
CUBIC SPLINE INTERPOLATION: A REVIEW 

George Walberg 

Department of Computer Science 
Columbia University 

New York, NY 10027 
wolberg@cs.columbia.edu 

September 1988 
Technical Repon CUCS-389-88 

ABSTRACT 

The purpose of this paper is to review the fundamentals of interpolating cubic 
splines. We begin by defining a cubic spline in Section 1. Since we are dealing with 
interpolating splines, constraints are imposed to guarantee that the spline actually passes 
through the given data points. These constraints are described in Section 2. They estab
lish a relationship between the known data points and the unknown coefficients used to 
completely specify the spline. Due to extra degrees of freedom, the coefficients may be 
solved in terms of the first or second derivatives. Both derivations are given in Section 3. 
Once the coefficients are expressed in terms of either the first or second derivatives·, these 
unknown derivatives must be determined. Their solution, using one of several end condi
tions, is given in Section 4. Finally source code, written in C, is provided in Section 5 to 
implement cubic spline interpolation for uniformly and nonuniformly spaced data points. 



- 2 -

1. DEFIl\ITION 

A cubic spline f (x) interpolating on the partition x 0 < XI < '" < Xn-I is a func
tion for which f (Xk) = Yk. It is a piecewise polynomial function that consists of n-l 
cubic polynomials fk defined on the ranges [xbxk+l1. Furthermore, fk are joined at 
Xk (k = 1, ... , f! -2) such that!k and f[ are continuous. An example of a cubic spline pass

ing through Il data points is illustrated in Fig. 1. 

The eh polynomial piece, fb is defined over the fixed interval [Xk,Xk+l] and has the 

cubic form 

(1.1) 

f (x) 
Is 

~--~----~----------------------~~X Xo XI X2 X3 X4 Xs X6 

Figure 1: Cubic spline. 

2. CONSTRAINTS 

Given only the data points (XbYk), we must determine the polynomial coefficients, 
A, for each partition such that the resulting polynomials pass through the data points and 
are continuous in their first and second derivatives. These conditions require fk to satisfy 
the following constraints 

Yk = fk(Xk) = Ao (2.1) 

Yk+l = fk(Xk+d = A3~xk +A2~xf +A I~Xk +Ao 

, = !k(Xk) = A I Yk (2.2) 
, 

Yk+l = !k(Xk+l) = 3A3~xI+2A2~Xk+AI 

Yk = f[(Xk) = 2A2 (2.3) 

Yk+1 = 1k+1 (Xk) = 6A 3~Xk + 2A 2 

Note that these conditions apply at the data points (XbYk). If the Xk'S are defined on a 
regular grid, they are equally spaced and ~Xk = Xk+l - Xk = 1. This eliminates all of the 

\ ~ .. 



- 3 -

L1Xk tenns in the above equations. Consequently, Eqs. (2.1) through (2.3) reduce to 

Yk = Ao (2.4) 

Yk+l = A 3 + A 2 + Al + A 0 

Yk = Al (2.5) 

Yk+l = 3A3 +2A2 +Al 

Yk = 2A2 (2.6) 

Yk+l = 6A3+2A2 

In the remainder of this paper, we will refrain from making any simplifying assumptions 
about the spacing of the data points in order to treat the more general case. 

3. SOLVING FOR THE SPLINE COEFFICIENTS 

The conditions given above are used to find A 3, A 2, AI, and A 0 which are needed 
to define the cubic polynomial piece fk. Isolating the coefficients, we get 

In the expressions for A 2 and A 3, k = O, ... ,n -2 and t::.Yk = Yk+l - Yk. 

