
"

An Automated Consultant for
Interactive Environments

Ursula Wolz·
Gail E. Kaiser+

Columbia University
Departtnent of Computer Science

New York, NY 10027

Abstract

Interactive computing environments provide facilities intended to support and assist the range
from novice to expert users, but casual users tend to get trapped in the starter set of commands.
We have developed a rule-based technology for providing on-line assistance calibrated to both
the task at hand and the user's past experience using the system. Such assistance helps users to
progress to more advanced features. We present our automated consultant and describe its
application to a practical domain, the Berkeley Unix 1M mail system.

Copyright e 1988 Ursula Wolz and Gail E. Kaiser

·Supported in pan by ONR grant NOOOI4-82-K-0256. +Supported in pan by grants from AT&T
Foundation, IBM, and Siemens Research and Technology Laboratories, in pan by the New York
State Center of Advanced Technology - Computer and Infonnation Systems, and in pan by a
Digital Equipment Corporation Faculty Award.

keywords: Automated consulting, help systems, intelligent assistance, interactive computing
environments. programming environments. user interfaces.

1

1. Introduction

Interactive computing environments such as mail systems and programming environments

provide resources and facilities intended to support and assist users. A conflict arises between

creating an environment simple enough for a novice, yet sophisticated enough to accommodate

an expert. A common solution is to expose beginners to a set of starter commands, but provide

more comprehensive features they can learn later. Finin [Finin 83] points out that many

beginners get trapped in the starter set, since they are not encouraged to progress to more

powerful commands. We have developed a solution to this problem: an automated consultant

that answers a user's questions about the environment in a manner designed to provide this

encouragement

All interactive environments can be characterized as consisting of a set of functions with

which a user can accomplish tasks specific to that environment. The environments themselves

might be mail systems, VLSI design tools, word processing systems or programming

environments. The means of access to the environment might include command languages.

menus with keystroke or pointing devices, or even more sophisticated interfaces. But at the core,

a set of functions must be executed as a plan (Le., sequence of steps) to accomplish some

computational goal of the user.

Although on-line and off-line documentation helps the user learn about the functions

themselves, the complaint is often made that such documentation can be inadequate at providing

specific 'goal-oriented' help for the task at hand. Furthermore, since most tutorials only scratch

the surface of the capabilities of an environment, users tend to rely on the few commands they

learn initially and never develop broad expertise with the system. Increasing one's expertise

within an environment is often avoided because it tends to cut significantly into a user's shon

term productivity. Yet in the long run taking the time to learn something new is likely to increase

long-term productivity. Funhennore, with only limited expertise the quality of the resulting job

is often diminished since the full potential of the environment is not exploited. Methods for

encouraging users to master an environment could certainly be beneficial.

Whether an environment is intended for end users of commercial products or for software

2

development staff writing such systems, an automated consultant that can give appropriate help

for the task at hand can increase user productivity and the quality of the job. The problem then is

how to provide the appropriate information that neither swamps the novice (or casual user) with

too much complex information nor insults the expert by providing an overly pedantic tutorial.

The problem lends itself well to a solution using expert system techniques, namely how to

choose and articulate appropriate information from a vast and complex knowledge base.

We are exploring a solution to this problem through the implementation of GECIE

(Generated Explanations for Consulting in Interactive Environments - pronounced Jesse), a

question answering system for Berkeley Unix Mail. GECIE that generates text based both on

what the user is trying to do and what the user already knows how to do. We take a user's

goal-centered approach in which'the help given is a direct function of a user's needs within the

current context. In particular, we focus on the content of the answer provided to a user.

First, we provide a small rule base that models a consultant's behavior and a large

hierarchical knowledge represention that captures a consultant's domain knowledge. The

domain knowledge includes explicit information about the relationships between the

computational goals that can be accomplished in the environment, the plans used to accomplish

them, and the functions that make up the plans. The rule base allows GECIE to reason about the

actions associated with functions, but also allows it to analyze whether plans can satisfy goals

and which of many equally good plans is most appropriate in a given context. In a mail system,

for example, a goal might be to read a set of messages and forward a subset to a colleague. The

plan for executing that goal will be dependent upon the particular functions available within the

mail system.

Second, we believe that classifying functions, plans and goals according to level of expertise

is inappropriate and global categorization of users as 'novice', 'intermediate' or 'expert' is

inadequate. In our work, information on an individual's exposure to goals, plans and functions

influences the pedagogical goals of the consultant, that is, what specific information it presents

following a user's query. Expectations about what the user knows and should be told is based on

the computational goals that user has satisfied in the past rather than on broad ad hoc

3

classifications of functions and plans as 'easy' or 'hard'. We exploit the struCture of our

knowledge base and use a goal-centered representation as a user model. Decisions about how to

answer a user's question are based on an analysis of the match between the knowledge base and

the user model. Taking another example from a mail system, a user may have extensive

experience \vith sending simple messages to groups of users, and almost none with modifying

messages through an editor. Such a user will not fall nicely into a categorization of expertise. A

question relating to sending simple messages will require introducing very little new information

into the discussion, while a question about modifying messages may require an extensive

introduction to editing.

The section that follows describes the problem in more detail and outlines our solution.

Section 3 summarizes how we improve on previous work. Section 4 describes GECIE, the initial

implementation of our technology as an extension of the Berkeley Unix Mail. We conclude by

summarizing our contributions.

2. Consulting in Interactive Environments

In order to use an environment effectively, a user must know the system's capabilities and

how to make best use of them. This requires access to information that describes the specific

features of the system - the functions, commands or constructs (hencefonh functions) available.

It also requires access to methods or plans for best accomplishing goals.

We claim there is a large middle ground between a novice who knows only the rudinients of

a system and an expert who has gained complete mastery over it The continuum in between is

one in which user expertise may not be optimal for a given task. When the user must take time

to find the appropriate function, or develop an efficient technique, productivity decreases.

Furthermore, in some environments in which the tasks are primarily 'throw-away', users may

rely on inefficient methods that are well-known rather than taking time to develop more

sophisticated expertise. A primary reason for the inefficiency of learning is that users bear the

burden of deciding what must be learned and how to locate the appropriate infonnation. This is

typically done by searching through manuals, asking help of others or simply experimenting with

the system. Expert system techniques should be able to provide mechanisms that can relieve

4

some of this burden.

