to appear IEEE Conf. on Robotics and Automation, May 1989, Scottsdale, AZ.
Technical Report CUCS-405-88
An Integrated System for Dextrous Manipulation

Peter K Allen
Paul Michelman
Kenneth S. Roberts

Deparmment of Computer Science
Columbia University
New York, New York 10027

ABSTRACT

This paper describes an integrated system for dextrous manipulation using a Utah-
MIT hand that allows one to look at the higher levels of control in a number of
grasping and manipulation tasks. The system consists of a number of low-level sys-
tem primitives for grasping, integrated hand and robotic arm movement, tactile sen-
sors mounted on the fingertips, sensing primitives to utilize joint position, tendon
force and tactile array feedback, and a high-level programming environment that
allows task level scripts to be created for grasping and manipulation tasks. A
number of grasping and manipulation tasks are described that have been imple-
mented with this system.

1. INTRODUCTION

Great strides have been made in developing multi-fingered hands such as the Salisbury
hand (9] the Utah-MIT hand (8], and the Belgrade hand [16]. The focus of the early work on
these hands was at the lower levels of control. This is entirely reasonable since a bottom up
effort to build a usable robotic hand must necessarily precede higher level uses of the hand.
But the state of affairs has changed somewhat; the hands mentioned above have made their
way into labs and researchers are starting to exploit their potential. This paper details our own
experience in building an integrated system for dextrous manipulation using a Utah-MIT hand
that allows one to look at the higher levels of control in a number of grasping and manipula-
tion tasks.

We wish to acknowledge the work of others who have attempted to build systems to per-
form manipulation and grasping tasks. Among these are Geschke's early system to perform
integrated robotic manipulation tasks {5}, the work of Takase et al [14] in building an
integrated robotic teaching and leaming system, Salisbury’s integrated hand/tactile system [13],
Feanng's work with a tactile sensor mounted on a dextrous hand (3], the work of the group at
USC integrating the Belgrade hand into an active sensing environment{16], and the original
Utah-MIT hand researchers [12] who developed a low level control system for the hand and a
software environment 10 utilize the low level control functions.

The system we have built contains the following components:
. A set of low-level system primitives that serve as the basis for the control of the hand.

. A true hand/arm system with many degrees of freedom formed by mounting the hand on
a robotic manipulator (a PUMA 560).

. Integrated tactile sensors on the fingertips that provide force sensitive responses and
Cancsian position information.

. Sensing pnmitives that make 2 of joint position. tendon force. and tactile array sensing
i1 3 number of grasping and manipulauon tasks.

. A nich-level programming front end that allows task level scripts for common grasping
and manmipulation tasks to be written casily and cogenily. allowing the natral con-
currency of such a hand/arm system to be captured at the programming level.

[n building this svstem, we have been surpnsed by the ease with which a number of rz2a-
sonably complex grasping and manipulation tasks (described below) have been implemented.
We are encouraged by this result 1o belicve that integrating a hand into an existing robotics
environment ¢an be done simply and robustly once the nght set of primitives and structures are
developed. The remainder of this paper is a description of cach of the modules in our system
and a description of some tasks that have been performed by the system to date. In the con-
clusion. we offer some of our ideas on future directions of this research, including adding new
sensors 10 this environment.

Figure 1: Hand Arm system.

2. SYSTEM OVERVIEW
Tho ~svaermt we have palt conssis of o Lidh-MIT hund sitached o a PUMA 360 manipu-
o THe el coniars eLr Lrsonss cad weh el doorros ot freedem I oresembles thwe

e and anapes Pl aoas g numiner o testares hat humans iind veny usetul o

<ooular ot bas oo opalmiar dogroo o trecdem s otosinz ot the padmo and the thumb s place !

