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ABSTRACT 

A new idea for the analysis of shape from reflectance maps is introduced in this paper. It is shown that local 
surface orientation and curvature constraints can be obtained at points on a smooth surface by computing 
the instantaneous rate of change of reflected scene radiance caused by angular variations in illumination 
geometry. The resulting instantaneous changes in image irradiance values across an optic sensing array of 
pixels constitute what is termed a photometric flow field. Unlike optic flow fields which are instantaneous 
changes in position across an optic array of pixels caused by relative motion, there is no correspondence 
problem with respect to obtaining the instantaneous change in image irradiance values between successive 
image frames. This is because the object and camera remain static relative to one another as the illumination 
geometry changes. 

There are a number of advantages to using photometric flow fields. One advantage is that local surface 
orientation and curvature at a point on a smooth surface can be uniquely determined by only slightly 
varying the incident orientation of an illuminator within a small local neighborhood about a specific incident 
orientation. Robot manipulators and rotation/positioning jigs can be accurately varied within small ranges of 
motion. Conventional implementation of photometric stereo requires the use of three vastly different incident 
orientations of an illuminator requiring either much calibration and/or gross and inaccurate robot arm 
motions. Another advantage of using photometric flow fields is the duality that exists between determining 
unknown local surface orientation from a known incident illuminator orientation and determining an unknown 
incident illuminator orientation from a known local surface orientation. The equations for photometric flow 
fields allow the quantitative determination of the incident orientation of an illuminator from an object having 
a known calibrated surface orientation. Computer simulations will be shown depicting photometric flow fields 
on a Lambertian sphere. Simulations will be shown depicting how photometric flow fields quantitatively 
determine local surface orientation from a known incident orientation of an illuminator as well as determining 
incident illuminator orientation from a known local surface orientation. 
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supported in part by an IB~I Graduate Fellowship Award. 
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1 INTRODUCTION 

Vision techniques that rely upon feature information from discontinuities in an image (e.g. edges,corners 
and lines) quickly breakdown in regions containing smooth surfaces where gray level intensities are generally 
smoothly varying. It is in these regions of an image that modeling the reflectance properties of an object 
is most useful. The notion of the reflectance map presented in [Horn 1977] is a convenient way of directly 
relating reflected scene radiance to the surface orientation of a given object material. Such a relation, if 
physically accurate, can be very useful in obtaining shape information about smooth objects in an image. 
Two techniques which have paved the way for many other techniques making use of reflectance maps are 
the method of shape from shading presented in [110m 1975] and the method of photometric stereo presented 
in [Woodham 1978]. Both of these methods make the simplifying assumption that the reflectance maps for 
an object material are Lambertian. A shape from shading method based on local analysis is presented in 
[Pentland 1984]. Implementation of photometric stereo assuming the presence of specular reflection has been 
reported in [Ikeuchi 1981] and [Ikeuchi et al. 1986]. 

A major problem in obtaining local surface orientation at a point on a smooth surface from a single 
view is the non uniqueness of surface orientations consistent with the reflected radiance measured from the 
point. This is because for a given illuminator orientation the reflectance map supplies a single equation 
constraint between reflected radiance and local surface orientation. By varying the incident orientation of 
the illuminator, photometric stereo methods obtain additional equation constraints. This is because the 
reflectance map is dependent on illuminator orientation. However, to get additional equation constraints 
that are independent in the presence of noise, large variations in incident orientation of the illuminator are 
required. 

This paper introduces another approach to using reflectance maps to obtain relations between local surface 
orientation and empirically measured photometric quantities. This new approach involves measuring how 
reflected radiance varies at a point on a smooth surface by varying the angular orientation of the illuminator. 
By measuring how reflected radiance varies as the illuminator moves in both linearly independent angular 
directions, two independent equations which constrain local surface orientation are obtained. These newly 
obtained relations enable the unique determination of local surface orientation from a single view, and angular 
displacement of a single illuminator within a small neighborhood about a specific incident orientation. 

