part of grammar as indicated
by Halliday [66] and later by r..latthiessen [88]. The lexical entry contains
usual information concerning the syntax or semantics, and it is represented
by attributes CAT, LEX and SEM. In addition, the lexical entry contains co­
occurrence knowledge, represented by the attribute COOK. The collocational
attribute contains information on both the nature of the collocates and of
their logical relation. COOK contains all verbal collocates of "check" and gives
information on their argument structure. The attribute L-ROLE is the logical

6In this example an insurance policy is simply considered as something that you can
buy, and has the consequence debiting your account.

9

role played by "check" in the produced sentences, and the attribute PRED is
the associated predicate. For example, the verb "issue" is used when the input
logical predicate Pred is DEBIT and when the logical role, L-ROLE, played by
the concept associated to "check", is Form.

CAT

LEX

SEM

COOK

N
"check"
pointer to the knowledge base

L-ROLE = Form

[
PRED DEBIT 1
verb "issue", "draw", "make", "sign"

[
PRED = CREDIT 1
verb = "deposit"

Figure 1: An example lexical entry for the word "check".

5.4 Generating Collocationally Restricted Sentences

In order to exemplify our approach, an example is briefly described in this
section. We restrict the actual generation to the lexicalization task and we
assume a logical input of the form,

Pred[Agent, Amount, Form, Exchange]

where Pred E { DEBIT, CREDIT }. In a full language generation environment,
constraints such as stylistic or discursive. would have to be considered. Here,
since we only describe the lexicalization pattern for open class words, our
presentation is restricted to logical aspects, describing the mapping between
logical forms and fully lexicalized functional descriptions. This lexicalization
heavily centers around the lexicon. Suppose that the generator is called with
the following input structure:

DEBIT[John, $100, check, insurance]

This structure describes the fact that John took out insurance and that for
the insurance he paid $ 100 in check. There are many ways to express this in
English. We suppose that, responding to other constraints, the deep generator
decides to produce two sentences, the first one describing the fact that John
got insurance and the second one sayIng that he paid with a check. For

10

simplicity, let us consider the lexicalization of the two simple logical forms:
(1) DEBIT[John, $100, check, 0, 0] and
(2) DEBIT[John, 0,0,0, insurance]
Looking at the lexical entries for "checl(' and "insurance" respectively, the
generator would find that they have collocational restrictions corresponding
to the semantic predicate DEBIT. "Check" triggers one of "issue", "draw",
"make" and "insurance" triggers "take out". See Table 1. The verbs selected
for the logical forms (1) and (2) will thus be respectively, "issue" and "take
out".1 At this point the generator is dealing with a fully lexicalized functional
description, and would generate the following two sentences, "John issues a
check of $ 100" and "John takes out an insurance".

For choosing among several collocates the generator needs other kinds of
constraints than semantics or collocational. Such constraints as politeness or
stylistic constraints will be necessary. As far as semantics is concerned, all col­
locates associated with a semantic predicate are synonymous. :More generally,
incorporating co-occurrence knowledge in the process of generating adds some
complexity to the generation process. The main problem to be solved is the
problem of interaction between co-occurrence knowledge and other kinds of
knowledge in the process of generating. For example, there is a possibility of
conflicting lexical constraints. This could happen if different words associated
to different LRis select non intersecting collocates. We are in the process of
developing a generating scheme that will handle these interactions.

7 Future Work and Conclusion

\Ve are currently compiling co-occurrence knowledge on a bigger banking do­
main. The extraction part is already fully implemented and uses EXTRACT

as a lexical relation compiler. The semantic interpretation raises some prob­
lems with the general usage verbs such as "take" or "make". We believe that
the success of the method is in the successful use of the dictionaries it helps
compile.