23

directly opposite the other three fingers, with all fingers identical in size (see figure 1). The
hand has joint position sensors that yield joint angle data and tendon force sensors that meas-
ure forces on each of the two tendons (extensor and flexor) that control a joint. The PUMA
adds 6 degrees of freedom to the system (3 translation parameters to move the hand in space
and 3 rotational parameters to orient the hand), yielding a 22 degree of freedom system.
Clearly, such a system is a nightmare to control at the servo-level in real-time. Our approach
is to use the embedded controllers in each of these systems, controlling and communicating
with them through an intelligent, high-level controller that links together the movements of
armm, hand and fingers with the feedback sensing of joint positions, tendon forces, and tactile
responses on the fingers.

The hardware structure of the system is shown in Figure 2. The high-level control
resides in a SUN-3 processor. The SUN serves as the central controller, and has access to a
full UNIX based system for program development and debugging as well as a set of window-
based udlities to allow graphical output and display of the system's various states. The hand is
controlled by an analog controller that is commanded through D/A boards from a dedicated
68020 system. The SUN is capable of downloading and executing code on the 68020 and can
communicate with it through a shared memory interface [11]. The tactile sensing system is
controlled by another dedicated 68020 that monitors the forces on each of the sensor pads.
The connection from the SUN to the PUMA is via the VAL-II host control opton over a serial
interface.

The software structure is shown in Figure 3. The high-level control program is called
DIAL and was originaily developed by Steven Feiner{4] for use as a graphical animation
language. DIAL is implemented on the SUN-3 and is able to communicate via system level
primitives to the hand system over the shared VME bus and via a serial line to the PUMA
manipulator. The following sections describe the system in detail.

2.1. Low-Level System Primitives

The low-level system system primitives described in Table 1 are organized along two
dimensions, type and domain. Type refers 1o the type of sensing or actuation (or both) which
the primitive implements. Continuous sensing implies a monitoring mode while one shot sens-
ing implies a static sensor reading. Continuous action implies a synchronized control loop
while one shot action implies an imperative command. Domain refers to the coordinate frame
or sensor domain that the primitive operates in. The primitives are:

) GET JOINTS: Reads the joint angles on the hand.

. GET FORCES: Reads the forces (measured at the wrist of the hand) on the flexor and
extensor tendons that control each joint.

. GET TACTILE: Reads a 16x16 tactile array on each finger.

. GET WRIST: Reads the Cartesian position of the PUMA wrist.

. GOTO MOVE: A one shot move that is done atomically. Implemented by setting the
desired joint position in the analog control system directly to the final position value of
the move for each joint. Move commands have the ability to use symbolic names for

specified poses. There is a set of standard pose names available for use by the higher
level programming system, particularly for hand pre-shaping operations.

-4 -

. TRAJECTORY MOVE: Allows a single joint or a number of joints to be moved along
an interpolated trajectory from a starting joint space vector to an ending joint space vec-
tor. There is also an analogous command that interpolates in Cartesian space for fingertip
motion.

. POSITION CONTACT: This is a continuous sensing primitive that is implemented in
the Cartesian position domain. When the difference between actual and desired Cartesian
fingertip position exceeds a threshold. contact is signaled.

. FORCE CONTACT: Same as above but tendon forces are monitored for changes. A
change in force differentials implies a finger contact.

o TACTILE CONTACT: The tactile arrays are monitored for readings above a
prespecified threshold.

LOW-LEVEL SYSTEM PRIMITIVES

NAME TYPE DOMAIN
GET JOINTS One Shot Sensing Joint Position
GET FORCES One Shot Sensing Tendon Force
GET TACTILE One Shot Sensing Tactile Array
GET WRIST One Shot Sensing Cartesian Position
GOTO MOVE One Shot Action Joint Position

Cartesian Position

TRAJECTORY MOVE

Continuous Action

Joint Position
Cartesian Position

POSITION CONTACT

Continuous Sensing

Cartesian Position

FORCE CONTACT

Contnuous Sensing

Tendon Force

TACTILE CONTACT

Continuous Sensing

Tactile Array

Table 1: Low-Level System Primitives

2.2. Composite Functions

Table 2 lists a number of composite functions that have been built out of the low-level
system primitives. Each composite function is described below:

. GRASP WITH FORCE: Used to grasp objects with a desired grip strength. The com-
mand closes all joints specified by a joint mask incrementally while monitoring the ten-
don forces controlling the joints in the tendon mask. When the difference between the
flexor and extensor tendon forces on a joint exceeds the specified threshold, movement of
that joints stops. This process continues until the forces on all of the tendons in the ten-
don mask have surpassed the threshold. This primitive is useful for grasping objects
when their precise dimensions are unknown.

SUN-3
Workstaton

T VME Bus
Bus to Bus
Adaptor
VME Bus ‘
Senal Parallel 68020 -— 68020 AD D/A
Port Port CPU CPU Convernter Converter
Tactile Signal —®» UTAH Analog
Processor Contloller
Robot Arm Cont] .
IBM or PUMA Tactile Sensor Pads
on Fingers
'
Positon & Tension
Sensors Pnuematic
Actuator Pack
Robot
Arm

Figure 2:

Hardware Overview,

DIAL

HAND ARM

VAL-II
FINGERS COMMANDS

TACTILE JOINT TENDON
ARRAYS POSITIONS FORCES

Figure 3: Software Overview.

COMPOSITE FUNCTIONS

|
‘! NAME TYPE DOMAIN

! GRASP WITH FORCE | Continuous Sensing, | Tendon Force

Continuous Action Joint Position
GUARDED MOVE Conunuous Sensing, | Tendon Force
Continuous Action Canesian Position

Tacule Array

~LIMP Conunuous Sensing, | Joint Posiuon
: Continuous Action

Table 2: Composite Functions

GUARDED MOVE: This composite funcuon combines one or more of the three low-
level contact pnmutives (POSITION CONTACT. FORCE CONTACT, or TACTILE
CONTACT) with the cither hand tinger motion or motion of the PUMA arm. When a
contact s detected. the relevant mouon ceascs.

-7

. LIMP: This primitive is very useful in establishing grasps. It allows a human to interact
with the hand and position it manually. It is implemented by comparing the actual joint
positions with the previous joint positions, and updating the current desired position to
reflect the new actual joint positions. For example, a hand can be placed on an object in
a known position and the position can then be recorded for future use. It has a feature to
allow the masking out of joints that need to be fixed (not LIMP) and those which should
be under LIMP control.

2.3. Tactile Primitives

The tactile sensors we are using [7, 15] consist of 16 x 16 grids of piezo-resistive polym-
eric material that are conformable to the finger’s shape. They are manufactured by sandwiching
the polymeric material between two pliable sheets of Kapton that contain electrical etching.
The application of forces on the pads provides an increased electrical flow channel between the
two sheets as the material within is compressed. Results with this sensor have been good, par-
ticularly with respect to signal isolation. The sensors are monitored by a separate 68020 that is
responsible for low-level tactile processing, including A/D conversion, and thresholding and
normalization of signals. Some of the low-level tactile primitives that have been implemented
are:

. TACTILE FILTERS: A number of useful digital filters have been implemented including

averaging and median filters which are very useful in processing noisy tactile data [10].

. TACTILE MOMENTS: A useful technique for quickly getting contact information is
central moment analysis [6]. The contact area and centroid of the contact can be deter-
mined using moments. The second moments are useful for determining the eccentricity of
the contact region and the principal axes of the contact.

. EDGE DETECTION: A number of edge detectors have been developed and used for
feature extraction from tactile images.

. LINE DETECTION: Lines are detected by using the output of the edge detection pro-
cedure in a Hough transform (2]. We have successfully analyzed tactile image data and
obtained the equations of straight lines in a single impression (1]

2.4. PUMA Arm Primitives

The arm primitives are already embedded in VAL-II, the programming environment of
the PUMA. They include movement pnmitives, asynchronous interrupt capability, and the
ability to establish arbitrary coordinate frames such as the hand coordinate system. It also pro-
vides a global coordinate system in which the tasks can take place.