The difference of the reflected radiance at a point on a smooth surface between two slightly displaced 
incident orientations of an illuminator, divided by the angular displacement, is an approximation to the 
directional derivative of the reflectance function in the direction of the displacement of the illuminator. 
This photometric quantity measured at all pixels in an image corresponding to illuminated object points 
constitutes a photometric flow field with respect to the angular displacement of the illuminator in a given 
direction. The actual directional derivative of a reflectance function in this direction is also a function of local 
surface orientation. In the case of a Lambertian reflectance function in gradient space representation. the 
directional derivatives in both angular components of illuminator orientation have the same functional form 
with respect to gradient space variables p and q representing local surface orientation. These directional 
derivatives can take on both positive and negative values at points on a surface which are illuminated. 
Positive values denote an increase in reflected radiance at a point as the light source moves in a given angular 
direction, and negative values a corresponding decrease in reflected radiance. Except for the fact that the 
directional derivatives can take on both negative and positive values. they are also functions which are 
continuously differentiable in variables representing surface orientation and can serve as functions equivalent 
to reflectance functions with respect to any shape from shading and photometric stereo algorithm. The 
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advantage of evaluating two independent photometric flow fields at a point on a smooth surface should be 
clear. Other than the surface orientation constraint equation provided by the reflectance function itself. two 
additional surface orientation contraints are provided from the photometric flow fields. 

There is also a big additional advantage to using photometric flow fields which is not possible from 
conventional use of photometric stereo. This is the duality that exists between the determination of local 
surface orientation using the known incident orientation of a single illuminator, and the determination of 
the incident illuminator orientation from a known local surface orientation. Since the evaluation of both 
independent photometric flow fields at a point on a surface correspond to the same incident illuminator 
orientation, a known local orientation at that point can be used to determine the incident orientation of the 
illuminator. This will be demonstrated below. 

The reflectance map assumed in this paper is Lambertian. Not only is this reflectance map simple 
to work with. but in light of recent work which has been successful in isolating the diffuse component of 
reflection from a variety of material surfaces, Lambertian reflectance is realistic. Reported in [Shafer 1985] 
and [Klinker et al. 1987] are techniques that separate diffuse and specular components of reflection based 
upon color analysis. Reported in [Wolff 1988] is an approach to separating diffuse and specular components 
of reflection using a polarizing filter which isolates polarization components. Since the diffuse component 
of reflection is Lambertian in nature. even on rough surfaces, Lambertian photometric flow fields can be 
analyzed on the diffuse component image. 

2 LAMBERTIAN PHOTOMETRIC FLOW FIELDS 

Using gradient space representation, the reflectance map for a Lambertian surface is given by the function 

( ) 
PCOST sin" + qsinTsin" + COS" 

R p,q = 
Vp2 + q2 + 1 

(1) 

where (p,q) are the gradient space coordinates for the surface orientation, and" and T represent the slant and 
tilt angles for the illuminator (see figure 1). For a given measured value of the reflected radiance, equation 1 
becomes the equation for a conic section curve in gradient space. This is referred to in photometric stereo 
techniques as an isoreflectance curve because it gives all possible gradient space representations of surface 
orientation that are consistent with the measured reflected radiance value. 

Suppose now that the incident orientation of the illuminator is shifted in the slant angle" by a small 
amount 6". The instantaneous rate of change of the reflected radiance in the direction of 6" can be 
approximated by the quantity 

CO$(j 

(2) 

Similarly, the instantaneous rate of change of the reflected radiance in the tilt direction of 6 T is approximated 
by the quantity 

p~o,( T+~ T)' in(7+q' inC T+ ~ T ).in(7 +00'(7 

Vpl+ql+l 
_ peolTlina+ZlinT.sintr+co,f(' 

Jpl+ql+l 
(3) 

Consider the expression in equation 1 as a function of the variables" and T where p and q are fixed. 
That is, the reflected radiance at a specific point on an object surface is being viewed as a function of the 
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incident orientation of the light source. Mathematically speaking the expressions in 2 and 3 represent an 
approximation to the directional derivatives of the function in equation 1 in the unit vector directions 017 
and OT respectively. The vectors 017 and OT are unit vectors which span the tangent space at a point on the 
two dimensional manifold of the coordinates (0", r). These directional derivatives are computed as follows: 

and hence 

o R( ) _ pcosrcosO" + qsinrcosO" - sinO" 
Vq 0", r - '------;::;;::::::::::::;;;:==,.-----

JP'+q2+1 

o R( ) _ -psinrsinO" + qcosrsinO" 
VT 0". r - .....;;.--::====::::::====---. J p2 +q2 + 1 

It is possible to take different linear combinations of directional derivatives as follows 

oR oR 
(aoq + boT)R(O".r) = a 00" + b or 

(4) 

(5) 

where a and b are any real values. This property of directional derivatives can be put to good use in 
experimental implementation to reduce errors. Moving the illuminator in certain specified directions can 
create nearly perpendicular intersections of curves in gradient space. 