The objective of our research is to address these issues and offer a theory of how to build an

automated consultant that can assist users in extending their expertise. The following insights

are the result of infonnal observations of human consultants giving help in environments that

support EMACS, Lisp, Unix, Pascal and Logo, and on an examination of manuals, tutorials and

texts for these environments.

1. Function specification: What does function F do?

2. Goal satisfaction:
a. How can goal G be accomplished?

b. Plan P accomplishes goal G in the context of situation S, but there must be
a 'bener' way, what is it, and why is it bener?

3. Analyze or debug a plan:
a What does plan P Oearned by rote, for example) do?

b. Plan P ought to accomplish goal G in the context of situation S, but doesn't.
why not?

Figure 2-1: Typical Types of Questions Users Ask

There is rarely a direct correspondence between a precise statement of a user's goal and a

plan to satisfy it. It is more often the case that the user's goal is poorly defined. Funhennore, a

goal may be satisfied by more than one plan. The problem presents itself as requiring a mapping

of many user queries to many possible answers. In order to constrain the potential mappings,

user queries can be categorized at least partially as relating goals to plans as summarized in

figure 2-1. Although the question itself may not be stated clearly in one of these forms, informal

observations indicate that the intention of most utterances falls within one of these question

types.

Magers [Magers 83] and Borenstein [Borenstein 85] have drawn a distinction between

information that is definitional and instructional. Figure 2-2 funher refines this distinction.

Definitional information is more appropriate for reminding someone about something they have

previously learned, while instructional information is more appropriate for introducing new

information. These types differ not only in their format and level of detail. but also in their

Introduce:

Remind:

Clarify:

Elucidate:

Execute:

5

Present functions and plans that the user has not encountered before.

Briefly describe functions and plans that the user has been exposed to but
may have forgotten.

Explain details and options about functions and plans to which the user has
been exposed.

Clear up misunderstandings that have developed about functions and plans to
which the user has been exposed.

Perform functions and plans directly for the user.

Figure 2·2: Types of Responses a Consultant Might Provide

emphasis and the degree to which related information is included. Clarifying and elucidating

require a careful mixture of reminding and introducing. In this article, we address only the first

four types of answers. We have developed a separate system, Marvel [Kaiser & Feiler 87;

Kaiser et ai. 88], that automatically generates and executes plans for the user in the context of

software development and maintenance; our next application of GECIE, after mail systems, will

be to scale up to Marvel.

Although the categorization in figure 2-1 constrains the question, while the taxonomy in

figure 2-2 constrains the answer provided, the requisite knowledge and the processes needed to

search that knowledge are still complex. The processes include the abilities to estimate the

user's goal, to understand the user's plan. to evaluate the current situation in order to formulate

an answer that does not digress from the current task, to analyze the user's plan in terms of the

estimate of the goal and within the current situation, and to choose an appropriate answer and

explanation depending on the user's current knowledge of the system. This requires knowledge

of the functions provided by the system, the possible goals that can be accomplished with the

system, the plans that may accomplish those goals, the things that typically go wrong (bugs), and

what the user currently does and does not know about the functions, goals, plans and bugs.

Much of this cannot be completely known. For example, it seems unlikely that all possible

goals achievable within a given interactive computing environment will be known before the

environment is used extensively. It also does not seem possible to predict with cenainry what

the user's goal is and what the user knows. Thus the processes described above not only must

6

operate with incomplete information, but ought to be able to do so effectively. Innovative

techniques or novel applications ought to be easily and reliably incorporated into the knowledge

base.

From an AI Expert Systems perspective, these issues can be encapsulated in two

fundamental problems: (1) How can the search through a vast and complex knowledge base be

restricted in order to glean the appropriate infonnation for the immediate needs of the user? and

(2) What decisions must be made in order to choose the appropriate fonn in which to present that

information? We provide solutions to both of these problems.

2.1. A Goal-Centered Approach

We propose a goal-centered approach in which the help given is a direct function of user's

needs within the current context, treated as a discourse between the user and the consultanL In

particular, we are interested in the content of the answer provided to users. The primary

contributions of this research are as follows.

A good consultant has both extensive domain knowledge and expertise in how to explain

something. A good consultant does not simply know how to use an environment effectively, but

knows what to say, how much to say, and what approach to take depending on what she thinks

the user knows. Unlike traditional ex pen systems, we do not encode both types of knowledge in

one large rule base. Instead, we separate the procedural domain knowledge about how to do

something from the explanatory knowledge of how to talk about how to do something.

Modularizing consulting knowledge in this manner provides advantages already proposed by

Clancey [Clancey 83]. Figure 2-3 illustrates this distinction. Two rule bases capture the

explanatory knowledge. The Plan Analyst determines what information about the domain is

relevant, while the Explainer determines in what form to phrase the answer.

Procedural knowledge is captured in a frame-based knowledge representation in a

hierarchical organization of computational goals. The emphasis on goals is important because it

is not enough for a consultant to know about the functions of an environment. Explicit

knowledge of how to combine those functions into plans that accomplish computational goals is

7

EXPLANATORY KNOWLEDGE • - - • - sncodsd as Rl.:lss

question ~,...~~~===~=~

. Expert
Krio~ledg~

Base
PROCEDURAL DOMAIN KNOWLEDGE sncodsd in ~r21'l'ls-bassd

rsprssentatio."l

Figure 2·3: GECIE's Division of Consulting Knowledge

equally important The representation allows the Plan Analyst to reason about the actions

associated with functions, but also allows it to analyze whether plans can satisfy goals and which

of many equally good plans is most appropriate in a given context. A good consultant does not

simply perfonn a 'core dump' of relevant infonnation, but filters that information to satisfy

pedagogical goals. Our knowledge representation also contains explicit discourse infonnation

that the Explainer uses to satisfy pedagogical goals.

We exploit the structure of our knowledge base and use a goal-centered representation as a

user model. This allows us to abandon a simple categorization of users as novice, intennediate

and expen. Similarly we found it insufficient to cluster goals, plans and functions into groups

such as simple or hare!. Since the structure of the user model and expen knowledge base are the

same, decisions about how to answer a user's question are based on an analysis of the match

between these representations.

The feasibility of our approach is explored through an automated consulting system called

GECIE. We have applied GECIE to the real world problem of the Berkeley Unix mail system

[Shoens 86]. notorious for the great power it provides expens and the great confusion it creates

8

for novices and even long-tenn non-expert users. Our goal is not to replace this mail system, as

has been done by others [Stallman 85; Jackson & Barel 86], but instead to augment it with

consulting behavior that makes its capabilities accessible to casual users.