3. DIAL: A HIGH-LEVEL CONTROL SYSTEM

DIAL 1s a diagrammatic language that allows parallel processes to be represented in a
compact graphical ‘‘time line'’. [t has been used for animation of graphical displays but it has
been transported by us to the robotics domain so we may exploit its ability to express parallel
operation of robotic devices. It also provides a convenient way to implement task-level scripts
which can then be bound to particular sensors, actuators and methods for accomplishing a gen-
eric grasping or manipulation task. The instruction set that DIAL supports is specified at run-
time in a user-supplied backend. We have created a DIAL backend to work in our environ-
ment which has the need to express parallel actions in the performance of simple grasping and

S

manipulation tasks. Given that we need to control the hand and arm movement concurrenuy,
as well as integrating information from three different sensor systems (joint position, tendon
force, tactile array), we found it natural to program tasks in DIAL scripts.

/* Curl a finger, then extend it, then curl it again more slowly than
the first time */

/* DEFINITION LINES */

% curl move finger 1 0 2000 2000 2000

$ extend move:finger 1 0 -2000 -2000 -2000
/* EXECUTION LINES */

/* 1234567890123456789012345678. ... */

curl f===== =========

extend ===

Figure 4: A simple DIAL script to move fingers.

3.1. DIAL Scripts

Figure 4 shows a simple DIAL script to move a finger of the hand. The horizontal
dimension of DIAL’s 2-D language represents time, with cach column corresponding to what
1s called a nck. Each cvent stans at a parucular uck and lasts for some integral number of
ticks. DIAL handles all ilow of control by determining which cvents are (o be executed during
cach tick. Entnes in cach column of execution lines (described below) specity the events that
are to be performed dunng that column’s tick. The first lings are comment lines, and they have
the ~ame format as comments in C.

3.2. Dehnition Lines

Following the comments are two deprnision lines for the cvents named curl and extend
that perform a2 finger movement instruction, move_sAnger., when the cvent is cxecuted.
Detintion hnes begin with a "% in the first column. followed by an event name, an instruc-
non name. and any parameters. Note that this line Jefines the event, but docs not cause il 1o
he eaecuted. The move_finger instrucuon takes S parameters. The tirst is the finger number (0
tor thumb. 1 for index finger, and so ony. The last tour parameters correspond (o the finger’s
ot angles at the complenon of the event.

Y3, Execution Lines

The last two hines in the example are execunion (ines that specify a sequence of succes-
stvely exccuted events. Execution hnes begin with an ¢vent name. Each column in an execu-
on fine corresponds o a uck dunng which an event might be executed. A time line 1S shown
in 4 comment above the execution hines to aid 1n discussing the uming of operations.

. 9.

In the example, the appearance of the executrion character "#" in the first column causcs
curl 10 begin execution during the first tick. The "#" character is followed by a "=". This is a
continuation character. The appearance of a continuation character after the execution charac-
ter means that the event's execution is to be extended into the next tick. The first occurrence
of curl is extended into the sixth tick. In other words, by the sixth tick, the index finger will
have moved from its initial position to a completed curled position, and the duration of move-
ment will have been six ticks. During the seventh tick. the event extend causes the finger to
begin straightening, This operation is completed during the tenth tick. In the 11th tick, the
finger stans to curl again, only this time, the curling takes ten ticks to be completed and the
script will be completed in the 20th tick. The speed of exccution of a script, that is, the length
of each tick, can be modified via a system parameter. This enables tasks to be sped up or
slowed down with a single parameter.

/* Script example showing parallelism and a guarded move:
Two fingers are moved. If a finger senses tactile contact, it
halts. */

/* DEFINITION LINES */

¥ stopl guarded tact 0 0 2000 2000 2000
¥ stopl guarded_tact 1 0 2000 2000 2000

/* EXECUTION LINES */

/* 1234567890123456789012345678.... */
stQpO f=—=======
stepl ===

Figure 5: DIAL script for guarded hnger moves.

