
Extended Transaction Models
for Software Development Environments

Gail E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

December 1988

CUCS-404-88

Abstract

This technical repon consists of two papers discussing concurrency control facilities for
multiuser software development environments. A Marvelous Extended Transaction Processing
Model briefly sketches the previously developed commit-serializability model and then applies it
to the MARVEL kernel for software development environments. A Participant Semantics for
Serializable Transactions describes our first pass at a different extended transaction model that
moves users inside the system, so certain users may participate in transactions and the
interactions among transactions while all other users observe only a serial order for the
transactions.

Prof. Kaiser is supported by National Science Foundation grants CCR-88S8029 and
CCR-8802741, by grants from AT&T, DEC, ffiM, Siemens, Sun and Xerox, by the Center for
Advanced Technology and by the Center for Telecommunications Research.

A Marvelous
Extended Transaction Processing Model

Gail E. Kaiser

Columbia University

Deparnnent of Computer Science

New York. NY 10027

kaiser@columbia.edu

212-854-3856

25 October 1988

Abstract

The key flaw in programming environment research is the lack of a transaction model supporting
fault tolerance, concurrency control, consistent publication of changes and user-initiated
rollbacks for software development activities. The atomicity properties of the classical
transaction model make it unsuitable for industrial software development efforts. We sketch an
extended transaction model with a commit-serializabiliry semantics and describe the application
of this model to the existing MARVEL architecture for programming environments. MARVEL
realizes rule-based process modeling and integrates commercial-off-the-shelf tools via controlled
automation.

Copyright © 1988 Gail E. Kaiser

Track: Software Engineering

This research is supported by National Science Foundation grants CCR-8858029 and
CCR-8802741, by grants from AT&T. DEC. IBM, Siemens. Sun and Xerox, by the Center for
Advanced Technology and by the Center for Telecommunications Research.

1. Introduction

I was recently asked by a colleague (whose research area happens to be transaction processing)

why it is that very few academic and laboratory results in the area of integrated programming

environments seem to have been adopted for practical industrial software development. My

response was that they have been applied successfully in certain communities, most notably

commercial knowledge based systems, but primarily only single-user programming

environments have seen practical use. Multiple-user programming environments seem to be an

orphan technology, with apparently little impact of research on industrial development efforts.

In my opinion, the key problem with integrated programming environments for multiple users

is the lack of a suitable transaction processing model. Research results in transaction processing

have been adopted for commercial database and operating systems to provide fault tolerance,

concurrency control, consistent commitment of changes and application program-initiated

rollback facilities. Fault tolerance, concurrency control, consistent release of changes and user

initiated (or tool-initiated) rollback facilities are similarly crucial for multiple user programming

environments. Individual software development tools provide some of these facilities, in the

forms of, for example, checkpointing, version control utilities, system build, and undolredo. The

crippling problem with these mechanisms is that checkpointing, version control and undo/redo

generally address only individual files, rather than the complete set of resources updated during

the software development activity.

It is sometimes suggested that the transaction processing model successfully applied in

databases and operating systems be applied directly to software development. There are several

severe difficulties with this approach.

• Fault tolerance in traditional transaction processing models implies all or nothing, in
the sense that if the machine crashes or there is some other failure, the atomic
transaction is rolled back and retried. This seems the best approach for a transfer
among bank accounts, but is entirely inappropriate when the 'transaction' consists of
fixing a bug by browsing and editing a number of source files, compiling and
linking, executing test cases and generating traces, etc., which may easily take
several hours and sometimes several weeks. No programmer would accept a system
that threw out all his past work when the system crashed and expected him to start
over!

• Concurrency control in traditional transaction processing implies that separate users
or applications are effectively isolated from each other, and the transactions appear
to have been executed in some serial order. When one transaction attempts access to
a resource already read or written by another transaction that has not yet committed,
the first transaction may be blocked until the resource is unlocked or rolled back to

2

try again. Again considering our bug fixing 'transaction'. it is not acceptable for a
programmer to be locked out from editing a source file just because some other
programmer had previously read the file but has not yet finished his changes to other
files! It is equally inappropriate to break deadlocks by throwing out one or more of
the programmers' efforts.

• In traditional transaction processing, consistent commitment implies simultaneously
making all of a transaction' s updates publicly available for reading and subsequent
update by other transactions only when the first transaction completes and commits.
In contrast, programmers must be able to release certain source modules so they can
be viewed and/or compiled and linked by other programmers cooperating on the
same subsystem, while continuing in progress work on other files. At the same
time, it is necessary to prevent publication of the partial results outside the
cooperating group.

• Finally, an abort of a traditional transaction in effect deletes all changes made during
the transaction, so they are never available to other transactions; in some transaction
processing models it is possible for other transactions to see the partial results, but
then an abort triggers cascaded rollbacks. In fixing a bug, however, a programmer
may realize that his original ideas about the cause of the problem were incorrect and
decide to start over - but that does not mean he wants to throwaway the
incorrectly modified versions of the source modules! He may want to keep them
available somewhere, even though they were not checked in, for reference on his
second attempt.

Thus the traditional transaction model is not suitable for software development, at least where

the 'transactions' are at the granularity of bug fixes. completion of a milestone, or release of a

product. An extended transaction processing model is necessary to make integrated

programming environments practical in the same way that research results in database and

operating systems have achieved widespread commercial application.

