
Tutoring That Responds to User
Questions and Provides Enrichment

Ursula Wolz*

Technical Report CUCS-41D-88

Columbia University
Department of Computer Science

New York, NY 10027

Abstract

An aspect of human tutoring that epitomizes individualized instruction, is the ability to take
advantage of a situation to teach something new. This type of tutoring can be characterized as
enrichment as opposed to tutoring that is in response to a particular need. At Columbia, we have
developed a model for consulting in interactive environments that pennits answers to queries to
be both in response to a user's questions and as enrichment. Our demonstration system GENIE
(Generated Explanations for Consulting in Interactive Environments) produces answers in the
domain of Berkeley Unix TM Mail. Our emphasis is on skill rather than factual acquisition.
Consequently, GENIE is able to answer questions about alternative plans for goals, and whether
plans satisfy goals. We abandon stereotypes of both functionality and expertise, and choose the
best plan for a goal based on the current context and what the user has previously done. Four
tutoring strategies are used both in response and as enrichment. They are reminding,
introducing, clarifying distinctions and elucidating misconceptions.

Copyright © 1989 Ursula Wolz

-This Research is supported in part by ONR grant NOOOI4-82-K-0256, by NSF grant
IST-84-51438, a grant from DARPA, and a grant from Siemens Research and Technology
Laboratories.

1. Introduction

An aspect of human tutoring that epitomizes individualized instruction, is the ability to take

advantage of a situation to teach something new. This type of tutoring can be characterized as

enrichment as opposed to tutoring that is in response to a particular need. At Columbia, we have

developed a model for consulting in interactive environments that permits answers to queries to

be both in response to a user's questions and as enrichment Our demonstration system GENIE

(Generated Explanations for Consulting in Interactive Environments) produces answers in the

domain of Berkeley Unix TM Mail. We are guided by the principle that computing technology

can have the greatest impact on education by providing exploratory environments in which the

user, not the machine initiates an interaction. Therefore our focus is on building support systems

through which users can learn to manipulate the functions of the environment.

Although a mail system may not appear to be a pedagogically rich environment, we chose it

for several distinctive features. First, it offers a simple straightforward domain that increasing

numbers of people learn to use only at a minimal level. Secondly, the basic functionality of the

environment, such as reading, sending and filing mail are intrinsically useful, so that user's are

motivated to learn about them. Third, the activities in a mail system do not require the

sophisticated problem solving skills necessary for programming languages such as C, Pascal or

Lisp. Therefore, we can separate issues of teaching the mechanics of use from those of teaching

problem solving. This paper focuses entirely on the former.

GENIE is an attempt to model the human "guru hacker" usually found in academic and

research computing environments. GENIE is an attempt to behaviorally rather than cognitively

model such consultants. It is a hybrid of a tutoring system and help system. It tries to extend

user expertise as a tutor would, but does not contain a curriculum. It passively answers users

queries as a help system would, but makes more sophisticated choices about what to say when.

2. Choosing What To Say

Interactive environments are procedural rather than factual, consequently a consultant must

be able to explain how to do something rather than what something is. Question answering

therefore requires knowing how to satisfy computational goals through plans that map to sub

goals, or that map directly to the functions defined in the environment. A computational goal

may be satisfied by more than one plan, and the "best" plan for a goal will depend on what the

2

user knows and the current context, such as the state of the environment and the existence of

specific objects during a session. GENIE's Expert and User Model explicitly represent

alternative plans for goals, along with the semantic relationships between plans so that the best

plan can be calculated within a given context. Functions are represented as degenerate plans and

include information on syntax, parameters, preconditions and effects. In the discussion that

follows, plans will often refer to both functions and plans.

We abandon stereotypes of functionality and expertise such as those used by Chin [Chin 88].

We neither classify the functions of the environment along a spectrum of difficulty, nor users

along a spectrum of novice to expert. GENIE chooses what to say based on the question intent,

the user's task (the computational goal), the current context, which is represented as an

add/delete list, and the User Model, which contains a goal-centered history of the user's past

actions. We classify the potential questions that can be asked in procedural environments into

these question intents:

l. How can I satisfy goal G?