3.4, Expressing Parallelism

The ¢venws in the senpt of Figure 4 are exccuted sequentially. Figure 5 shows how
paralichism is notated. The task to be executed is a guarded move with tactile sensing: two
ingers are moved simultancousiy. and cach stops 1f s tacnle sensors detect contact. The
events are named stop0 and stopl. and the guarded move with tactile sensing instrucuon is
called cuarded _tace. The parameters in the Jdetiniton hines have the same meaning as those in
the previous senpt. that s, move tinger N to the location detined in the last four parameter
values. The difference between the move _fincer and vwarded _tact instructons is that with the
sudrded move. e linger stops ity mouon when contact 15 sensed -- whether it has reached the
nnal locanon or not I no contact v sensed. then the tinger reaches its final location, and it
uses the number of ucks detined in the execution hines 10 do 0. In the example, the thumb
begins it movement cevent scopy at uek 1. While the thumb s moving, the index finger also
hedins W move saevent viopd. beginnimy at tick Sy The senpt shows that both events also ter-
minate at difterent umes. I only once of the lingers makes contact, then the other tinger

- 10 -

continues in its motion until it reaches its destination.

/* Pick and place script

(1) Move hand/arm to a predefined location.

(2) Grasp an object using tendon force control (grasp with
force primitive)

(3) Pick up hand/arm and move object to a new location.

(4) Use PUMA move-until-touch primitive with tendon force
sensing to locate table height.

(5) Put down the object. *x /

/* DEFINITION LINES */

% preshape hand pose "3_fing preshape”

% open hand_pose “open_hand"

% grasp grasp_force 0x0662 0x0222 400

¥ to_object puma cormmand "ex move_to_object”

% relocate puma_command “"ex relocate_object”

%* retract_arm move_arm “final arm pos"”

% findtable puma mut_force /* move puma until the hand’s
tendon force sensors detect
table */

/* EXECUTION LINES */

/* 1 2 3 4

/* 12345678901234567890123456789012345678901234567.... */
preshape f=======

to_object # =

grasp #

relocate f=———=====

findtable #

cpen =======

ret ract_arm ===

Figure 6: Pick and Place Script.

4. TASK I: PICK AND PLACE

Figure 6 shows an cxample of a DIAL script that performs a common grasping task:
picking up an object wath a three-tingered grasp and putting it down in a Jifferent location.
Fhis senpt llustrates the use of several continuous sensing, continuous action primitives. ds
well us coordinated use of the hand and the arm. The events preshupe and to_object are exe-
cuted in parallel in ticks 1-8. preshaping the hand for 4 three-fingered grasp and simultancously
moving the am to a predetermined location. The preshaping s concluded at tick ¥ while the
am moten contnues untl tek 140 Atter the hand reaches the object 1n tick 14 (the object's
position s dssumed known in this scnpt), the event grasp executes the composite function
Jrasp with force. Grusp with force instructs the hand 1o grasp an object and to terminate when
the tendon forees exceed a certain threshold. The parameters in the delinition line specily
which joints to move, which tendons to monitor. and what the value of the force 1s. The
mstruction Jhtfers from the previously discussed instructions in that there is no way to deter-
mne ahead of ume how long its exccution will take. Therefore, while 1t 1s shown as a single-
Lk operation i the senpt. the grasping operation continues until the parameter values

- 11 -

specified in the definition line are satisfied. In this way, the essential non-determinism of a
robotic task can be captured in DIAL. Commands of ind2terminate length are implemented as
single tick events, but the completion of the event actually determines the tick's length.