For example, a user might ask "what does type do?" If the user knows nothing about

either the type or print functions, GECIE provides the standard introduction to the type

function. But if the user already knows about print, then GECIE explains that type is a

synonym for print. If the user has previously used type, but has apparently forgotten what it

does, GECIE simply remind the user of the type function as briefly as possible. This is an

example of a "What does function F do?" question. Examples of the other question types from

figure 2-1 in the context of Berkeley Unix Mail are presented in section 4.

Since other discourse-based systems focus on determining a user's goals (e.g., Wilensky

[Wilensky et al. 84], Pollack [Pollack 86]), we assume the output of such an understanding

mechanism as input to GECIE, and instead are concerned with how to take advantage of this

understanding to generate useful responses to user queries. In order to test GECIE's capabilities

with real users, we are building a menu-based front end. This narrows the range of questions that

can be asked and requires a more careful articulation of the question by the user. For testing

purposes we view this positively, since both the advantages and disadvantages of more

sophisticated understanding mechanisms do not obscure our evaluation of the merits of

generating an appropriate answer. The front-end is described in more detail in section 4.

Research in user modelling [Carberry 83; Grosz 81; Selker 88] present theories for how to

automatically develop and update models of individual users. Again, we assume that appropriate

mechanisms can be constructed for maintaining a user model and that output from such a system

in the fonn of a goal-centered knowledge base can be passed to GECIE. For testing purposes,

user models will be built by hand based on systematic human evaluations of individual user's

knowledge.

One can therefore view the user's question and goal, and a representation of the user's

knowledge as hand-coded input to GECIE. In the above example, we assume that GECIE is given

the question in symbolic fonn and that the user model accurately reflects whether the user

9

already knows about type, print, or both, and concentrate our effons on generating the best

answer for the context.

3. Related Work

The development of programming environments [Goldberg 87; Habermann & Notkin 86;

Stallman 81; Kaiser et al. 87; Walker et al. 87; Reiss 87]has focused on what the user can do

rather than on how the user learns to do it. UC [Wilensky et al. 84; Chin 86], WIZARD [Finin

83] and ACRONYM [Borenstein 85] have aniculated the need for comprehensive information

accessing mechanisms. Evaluations of on-line help using ACRONYM indicated that the

infonnation itself is more imponant than the means for accessing it. UC and WIZARD both

assume this, and provide infonnation in the context of the user's goal. Both research groups

acknowledge the need for pedagogical goals or 'tutoring strategies', but have not studied them

beyond stereotyping functions along a novice/expen spectrum.

Quilici el al. [Quilici el al. 85] have demonstrated how goal/plan knowledge can be used to

answer questions, but they do not describe how the form and content of a response is affected by

what the user already knows. Others [Wilensky el al. 84; Johnson 86; Waters 86; Finin

83] identify the importance of plans, but they do not include in their knowledge bases the explicit

discourse information needed to satisfy pedagogical goals. Much of the recent work on

explanation [Kukich 85; Swartout 83] involves detennining an appropriate level of detail or

developing techniques for making inference chains coherent. McKeown [McKeown el ai.

85] and Paris [Paris 85; Paris 87] go funher to show how the decision of what to present from the

knowledge base is dependent on the user's focus of attention and level of expertise.

Our work should be viewed as an extension of McKeown and Paris, but in an environment

that is highly procedural. Our emphasis is on how to do somelhing, rather than on what

something is. A second distinction is that in an interactive computing environment there is often

not only more than one way to explain something, but more than one way to do something.

Therefore the analysis process that determines the most appropriate procedure affects and is

affected by the generation process that produces the fonn and content of the answer.

10

4. GECIE: A Consultant for Interactive Environments

Consulting can be characterized as a three stage process of question understanding, problem

analysis and answer generation. Our understanding component is currently a simple menu-based

front end. We concentrate on the latter two stages: analysis, through a rule base called the Plan

Analyst, and generation, through a rule base called the Explainer. GECIE attempts to answer a

question by doing a two phase search of the knowledge bases. In the fIrst, the Plan Analyst tries

to construct a coherent relationship between the user's question, his user model and the

capabilities of the system in an attempt to find the most appropriate infonnation. Based on the

Plan Analyst's output, the Explainer tries to construct a coherent textual explanation that takes

into account what the user already knows. Both rule bases will be discussed extensively in the

examples later in this section. In what follows below we describe the structure of the knowledge

representation and present details of the understanding and generation components that are not

obvious from the examples.

GECIE's 'understanding' component is a simple menu-based interface. Our goal was to

develop an interface that would be both easy to implement and rapidly learned by users.

Although such an interface does not understand in the Natural Language Processing sense, it

does have some intelligence in the way menus are presented. Figure 4-1 shows the top level

menu, which is a reformulation of the questions of figure 2-1. The user can select a goal or

function by typing the proper word or phase at a command prompt or by browsing a menu of

goals or functions. The menus can be arranged alphabetically, or the order of presentation can

be based on the goal links of the expert knowledge base. Plans that can be identified by name

from the knowledge base can be entered from the command prompt. Otherwise, the user must

construct a plan by selecting an ordered list of functions and goals.

When GECIE is invoked within mail, both the expert knowledge base (EKB) and user model

(UM) are loaded. The world model (WM) is constructed based on the user's current context in

mail. Depending on the question type selected, the user is prompted to provide a function (F), a

goal (G), or to construct a plan (P).

EKB is a hierarchy of the computational goals that can be satisfied in the target

11

Please select a question:

1. \Vhat does the function (select a function) do?

2. How can I (select a goal) ?

3. I use this plan (construct a plan) to (select a goal), is there a better way?

4. What does this plan do: (construct a plan)?

5. This plan (construct a plan) ought to accomplish (select a goal), but doesn't, why not?

Figure 4-1: Top Level Menu for Question Selection

environment. Figure 4-2 shows the structure of this frame-based knowledge representation.

Computational goals contain links to alternative plans for satisfying the goal. A plan can be

linked to a subgoal or an ordered sequence of subgoals that describe how it can be executed. or

to a function that executes it directly. Encoded within a computational goal are links that

describe the relationship between plans.