3.1. Derivation of A 2 

From (2.1), 

From (2.2), 

Yk+l - A 3.t::.xi - ykt::.Xk - Yk 

.t::.x~ 

Finally, A 2 is derived from (3.2a) and (3.2b) 

[3 x (3.2a)] - [ ~:: x (3.2b)] = A, 

(3.1) 

(3.2a) 



3.2. Derivation of A 3 

From (2.1), 

From (2.2), 

- 4 -

Yk+l - A 2~Xf - Yk~Xk - Yk 

~x~ 
(3.2c) 

Yk+l - 2A 2~Xk - Yk 
3A3 = (3.2d) 

~x~ 

Finally, A 3 is derived from (3.2c) and (3.2d) 

[ ~~: x (3.2d1]- [ 2 x (3.2C1] ~ A, 

The equations in (3.1) express the coefficients of Ik in terms of Xt, Yt, Xk+l, Yk+l, 
(known) and Yk, Yk+l (unknown). Since the expressions in Eqs. (2.1) through (2.3) 
present six equations for the four Ai coefficients, the A terms could alternately be 

expressed in terms of second derivatives, instead of the first derivatives given in Eq. 
(3.1). This yields 

Ao 

Al 

A2 

A3 

3.3. Derivation of A I and A 3 

From (2.1), 

From (2.3), 

= Yk 

= ~Yk ~Xk [" 2 "J ~Xk - -6- Yk+l + Yk 

" Yk 
= -2 

= 1 [" "J 6~Xk Yk+l - Yk 

3 Yk 2 
Yk+l - A 3~Xk - 2~Xk - Yk 

~Xk 

Plugging Eq. (3.4b) into (3.4a), 

Al = ~Yk - ~Xk [ Yk'+l - YkJ - Yk ~Xk = 
~Xk 6 2 

(3.3) 

(3.4a) 

(3.4b) 

(3.4c) 



- 5 -

4. EVALUATING THE UNKNOWN DERIVATIVES 

Having expressed the cubic polynomial coefficients in tenns of data points and 
derivatives, the unknown derivatives still remain to be detennined. They are typically 
not given explicitly. Instead. we may evaluate them from the given constraints. 
Although the spline coefficients require either the first derivatives or the second deriva
tives. we shall derive both fonns for the sake of completeness. 

4.1. First Derivatives 

We begin by deriving the expressions for the first derivatives using Eqs. (2.1) 
through (2.3). Recall that the A coefficients expressed in tenns of Y' made use of Eqs. 
(2.1) and (2.2). We therefore use the remaining constraint, given in Eq. (2.3), to express 
the desired relation. Constraint Eq. (2.3) defines the second derivative of ik at the end
points of its interval. By establishing that ft'-l (Xk) = ft' (Xk), we enforce the continuity of 
the second derivative across the intervals and give rise to a relation for the first deriva
tives. 

6A~-1 ~Xk-l + 2A~-1 = 2A~ 
Note that the superscripts refer to the interval of the coefficient. 

(4.1) 

Plugging Eq. (3.1) into 
Eq. (4.1) yields 

1 [ ~Yk-I , ,] -12 + 6Yk-l + 6Yk + 
~Xk-l ~Xk-l 

__ 1_[ -6 ~Yk-l + 2Yk-l + 4Yk] 
~Xk-l ~Xk-l 

1 [~Yk-l , ,] 6 - 4Yk-l - 2Yk = 
~Xk-l ~Xk-l 

_1_[ 6 ~Yk - 4Yk - 2Y k+l ] 
~Xk ~Xk 

1 [6 ~Yk 4' 2' ] = -- --- Yk- Yk+l 
~Xk ~Xk 

After collecting the Y' tenns on one side, we have Eq. (4.2): 

, [ 1 1 ' [2 [Ill] , [ 1 1 Yk-l + Yk + -- + Yk+l --
~Xk-J ~Xk-J ~Xk ~Xk 

= 3 +--
[ 
~Yk-J ~Yk 1 
~xLJ ~xf 

Equation (4.2) yields a matrix of n -2 equations in n unknowns. We can reduce the need 
for division operations by multiplying both sides by ~Xk-l ~Xk' This gives us the fol
lowing system of equations. with 1 ~k ~n -2. For notational convenience, we let 
hk =~Xk and rk =~Yk/ ~Xk' 

, 
Yo 

hI 2(ho+h I) ho 
, 

Yl 3(rohJ +rJho) 

h2 2(h 1+h 2 ) hI 
, 

3(r l h 2 +r2h l) Y2 

= 

hn- 2 2(hn- 3+hn- 2) hn-3 
, 

3(rn-3 hn-2 - rn-2 hn-3) Yn-2 
, 

Yn-I 



- 6 -

When the two end tangent vectors Yo and Y~-l are specified, then the system of 
equations becomes detenninable. One of several boundary conditions described later 
may be selected to yield the remaining two equations in the matrix. 