This paper describes an admittedly incomplete model that is a step towards this goal, and

applies this model to our MARVEL software engineering environment [Feiler 86, Kaiser

87a, Feiler 87. 8arghouti 88, Kaiser 88a, Kaiser 88b, Kaiser 88c]. Our extended transaction

model addresses concurrency control, consistent release and user-initiated rollback through a

semantics for commit-serializabiliry supported by two new transaction processing operations,

split-transaction and join-transaction, that we recently introduced [Pu 88]. In this previous

paper, we presented the new operations only in the context of programmed transactions, where

here we consider both programmed transactions such as might be realized by 'process

programming' [Osterweil 87] and interactive transactions initiated and controlled by a human

user or a cooperating group of human users. We have not yet extended our semantics to fault

tolerance, where some form of 'savepoints' will be necessary.

3

FIrst we give an overview of MARVEL, then we describe the commit-serializability extended

transaction model, and finally we apply the model to MARVEL. We conclude by summarizing

related work and listing the contributions of this paper.

2. Overview of MARVEL Architecture

MARVEL'S primary goal is to support realization of process modeling for controlled

automation of software development activities. Such controlled automation eases integration of

commercial-off-the-shelf (COTS) tools. The processing modeling language, called the MARVEL

Strategy Language (MSL), is rule-based. Each activity, typically a tool invocation, is defined as

having zero or one precondition and zero or more postconditions. The precondition corresponds

to the condition of classical production systems [Waterman 86], while the actual activity plus the

postconditions corresponds roughly to the action.

The precondition indicates those predicates that must be true in order to carry out the activity.

Each postcondition indicates those assertions that are made true by completing the activity.

There are multiple mutually exclusive postcondition to indicate the multiple possible results of

many activities (for example, compilation produces either object code or error messages, but it is

not possible to determine which without executing at least the front end of the compiler).

Automation is supported by forward and backward chaining on the rules. When the user

attempts to initiate an activity, MARVEL checks whether its precondition is satisfied. If not,

MARVEL attempts to satisfy it by backward chaining and consequent automatic initiation of

activities. Satisfaction may not always be possible, in which case MARVEL is able to use its

rules to explain the problem to the user (or provide help on how to use the tools required to

perform the activities [Wolz 88]). Once an activity has completed, MARVEL asserts one of its

postconditions. In the background, MARVEL uses forward chaining to automatically invoke

activities whose preconditions are now satisfied. We call this application of forward and

backward chaining opponunistic processing. because MARVEL automatically carries out

activities as the opportunity arises.

Automation is controlled both by the rules and by implicit queries that MARVEL makes during

both forward and backward-chaining. When the cost of some automatic activity is likely to be

over some threshold. MARVEL informs the user of the situation and requests confirmation before

continuing.

4

COTS tools are supponed by envelopes that interface between MARVEL's objectbase, which

acts as the working memory of the rule-based system, and the actual input/output requirements

of the tools. The envelopes also indicate to MARVEL which of the alternative postconditions

should be assened on worlcing memory.

MARVEL'S behavior is both user-selectable and user-programmable. A distinguished user,

called the superuser, writes a number of MSL modules, called strategies. A strategy consists of

a data model for the relevant portion of worlcing memory, a collection of rules and a collection of

tool envelopes. A strategy may impon other strategies that provide some of the facilities it uses.

Different strategies may suppon the same tools with entirely different rules reflecting different

management policies; different rules may require different attributes for some data objects and

different relationships among some data objects.

A default set of strategies is associated with each MARVEL objectbase when it is created, but

this default set can be changed and the user can load and unload individual strategies at any time

in effect changing MARVEL's behavior interactively. Any user can act as a superuser and create

new strategies, to tailor MARVEL to his own favorite tools or preferred mode of behavior. In

cases where policies must be enforced, this user-extensibility could easily be turned off - say be

requiring a password to change strategies and/or to add new strategies to the strategy library.

For example, consider the task of building a programming environment for developing and

maintaining software systems written in C. The tools used by the environment are those readily

available on Unix: a text editor, a type checker, a compiler, a linker and a mail program. At a

minimum, we would like the new environment to provide the following assistance .

• A manager decides to upgrade an existing software system and divides the changes that need
to be made among the programmers in his group. He assigns each programmer a specific
module (a C source file) to work on using a command like "assign <programmer>
<module>". The environment responds to this command by displaying an error message if
the module has already been assigned, and otherwise reserving the module for the
programmer and sending mail notifying the programmer of his assignment. Each
programmer is supposed to upgrade the module he is assigned to achieve the desired change .

• A programmer gives the "edit <module>" command. The environment automatically displays
any known errors in the module before calling the editor. The programmer edits the module
and saves the changes. The environment, knowing that the module has been modified,
invokes the type checker and informs the programmer of (1) any errors detected previously
that have not been corrected and (2) any new errors introduced. The programmer is expected
to work on the module funher to eliminate all static errors. (In a realistic environment, the
programmer would also carry out unit testing, perhaps with a test management tool, as well as
a debugger.)

5

• If the type checker does not detect any errors, the environment sends mail to the manager
infonning him that the programmer has completed his particular assignment. When all
outstanding assignments have been completed, the environment automatically recompiles and
relinks the program and sends mail to the manager and his programmers informing them that
the upgraded system is ready for integration and acceptance testing.

MARVEL provides facilities to generate this environment in two phases. First, the superuser

writes an MSL description that (1) specifies the organization of the database for the project in

terms of entities, attributes and relations (e.g., a C program consists of modules, each of which

may contain macros, types, variables and functions), and (2) models the software development

process for that particular project in terms of tools and rules (e.g., a precondition of the editor is

that the indicated module be assigned to the current programmer and a result of the editor is that

the module's status is not-checked, implying it is necessary to invoke the type checker).