2. What does plan P (function F) do?

3. Does plan P satisfy goal G?

4. Plan P doesn't seem to satisfy goal G, why not?

5. Is there a better plan than P to satisfy goal G?

6. What is the difference/similarity between plans PI and P2?

Question answering is as a process of understanding the user's question, analyzing the best

course of action, and explaining that course to the user. GENIE does this through three

components: an Understander, a Plan Analyst and an Explainer. The Understander parses an

English question, and maps the utterance to a question intent, and if provided in the utterance, a

computational goal and a stated plan or function. Given a Goal, the Plan Analyst l locates the

best plan for the goal. Given a plan, it finds the most appropriate goal, then checks whether the

given plan is the best plan. Given both, it confmns or denies that the plan satisfies the goal, if it

does, then it again checks for the best plan. The Plan Analyst also searches the User Model to

determine if it contains a plan for the goal. If the User Model contains the best plan, then the

Plan Analyst also produces a relevant related plan, so that the Explainer can opportunistically

1 A more detailed discussion can be found in [Wo(z & Kaiscr 88; Wolz 88].

3

introduce it.

2.1. Choosing How to Say it: Responding and Enriching

The Understander and Plan Analyst provide the Explainer with a computational goal (0), a

question intent (QI), a best plan (B), a user model plan (U). If provided in the question itself,

they also supply a stated plan (S), and if U = B, a related plan R. The Plan Analyst also provides

infonnation on the relationships between the plans and the goal. Specifically, whether each of

the follow propositions is true:

G exists, U exists, B exists, Sexists, R exists

S satisfies G, U satisfies G S = U, S = B, U = B

Note that the user may ask about a plan that is not in the user model, and by definition if B

exists, then B satisfies O.

The Explainer chooses to respond and possibly enrich through four tutoring strategies:

• Introduce: Presenting plans that the user has not encountered before.

• Remind: Briefly describing plans that the user has been exposed to but may have
forgotten.

• Clarify: Explaining distinctions and options about plans.

• Elucidate: Clearing up misunderstandings that have developed about plans.

These strategies have been identified through an analysis of reference manuals, suppon

manuals, textbooks, tutorials and on-line help [Wolz et al. 88]. The strategies are similar in

fonn, but not content to the schemata used by McKeown [McKeown 85], McCoy [McCoy 86]

and Paris [Paris 87]. They specify the kind of infonnation that is typically included. For

example, Figure 2-1 describes the process of introducing. Tutorials, textbooks and to some

degree suppon manuals are intended to introduce new material, while the concise definitions in

reference manuals and on-line help such as the Unix man function, can efficiently remind users

of how functions work. All of these resources may help users clarify distinctions or elucidate

misconceptions of functions, but the user must possess strategies for locating the relevant

infonnation. Clarifying or elucidating only occurs in a limited way in tutorials and textbooks.

The user's. goal ~ay not occur in a written text. Even if it does, texts tend to introduce the

simplest techniques for accomplishing a goal.

Figure 2-2 summarizes the rules for selecting strategies. These were developed as a result of

4

1. Stating the goal. *
2. If the skill maps to a function, introducing the function, otherwise:

3. Summarizing the sub-goals for the plan for the goal. For each sub-goal either
introduCing or reminding the sub-goal depending on whether the user model do.s
or does not contain the sub-goal.

4. If it is a top level goal, reviewing the steps in the plan through an example.

5. Relating each step in the example to a sub-goal. *

Introducing a function consists of:

1. If not in the context of introducing a goal, stating the goal.

2. Presenting the syntax.

3. Describing the parameters.

4. Describing any preconditions that must exist for it to work.

5. Describing the effects (which is not the same as stating the goal.)

6. If not in the context of introducing a goal, giving an example. *
'*' indicates that a step occurs only in response

Figure 2-1: Description of Rules for Introducing

systematic analysis of the combinatoric possibilities between the QI, G, S, U and B. In any

circumstance one responsive strategy and possibly one enrichment strategy will be invoked.

Introducing is used to provide generic details about a function or plan assuming no previous

background about it. In GENIE, a plan is introduced responsively when the consultant thinks the

user has no previous knowledge of it, doesn't know the best plan for the goal, or has a faulty plan

for the goal. An exception is when the question intent specifically asks for a better way, in

which case the clarify strategy is used. Introducing as enrichment occurs when the Plan Analylst

produces a related plan R.

Reminding is used to present the bare minimum of information about a function or plan

under the assumption that the user has some knowledge about it from previous experience, but

may have forgotten it, or seeks confirmation about its relationship to a goal. In GENIE, a plan is

reminded responsively when the user does not state a plan and the consultant thinks the user

already knows the best plan. Reminding is also used when the stated plan is a plan the

consultant thinks the user already knows. A justification for reminding as enrichment has not

been found, in fact, it seems rather pedantic.