4.2. Second Derivatives 

An alternate, but equivalent, course of action is to detennine the spline coefficients 
by solving for the unknown second derivatives. This procedure is virtually identical to 
the approach given above. Note that while there is no particular benefit in using second 
derivatives rather than first derivatives, it is presented here for generality. 

As before, we note that the A coefficients expressed in tenns of Y" made use of Eqs. 
(2.1) and (2.3). We therefore use the remaining constraint, given in Eq. (2.2), to express 
the desired relation. Constraint Eq. (2.2) defines the first derivative of fk at the endpoints 
of its interval. By establishing that !k.-l (Xk) = !k.(Xk) we enforce the continuity of the first 
derivative across the intervals and give rise to a relation for the second derivatives. 

3A k- 1 A 2 2A k - 1 A A k- 1 Ak 3 UXk-\ + 2 uXk-l + \ = 1 (4.3) 

Again, the superscripts refer to the interval of the coefficient. Plugging Eq. (3.3) into Eq. 
(4.3) yields 

~Xk-l [" "J " 2 Yk - Yk-l + Yk-l ~Xk-l + [ 
~Yk-l ~Xk-l [" "J] ~ - 6 Yk + 2Yk-l = 

Xk-l 

[ 
~Yk ~Xk [" 2 "J] ~Xk - -6- Yk+l + Yk 

After collecting the Y" tenns on one side, we have 

,,[ J " [ 2 J" [ J [ ~Yk ~Yk-ll Yk-l ~Xk-l +Yk ~Xk-l +~Xk +Yk+l ~Xk = 6 ~Xk - ~Xk-l (4.4) 

Equation (4.4) yields the following matrix of n -2 equations in n unknowns. Again, for 
notational convenience we let hk = ~ xk and rk = ~ Y k / ~ xk. 

" Yo 

" Yl ho 2(ho+h d h \ 

hi 2(h 1+h 2 ) " Y2 

" Yn-2 

" Yn-l 

= 

6(r\-ro) 

6(r2 - r\) 

The system of equations becomes detenninable once the boundary conditions are 
specified. 

,.~ ... "", I 
' . 



- 7 -

4.3. Boundary Conditions: Free-end, Cyclic, and Not-A-Knot 

A trivial choice for the boundary condition is achieved by setting Yo = Y;;-l = 0. 
This is known as the free-end condition that results in natural spline interpolation. Since 
Yo = 0, we know from Eq. (2.6) that A 2 = 0. As a result, we derive the following expres
sion from Eq. (3.1). 

I Y 1 3~yo 
Yo +- = 

2 2Llxo 
(4.5) 

Similarly, since Y;;-l = 0, 6A 3 + 2A 2 = 0, and we derive the following expression 
from Eq. (3.1). 

(4.6) 

Another condition is called the cyclic condition, where the derivatives at the end
points of the span are set equal to each other. 

, I 

Yo = Yn-l (4.7) 
1/ II 

Yo = Yn 

The boundary condition that we shall consider is the not-a-knot condition. This 
requires Y'" to be continuous across x 1 and Xn -2. In effect, this extrapolates the curve 
from the adjacent interior segments [de Boor 78]. As a result, we get 

Ao - Al 3 - 3 

_1_ [ -2 ~Yo +Yo + Yl] = _1_ [ -2 ~Yl + Yl + yz] 
~x5 ~xo ~xr ~x I 

(4.8) 

Replacing yz with an expression in terms of Yo and yi allows us to remain consistent 
with the structure of a tridiagonal matrix already derived earlier. From Eq. (4.2), we iso
late YZ and get 

, [ ~Yo ~YI ] I ~Xl I Y2 = 3~Xl --+-- -Yo -- -2Yl 
~x6 ~xr ~xo 

(4.9) 

Substituting this expression into Eq. (4.8) yields 

YO~Xl[~XO+~XlJ +Yl [~XO+~XIJ2 = ~~: [3~XO~Xl+2~xrJ + ~~: [~X5J 
Similarly, the last row is derived to be 

Y~-2 [ ~Xn-3 +~Xn-2 J 2 +Y~-l ~Xn-3 [ ~Xn-3 +~Xn-2 J = 

~Yn-3 [ 2 J ~Yn-2 [ 2 J 
A ~Xn-2 + A 3~Xn-3~Xn-2 + 2~ Xn-3 
uXn-3 uXn-2 

The version of this boundary condition expressed in terms of second derivatives is left to 



- 8 -

the reader as an exercise. 