~ote that the function in equations 4 and 5 has the same form as in equation 1. Any of these functions 
set equal to a constant value measured from experiment would generate a conic section in gradient space. 

The equations 4 and 5 define Lambertian photometric flow fields in positive 0" and r respectively. These 
can be measured empirically from the expressions in 2 and 3 where the denominator should be the angular 
variation measured in radians. In a sense Lambertian photometric flow fields are like different Lambertian 
reflectance functions except that equations 4 and 5 take on negative values as well as positive values. 

Figure 2 shows the rendering of a Lamberti~n sphere using a point light source at incident orientation 
0"=45 degrees and r=45 degrees. Figures 3 show a computer simulation of photometric flow fields on the 
Lambertian sphere, in figure 2, from two independent angular variations of the light source. Figure 3a shows 
the instantaneous rate of change of image irradiance as the light source orientation changes in positive 0". 
Figure 3b shows the instantaneous rate of change of image irradiance as the light source orientation changes 
in positive r. For figure 3a intensity values northeast of the dark band represent positive reflected radiance 
changes, while intensity values southwest of the dark band represent negative changes. For figure 3b the 
positive reflected radiance changes are northwest of the dark band, and negative reflected radiance changes 
are to the southeast. Figures 4a and 4b show the corresponding relative percentage changes in the reflected 
radiance produced by the changes represented in figures 3a and 3b respectively. It should be noted that the 
image intensity values in figures 3 and 4 are relative values. The maximum change over all points on the 
sphere is set to value 255 with all other values relative to this maximum intensity value. Clearly, maximum 
values for the photometric flow fields occur at local surface orientations generally far away from the incident 
orientation of the point light source. 

Of immediate notice are the dark bands that are present on the sphere in figures 3 and 4. The intensity 
values on these bands are very close to zero, and are actually zero along the medial axis of the bands. The 
medial axes of the dark bands in figures 3 and 4 are examples of isoflow curves on the surface of the sphere 
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along which the photometric flow fields are some constant value. In the next section it will be shown that 
isoflow curves determine local surface orientation constraints. A very simple orientation constraint is that 
generated by the zero valued isoflow curve which is the medial axis of the dark band in figure 3a. For any 
points along this isofiow curve the tilt T of the local surface orientation is equal to the tilt value of the 
incident orientation of the light source. Most orientation constraints are much more complicated than this. 

In a practical experiment where photometric flow fields would be determined from empirical measurement 
of reflected radiance from a CCD camera, there are two major sources of errors to consider. The first is the 
measured reflected radiance itself. Enough angular variation in (j and T needs to be made so that the change 
in reflected radiance should significantly exceed the repeatability of the photoresponse of pixel sensors. This 
amount is dictated by the signal to noise ratio of the camera being used. Also the output of light sources 
is not constant over time. The measurements of reflected radiance should be made as quickly as possible 
between angular variations. The second major source of errors is in the approximation of equations 4 and 5 
respectively by expressions 2 and 3. 

3 SURFACE ORIENTATION FROM PHOTOMETRIC FLOW 
FIELDS 

This section will simulate by computer the quantitative derivation of local surface orientation, with the aid 
of constraints provided from a pair of photometric flow fields. As was seen in the last section, constraints on 
local surface orientation can be obtained from isoflow curves which are derived by setting equations 4 and 5 
to constant values. Examples of isoflow curves in gradient space are shown in figures 5a and 5b with respect 
to photometric flow fields derived from positive variations in (j and T respectively. The incident orientation 
of the light source used is the same as for the simulations in figures 3 and 4 with (j = T =45 degrees. 

The isoflow curves in gradient space depicted in figures 5a and 5b are conic sections of varying eccentricity. 
The only difference between these isoflow curves and a Lambertian reflectance map depicting isoreflectance 
curves is that t.he constant value of photometric flow that an isoflow curve represents can be negative. At a 
point on a smooth object surface, local surface orientation is constrained by empirically determined values 
of photometric flow in positive sigma and positive tau which determine the intersection of two isoflow curves 
in gradient space. Sometimes this results in a unique orientation point, but the rest of the time local surface 
orientation is only constrained to be at two distinct points. It is not possible to breakup this two point 
ambiguity by using another photometric flow field obtained by moving the light source in another direction. 
The reason is that for small angular motions of the light source this direction is simply a linear combination 
of the motions in (j and in T. The isoflow line thus obtained would therefore pass through the same two 
points con training orientation. 