5

Notation: Pg = P exists p.g = P does not exist
Pv = P is valid p.v = P is not valid
Pf = P after invalidity is fixed
05 refers to question intent "find a better plan than S ..
& = AND, I = OR

Introduce Responsively:

Intro (B): S.g & (Ug I U.v)
Intro (S): Sg & (Ug I U.v I [Uv<> B)])

Introduce As Enrichment: Intro(R): Sg & (UV = B)

Remind Responsively:
Remind(B) : Sg & (Uv = B)
Remind (U) : Sg & (Uv <> B)
Remind(S) : (Sv = UV) & ([Sv = B] I [-05 & (Sv<> B)])

Clarify Responsively: Clarify(S): 05 & (UV = B)

Clarify As Enrichment:
Clarify(U) : S.g & (UV = B)
Clarify (S) : (05' [Sv <> B]) I (S.V [(Sf <> B])

Elucidate Responsively: Elucid(S):
Elucidate As Enrichment: Elucid(U):

Figure 2-2: Summary of Conditions that Determine the Strategy

Clarifying is used to compare two functions or two plans for a goal. In GENIE a plan is

clarified responsively when the intent of the question is specifically for a better plan for the goal.

A plan must be stated, and clarification occurs if it is not the best plan. Clarifying as enrichment

occurs whenever the question intent is not specifically asking for a better way, but the plan stated

is not the best plan, or when there is no stated plan and the User Model plan is not best.

Elucidating is used to clear up misconceptions and will be used most often when dealing

with an individual's problems. In GENIE, a plan is elucidated responsively when the user states a

plan for a goal that the consultant does not think is valid. Elucidating for enrichment occurs

when the consultant thinks the user has a plan for the goal that is not valid.

6

3. Examples of Enrichment

Two examples are presented that show how GENIE provides enrichment. Others can be

found in [Wolz & Kaiser 88]. Consider the question "How can I answer a message?". The

question identifies a goal (reply to a message) and has a question intent (QI) to receive a plan in

response. Assume that the Current Context contains a message that the user is currently reading

that was sent only to the user, not to some group. Figure 3-1 is a graphic representation of the

Expert Model required to answer this question. The Plan Analyst uses two sets of heuristics.

First it chooses steps in plans based on "world knowledge" such as efficiency and temporality.

For example, user's normally prefer to do things now rather than later, and do things in the

current context. The Current Context dictates that the Plan Analyst choose as the best plan B the

path indicated in the figure by the darkly shaded boxes. If it can't make a choice based on world

knowledge the Plan Analyst uses a second set of heuristics that compare candidate plans to

knowledge in the User Model.

1-.-.1
1 _1Mim;ae I
I 1eIId.,.,.... I

Figure 3·1: GENIE's Expert Model Knowledge of Replying to a Message

u~ereue

lowercan

Assume the User Model contains a plan that does not exist in the Expert Model, but that is

7

valid. This plan is indicated in the figure by the lightly shaded box labeled "User Plan 3". Also

assume that the User Model has a plan for compose.message. The Explainer chooses to Remind

Responsively because the user has a valid plan for the goal, and then Clarify as Enrichment

because the user's plan is not the best plan. Figure 3-2 presents both a process trace of the

directives that are assembled for producing text and the template based text that is produced ..

A second example illustrates how a related plan is introduced. Consider the question "What

does Reply do?" The question identifies the function Reply (a degenerate plan), and has a

question intent (QO to receive a goal in response. Assume the User Model contains the goal

start.single.reply that is satisfied by the function Reply. The Plan Analyst locates the goal for

Reply which is start.single.reply, and notices that the goal and plan exist in the User Model. It

therefore looks for any relevant related plans and discovers that the function Reply has a

semantic link to the function reply2 which allows a user to reply to every one to whom the

original message was sent.

The Explainer chooses to Remind Responsively because Reply is both the best plan (B),

and the User Model plan (U). Since the Plan Analyst found a related plan (R) in the form of

function reply, the Explainer also chooses to Introduce as Enrichment. Figure 3-3 presents a

process trace.

4. Summary

In this paper we have shown how a component of tutoring can be implemented as a

consulrant system. We have presented rules for choosing between answers that are in response

and those that are as enrichment through four tutoring strategies. The focus of this paper has

been on deep structure generation. Therefore we have made no claims as to how a question is

actually understood. Furthermore we have made no claims as to how the User Model, and for

that matter, the Expert Model are created and updated automatically. However, our emphasis on

goals with alternative plans, and our abandonment of stereotypes provides a more direct focus

that should shed light on both problems.

In our current approach the tutoring strategies are implemented as separate entities that map

to templates. We have found that this approach make the content of the answer is rather rigid,

2We concede that this distinction is "user hostile" butlhe example is too good to resist.