Thus far we have placed no restrictions on the spacing between the data points. 
Many simplifications are possible if we assume that the points are equispaced, i.e .. 
~Xk = 1. This is certainly the case for image reconstruction, where cubic splines can be 
used to compute image values between regularly spaced samples. The not-a-knot boun
dary condition used in conjunction with the system of equations given in Eq. (4.2) is 
shown below. To solve for the polynomial coefficients, the column vector containing the 
first derivatives must be solved and then substituted into Eq. (3.1). 

2 4 
I 

Yo -SYo + 4y 1 + Y 2 
I 

3(Y2 - Yo) 141 Yl 

1 4 1 
I 

Y2 3(y3 -yd 

= (4.10) 

141 I 

Yn-2 3(Yn-l - Yn-3) 
4 2 I 

Yn-l -Yn-3 - 4Yn-2 + 5Yn-l 

5. SOURCE CODE 

Below we include two C programs for interpolating cubic splines. The first pro
gram, called ispline, assumes that the supplied data points are equispaced. The second 
program, ispline _gen, addresses the more general case of irregularly spaced data. 

5.1. !spline 

The function ispline takes Y 1, a list of len 1 numbers in double-precision, and 
passes an interpolating cubic spline through that data. The spline is then resampled at 
len 2 equal intervals and stored in list Y2. It begins by computing the unknown first 
derivatives at each interval endpoint. It invokes the function getYD, which returns the 
first derivatives in the list YD. Along the way, function tridiag is called to solve the tridi
agonal system of equations shown in Eq. (4.10). Since each derivative is coupled only to 
its adjacent neighbors on both sides, the equations can be solved in linear time, i.e., 
a (n). Once YD is initialized. it is used together with Y 1 to compute the spline 
coefficients. In the interest of speed, the cubic polynomials are evaluated by using 
Horner's rule for factoring polynomials. This requires three additions and three multipli
cations per evaluated point. 

;,"~. 



- 9 -

r- .•....•.....••••....•.•....••.•••••••••.•.•••••••••.•. * •••• ~ •••••••••••••• 
Interpolating cubic spline function for equispaced points 
Input: Y1 is a list of equispaced data points with len1 entries 
Output: Y2 <- cubic spline sampled at len2 equispaced pOints 

i ••••••••••••• * ••••••••••••••••••••••••••••••• * ••• ~ •••••••••••••••••••••••• , 

ispline(Y1,len1,Y2,len2) 
double 'Y1, 'Y2: 
int len1, len2: 
{ 

int i, ip, oip: 
double 'YD, AO, A 1, A2, A3, x, p, fetr: 

r compute 1 st derivatives at each point -> YD *' 
YD = (double *) calloc(len1, sizeof(double)): 
getYD(Y1,YD,len1 ); 

r 
" p is real-valued position into spline 
, ip is interval's left endpoint (integer) 
* oip is left endpoint of last visited interval 

"' oip = -1; r force coefficient initialization " 
fctr = (double) (len1-1) , (len2-1); 
for(i=p=ip=O; i < len2: i++) ( 

} 

r check if in new interval *' 
if(ip != oip) ( 

r update interval *' 
oip = ip; 

r compute spline coefficients *' 
AO = Y1[ip]; 
A1 = YD[ip]; 
A2 = 3.0"(Y1[ip+1]-Y1[ip]) - 2.0·YD[ip] - YD[ip+1]: 
A3 = -2.0*(Y1[ip+1]-Y1[ip]) + YD[ip] + YD[ip+1]; 

r use Horner's rule to calculate cubic polynomial " 
x = p - ip; 
Y2[i] = ((A3'x + A2)*x + A2)*x + AO; 

r increment pointer "' 
ip = (p += fctr): 

cfree((char 0) YD): 