Second, a user starts up the MARVEL kernel and enters the load command to instantiate the

kernel with this MSL description. He can then use this instantiated MARVEL to produce the

target software system. In our example, the manager would probably give the load command

and then save the instantiated MARVEL for later use by himself and his group.

Now consider a variant of this programming environment for C, where certain commands such

as "assign" are restricted to managers and should not appear in the menus available to

programmers. The superuser can enforce this by writing two MSL descriptions, one for

programmers and one for managers, where each defines the same entities but the description for

managers includes additional tools and rules not in the description for programmers. Whenever

a manager uses MAR VEL, he loads the manager-specific description and whenever a programmer

uses MARVEL, he loads the programmer-specific description (or MARVEL could load the

appropriate description automatically). The manager and his programmers would thus employ

two different descriptions with respect to the same software development project and the same

database.

This separation might lead to inconsistencies as new and improved tools become available, and

the entities and rules are upgraded so the project can take full advantage of the new tools. The

superuser must make sure the shared portion of the two distinct descriptions remains identical.

Strategies ease the superuser's burden by modularizing the descriptions, so that MARVEL can be

instantiated by a group of strategies that together define the full collection of entities, tools and

rules. The superuser would define one basic strategy that gives the entities, atOibutes and

6

relations shared between programmers and managers, as well as the tools and rules that support

the programming process. The superuser would also define a separate strategy for managers that

could be loaded along with the programmer-specific strategy to provide the full capabilities

req uired by managers.

MARVEL as described in previous papers does not support multiple users. A previous

implementation of MARVEL did actually suppon multiple users because it was built on top of

Smile [Kaiser 87b], a multiple user programming environment for C developed as part of the

Gandalf project [Habennann 86] at CMU. Smile had trivial suppon for multiple users, and in

any case had a hard-wired objectbase. When MARVEL was reimplemented with its own general

but 'quick-and-diny' objectbase manager, we lost the multiple user capability. Rather than hack

it back in, as was done for Smile, we decided to pursue a general extended transaction model

applicable to a wide range of programming environment efforts. The application of commit

serializability to MARVEL described later is not yet implemented.

3. Commit-Serializability Transaction Model

The tenn commit-serializability is chosen to denote an extended transaction model where all

committed transactions are in fact serializable in the standard sense, but these transactions may

not correspond in a simple way to those transactions that were initiated. In particular, the

initiated transactions may be divided during operation and parts committed separately in such

ways that these transactions are not serializable.

To make this more clear. consider two in-progress transactions Tl and TI. Tl is divided under

program or user control into T3 and T4. and shortly thereafter T3 commits while T4 continues.

T2 may view the committed updates of T3. some of which were made by Tl before the division,

and then itself commits. T4 may then view the committed updates of TI before it commits. TI,

T3 and T4 are serializable, but Tl and TI are not. The originally initiated transaction Tl in

effect disappears, and in particular is neither committed nor aborted.

Commit-serializability is supponed by two new rransaction processing operations, split

transaction and join-transaction. in addition to the standard initiate-transaction.

commit-transaction and abort-transaction operations. The split-transaction operation supports

the kind of division described above; the inverse join-rransaction operation merges a completed

transaction into an in-progress rransaction to commit their results together.

7

The two-way versions of the split and join operations take the following arguments. We do

not address n-way versions in this paper, but the extension is straight-forward.
Split-Transaction (A: (AReadSet, AWriteSat, AProcedura),

B: (BReadSet, BWriteSet, BProcedure »

Join-Transaction(S: TID)

When the split-transaction operation is invoked during a transaction T. there is a TReadSet

consisting of all objects read by T but not updated and a lWriteSet consisting of all objects

updated by T (alternatively. TReadSet could be all objects locked for reading by T and

TWriteSet all objects locked for writing, whether or not they had actually been read or written).

TReadSet is divided, not necessarily disjointly, into AReadSet and BReadSet. TWriteSet is

divided disjointly into AWriteSet and BWriteSet. In the special case where A is immediately

committed, say by a variant operation split-transaction-and-commit, objects in A WriteSet may

also appear in either BReadSet or BWriteSet. In the case of a programmed transaction.

AProcedure and BProcedure indicate the code for each transaction to execute following the split.

In the case of a user-controlled transaction, these two parameters are omitted.

Say a programmer U has read modules M and N and updated modules Nand 0. He has

compiled the changed N and 0, linked them together with the old object code for M, and is in the

process of debugging. Another programmer V requests access to module N. Since U is fairly

sure he is done making changes to N, but needs to continue work on M and 0, he splits and

commits a transaction that updates N. V then reads N, decides to use this new version rather than

the old one for testing his own changes to other modules, recompiles N and tests his subsystem.

Later V commits N and U commits M and 0.

It is possible to invoke an abort-transaction operation on transaction A or B resulting from a

split-transaction. This does not automatically abort the other transaction, since they are now

independent. However, if B is still ongoing when A aborts. it may be desirable to notify B that

A has aborted and give B the option of subsequently aborting.

When the join-transaction operation is invoked during a transaction T, target transaction S

must be ongoing. TReadSet and TWriteSet are added to SReadSet and SWriteSet, respectively,

and S may continue or commit.

Say a programmer U has read modules M and N and updated modules N and 0. He has

compiled the changed N and 0, linked them together with the old object code for M, and

8

completed debugging. Another programmer V is working on other changes to the same

subsystem. Since U is done, he joins M, N and 0 to V's resources, so all changes to the

subsystem will be published together. U then goes on to his next task.