Reminding: reply.to.message
STATEGOAL: reply.to.message
SUMMARIZE: U
EXAMPLE: U

Clarifying: reply.to.message
SUMMARIZE: B

8

COMPARE_STEPS(send.message,reply.only.to.sender)
SHOW-RELATIONSHIP: (initiate addIessee) (sender is addressee)
Introducing: reply. only. to. sender

STATEGOAL: reply. only. to. sender
SUMMARIZE: reply.only.to.sender.Pl

Introducing: start. single. reply
STATEGOAL: start. single. reply

IntroducingFunction: Reply
PRESENT-SYNTAX: [Reply]

DESCRIBE-PRECONDITIONS:
(mode = reading.messages)

DESCRIBE-EFFECTS:
Delete (mode = reading.messages)

Add (addressee = current. sender)
Add (interrupt.mode = compose.message)

Reminding: compose.message

EXAMPLE: (FN: Reply, Compose.message)

In order to reply to a message you save the message, then stop
reading mail, then send mail. To do this, use the save command,
then the quit command, then the send command. For example:
type: save then type: quit then type: mail [user-name]

There is a better way:
In order to reply to a message it is assumed you want to reply
right away. In order to reply right away it is assumed you want
to reply only to the sender. To do this, use the Reply command,
then type the message. The difference is when you use the send
command you must specify the addressee, when you use the Reply
command the sender is the addressee.

The syntax is: Reply
To use this command you must be reading mail. You temporarily
stop reading mail; you start sending mail; the addressee of your
message is the current sender.

For example, type the command: Reply
Then just type your message and end with <esc>.

Figure 3-2: An Example of Reminding then Clarifying As Enrichment

and the text itself aWkward. We are currently attempting to mix the strategies in a more flexible

way, and have plans to use a Functional Unification Grammar [Kay 79; McKeown & Paris

87] rather than templates to produce more graceful text.

Reminding: start. single. reply
STATEGOAL: start. single. reply

RemindinqFunction: Reply
PRESENT-SYNTAX: [Reply]
EXAMPLE: (FN: Reply)

Introducing: start.group.reply
STATEGOAL: start.group.reply

IntroducingFunction: reply
PRESENT-SYNTAX: [reply]
DESCRIBE-PRECONDITIONS:

9

(mode = reading. messages)
DESCRIBE-EFFECTS:

Delete (mode = reading.messages)
Add (addressees =

{current. sender current. receivers)
Add (interrupt.mode = compose.message)

EXAMPLE: (FN: reply)

Figure 3-3: GENIE's An Example of Reminding then Introducing as Enrichment

We have however, shown how a consultant system can operate in an interactive

environment. GENIE is able to answer questions about the task at hand, and within the current

context. More importantly, it is able to take advantage of the situation in order to enrich the

user's expertise, providing information that is not simply in response to a question.

[Chin 88]

[Kay 79]

[McCoy 86]

10

References

Chin, D. N.
Intelligent Agents as a Basis/or Natural Language Interfaces.
PhD thesis, University of California, Berkeley, 1988.

Kay,M.
Functional Grammar.
In Proceedings of the 5th meeting of the Berkeley Linguistics Society.

Berkeley Linguistics Society, 1979.

McCoy, K. F.
The ROMPER System: Responding to Object-Related Misconceptions Using

Perspective.
In Proceedings of the 24th Annual Meeting of the ACL. Association of

Computational Linguistics, New York City, New York, June, 1986.

[McKeown 85] McKeown, K.R.
Text Generation: Using Discourse Strategies and Focus Constraints to

Generate Natural Language Text.
Cambridge University Press, Cambridge, England, 1985.

[McKeown & Paris 87]

[Paris 87]

[Wolz 88]

McKeown, K. R. and C. L. Paris.
Functional Unification Grammar Revisited.
In Proceedings of the 25th Annual Meeting of the Association/or

Computational Linguistics. Association for Computational Linguistics,
Stanford, Ca., July, 1987.

Paris, C. L.
The Use of Explicit User Models in Text Generation: Tailoring to a User's

Level of Expertise.
PhD thesis, Columbia University, 1987.

Wolz, U.
Automated consulting for extending user expertise in interactive

environments: A task centered approach.
Technical Report CUCS-393-88, Department of Computer Science, Columbia

University, New York, NY, 1988.

[Wolz & Kaiser 88]
Wo1z, U. and G.E. Kaiser.
A Discourse-Based Consultant for Interactive Environments.
In Proceedings ofrhe Fourth IEEE Conference on Artificial Intelligence

Applications, pages 28 - 33. 1988.

[Wolz er a/. 88] Wolz, U., K.R. McKeown and G. E. Kaiser.
Automated tutoring in interactive environments: A task centered approach.
Technical Report CUCS-392-88, Department of Computer Science, Columbia

University, New York, NY, 1988.