, ".---" - I 



- 10 -

~*** •••••••••••••••••••••••••••••••••••••••••••••• * ••• ••••••••••••••••••••• 

YO <- Computed 1 st derivative of data in Y (len entries) 
The not-a-knot boundary condition is used 

..•.•.......•.••.......................•••......••.......................•. , 
getYO(Y,YO,len) 
double 'Y, 'YO; 
int len; 
( 

int i; 

YOlO] = -5.0' Y[O] + 4.0·Y[1] + Y[2]; 
for(i = 1; i < len-1; i++) YO[i]=3.0·(Y[i+1)-Y[i-1]); 
YO[len-1] = -Y[len-3] - 4.0·Y[len-2] + 5.0·Y[len-1]; 

t solve for the tridiagonal matrix: YO=YO'inv(tridiag matrix) ., 
tridiag(YO,len) ; 

/* •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• __ •• 

Linear time Gauss Elimination with backsubstitution for 141 
tridiagonal matrix with column vector O. Resuij goes into 0 

•.....••.........•..•..................•••.•••..••.....•....•.•••.....•.••• , 
tridiag(O,len) 
double '0; 
int len; 
{ 

int i; 
double 'C; 

t init first two entries; C is right band of tridiagonal" 
C = (double *) calloc(len, sizeof(double)); 
0[0] = 0.5*0[0]; 
0[1] = (0[1] - 0[0]) / 2.0; 
C[1] = 2.0; 

t Gauss elimination; forward substitution" 
for(i = 2; i < len-1; i++) { 

C[i] = 1.0' (4.0 - C[i-1]); 
O(i] = (O(i] - 0[i-1])' (4.0 - C[i]); 

} 
C[i] '" 1.0' (4.0 - C[i-1 J); 
O(ij = (O[i] - 4*O(i-1])' (2.0 - 4*C[i]); 

t backsubstitution *' 
for(i = len-2; i >= 0; i--) O(i] -= (0[i+1] • C[i+1]); 
cfree«char *) C); 



- 11 -

5.2. Ispline _gen 

The function ispline _gen takes the data points in (X 1, Y 1), two lists of len 1 
numbers, and passes an interpolating cubic spline through that data. The spline is then 
resampled at fell 2 positions and stored in Y2. The resampling locations are given by X 2. 
The function assumes that X 2 is monotonically increasing and lies wi thing the range of 
numbers in X 1. 

As before, we begin by computing the unknown first derivatives at each interval 
endpoint. The function gerYD _gen is then invoked to return the first derivatives in the 
list YD. Along the way, function rridiag_gen is called to solve the tridiagonal system of 
equations given in Eq. (4.2). Once YD is initialized, it is used together with Y 1 to com
pute the spline coefficients. Note that in this general case, additional consideration must 
now be given to determine the polynomial interval in which the resampling point lies. 

~.***.* ••• * ••••••••••••••••••••••••••••••••••••• * ••••• ••••••••••••••••••••• 

Interpolating cubic spline function for irregularly-spaced points 
Input: Y1 is a list of irregular data points (len1 entries) 

Their x-coordinates are spec~ied in X1 
Output: Y2 <- cubic spline sampled according to X2 (len2 entries) 

Assume that X1,X2 entries are monotonically increasing 
..................... _ ..................•••..•••••••••••.....••••......•••• , 
ispline-gen{X1,Y1,len1,X2,Y2,len2) 
double 'X1, 'Y1, 'X2, 'Y2; 
int len1, len2: 
( 

int i, j: 
double 'YD, AO, A2, A2, A3, x, dx, dy, p1, p2, p3; 

r compute 1 st derivatives at each pOint -> YD • / 
YD = (double') calloc{len1, sizeof(double)): 
getYD-gen{X1.Y1.YD,len1); 

r error checking' / 
if(X2[0] < X1 [0]11 X2[len2-1] > X1 [len1-1]) { 

fprintf{stderr,"ispline_gen: Out of rangeO): 
exit{); 

r 
• p1 is left endpoint of interval 
• p2 is resampling position 
• p3 is right endpoint of interval 
• j is input index for current interval · / 

p3 = X2[0] - 1; r force coefficient initialization' / 
for{i=j=O; i < len2; i++) { 

r check if in new interval ./ 
p2 = X2[i]; 