In the cases of both split-transaction and join-transaction, the originally initiated transaction T

is divided or merged, respectively, so the net effect is as if it had never existed. The tables, logs,

etc. used in by the transaction manager implementation are updated as necessary to expunge

knowledge of T and replace it with knowledge of A and B or S, respectively.

Split-transaction and join-transaction may be used as part of nested transactions [Moss 81]. In

the former case, both A and B have no parent or both have the same parent p, which was

originally the parent of T, and the same set of siblings as T. In the latter case, either T has no

parent, or T has the same parent P and the same set of siblings as S.

Again consider the possibility of invoking an abort-transaction operation on transaction A or B

resulting from a split-transaction. When A and B are both nested inside the same parent P, then

it is possible to notify P even though B has already committed. This may prompt P to issue a

compensating transaction C, to undo the effects of B or take some other action.

Split-transaction and join-transaction may be invoked at different times during the same

software development activity. Say a programmer U has read modules M and N and updated

modules N and O. He has compiled the changed N and 0, linked them together with the old

object code for M, and is in the process of debugging. Another programmer V requests access to

module M. Since U does not need it right now, he splits and commits a transaction that reads

M. V then modifies M, recompiles and tests it, and then joins the updated M with U. Now U can

make further changes to M, and the changes to M. N and 0 commit together.

4. Application of Commit-Serializability to MARVEL

When a user carries out a task using MARVEL, say to fix a bug, he first gives the

initiate-transaction command. After the transaction commences, the user proceeds to browse

through the MARVEL objectbase, looking at the bug report and some of the modules implicated

in the report. He runs some test cases through the executable version of the system associated

with the bug report.

So far. everything the user has done has been read-only in the sense of no obvious updates to

software artifacts. However. he may have unwittingly caused changes to several objects due to

9

fOlWard and backward chaining by the rules associated with the activities he has carried out.

For example, the user's request to execute the system may have triggered backward chaining

that ultimately compiled and linked the appropriate module versions adding to the derived object

pool and updated the status attributes of the relevant module versions and system configuration

versions. Commit-serializability would permit the user's transaction to split automatically so

that the newly derived objects (presumably derived at some previous point but then deleted or

garbage collected due to space limitations) are available to any other user that needs them.

A less intuitive example is that the user's request to read the bug report may have updated the

status of the bug report and sent mail to his manager to indicate that the programmer had

commenced on this task. Again the transaction should split, because an abort initiated by the

programmer certainly does not negate the fact that he started to work on the task.

Continuing with our example, the user proceeds to edit several source files, which backward

chaining causes to be checked out of the version control tool and fOlWard chaining causes to be

recompiled and relinked. There may be several cycles of editing as newly introduced syntactic

errors are removed. Then the user continues running test cases and maybe inspects system

execution using a debugger.

Sometime during these activities, another user operating in another transaction attempts to edit

one of the source files already checked out of the version control tool. He is now given the

choice of forking a version branch or requesting a split in the transaction that has locked the

files. In the latter case, this split may be automatic or may require agreement of the original user.

In general, the interactions with the transaction manager must be programmed in the tool

envelopes, except that they are handled automatically by MARVEL in the cases of precondition

checking and postcondition assertion.

5. Related Work

We know of only one integrated environment that realizes a transaction model, the

Cosmos/Eclipse environment [Walpole 88] at the University of Lancaster. The transient

versions and time domain addressing used for the multiple version implementation [Reed 78] of

serializable transactions is replaced in Cosmos by immutable versions and domain relative

addressing on configurations and configuration histories. The primary disadvantage of this

scheme is the non-serializability of the committed transactions. We avoid this disadvantage with

10

commit-serializability, since the committed transactions are in fact serializable although not

atomic.

Sun Microsystem's Network Software Environment (NSE) [Sun 88], with its integration

environments and components, and Imperial Software Technology's IStar [Dowson 87], with its

contract databases, are relatively easy to reformulate with a transaction model but to my

knowledge this has not been done by the developers. Our own Infuse change management

system [Kaiser 87c] is similar to NSE, but enforces a policy of integrating strongly connected

modules and subsystems first before weakly connected components. We may take advantage of

either the NSE or Infuse suppon for group as well as individual isolation in the future MARVEL

implementation of commit-serializability.

A number of integrated programming environments provide automation akin to MARVEL's

opportunistic processing. lSI's CommonLisp Framework (CLF) [Balzer 85] is a notable

example, and CLF strongly influenced our work on MARVEL. Several proposed environments

plan to incorporate realization of process modeling; one eminent example is the work of the

Arcadia consortium [Taylor 86].

6. Contributions

The primary contributions of this paper are a superior fonnulation of our previously published

split-transaction and join-transaction operations, a presentation of a commit-serializability

semantics for transactions. and the application of commit-serializability to a previously

published research architecture for programming environments.

Acknowledgments

Calton Pu collaborated on the development of the split-transaction and join-transaction

operations. with input from Norman Hutchinson. Commit-serializability in its current fonn was

influenced by discussions with Dan Duchamp. Maurice Herlihy. Peter Wegner and Bill Weihl.

The MARVEL project was initiated jointly with Peter Feiler at the CMU Software Engineering

Institute. and a 'quick-and-dirty' implementation was done by Steve Popovich. Nasser

Barghouti co~labora~ed in a redesign and supervised the flrst large-scale implementation; Bob

Schwanke along with Nasser collaborated on a subsequent redesign. and Nasser and Mike

Sokolsky recently completed the second implementation. Wendy DiUiard, Russel Goldberg,

Christine Hong. Wai Keung Hui. Qifan Ju, Christine Lombardi. Alexander Mogieleff. Joe

11

Milligan, Michael Sacks, Tam Tran, and Timothy Yuan also contributed to the implementation

efforts.