After the hand has formed a grasp of desired strength around the object, the hand/arm
picks up the object and moves it 10 a new location above the table (the event relocate that
begins in tick 16 and ends at dck 25). The exact position above the table is not known, only
that the object is above the table. The next event, findtable, is used 0 move the arm toward
the table and to stop when the hand detects contact with the table. Like the event grasp, the
event is shown as a single tick because it is not know how long it will take to make contact.
When the tendon force sensors determine that the hand has contacted the table, the hand
releases the object (the event open, beginning at tick 27), and then retracts the arm (the event
retract_arm in ticks 36-45). Thus, we can embed sensory feedback in DIAL scripts.

5. TASK 2: POURING FROM A PITCHER

Another example script is to have our hand/arm system pick the top off of a pitcher on a
table, place the top on the table, pick up the pitcher and pour the liquid out, replacing the
pitcher on the table. This particular task is implemented with joint space position control, joint
space force control, and Cartesian space arm control. The DIAL script for such a task is
shown in figure 7. The primitives used here are the same as those introduced in the previous
scripts. During ticks 1-13, the arm and hand are moved toward the pitcher (event ger_top),
and the hand is preshaped to grasp the top (event pittop). In dck 14, the event grab_top is
usced 1o grasp the pitcher top securely (Figure B). During ticks 15-24, the hand/am lifts the
top off the pitcher and moves the top to a position at which it will release the top (event
lift_top, Figure 1). Starting at tick 25, the event pirtop (which uses the low-level system primi-
ive hand_pose) is used to move the hand back to its preshape position. This movement has
the effect of releasing the top, because in the preshaping pose the hand is not in contact with
the top. From tick 29 to 35, the arm moves o0 a position to grasp the pitcher (event to_grasp,
Figure 9), and simultaneously preshapes the hand to grasp the pitcher (event prepir). The
event grabpir (lick 36) grasps the pitcher (Figure 10); event pourpir (ticks 37-44) lifts the
pitcher, wums it to pour the contents (Figure 11), and then replaces the pitcher in its ~riginal
position. Event prepit is used 1o release the pitcher and the PUMA movement event
retract_arm removes the hand/arm from the pitcher.

6. TASK 3: REMOVING A LIGHT BULB

Figure 12 is a last example of a DIAL script -- removing a light bulb from a socket (see
tigure 13). This is a task that requires tendon force feedback to determine the grasp strength
and coordination of the fingers moving in parallel to unscrew the bulb. The script performs
the task by moving the arm to the lightbulb while preshaping the hand. and then repeating the
following sequence of events: grasp the lightbulb, tum the hand/arm counterclockwise, release
the grasp, move back to the inital preshaped position by rotating the hand and arm clockwise.
After the bulb becomes loose, the hand grasps the bulb and retracts it from the socket.

In the script, movement of the arm to the bulb occurs during ticks 1-10. At tick 6, the
preshaping of the hand is begun and will execute in parallel with the arm mouon, resulting in
the arm reaching its destnation above the bulb in tick 10 with the hand preshaped. The next
set of event lines represent the repeated sequence of grasps and movements that unscrew the
bulb from the socket. The event grasp_bulb in tick 11 causes the hand to develop a secure

S 12 -

/* Pitcher script:
(1) Move arm/hand to above pitcher and grasp the top
(2) Lift top, move to new location and put it on table.
(3) Preshape hand to lift pitcher using pitcher’s handle
and move the arm/hand into the position.
(4) Grasp the pitcher, 1lift it and pour out the contents.
(5) Replace the pitcher to its original location.

/* DEFINITION LINES */

¥ prepit hand pose “"open_hand"”

% pittop hand_pose "pitcher_top" /* preshape for top */
¥ get_top puma_command “ex get top" /* arm above pitcher */
¥ lift_top puma_command "ex lift top" /* lift pitcher */

% to_grasp puma_command "ex to_grasp"

¥ pour_pit puma_ command "ex pour_ pit"

¥ retract_arm puma command “"ex retract_arm”

i grabtop get_force 0x6666 0x0222 5

i grabpit get force Oxeeee 0x0222 2

/* EXECUTION LINES */

/* 1 2 3 4 3

/* 1234567890123456789012345678501234567890123456789012*/
pittop f============ ===

get top #
grabtop #
1ift_top f=======
to_grasp f=—====

prepit f====== ===
grabpit #

pour_pit =======
retract_arm f=====

Figure 7: DIAL script for pouring pitcher task.