Functions describe the operators of the environment Their representation includes

infonnation about the correct syntax of the function, any preconditions and effects, and the

actions associated with parameters. Preconditions define a state that must be true before a

fucntion can be correctly executed. They may also contain a link to a goal that could satisfy it.

Effects encode the actions of functions when applied to the world model. Currently the world

model is represented as a simple add/delete list that describes possible states in the mail

environment. Therefore effects are encoded as directives to add or delete a state from the world

model.

UM has the same representation as EKB. It contains a history of what the user has done in

past sessions in terms of what goals have been accomplished and what plans and functions were

used to accomplish them. It is currently coded and updated by hand. Problems associated with

updating it automatically are discussed in section 5.

r..tost of GECIE' s responses are stereotypical. At the same time. the content of a response

must be customized to the user's needs and expertise. Therefore a rule based system that

Plan 1

Subgoals

12

Com putational Goal

Plan 2 Plan n

FUNCTION: syntax
preconditions
effects
parameters
related goals and functions

Figure 4-2: GECIE's Frames for Knowledge Representation

ultimately leads to canned text is inappropriate since the canned text is fixed. Similarly, since

GECIE's range of discourse is limited, a completely open-ended generation system seems equally

inappropriate. We therefore chose template filling as a technique that allows both customization

and stereotyped responses. To generate an answer, the Explainer selects an appropriate set of

response agenda based on the output of the Plan Analyst. The response agenda are directives for

filling textual templates. Representative templates are presented in figure 4-3. Operations

appear in capital letters; variables are surrounded by braces (" { } ").

We now present five example queries based on the question types in figure 2-1 to

demonstrate GECIE's capabilities. The tirst two include scripts of the entire interaction between

the user and GECIE. All five examples describe the rules used by the Plan Analyst to select the

appropriate information. They also show typical scenarios of how the content of the user model

and the user's question affect the output of both the Plan Analyst and the Explainer.

13

FUNCTION_INTRODUCE(t)
{f->narne} is used to {f->satisfies->description}. It has the fonn {f->fonn},
where FOR_EACH (x,f->parameters, "{x} refers to {px->description) ").
{f->narne} r~uires that EXPAND_PRECONDS(f->preconds). It causes
EXPAND_EFFECTS (f->effects). For example, EXAMPLE(f->fonn,WM).

FUNCTION_REMIND(f)
{f->narne}: {f->fonn}. It is used to {f->satisfies->description}. For example,
EXAMPLE {f->fonn,WM}.

GOAL_REMIND _SIMPLE(g)
You can {g->description} by using the command {g->function}. For
example, EXAMPLE(f->fonn,WM) would
EXPAt'-.ro_EFFECTS(f->effects).

GOAL_INTRODUCE_SIMPLE(g)
GOAL_REMIND_SIMPLE(g). You must make sure
EXPAND_PRECONDS(g->function->preconds).

GOAL_ INTRODUCE_COMPLEX(g,fault)
In order to (g->descriptionJ, you must
FOR_EACH(gx,g->subgoals,"GOAL_INfRODUCE_COMPLEX(gx)"). IF
fault DESCRIBE_FAULT(fault->plan). The commands to {g->description}
are
FORMAT _PLAN_INST ANTIA TION(gx,g->subgoals,gx->function,WM).
SHOW _MAPPING(gx,g->subgoals,gx->description,gx->function).

GOAL_REMIND _COMPLEX(g)

-'.1. Example 1

In order to {g->description}, use
FORMAT _PLAN_INST ANTIA TION(gx,g->subgoals,gx->function,WM).
SHOW _MAPPING(gx,g->subgoals,gx->description,gx->function).

WM = World Model
Simple goals are satisfied directly by functions.
Complex goals are satisfied by a plan that maps to subgoals.

Figure 4-3: Representative Response Agenda

The first question is: What does type do? This is an instantiation of the "What does F do?"

category of figure 2-1. In order to ask this question, the user selects question 1 in the menu of

figure 4-1. A second menu allows the user to enter a function name, or search functions

alphabetically or by goal links. Using one of these methods the user indicates that the desired

function is type.

Figure 4-4 shows the pomon of EKB required to answer this question. The Plan Analyst

14

uses the following rules to detennine what infoI1Ilation is relevant to the Explainer:

1. If UM contains F, then report knowledge of F, else report no_knowledge of F.

2. If there exists a function that is directly satisfied by some goal G', which has the
least complex relational link to the goal G that satisfies our function F, then F' =
that function.

3. If F' exists in EKB, and UM contains F, then report knowledge of F'.

In our example, the Plan Analyst would detennine whether the user already knows about

type. and in this case, since there is a relational link to print, whether the user knows about

print. The outcome of this analysis is passed to the Explainer.

G, type. goal,
G type: D /* Satisfied directly by function */
Satisfied by: F, type:
Related goals: RL4

G, print .goal,
G type: D
Satisfied by: F, print;
Related goals: RL4

G, display.list.of.messages,
Description: display each message in the sequence specified
G type: S /* Satisfied through subgoals */
Satisfied by: G, type.goal; G, print.goal;

F, print, Form: print (message_list)
Preconditions: Pl, P2, P3,
Effects: El,
Satisfies: print.goal
Parameters: message-list

F, type, Form: type (message_list)
Preconditions: Pl, P2, P3,
Effects: El,
Satisfies: type.goal
Parameters: message-list

P, PI, state: (exists contents_of (*p message_list»
use: list.message

P, P2, state: (at read-level)
use: get.to.read.level

?, P3, state: (size (*p message-list) > screen-size)
use: set.window.scroll

E, El, Token: A state: (display-contains text-of each (*p message-list»

R, RLl, type.goal, print.goal
Relation: synonyms

Figure ~.~: GECIE's Expert Knowledge for Question 1

15

Four analyses are possible based on the existence of F and F' in UM. These are illustrated

in figure 4-5 along with the corresponding Explainer output. If the user knows nothing about

either type or print, GECIE generates the standard introductory template for type, and does

not overwhelm the user with the fact that pr int is a synonym. Figure 4-6 shows how the

response agenda for FUNCTION_INTRODUCE(type) is fIlled from the EKB. If the user knows

about print, GECIE states the fact that type is a synonym, reminds the user about print,

then introduces type. If the user knows about type but not print, GECIE reminds the user

about type and makes an aside that there is a synonym for type called print. Finally, in the

last case, if the user knows about both, GECIE just reminds him about type.