References

[Balzer 85] Robert Balzer.
A 15 Year Perspective on Automatic Programming.
IEEE Transactions on Software Engineering SE-l1(l1): 1257-1268,

November, 1985.

[Barghouti 88] Naser S. Barghouti and Gail E. Kaiser.
Implementation of a Knowledge-Based Programming Environment
In 21st Annual Hawaii International Conference on System Sciences, pages

54-63. Kona ill, January, 1988.

[Dowson 87] Mark Dowson.
Integrated Project Support with IStar.
IEEE Software :6-15, November, 1987.

[Feiler 86] Peter H. Feiler and Gail E. Kaiser.
Granularity Issues in a Knowledge-Based Programming Environment.
In Second Kansas Conference on Knowledge-Based Software Development.

Manhattan KA, October, 1986.
Available as CMU Software Engineering Institute, SEI-86-TM-ll, September

1986.

[Feiler 87] Peter H. Feiler and Gail E. Kaiser.
Granularity issues in a knowledge-based programming environment.
Information and Software Technology 29(10):531-539, December, 1987.

[Habermann 86] A.N. Habermann and D. Notkin.
Gandalf: Software Development Environments.
IEEE Transactions on Software Engineering SE-12(12):1117-1127,

December, 1986.

[Kaiser 87a] Gail E. Kaiser and Peter H. Feiler.
An Architecture for Intelligent Assistance in Software Development.
In 9th International Conference on Software Engineering, pages 180-188.

Monterey CA, March, 1987.

[Kaiser 87b] Gail E. Kaiser and Peter H. Feiler.
Intelligent Assistance without Artificial Intelligence.
In 32nd IEEE Compurer Society International Conference, pages 236-241.

San Francisco CA, February, 1987.

[Kaiser 87c] Gail E. Kaiser and Dewayne E. Perry.
Workspaces and Experimental Databases: Automated Support for Software

Maintenance and Evolution.
In Conference on Software Maintenance, pages 108-114. Austin TX,

September, 1987.

12

[Kaiser 88a] Gail E. Kaiser, Peter H. Feiler and Steven S. Popovich.
Intelligent Assistance for Software Development and Maintenance.
IEEE Software :40-49, May, 1988.

[Kaiser 88b] Gail E. Kaiser, Naser S. Barghouti, Peter H. Feiler and Robert W. Schwanke.
Database Support for Knowledge-Based Engineering Environments.
IEEE Expert 3(2):18-32, Summer, 1988.

[Kaiser 88c] Gail E. Kaiser and Naser S. Barghouti.
An Expert System for Software Design and Development.
In Joint Statistical Meetings. New Orleans LA, August, 1988.
To appear.

[Moss 81J 1. Eliot B. Moss.
Nested Transactions: An Approach to Reliable Distributed Computing.
PhD thesis, MIT, April, 1981.
MIT LCS TR-260.

[Osterweil87] Leon Osterweil.
Software Processes are Software Too.
In 9th International Conference on Software Engineering, pages 1-13.

Monterey CA, March, 1987.

[Pu 88] Calton Pu, Gail E. Kaiser and Norman Hutchinson.
Split-Transactions for Open-Ended Activities.
In Fourteenth International Conference on Very Large Data Bases, pages

26-37. Los Angeles CA, August, 1988.

[Reed 78] David P. Reed.
Naming and Synchronization in a Decentralized Computer System.
PhD thesis, MIT, September, 1978.
MIT LCS TR-205.

[Sun 88] Introduction to the NSE
Sun Microsystems. Inc., Mountain View CA, 1988.

[Taylor 86] Richard N. Taylor. Lori Clarke. Leon J. Osterweil, Jack C. Wiledon and
Michal Young.
Arcadia: A Software Development Environment Research Project.
In 2nd International Conference on Ada Applications and Environments.

pages 137-149. IEEE Computer Society, Miami Beach. FL, April, 1986.

[Walpole 88] 1. Walpole. G.S. Blair, J. Malik and J.R. Nicol.
Maintaining Consistency in Distributed Software Engineering Environments.
In 8th International Conference on Distributed Computing Systems, pages

418-425. San Jose CA, June, 1988.

[Watennan 86] Donald A. Watennan.
A Guide to Expert Systems.
Addison-Wesley Pub. Co., Reading MA, 1986.

[Wolz 88]

13

Ursula Wolz and Gail E. Kaiser.
A Discourse-Based Consultant for Interactive Environments.
In Fourth IEEE Conference on Artificial Intelligence Applications, pages

28-33. San Diego CA, March, 1988.

A Participant Semantics
for Serializable Transactions

(Extended Abstract)

Gail E. Kaiser

Columbia University

Department of Computer Science

New York, NY 10027

Kaiser@columbia.edu

212-854-3856

7 October 1988

Abstract

The paper presents a new semantics for serializable transactions where certain human users
participate in the transactions, and are thus aware of their interleaved and/or concurrent
operation, while all other human users remain observers to whom the transactions appear to have
been executed in some serial order. Participants perfonn cenain actions within transactions, and
thus may view their own and other users' partial results. This notion of participation is useful for
applying the transaction concept to the open-ended activities supported by environments for
CAD/CAM, VLSI design, office automation and software development.

Copyright © 1988 Gail E. Kaiser

keywords: complex objects, concurrency control. dependency theory. transaction management.