2raspoaround the bulb. The next events, avst_kand and svat_armCCW, rotate the tingers of
e hand and the am o wnst respectively. it g counter-clockwise motion tticks 12-200, The
hand i~ moved 10 the position wngrasp ittchs 21230 10 release the grasp of the hand, and then
e hand and am o oare retumed 0 thar amiial posttions by the events preshape and
svor et an ticks 242300 This sequence must be repeated a number of umes before the
light bulb s unscrewed. as shown. At the completion ol the scnplt, the cvent retract_arm 1s
Sweduled to-remose the highibulb trom s socket and Wit 0 in wir enotice that the hand is still
criasping the bulby

'
19
'

Figure 9: Preshaping the hand for grasping.

Figure 11: Pouring the grasped pitcher.

/* Script for removing a lightbulb
(1) Move arm/hand to above lightbulb and preshape

(2) Repeat the following sequence until bulb 1is
unscrewed:

- Grasp the lightbulb tightly

- Twist the fingers and joint 6 of PUMA
counterclockwise

- Release the grip on the lightbulb

- Twist fingers and joint 6 of PUMA clockwise back
to position at start of (2)

(3) Grasp lightbulb and retract arm to lift bulb ou:
of socket. */

/* DEFINITION LINES */

i preshape kand_pose "prelight”

* to bulb puma command “ex to_bulb”

% grasp_bulb grasp_force 0x0666 0x0222 400
i twist_hand hand_pose “unscrew”

¥ ungrasp hand pose "ungrasp”

X twist armCCW puma comrmand "ex twist_wrist”
X twist_armCW puma_ corwand “ex twist CW"

%t retract_amm puma_cormand "ex retract_arm”

/* EXECUTION LINES */

/= 1 =/
/* 1234567890 */
tO_bUlb f=========
rreshape ====

/* REPEAT THE FOLLOWING SECTION DESIRED NUMBER OF TIMES */

/* 1 2 3 =/
/= 1234567850123456785%0 */
grasp_bulb #

wwist _hand g========

twist armily —=======

:wis:_a::mcw f======

ungrasp g==

preshape =—=====

/* THE LAST ITERATION, PERFORM THE FCLLOWING SEQUENCE TO REMCOVE
THE BULB FROM THE 30CKET */

Figure 120 DIAL script for removing light bulb task.

- 16 -

Figure 13: Hand removing light bulb from socket.

T, SUMDMARY

The svstem we have built 18 an imponant step in building an ntegrated mulu-sensor
rabolic perception system. Roboue systems need to have the ability to process sensor data
rom g number of sources and to be programmed 1in a simple and naturd way o accomplish
srasping and manipulation tasks. Our system has ailowed us to build a number of task level
sonpts that embody paralicl actuatuon ot devices thands. tingers. arm. wnsy with sensory teed-
Mack from g aumber of different sources joint positions. tendon torces. tactile arrays). We are
Swrrentdy adding vision sensors 1o this ssstem, and these sensors will be integrated through the
~anie Sl of soltware as the hand pnmutives.

The hich-desel control of the ~vsiem throuzh DIAL necds to be funher modified to
oxtend s capabiliues in the roboues Jomain One extension s to include the ability o
Numicalls dbter sorpt sequences Currently. DIAL must conunue on a single senpt thread.
For cxample. in haptic oxploranen tasks, the teedback trom the hand/armm system is used 0

conerdte hypetheses about an obiect's shape. which can dnve new rounds of sensors

217 -

exploration. This can be implemented by having multiple DIAL scripts available, and dynami-
cally executing a particular script sequence based upon the outcome of the previous explora-
tion.