1* UM: does not contain either 'type' or 'print' *1
Plan Analyst output: function: type no knowledge
Explainer output: FUNCTION_INTRODUCE (type)

1* UM: contains 'print', but not 'type' *1
Plan Analyst output: function: type no knowledge

function: print knowledge
Explainer output: DESCRIBE LINK{type,print)

FUNCTION-REMIND (print)
FUNCTION=INTRODUCE{type)

1* UM: contain~ 'type', but not 'print' *1
Plan Analyst output: function: type knowledge

function: print no_knowledge
Explainer output: FUNCTION REMIND (type)

MAKE_SIDE_COMMENT(DESCRIBE_LINK{type,print))

1* UM: contains both 'type' and 'print' *1
Plan Analyst output: function: type knowledge
Explainer output: FUNCTION_REMIND (type)

Figure 4-5: GECIE's Responses to Question 1

4.2. Example 2a

The second question is: How can I reply to a message? This is an instantiation of the "How

can I satisfy G?" category of figure 2-1. To ask this question, the user selects question 2 in the

menu of figure 4-1. In a second menu. the user selects the desired goal. Let us assume the user

chose "reply.to.message". In this case it might be easier to locate the goal by searching a goal

based menu rather than an alphabetized one. Let us further assume that WM contains a message

which was sent only to him. not to other group members.

16

type is used to type a sequence of messages on the terminal. It has
the form:

type {message_list I

where {message_list I refers to a sequence of messages. type requires
that the contents of the message list exist, that the user is at read
level and that the messages fit on the screen. It causes the text of
each message in the message list to be displayed on the screen. For
example:

type 1:3

displays messages 1 through 3.

Figure 4·6: Text Generated to Introduce the Function type

Figure 4-7 is a graphic representation of the portion of EKB required to answer this

question. In this case the Plan Analyst constructs a trace through the goal hierarchy and passes it

to the Explainer. The Plan Analyst uses the following rules:
1. If UM contains a plan P for G, then report user_plan = P and user's knowledge of

relevant functions.

2. If EKB contains a most efficient plan P' for G, then report bescplan = P' and
user's knowledge of any relevant functions.

3. If EKB does not contain P (the user's plan), then report plan_nocknown = P.

4. If P = P', then report best_plan = user_plan.

5. If plan_nocknown is a valid plan 1 report plan_nocknown, else report fault =
plan_nocknown.

Three possible responses are illustrated in figure 4-8. If the user does not know anything

about how to reply to a message, GEClE selects a 'best' plan based on the context and meta

knowledge of relational links. In this case, the context indicates that the response should be to

reply only to the sender. and the meta-knowledge indicates that a task should be done now rather

than later. Since the user knows about "compose. message " , the only relevant function is Reply.

Figure 4-9 shows how the response agenda for this case is expanded to produce text. If the

user has replied to messages in the past and does it efficiently then GEClE simply reminds the

1 A discussion of how lO delennine the validilY of a plan can be found in [Wolz 85].

17

send.mail. ________ _

reply.to.message

reply.now <~onow/dolater-> ____

------------------------rePly.to.al~---------==-_reply.only.to.sender
~ <-allJone->

reply. later

\
/re~I:~ s,art.sing Ie. reply

F: Reply
compose.message

~
s,art.group.reply compose. message

F: reply <- lower case lupper case->

------------~--~

Figure 4-7: GECIE's Expen Knowledge for Question 2a and 3b

user about the command Reply. But. if the user seems to know how to reply to messages. but

does it awkwardly, then GECIE introduces a better way. GECIE explains why it is better by

providing the relational links between goals of the user's plan and the better plan. GECIE

considers a plan to be awkward when the user's plan does not match GECIE's plan or when the

user's plan is not even in EKB. The latter case is the last case shown in figure 4-8. Here the

plan works. and is classified as not known, rather than faulty. Ideally plans that work but aren't

known should be incorporated into EKB. This is discussed in section 5. Faulty plans are

presented in Example 3b.

4.3. Example 2b

A refinement of the second question is: To reply to a group of users I reply to each

individually - is there a better way? This is an instance of the "Given P is there a better P for

G?" category of figure 2-1. In this case the user must identify the question type and select a goal

and plan. Let us assume the user selected the goal "reply.to.all" and the plan:

FOR EACH (x in group)
send.mail.to.individual

In the first case below we will assume that WM contains a message that was sent to the user and

others. In the second case. WM contains a message that was sent only to the user. In the third

18

1* UM: contains send.mail compose.messa~e "I
Plan Analyst output: user-plan: nil

best-plan :reply.to.message -> reply.now ->
reply.only.to.sender

function: Reply no knowledge
Explainer output: SUMMARIZE.PLAN(best-plan)

GOAL_INTRODUCE_SIMPLE(reply.to.message)

1* UM: contains reply.to.message -> reply.now ->reply.only.to.sender *1
Plan Analyst output: best-plan ~ user-plan

best-plan: reply.only.to.sender
function: Reply knowledge

Explainer output: GOAL_REMIND_SIMPLE(reply.only.to.sender)

1* UM: contains reply.to.message -> save.message -> leave.read.level
-> send.message *1

Plan Analyst output: best-plan: reply.now -> reply.only.to.sender

Explainer output:

plan not known: plan -> reply.now ->save.message ->
- leave.read.level -> send.message

function: Reply no_knowledge

GOAL_INTRODUCE_COMPLEX(reply.only.to.sender,fault->plan)

Figure 4-8: GECIE's Responses to Question 2a

In order to reply to a message it is assumed you want to reply right
away and reply only to the sender. To do this, you must indicate you
wish to reply and compose a message. You can indicate you wish to
reply by using the command 'Reply'. For example,

Reply

would put you in write mode, the receiver of your message would be
identical to the writer of the message you just received.

Figure 4-9: Text Generated to Introduce the Goal "reply to a message"

case, WM does not contain any message.

Figure 4-10 is a portion of EKB required to answer this question. This question is analyzed

using rules 2 - 5 of the last example. Rule I is unnecessary since we assume plan P chosen by

the user should be in UM2.