Kaiser is supported by National Science Foundation grants CCR-8858029 and CCR-8802741.
by grants from AT&T, DEC, IBM, Siemens and Sun, by the Center of Advanced Technology
and by the Center for Telecommunications Research.

1. Introduction

The intent of serializability is that a set of transactions should appear to have been performed

in some serial order with respect to every external observer, even though the actual execution of

the actions within the transactions has been interleaved andlor concurrent The external

observers may include programs, but have always been assumed to include any human users

interacting with the system. We introduce a new semantics of serializability where cenain users

may be designated as participants in a specific set of transactions, meaning the transactions need

not appear to have been performed in some serial order with respect to these participants. Other

users remain observers, and the set of transactions appears serial. A particular user may be a

participant for some sets of transactions and an observer for other sets simultaneously executed

within the same system.

This distinction between participant and observer is useful for applying the transaction concept

to open-ended activities, such as are supponed by environments for CAD/CAM, VLSI design,

office automation and software development. Open-ended activities are characterized by

• Uncenain duration. Locating and ruing a bug in a software system may take from
hours to mon ths.

• U ncenain developments. The set of modules viewed, compiled and executed, as
well as the set of test cases, may not be foreseeable at the beginning of the
debugging activity .

• Interaction with other concurrent activities. In large software projects, several
programmers cooperate to fix a bug - they must see the latest versions of each
others modules even though the versions will not be publically released (committed)
until the bug has been repaired.

In current environments, open-ended activities are typically supponed by ad hoc mechanisms

even though their requirements include the fault-tolerance, concurrency control and provision for

user-initiated aborts collectively guaranteed by transactions. However, traditional transactions

where all human users are treated as external observers are not appropriate in the context of

uncenain duration. uncertain developments and interactions among concurrent activities. The

latter characteristic of open-ended activities is the most troublesome - two-way dependencies

among concurrent activities is inherently inconsistent with an observed serial order of the

activities. Therefore. we separate the users into participants and observers: the participants are

involved in the non-serial interactions while the observers see a serial order.

2

2. Contributions

The primary contribution of the paper is a semantics for user participation in what are

externally observed as serializable transactions, including the concepts of participant

serializability, participant non-serializability and user serializability.

We have previously defined open-ended activities in another paper [Pu 88], where we

introduced a different semantics for transactions that we now call commit-serializability. The

basic idea there was that all committed transactions appear to have been executed in serial order

with respect to all users (i.e., there was no notion of participant), but in-progress transactions

may split to commit separately a subset of their resources or join to commit their resources

together. Due to the split operation, the original set of transactions that began operation may not

appear serializable as they may be committed in parts.

3. Participants

For each transaction T, there is a set of resources R(T) read or viewed by the transaction and a

set of resources WeT) written or updated by the transaction. The intersection between R(T) and

W(T) may be non-empty, and resources may be modified. Transactions may be of arbitrarily

long duration between the stan of the transaction and its commit (or abon).

In the context of open-ended activities, the goal of a transaction is typically to complete some

task. such as design a VLSI circuit or write a quarterly repon. In many cases, these tasks involve

several tools and more than one human user. Sometimes the tools may proceed without human

intervention and may even be invoked automatically by the environment, for example a

document formatter, while others require human interactions, for example a word processor.

Different users may be simultaneously working on different pans of the same task. such as

writing different sections of the same repon, but it is necessary for the users to view each others

partial results - say to make sure they're not duplicating effon. for example by discussing the

same material in different sections when it should only appear in one. and to negotiate and solve

problems that arise, for example one pan of the production plan has to be down-sized due to

financial constraints that became clear only while developing another pan. These users who thus

interact within the same task, i.e., the same transaction. are known as participants in the

transaction. Users who see only the final results of the task are known as observers of the

transaction.

3

For each transaction T, there is a set of users P(T) who are participants in the transaction.

Each user in this set is designated as participant Pj(T) for some i. P(T) may be selected in

advance before the transaction begins, or accumulated during the course of the transaction. All

other users who are not participants are in the set O(T), the observers of the transaction.

A participant in a transaction may perform some or all of the actions within the transaction, for

example, drawing an illustration or invoking a VLSI layout tool. Some participants may not

actually perform any actions, but view the results of these actions as part of some other

dependent transaction, for example, reading the source code of one module in order to decide

what changes to make in another module. Note that such viewing takes places before the

transaction commits; after the transaction commits, any observer can of course read the resources

updated by the transaction.

For any set of transactions, there is some group of users who cooperate to complete the task

reflected in the set of transactions, for example, all the steps from designing through fabricating

through testing a chip, where there may be feedback among the steps until the chip both meets its

economic requirements and operates correctly. All other users are not directly involved and only

see the committed results of the transactions as if they had been executed in serial order; in this

example, they might see only the resulting chip, or they might see the final cost expenditures of

each step broken down as if there had been no feedback.

For any set of transactions S equal to {T l' ... , Tn}' there is a set of observers O(S), which is the

set difference of the union of O(Tj) for some i and the set of participants P(S), where P(S) is the

union of P(T j) for some i. If the P(Ti) are disjoint. then S is said to be participant serializable;

otherwise, the set S is participant non-serializable.

For any set of transactions S equal to {T l' ... , Tn} where there is a user who is a member of

O(T j) for every i. S is user serializable with respect to that particular user. If there is a user who

is a member of P(T ~ for any i, then set S is user non-serializable with respect to that user.

In this abstract. we consider enforcing that cenain sets of transactions are participant

serializable while detecting that cenain other sets are participant non-serializable. This can be

accomplished most easily for hierarchical tasks. In the full paper, we describe the corresponding

issues of participant serializability for non-hierarchical tasks, where user serializability becomes

an imponant concern.