8. ACKNOWLEDGEMENTS

This work was supported in part by DARPA contract NOO039-84-C-0165, NSF grants

DMC-86-05065, DCI-86-08845, CCR-86-12709, I[RI-86-57151, North American Philips
Laboratories, and the AT&T Foundaton. Special thanks to Steve Feiner and Cliff Beshers for
bringing DIAL to our antention and helping us port it to our environment.

References

I.

9

10.

Allen, Peter and Kenneth S. Roberts, ‘*Haptic object recognition using a multi-fingered
dextrous hand,”” Technical Report CUCS-363-88, Deparmment of Computer Science,
Columbia University, New York, August 1988.

Ballard, D. and C. Brown, Computer vision, Prentice-Hall, 1982.

Fearing, Ronald, ‘‘Simplified grasping and manipuladon with dextrous robot hands,"’
IEEE Journal of Robotics and Automation, vol. RA-2(4), pp. 188-195.

Feiner, Steven, David Salesin, and Thomas Banchoff, ‘'DIAL: A diagrammatic animation
language,’’ /EEE Computer Graphics and Animation, vol. 2, no. 7, pp. 43-54, September
1982. '

Geschke, Clifford C., '*A system for programming and controlling sensor-based robot
manipulators,’” /EEE Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-S, no. 1. pp. 1-7, January 1983.

Hom, B. K. P., Robor vision, M.L.T. Press, 1986.

Interlink,, The force sensing resistor- A new tool in sensor technology, 535 E. Montec-
ito, Santa Barbara, CA, June 25, 1986.

Jacobsen, S. C., E. K. Iversen, D. F. Knutii, R. T. Johnson, and K. B. Biggers, *‘Design
of the Utah/MIT dextous hand.'' Proceedings of the [EEE Conference on Robotics and
Automation, pp. 1520-1532, San Francisco. Apnl 7-10, 1986.

Mason, Manhew T. and J. Kenneth Salisbury. Robor hands and the mechanics of mani-
pulation, M. 1. T. Press, Cambndge. 1985.

Muthukrishnan, C., D. Smith, D. Myers, J. Rebman, and A. Koivo, "‘Edge detection in
tacule images,'" Proc. of IEEE International Conference on Roborics and Automarion, pp.
1500-1508, Raleigh, 1987.

Narasimhan, Sundar, David M. Siegel, and John M. Hollerbach, ‘'Condor: A revis.d
architecture for controling the Utah-MIT hand.’" /EEE Conference on Robotics and Auto-
maton, pp. 436449, Philadelphia, Apnl 24-29, 1988.

Narasimhan, Sundar, David M. Siegel, John M. Hollerbach, Klaus Biggers. and George
E. Gerpheide, “*Implementanion of control methodologies on the computational architec-
ture for the Utah/MIT hand.”" Proc [EEE International Conference on Robotics and
Automanon, pp. 1884-1889. San Francisco. Apnl 7-10, 1986.

Salisbury, Keneth, David Brock, and Stephen Chu. “'Integrated language, sensing and
control for a robot hand.”* /nrernanonal Symposium on Robotics Research. Gouvieax.

14.

15.

16.

France, October 198S.

Takase, K., R. Paul, and E Berg, ‘‘A structured approach to robot programming and
teaching,"’ /EEE Transactions on Systems, Man and Cybernerics, vol. SMC-11, no. 4, pp.
274-289.

Tise, B., **A compact high resolution piezo-resistive digital tactile sensor,”’ /[EEE Confer-
ence on Robotics and Automation, pp. 760-764, Philadelphia, April 24-29, 1988.
Tomovic, Rajko, George Bekey, and Walter Karplus, ‘*A strategy for grasp synthesis
with multi-fingered robot hands,"’ Proc. IEEE International Conference on Robotics And
Automation, pp. 83-89, Raleigh, N. C., March 31-April 3 1987.