A third constraint curve on local surface orientation in gradient space can be obtained from the isore
flectance curve corresponding to the measured reflected radiance at the point in question. This is simulated 
in figure 6 for a point on a smooth surface with local surface orientation (-1.0,0.5) in gradient space coordi
nates. The isoflow curves in figure 6 can be identified by observing the curves in figures 5a and 5b in the 
same region of gradient space. 

Figure 7 depicts the intersection of three isoreflectance curves making small angular variations in the 
illuminator of 5 degrees in 17 and T. This would be the result of using conventional photometric stereo with 
very small displacements in the incident orientation of the light source. Under ideal circumstances free of 
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measurement errors this would work fine. Figures 8a and 8b show, in the presence of measurement errors, the 
comparison of measuring local surface orientation using photometric flow fields with doing this measurement 
using conventional photometric stereo. These are simulations of worst case errors in the presence of ±5% 
error in measured reflected radiance. The simulated empirical values for the photometric flow fields are 
derived by taking the ratios in equations 1 and 2 for 5 degree variations in u and T respectively. Even in the 
presence of approximation error the centroid of the three two-way intersection points in figure 8a produce a 
measurement error of about 5 degrees, while the measurement error in figure 8b is well over 20 degrees. 

4 ILLUMINATOR ORIENTATION FROM PHOTOMETRIC 
FLOW FIELDS 

Because photometric ftow fields are determined locally there exists a duality between the determination of 
local surface orientation using the known incident orientation of a light source and the determination of the 
incident orientation of a light source using the known local surface orientation at a point on a Lambertian 
surface. This is illustrated by observing equations 4 and 5 and the roles that (p, q) and (u, T) playas 
variables and known constant values. In the last section, local surface orientation was determined from 
isoflow curves assuming that (U,T) were known and constant and (p,q) were variables to be solved. But 
another interpretation of equations 4 and 5 can be that (p, q) are known, meaning that something like a 
Lambertian calibration block is used, and the illuminator orientation (u, T) are variables to be solved. This is 
an advantage of using photometric flow fields over using conventional photometric stereo since the empirically 
determined values for the photometric flow fields along with the reflected radiance value all correspond to 
exactly the same incident orientation of the illuminator. 

To demonstrate this duality, a simulation will be performed which reverses the knowns and unknowns 
of the simulation performed in the last section. Starting with the known orientation value (p, q)=(-1.0,0.5), 
the simulation in this section will use isoflow curves to determine the unknown incident orientation of the 
light source (which in actuality is (u,T)=(45,45) ). To generate curves in gradient space. the variables once 
again should be in terms of (p, q). To do this the variables (p, q) in equations 4 and 5 will be held fixed at 
known values (Po. qo) and the angular representation (0', T) will be converted to gradient space representation 
according to 

whereupon equations 4 and 5 are equivalently 

(6) 

(7) 

respectively. 

6 



Isoflow curves from variations in T are once again conic sections in gradient space as can be seen by the 
form of equation 7. However isoflow curves from variations in (f are more complicated. A graphical depiction 
of isoftow curves produced from setting equation 6 to different constant values is given in figure 9. In figure 
10 is the determination of the incident orientation of the illuminator from two isoflow curves from variations 
in (f and T respectively, and the isoreflectance curve corresponding to the retlected radiance value at the 
point on the smooth surface. 