4

4. Hierarchical Tasks

In many applications, a set of tasks will be purely hierarchical, with a root task, a number of

non-terminal tasks and a number of leaf tasks organized as a tree. For the definition of

participant serializable transactions given above, the set of transactions S represents the set of

subtasks of a non-terminal task. A leaf task is defined as a participant serializable transaction T

when all users in the set P(T) are members of the sets O(Tj) for all other leaf tasks T j. Each task

in a tree of tasks is a participant serializable transaction T when all users in the set P(T·), the

union of the sets P(Tj) for all tasks in the subtree rooted at T, are members of the sets O(T-[i)]

for all other tasks T j that are not in the subtree rooted at T.

Consider, for example, the development of a large software system. The root task is the

development itself, and it commits with the first release of the system. The root task is broken

down into several subtasks representing the stages in the lifecycle of the system: say,

requirements analysis, functional specification, detailed design, coding and unit testing,

integration testing, quality assurance, and deployment. Although in the waterfall model of

software development these stages are purely sequential, the more modern spiral model assumes

feedback among the various stages in order to improve the quality and economic viability of the

product and the productivity of the process. Thus there must be human participants, the software

development team, who view the transactions representing these stages as interacting while there

are human observers, perhaps corporate management, that are external observers and see the

transactions representing these stages in this serial order. The customers might view the entire

task as a single transaction, resulting in the software product, and not observe any of the

subtransactions reflecting the subtasks.

Within each of the stages there are more levels of subtasks. For example, for coding and unit

testing, the software system is divided into subsystems with the responsibility for development

of source code and internal documentation assigned to a particular group. Within a group, the

subsystem is further divided into modules assigned to particular programmers. Although a

programmer may create and modify only his own modules, he must view at least the

specification part (impons and exports) of the other modules in the subsystem - and sometimes

in other subsystems. Some senior prograrruners may sometimes modify modules assigned to

other programmers to solve difficult coding problems or to handle tricky interactions among

modules. To apply the transaction concept to such open-ended activities, we need the notion of

participant to represent these users. since many users must view the non-commined updates to

5

resources made by other users and some users must even modify the non-commined updates of

other users.

In general, a primitive transaction T consists of a partially ordered set of actions, each denoted

Ai· Each action is atomic and consists of reading a resource in R(T), writing a resource in W(T),

or modifying a resource in the intersection of R(T) and W(T). Each action has exactly one

participant Pi(T), but there may be multiple participants in T. Each participant Pi(T) may initiate

an action Ai that reads, writes or modifies the resources read, wrinen or modified by other

actions Aj within the transaction all ordered Aj [t Ai. The ability of any particular participant to

initiate actions on specific resources is also governed by access control constraints and the goals

of the task represented by the transaction, but this is ignored here. Each observer in O(T) is not

aware of the internal actions, but may view only the final form of the committed resources.

A non-primitive transaction T consists of a partially ordered set of subtransactions and actions,

each again denoted Ai. Each action is as described above for primitive transactions. Each

subtransaction is either a primitive transaction or a non-primitive transaction. In either case, it

has a set of participants P(~ *), which is the union of all the participants of each action or lower

level subtransaction within the subtransaction Ai. We assume that it is determined in advance

whether the subtransactions of T must be participant serializable, or may be participant non

serializable.

In the case where participant non-serializability should be detected but not prevented, such as

for a set of cooperating subtasks, each participant in P(T) is permined to initiate an action or

subtransaction Ai that reads, writes or modifies the resources read, written or modified by actions

or subtransactions Aj within T. If there is any user that participates in more than one

subtransaction within T that are not totally ordered (i.e., actually serial), then the set of

subtransactions is not participant serializable. Note that this does not mean that T itself is not

participant serializable with respect to its parent task. Each observer in O(T) is not aware of the

internal actions IDd subtransactions, but may view only the final form of the commined

resources of the entire transaction T.

In the case where participant non-serializability among the subtransactions should be

prevented, a participant in P(T) may anempt to initiate an action or subtransaction Ai that reads,

writes or modifies the resources read, wrinen or modified by actions (but not subtransactions)

Aj. This is permined if all Aj It Ai. A participant may anempt to initiate an action or

6

subtransaction Ai that reads, writes or modifies the resources read, written or modified by

subtransactions Aj . This is permitted only if the transactions Aj have committed. This means

that users not work on several subtasks at the same time and users may not see the partial results

of another user, except when they both participated in a subtransaction where participant non

serializability was acceptable. Again, each observer in O(T) is not aware of the internal actions

and subtransactions, but may view only the final fonn of the committed resources WeT) of the

entire transaction T.

In the full paper, we describe the analogous notions for hierarchical but layered tasks, where

certain users are participants at and below a cenain level while others are observers throughout

the tasks at and below that level. In some applications, a set of tasks will not be hierarchical nor

layered. Then the best we can say is that there is a set of users who are not participants in any

tasks in the set, and for them the set of tasks appears as transactions executing in some serial

order.

5. Implementation

Participants can be implemented in terms of any of the standard mechanisms for implementing

transactions. We describe an implementation for hierarchical tasks in terms of two phase

locking. In the full paper we describe an implementation supporting non-hierarchical tasks.