Three possible responses are illustrated in figure 4-11. In the first, the message to which the

2If the plan does not actually exist in UM. one should assume that after the interaction it is indeed inserted by a
programmer.

reply.create.alias

create.
alias
I

F: alias

send.
mail

19

reply.to.all
I

reply.group.known reply.to.each.in.group

can send
same mesageldifferent message

<- less work/more work->

start.group.
reply
I

F: reply

compose.
message

FOR.EACH(x in group)
send.message.to.
individual

Figure 4-10: GECIE's Expert Knowledge for Question 2b and 3b

user wishes to reply was addressed to a group of users. GECIE chooses to tell the user about the

reply command since a group exists in WM. In the second case, the message was only

addressed to the user. GECIE chooses a plan that requires the user to identify a group of users. In

both cases, since the user knows how to send mail, GECIE simply reminds the user about how to

send mail and describes the relational links between the suggested plan and the user's. In the

third case, the context does not allow a choice between these plans. GECIE presents both options.

Both plans are preferred to the user's plan because they require less work on the user's part. In

the event that the user's plan is equivalent to the suggested solution, GECIE would inform the

user of this and use relational links to justify why the user's plan is best

4.4. Example 3a

A third question is: My advisor told me to read her mail and look for messages pertaining to

her course. These were the instructions:
enter MAIL
type h +
{note message numbers of relevant messages}
type save {message numbers} homeworks.txt

What's actually going on?

This question is an instance of "What does plan P do?" The user must supply a plan, which

20

/* WM contains message that was sent to user and others */
Plan Analyst output: user-plan: reply.to.each.in.group

Explainer output:

best-plan: reply.to.all -> reply.group.known
function: reply no_knowledge

GOAL_REMIND_SIMPLE(reply.to.each.in.group)
GOAL_INTRODUCE_COMPLEX(reply.group.known)
DESCRIBE_LINK(reply.to.each.in.group,

reply. group. known)

/* WM contains message that was just sent to user */
Plan Analyst output: user-plan: reply.to.each.in.group

Explainer output:

best-plan: reply.to.all -> reply.group.create.alias
function: alias no_knowledge

GOAL_REMIND_SIMPLE(reply.to.each.in.group)
GOAL INTRODUCE COMPLEX(reply.group.create.alias)
DESCRIBE LINK(reply.to.each.in.group,

- reply.group.create.alias)

/* WM does not contain explicit reference to a message */
Plan Analyst output: user-plan: reply.to.each.in.group

best-plans:reply.to.all -> reply.group.create.alias
:reply.to.all -> reply.group.known

function: reply no knowledge
function: alias no=knowledge

Explainer output: GOAL REMIND SIMPLE(reply.to.each.in.group)
GOAL-INTRODUCE COMPLEX(reply.group.create.alias)
DESCRIBE LINK(reply.to.each.in.group,

- reply.group.create.alias)
GOAL INTRODUCE COMPLEX (reply.group.known)
DESCRIBE LINK(reply.to.each.in.group,

- reply.group.known)

Figure 4-11: GECIE's Response to Question 2b

might be constructed as follows:

start.mail
h +
save message_numbers homeworks.txt

Figure 4-12 is a portion of EKB required to answer this question. The Plan Analyst searches

for the most likely goal in EKB that is satisfied by P. If a goal cannot be found, that is, if there is

some problem with the plan, GECIE re-evaluates the plan using the rules presented in the next

example for faulty plans. When a goal is found, the Plan Analyst searches UM to see if the user

knows the goal or any of its subgoals. It uses the following rules:
l. If EKB contains a goal G that is satisfied by P then bese,goal = G, targee,plan = P,

else report bad_plan = P.

21

2. If best~oal exists and UM contains best~oal, then report that user knows
best~oal.

3. If best~oal exists and for all parts Pi of targecplan, UM contains Pi then report
secoCPi = all Pi that user knows.

Four possible responses are illustrated in figure 4-13. In the fIrst case the user does not

know any steps in the plan. GECIE starts at the highest level goal found, which is to collect a

subset of messages, and introduces all of the steps. In the second case the user knows some of

the steps. GECIE assumes that the plan is used to collect a subset of messages, introduces those

steps that the user does not know and then merely reminds the user of those steps the user

already knows. In the third case the user knows all of the steps in the plan and GECIE simply

reminds him about how to collect a subset of messages. Finally in the last case the user knows

how to collect a subset of messages, by reading the messages themselves rather than the headers.

GECIE describes the links between the plan given in the question and the user's plan.

collect.subset.of.messages

start. mail

I
F: mail

choose.messages store_subset

I
read.headers F: save
I

F: h

read.mail '--- ~

I <- whole messagtJ
F: read just header->

Figure 4-12: GECIE's Expert Knowledge for Question 3a

4.5. Example 3b

The last question we consider is actually two questions. These are modifications of question

3a, but the user actually identifies the plan as bad:

1. I'm trying to reply to a group of users but I only seem to be able to reply to the

22

/* UM: does not contain best goal on any of the steps. */
Plan Analyst output: set_of_P i : nil

Explainer output:

target-plan: collect_subset_of_messages->start.mail->
read headers->store subset

function: mail-no_knowledge -
function: h no knowledge
function: save-no_knowledge
GOAL_INTRODUCE_COMPLEX(collect_subset_of_messages)

UM: contains start.mail store.subset
Plan Analyst output: set of P-(i): (start.mail,store subset)

target:plan: collect_subs~~_of_messages->
function: h no knowledge

Explainer output: GOAL_SUMMARIZE(collect_subset_of_messages)
GOAL REMIND(start.mail)
GOAL-INTRODUCE (read headers)
GOAL=REMIND(store_subset)

/* liM: contains collect subset of messages->start.mail->
read.headers->store.subset*/ - -

Plan Analyst output: set of P-(i): (start.mail,read.headers,store subset)
target:plan: collect_subset_of_messages-> ... ~

Explainer output: GOAL_REMIND_COMPLEX(collect_subset_of_messages)
/* liM: contains collect subset of messages->start.mail->
read.rnessages->store.subset*/ - -

Plan Analyst output:

Explainer output:

set of p-(i): (start.mail,store subset)
target~lan: collect_subset_of_messages->
user-plan: collect_subset_of_rnessages->start.mail->

read.messages->store.subset
GOAL SUMMARIZE(collect subset of messages)
GOAL-REMIND (start.mail) --
GOAL-REMIND (read.messages)
GOAL-INTRODUCE (read.headers)
DESCRIBE_LINK(read.messages,read.headers)
GOAL_REMIND (store_subset)

Figure 4·13: GECIE's Responses to Question 3a

sender of the message. Why?