} 

- 12 -

if(p2 > p3) ( 
r find the interval which contains p2 " 
for(; j<len1 && p2>X1 OJ; j++); 
if(p2 < X1 OJ) j--; 
p1 = X1OJ; 
p3 = X1U+1); 

r update left endpoint', 
r update right endpoint " 

r compute spline coefficients " 
dx = 1.0' (X1U+1)- X1U]); 
dy = (Y1U+1]- Y1UD' dx; 
AO = Y1 [j]; 
A2 = YO[j]; 
A2 = dx ' (3.0*dy - 2.0·YOUl- YO[j+1]): 
A3 = dx'dx * (-2.0*dy + YOm + YO[j+1]); 

r use Horner's rule to calculate cubic polynomial "' 
x = p2 - p1: 
Y2[i] = «A3*x + A2)*x + A1)*x + AO: 

cfree((char 0) YO): 



- 13 -

~ •••••••• ~ •••• * •• t •••••••••••••••••••••••••• ** ••• *.* ••••••••••••••••••••••• 

YO <- Computed 1st derivative of data in X,Y (len entries) 
The not-a-knot boundary condition is used 

....•..•.•••••••........•.......••.....•••.•...••••••••••.•.•..........•.•• , 
getYO-gen(X,Y,YO,len) 
double 'X, 'Y, 'YO: 
int len: 
{ 

int i: 
double hO, h1, rO, r1, 'A, 'B, 'C: 

r allocate memory for tridiagonal bands A,B,C '/ 
A = (double ') calloc(len, sizeof(double)): 
B = (double ') calloc(len, sizeof(double)): 
C = (double ') calloc(len, sizeof(double)): 

r init first row data' / 
hO = X[1]- X[O]; 
rO = (Y[1] - Y[O]) / hO; 
B[O] = h1 ' (hO+h1); 
C[O] = (hO+h1) , (hO+h1); 

h1 = X[2]- X[1]; 
r1 = (Y[2]- Y[1]) / h1; 

YO[O) = rQ'(3'hO'h1 + 2'h1'h1) + r1'hO'hO; 

r init tridiagonal bands A, B, C, and column vector YO '/ 
r YO will later be used to return the derivatives '/ 
forti = 1; i < len-1; i++) { 

hO = X[i]- X[i-1); h1 = X[i+ 1] - X[i]; 
rO = (Y[i]- Y[i-1)) / hO: r1 = (Y[i+1]- Y[i)) / h1; 
A{i] = h1; 
B[i] = 2 ' (hO+h1); 
C[ij = hO; 
YO[i] = 3 ' (rO'h1 + r1'hO); 

r last row'/ 
A[i] = (hO+h1)' (hO+h1): 
B[i] =hO'(hO+h1): 
YO[i] = rO'h1'h1 + r1'(3'hO'h1 + 2'hO'hO); 

r solve for the tridiagonal matrix: YO=YO'inv(tridiag matrix) '/ 
tridiaQ-gen(A,B,C,YO,len); 

cfree((char ') A); 
cfree((char ') B); 
cfree((char ') C); 

r- ••• *.* ••••• *.* ••••••••••• * ••••••••••••• *.***** •• ~*.* •••••••••••••••••••••• 

Gauss Elimination with backsubstitution for general 
tridiagonal matrix with bands A,B,C and column vector O. 



- 14 -

..•...•••••...•••..•.••....•••.......•..••.......••....•...•...••..•....••• , 
tridiag-gen(A,B,C,O,len) 
double °A, *B, 'C, '0; 
iht len: 
{ 

int i; 
double b, 'F; 

F = (double 0) calloc(len, sizeof(double)); 

f* Gauss elimination; forward substitution 0, 
b = B[O]: 
0[0] = 0[0] , b: 
for(i = 1: i < len; i++) ( 

F[i] = C[i-1] , b; 
b = B[i] - A[i]" F[i]; 
if(b == 0) ( 

} 

fprintf( stderr,"getYO -gen: divide-by-zeroO): 
exitO: 

O[i] = (O[i] - 0[i-1 r A[i]) / b: 

f* backsubstitution 0, 
for(i = len-2; i >= 0: i-oj O[i)-= (O[i+1)* F[i+1]); 

cfree((char 0) F): 