5 CURVATURE FROM PHOTOMETRIC FLOW FIELDS 

In [Woodham 19i8] and [\Voodham 19i9] a method is presented which determines viewer-centered curvature 
constraints from shading information. Starting with the image irradiance equation 

I(x,y) = R(p,q) 

an application of the chain rule for derivatives yields the matrix equation 

( 
8I/8x ) _ (8P/8X 8 p/8y ) (8R/8P ) 
8I/8y - 8q/8x 8q/8y 8R/8q 

(8) 

The 2x2 matrix in equation 8 represents the Jacobian of the transformation from image coordinates to local 
surface orientation normals for a given surface. These normals are represented in gradient space coordinates. 
lienee when this matrix multiplies an infinitesimal vector change in image coordinates, the resulting vector 
represents the infinitesimal vector change in the local surface normal of the surface at that point. That is, 

( 
dP ) _ (8P/8x 8p/8y ) ( dx ) 
dq - 8q/8x 8q/8y dy' 

Hence this Jacobian transformation is termed the viewer-centered curvature matrix with respect to image 
coordinates. On a smooth surface which is parametrized by height above the image plane as (x, y, f(x, y)): 
the viewer-centered curvature matrix is equivalently the Hessian matrix 

( 
82f/8x2 82f/8y2 ) 
8 2f/8x 2 82f/8y2 . 

This utilizes the standard definition of gradient space coordinates as 

p = 8f/8x q = 8f /8y. 

To solve for the three components of the viewer-centered curvature matrix in equation 8 at a point on 
a smooth surface, the local surface orientation is required to be known in order to compute the gradient 
of the reflectance map R(p,q). Assuming this is known. equation 8 represents an underconstrained pair 
of linear equations in three unknowns. In [Woodham 1978] and [Woodham 1979] it is proposed that the 
underconstrained nature of equation 8 can be ameliorated by solving for certain classes of smooth surfaces. 
These include developable surfaces for which the determinant of the viewer-centered curvature is always zero, 
and convex surfaces for which this determinant is greater than zero. 
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In [\Volff 1987] it is proposed that the viewer-centered curvature matrix can be solved for arbitrary 
smooth surfaces by combining curvature from shading with photometric stereo. From two additional light 
source orientations, the two additional matrix equations 

( 
8I/8x ) 
8I/8y ( 

8p/8x 8P/8y ) (8R'/8P ) 
8q/8x 8q/8y 8R' /8q (9) 

( 
8I/8x ) ( 8p/8x 8P/8Y ) (8R

II
/8p ) 

8I/8y 8q/8x 8q/8y 8R"/8q (10) 

solve for the exact same viewer-centered curvature matrix. This not only ab,riates the need far assumed 
auxiliary constraints on the viewer-centered cllrvature matrix, but in fact overconstrains the equations for 
better recovery in the presence of measurement error. 

The shading information provided by photometric flow fields can equivalently be used to determine the 
viewer-centered curvature matrLX: for a smooth surface. That is the reflectance maps R'(p, q) and R"(p, q) 
in equations 9 and 10 can be replaced by 8q R(p,q) and 8.,.R(p,q) from equations 4 and 5 respectively. Note 
however that the image intensity gradients are now photometric flow field gradients in the image plane. In 
fact two matrix equations resulting from two photometric flow fields obtained from linearly independent 
angular variations are enough to overconstrain the determination of the three components for the viewer
centered curvature matrix. The solution can be further overconstrained by the use of the original reflectance 
map using the incident orientation of the light source. 

6 CONCLUSION 

It has been demonstrated that shape characteristics for smooth surfaces such as local surface orientation 
and curvature can be derived by examining the instantaneous rate of change in the reflected radiance at 
points on a smooth surface with respect to angular change in illumination geometry. This rate of change 
in reflected radiance is determined by the directional derivative of the reflectance function in the angular 
direction in which the incident orientation of the light source varies. Because the incident orientation of a 
light source has two angular degrees of freedom, two independent directional derivatives exist giving rise to 
two independent equations at a point involving local surface orientation. 

The approximation to a directional derivative of the reflectance function, in a given direction, is derived at 
each pixel from two slightly displaced incident orientations of the illuminating light source. This photometric 
approximation at each pixel in an image corresponding to an illuminated object point constitutes what is 
termed a photometric flow field. At each pixel, the measured value of a photometric (Jow field constrains local 
surface orientation at the corresponding object point according to the locus of an isoflow curve in gradient 
space. This is in the same flavor as constraining local surface orientation from photometric stereo using 
isareflectance curves. It was shown that curvature at points on a smooth surface can be obtained from the 
gradients of photometric flow fields in the image plane. 

Because isoflow curves constraining local surface orientation at an object point correspond to the same 
incident illuminator orientation it was shown that there is a duality between using photometric flow fields 
to obtain local surface orientation from known incident illuminator orientation and obtaining incident il
luminator orientation from known local surface orientation. This duality does not exist for photometric 
stereo. 
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