2. I'm using reply to reply to the sender of a message, but seem to send mail to
everyone else to whom the message was addressed. Why?

Both are instances of "Plan P ought to accomplish goal G in the context of situation S, but

doesn't, why not?" In this case the user must identify both the goal and a plan. The Plan

Analyst uses the following rules:

1. If P is a valid plan for G in the EKB, then report valid_plan = P, else repon
bad_plan = P.

2. If valid_plan exists and EKB contains a most efficient plan P' for G, then repon
best_plan = P'.

23

3. If P = P' then report bescplan = valid_plan.

4. If bad_plan exists and the fault is missing preconditions, then report fault_type:
missing precondition(s).

5. If bad_plan exists and the fault is missing steps, then report faulctype: missing
plan_step(s).

6. If bad_plan exists and the fault is extraneous steps, then report fault_type: extra
plan_step(s).

7. If bad_plan exists with missing preconditions and missing step, and missing step
satisfies missing preconditions, then report missing preconditions satisfied by
missing steps.

8. If bad_plan exists with missing plan_step and extra plan_step, and relationship
exists between them. then report relationship.

If the question fires rules 1 - 3 then the scenarios is very similar to examples 3a. Figure

4-10 includes the necessary representation of the EKB to answer the first question above. The

user identifies the goal as "reply.to.all", and the plan as:

reply
compose.message

Assume the cause of the problem is that WM contains a message that was only sent to the user.

In this case rule 4 would be fired since a precondition of the reply command is missing, namely

that the WM must contain a group to which to send the message and not just a single user. The

output of the Plan Analyst and Explainer are shown in the first case of figure 4-14. The

Explainer suggests creating an alias to refer to the group of users.

Figure 4-7 includes the necessary representation of the EKB to answer the second question

above. The user identifies the goal as "reply. only. to. sender", and the plan as:

reply
compose.message

The problem here is that the wrong command is being used, namely reply rather than Reply3.

The second example in figure 4-14 shows the output of the Plan Analyst and Explainer. The

Plan Analyst notices that there is both a missing step - "stan.single.reply" and an extra one -

"start.group.reply." It checks to see whether there is a relationship between them and finds the

3For the Unix uninitiated. character case matters. so Reply and reply are indeed two different commands. We
admit this is grossly user unfriendly and should not occur in the fLrSl place. but the example was too good to resist.

24

relationship one level higher between "reply.to.all" and reply .only .to.sender", and one level

lower between reply and Reply. The Explainer uses this infonnation to generate a response

that tells the user that reply and Reply are two different commands and that the desired one is

Reply.

/* UM: contains compose.message; WM contains message sent only to user */
Plan Analyst output: bad-plan: user-plan

fault_type: missing precond: (user_group)

Explainer output: GOAL_I NTRODUCE_COMP LEX (create.alias)

/* UM: contains compose.message */
Plan Analyst output: bad-plan: user-plan

fault_type: missi~g plan_step: start.single.reply
fault_type: extra plan_step: start.group.reply
relations: reply.to.all <-> reply.only.to.sender

<- user group/single user ->
F: reply <-> F: Reply -

<- small r/ capital R ->
Explainer output: GOAL SUMMARIZE(reply.only.to.sender)

GOAL=REMIND_SIMPLE(start.single.reply)
GOAL_REMIND_SIMPLE(start.group.reply)
DESCRIBE_LINK(start.single.reply,start.group.reply)
FUNCTION_REMIND (Reply)
FUNCTION_REMIND (reply)
DESCRIBE_LINK(Reply,reply)

Figure 4-14: GECIE's Responses to Question 3b

5. Implementation Status and Discussion

GECIE is implemented in C under Unix 4.3 BSD on a MicroV AX II. We currently have

plans to test GECIE on real users and to further develop the system. Work remains to be done on

the menu-based front end, on the rules for both the Plan Analyst and the Explainer, on the

mechanics of generating text fonn templates, and on automatically updating both knowledge

bases. We also have plans to test the domain independence of GECIE by applying it to two other

domains, software development and VLS I design.

In order to evaluate GECIE's capabilities we plan to will conduct a small controlled study

with obliging human guinea pigs. These users will be given a limited inrroduction to Berkeley

Unix Mail and will be asked to complete a series of assigned tasks. We will compare GECIE

with the standard Unix "man" facility, with a human consultant, and with a scaled down GECIE

25

that only reasons about goals from the expen knowledge base, but not from a user model.

The current version of the menu interface was developed for expediency rather than for

theoretical insights into interfaces or natural language understanding methods. Clearly there are

better ways to extract information from a user, but this is not the focus of our work. One

enhancement we do intend to make is to give the user the option of constructing a hypothetical

world model rather than using the current mail as context. This would allow users to ask "what

if' questions rather than being bound by their current task.

The current rule bases in both the Plan Analyst and Explainer are sufficient for answering

uncomplicated questions such as those presented in the examples. But often a user's initial

question spawns other questions that may be combinations of question types and require a

mixture of answering strategies. We plan to expand both rule bases to handle more complex

questions.

A problem with the current version is the Explainer's use of templates. In many of the

examples one can see that the final text generated by the response agenda is redundant. This

demonstrates an inadequacy of template based methods and has led us to consider using a

functional unification grammar [Kay 79] that can unify the content of the individual response

agenda to produce more graceful text.

Finally, we would like to be able to update both knowledge representations automatically.

At first glance this would seem to be fairly straightforward. If a user presents GECIE with a plan

that works but isn't currently in EKB, simply insert the plan. The problem lies in determining

the right place for the plan in EKB and automatically attaching the right relational links between

the plan and those already in EKB. Similarly, when the user demonstrates knowledge of a goal,

plan or function, one would assume the appropriate structure could be inserted in the right place

in the user model. But here we are faced with developing criteria for evaluating knowledge

acquisition. Both of these issues fall within the domain of research on machine learning.

Consideration of them at the present time would take us too far afield.

26

6. Conclusions

This paper describes GECIE, an automated consultant for answering questions within

interactive computing environments. We focus on answer generation in the context of extending

user expenise in such environments. We separate GECIE's knowledge into two components, a

rule base that captures knowledge of how to consult, and a frame-based hierarchical knowledge

representation that encodes knowledge of the domain about which to consult. We do not

categorize users along a spectrum of expenise, and functions along a spectrum of level of

difficulty. Instead we present a goal-centered approach where an answer to a question about the

environment is based on knowledge of what the user has done in the past and is doing now.