First we address the case where participant serializable transactions are enforced. A

transaction proceeds normally, except that each participant in the transaction has the same

transaction identifier tid. When a user attempts an action on a particular locked resource, his tid

is compared to the transaction identifier attached to the resource when it was locked. The action

is pennitted if and only if the tid's match. In the case where participant non-serializability is

pennined among the subtransactions, only the tid of the transaction at the root of the subtree is

considered. Thus it is possible for a participant in one subrransaction to see uncommitted or

perhaps even aborted results of another subtransaction. In the case of aborted subtransactions,

some notification scheme is desirable to infonn each user that has seen the rolled back resources

of the abort, but is not required for participant semantics.

In those cases where participant non-serializable transactions are detected but not prevented,

actions involving conflicting tid's are pennitted Some confirmation scheme is desirable to

inform the user that he is initiating an action that will introduce participant non-serializability,

7

and give the user a change to abon the action - but this is also not required the semantics.

Instead, it is necessary to mark the transaction as participant non-serializable as soon as the

conflict occurs.

6. Related Work

The most closely related notions to participant semantics for transactions are nested

transactions, nested objects, versions, undolredo facilities, and long transactions. The

participation semantics presented here are actually onhogonal to the ftrst two of these concepts,

but would likely cooperate with the third when implemented as pan of an environment

supporting open-ended activities. Undo/redo facilities, except as they occur in long transactions,

nonnally apply only within a primitive action so we do not consider them here. Long

transactions are an alternative, typically non-serializable approach to open-ended activities.

Nested transactions (e.g., [Moss 81]) must be deftned in advance, often require strict

serializability of the subtransactions, and do not permit user participation in subtransactions~

Operations on nested objects (e.g., [Martin 88]) also must be defmed in advance, do not require

serializability of the lower-level operations on abstract data types - only of the top-level

transactions, but do not permit user participation in the operations. A stricter form of this (e.g.,

[Badrinath 88]) requires such lower-level operations to commute. Adding participation would

enhance either nested transactions or nested objects and improve their suitability for open-ended

activities.

Persistent versions (i.e., distinct from the transient versions used for the multiple version

implementation of serializable transactions, e.g., [Reed 78]) with reserve/replace semantics have

not yet been adequately formalized. This relatively ad hoc notion has been, however, extremely

successful in practice (e.g., [Tichy 85, Rochkind 75, Leblang 84]). Ad hoc versions do in fact

address to some. extent all three characteristics of open-ended activities: uncenain duration,

uncertain developments and interaction among concurrent activities. Once a version branch has

been reserved. an arbitrary length of time until the corresponding replace is not a problem.

Versions of additional resources can be reserved at any time, and there is no requirement that all

reserved resources be replaced together, permitting interaction with concurrent activities among

participants. Access control can be used to limit on, effectively preventing inappropriate access

by observers. In some systems, configurations can be treated as a single unit for version control

(e.g .. [Sun 88]). However, versions alone do not effectively meet the requirements of fault-

8

tolerance, concurrency control and user-initiated aborts.

Long transactions do meet the requirements of fault-tolerance, concurrency control and user

initiated aborts. Some work on long transactions (e.g., [Garcia-Molina 87]) addresses the

uncenain duration and uncertain developments characteristics of open-ended activities, but not

interaction among concurrent activities. Our previous work on commit-serializability covers all

three. At least one long transaction mechanism is based on a version model [Walpole 88]. The

transient versions and time domain addressing used for the multiple version implementation of

serializable transactions is replaced with immutable versions and domain relative addressing on

configurations and configuration histories. The primary disadvantage of this scheme is the non

serializability of the transactions.

References

[Badrinath 88] B.R. Badrinath and Krithi Ramamritham.
Synchronizing Transactions on Objects.
IEEE Transactions on Computers 37(5):541-547, May, 1988.

[Garcia-Molina 87]
Hector Garcia-Molina and Kenneth Salem.
SAGAS.
Technical Report CS-TR-070-87, Princeton University Department of

Computer Science, January, 1987.

[Leblang 84] David B. Leblang and Robert P. Chase, Jr.

[Martin 88]

[Moss 81]

[Pu 88]

Computer-Aided Software Engineering in a Distributed Workstation
Environment

In SIGSo/tISIGPlan Software Engineering Symposium on Practical Software
Development Enviro1U1U!nlS, pages 104-112. Pittsburgh, April, 1984.

Special issue of SIGPlan Notices, 19(5), May 1984.

Bruce E. Martin.
Concurrent Nested Objects Computations.
PhD thesis, University of California at San Diego, Department of Computer

Science and Engineering., June, 1988.

J. Eliot B. Moss.
Nuud Transactions: An Approach to Reliable Distributed Computing.
PhD thesis. MIT, April, 198!.
MIT LCS TR-260.

Calton Pu, Gail E. Kaiser and Nonnan Hutchinson.
Split-Transactions for Open-Ended Activities.
In Fourteenth International Conference on Very Large Data Bases, pages

26-37. Los Angeles CA, August, 1988.

9

[Reed 78] David P. Reed.
Naming and Synchronization in a Decentralized Computer System.
PhD thesis, MIT, September, 1978.
MIT LCS TR-205.

[Rochkind 75] M. J. Rochkind.
The Source Code Control System.
IEEE Transactions on Software Engineering SE-1:364-370, 1975.

[Sun 88] Introduction to the NSE
Sun Microsystems, Inc., Mountain View CA, 1988.

[Tichy 85] Walter F. Tichy.
RCS - A System for Version Control.
Software - Practice and Experience 15(7):637-654, July, 1985.

[Walpole 88] J. Walpole, O.S. Blair, J. Malik and J.R. Nicol.
Maintaining Consistency in Distributed Software Engineering Environments.
In 8th International Conference on Distributed Computing Systems, pages

418-425. San Jose CA, June, 1988.