The main thrust of our work is to demonstrate the importance of co­
occurrence knowledge in current computational works, and show that its sys­
tematic use can bring much to natural language generation. We describe in
this paper a compiling method based on domain specific information. The
method works in two passes, first lexical relations are identified and then they
are analyzed and entered in the lexicon. The first step is done with EXTRACT

our co-occurrence compiler, and the second step is done by using domain spe­
cific knowledge. In parallel, we are developing a model for language generation

7In this example, the choice is random. The semantic description of the considered
domain is not delicate enough to distinguish among them.

11

that will make use of this information. Such a generator would correctly handle
collocationally restricted sentences and accept less specified input structures.

0.1 Acknowledgments

I would like to thank Kathy McKeown for her constant help during the prepa­
ration of this paper. I also want to thank Joel vValters and the English Depart­
ment at Bar Ilan University, Ramat Gan, Israel, where part of this research
has been performed. Many thanks to The Jerusalem Post, for graciously
giving me access to its archives.

References

[Benson 86] .M. Benson, E. Benson and R. lison, Lexicographic Description of
English. John Benjamins Publishing Company, Philadelphia, 1986.

[Cruse 86] D.A. Cruse, Lexical Semantics. Cambridge University Press, 1986.

[Danios 87] 1. Danlos, The Linguistic Basis of Text Generation. Cambridge Uni­
versity Press, 1987.

[Halliday 66] M.A.K. Halliday, Lexis as a Linguistic Level. In C.E. Bazell, J.C.
Catford, M.A.K Halliday and R.H. Robins (eds.), In memory of J.R. Firth
London, Longmans Linguistics Library, 1966. pp 148-162.

[Huddleston 84] R. Huddleston, Introduction to the Grammar of English. Cam­
bridge Textbooks in Linguistics, Cambridge University Press, 1984.

[Jacobs 85] P. S. Jacobs, PHRED: A Generator for Natural Language Interfaces.
Computational Linguistics, 11:4, pp 219-243, 1985.

[Iordanskaya 88] 1. Iordanskaya, R. Kittredge, A. Polguere, Lexirol Selection and
Paraphrase in a Meaning- Text Generation Model. Presented at the fourth
International Workshop on Language Generation, Catalina Island, CA, 1988.

[Kay 79] M. Kay, Functional Grammar, in Proceedings of the 5th Meeting of the
Berkeley Linguistic Society, Berkeley Linguistic Society, 1979.

[Martin 83] W.J.R. Martin, B.P.F. Al and P.J.G van Sterkenburg, On the pro­
cessing of a text corpus: from textual data to lexicographical information.
Lexicography: Principles and Practice, Ed. R.R.K Hartmann, Applied Lan­
guage Studies Series, Academic Press, London, 1983.

[Matthiessen 88] C. Matthiessen, Lexicogrammatical Choice. Presented at the
fourth International Workshop on Language Generation. Catalina Island,
CA. 1988.

12

[Mckeown 85] K.R. Mckeown, Using Discourse Strategies and Focus Constraints
to Generate Natural Language Text. Cambridge University Press, Cambridge,
England, 1985.

[Mel'cuk 81] LA Mel'cuk. Meaning-Text Models: a Recent Trend in Soviet Lin­
guistics. The annual review of anthropology, 1981.

[Nirenburg 88] S. Nirenburg et. al., Lexicon building in natural language process­
ing. Fifteenth International Conference of the Association for Literary and
Linguistic Computing, Jerusalem, Israel, June 1988.

[Saussure 49] F. De Saussure, Cours de Linguistique Generale, 4eme edition. Li­
brairie Payot, Paris. France, 1949.

[Smadja 88] F. Smadja, Lexical Cooccurrence: The Missing link in Language Ac­
quisition. Fifteenth International Conference of the Association for Literary
and Linguistic Computing, Jerusalem, Israel, June 1988.

[Zernik 87] U. Zernik, Strategies in Language Acquisition: Learning Phrases from
Examples in Context. PhD dissertation (UCLA-AI-87-1), Computer Science
Department, University of California, Los Angeles, CA, 1987.

13