Acknowledgments

This article is an expansion of "A Discourse-Based Consultant for Interactive

Environments", which appeared in the Fourth IEEE Conference on Artificial Intelligence

Applications. San Diego CA. March 1988. pp. 28-33. We thank Kathy McKeown for her

ongoing suppon of this project. Michael Lebowitz. Cecile Paris and Michael van Biema also

deserve thanks for their helpful comments and insights.

References

[Borenstein 851 Borenstein. N.S.
The design and evaluation of on-line help systems.
PhD thesis, Carnegie Mellon University, April. 1985.

[Carbeny 83] Carbeny, S.

[Chin 86]

[Clancey 83]

Tracking user goals in an infonnation-seeking environment.
In Proceedings of AAAJ-83. American Association of Artificial Intelligence,

1983.

Chin, D.N.
User modeling in Uc. the UNIX Consultant.
In Proceedings of the CHI' 86 Conference, pages 13-17 . Boston, MA, April,

1986.

Clancey, W. J.
The epistemology of a rule-based expen system - a Framework for

explanation.
Anifical Intelligence. 20:215-251, 1983.

- --------------------

[Finin 83]

[Goldberg 87]

[Grosz 81]

27

Finin, T.
Providing help and advice in task oriented system.
In Proceedings of the Eighth International loint Conference on Artificial

Intelligence, pages 176-178. Karlsruhe, West Gennany, 1983.

Goldberg, A.
Programmer as reader.
IEEE Software, 9:62-70, September, 1987.

Grosz, B.
Focusing and description in natural language dialogues.
In A. Joshi, B. Webber and 1. Sag (editor), Elements of Discourse

Understanding, pages 85-105. Cambridge University Press, Cambridge,
England, 1981.

[Habennann & Notkin 86]
Habennann, A.N. and D. Notkin.
Gandalf: Software development environments.
IEEE Transactions on Software Engineering, SE-12(2):1117-1127,

December, 1986.

[Jackson & Barel 86]

[Johnson 86]

Jackson, P. and M. Barel.
Introdw:tion to computing facilities training program volwne 1 -- Using a

Micro Vax
Carnegie Mellon University Software Engineering Institute, Pittsburgh, PA,

1986.

Johnson, W.L
Intention-based diagnosis of novice programming errors.
Morgan Kaufmann Inc., Los Altos, CA, 1986.

[Kaiser & Feiler 87]
Kaiser, G.E. and P.H. Feiler.
An architecture for intelligent assistance in software development.
In 9th International Conference on Software Engineering, pages 180-188.

Monterey, CA, March, 1987.

[Kaiser et al. 87] Kaiser G. E., S. M. Kaplan and 1. Micallef.
Multiuser, istributed language-lased environments.
IEEE Software, 11:58-67, November, 1987.

[Kaiser et al. 88] G. E. Kaiser. N. S. Barghouti. P. H. Feiler and R. W. Schwanke.
Database suppon for knowledge-based engineering environments.
IEEE Expert, May. 1988.
To appear.

[Kay 79] Kay, Martin.
Functional Grammar.
In Proceedings o/the 5th meeting of the Berkeley Linguistics Society.

Berkeley Linguistics Society. 1979.

28

[Kukich 85] Kukich, K.
Explanation structures in XSEL.
In Proceedings of the 23rd Annual Meeting of the Association for

Computational Linguistics. Chicago, IL, 1985.

[Magers 83] Magers, C. S.
An experiemntal evaluation of On-line HELP for non-programmers.
In CHI'83 Proceedings, pages 277-281. 1983.

[McKeown et al. 85]
McKeown, K.R., Wish, M. and Matthews, K.
Tailoring explanations for the user.
In Proceeding of the IJCAI. 1985.

[Paris 85] Paris, C.
Description strategies for naive and expert users.
In Proceedings of the 23rd Annual Meeting of the Associationfor

Computational Linguistics. Chicago, IL, 1985.

[Paris 87] Paris, c. L.
The Use of Explicit User Models in Text Generation: Tailoring to a User's

Level of Expertise.
PhD thesis, Columbia University, 1987.

[Pollack 86] Pollack, M.
Inje"ing domain plans in question-answering.
PhD thesis, Moore School, University of Pennsylvania, May, 1986.

[Quilici et al. 85] Quilici, A.E., G. Dyer and M. Rowers.
Understanding and advice giving in AQUA.
Technical Report, UCLA Artificial Intelligence Laboratory, Los Angeles, CA,

1985.

[Reiss 87] Reiss.
Working in the garden environment for conceptual programming.
IEEE Software, 11:16-26, November, 1987.

[Selker 88] Selker. T.
Cognitive Adaptive Computer Help - A Research Overview.
Technical Report, T.J. Watson Research Center, ffiM, TJ. Watson Research

Center, Yorktown Heights, N.Y., 1988.

[Shoens 86] Shoens K.

[Stallman 81]

Mail Reference Manual
Version 5.2 edition, 1986.
Revised by Craig Leres .

Stallman, R.M.
Emacs The extensible, customizable, self-documenting display editor.
In SIGPLAN SIGOA Symposium on Text Manipulation, pages 147-156. June,

1981.

29

[Stallman 85] Stallman, R.
GNU Emacs Manual
3rd edition, MIT Artificial Intelligence Lab, Cambridge, MA, 1985.

[Swartout 83] Swartout, W. R.
xplain: a system for creating and explaining expert consulting systems.
Anificial Intelligence, :285-325, September 1983, 1983.

[Walker et al. 87] Walker, J. H., D. A. Moon, D. L. Weinreb & M. McMahon.

[Waters 86]

The symbolics genera programming environment.
IEEE Software, 20:36-87, November, 1987.

Waters, R.C.
KBEmacs: Where's the AI?
The AI Magazine, 7(1):47-56, Spring, 1986.

[Wilensky et al. 84]

[Wolz 85]

Wilensky, R., Y. Arens, and D. Chin.
Talking to Unix in english:An overview of ue.
Communications of the ACM, 27(6):574-593, June, 1984.

Wolz, U.
Analyzing user plans to produce informative responses by a programmer's

consultant.
Technical Report CUeS-218-85, Department of Computer Science, Columbia

University, New York, NY, 1985.

