
A Distributed Signal Processing Facility for Speech Research 

t·.v : 

Nathaniel Polish 

Columbia University 
Department of Computer Science 
450 Compu ter Science Building 

New York, NY 10027 

polish@CS.COLUMBIAEDU 



Abstract 
An interactive digital voice laboratory facility has been developed to allow the sharing of expensive signal 

processing resources among large numbers of interactive display devices. The environment considered in this work 
is a facility in which there are a moderate number of heterogeneous systems with extensive floating point numerical 

capability. In this environment there are a number of voice 110 terminals with the capability to display and play 
voice in a variety of ways. Using shared me access and remote procedure calls, any of the voice workstations may 

have signal processing jobs performed on any of the available floating point processors without explicit knowledge 
of where the computation is being performed. The appearance to the user of the voice workstation is that of a 

workstation with enormous resources. 

Introduction 
A voice research facility has been built that allows the user access to time and frequency domain presentations. 

Other traditional functions such as selecting intervals and placing markers are supported. What makes this facility 
particularly useful however is easy access to distributed signal processing resources. 

Prior facilities have focused on presentation issues. In most approaches it is assumed that the underlying resource 

is simply a local computing system. To this end. powerful computers have been teamed with fast graphics to form 

voice workstations. As with any highly interactive application, a great deal of time is spent either showing the user 

something or waiting for a user input In effect, the computing power of such a workstation must be matched to the 

maximum expected load. As a result expensive computing resources are left idle. The system that has been built 

effectively separates the display and interactive tasks from the computatiooal tasks. This separation allows better 

utilization of computational resources within a larger research organization. 

1------4 PC -AT 

Voice I/O 

Why Build Such a System 

Large Disk 

Sun 2 Sun 3 
FPA Sun 4 900 

68881 

EtherNet with NFS, RPC, and TCP/IP 

Figure 1: System Components 

It is common in rese2l'Ch computing environments to have a significant number of powerful computers distributed 

around a facility. Sometimes there are large numbers of moderately powerful workstations (only a fraction of which 

are in heavy use at any one time). Sometimes there small numbers of unique computing resources such as a 

supercomputer or special purpose parallel machine. All of these machines are usually accessible over a moderate 



bandwidth digital network. 1 

In addition to the availability of networked computing services. the commercial popularity of personal computers 

has lead to inexpensive analog input and output capability as well as inexpensive high-quality graphics. 
Unfortunately the computational capacity of these computers is poor relative to common signal processing 

requirements. Special signal processing boards are available but these require very special and unique software. For 

under four thousand dollars it is possible to build a workstation using IBM PC compatible hardware that has good 

graphics2 and 16 bit 35Khz analog VO. These graphical and VO capabilities are entirely adequate for most voice 

work so the problem is to provide storage and computing resources more in line with the requirements of speech 
research. 

Another, considerablely more expensive speech research system is the SPIRE system developed at the 

Massachusetts Institute of Technology. This system utilizes a Symbolics 3600 and is written in USP. The system 

is highly interactive and extensible (in LISP) however the hardware cost is in the tens of thousands of dollars per 

station. Further, the computation speed of the workstations themselves, even with a floating point processor, is not 

very good. The major point of this sort of workstation is fast prototyping and very good user interface. 
Unfortunately, the cost is high and computation speed low. 

Often the distributed computing resources available are not entirely compatible. For example, methods of 

representing 16 bit integers vary from processor architecture to processor architecture. Floating point 

representations, despite the IEEE standard in this area, are notoriously different from machine to machine. Even 

when the processors are the same, the executable code format varies from operating system version to version. It is 

therefore important to have a methodology that will make these differences transparent 

There are many signal processing applications in which course-grain parallelism is appropriate. In most 

recognition approaches, the signal to be recognized is compared to a large number of stored templates. These 

comparisons are usually independent and so could be implemented on parallel processors. Parallel processors are 

difficult to prototype. In a distributed computing system it is possible to simulate a dedicated parallel processor. In 

addition, the distributed system itself forms a course-grained parallel processing system. 

Design 
In order to link to these resources, a client/server model of computer to computer interaction was chosen. In this 

model some computers act as servers while others act as client computers. In this system, the servers are computers 

with significant computational resources to share and the clients are workstations with graphical and signal VO 
capability. When using a multitasking operating system such as UNIX, several. virtual servers may be running on a 

machine at one time. 

In general. the way to assure machine independence in data representation is to define a canonical representation. 

It is then the responsibility of each computer to transform data from the canonical form to the processor's internal 

representation and back again. Since the graphics and VO computer has minimal computing resources, the 

canonical form chosen was the internal format of this computer. In the system built. the processor is an 80286 

processor that stores 16 bit integers with the high-order byte in a lower memory address than the low-order byte in 

IThe particular environmeDl in which this wort was done consists of 6 Sun-3s, 12 Sun-2s, 45 HP worbtatioos (68020 baaed), 6 Vax 750., and 
a 1024 node DADO tree macllioe. 

2The Enhanced Graphica Adapter (EGA) hu a resolution of 640 x 350 by 4 bill deep and a pixel draw rale with reuooable software in exceu 

of 35,000 pixels per secood. 



contrast to the 680xx processors in the other computers that store the high-Order byte in a higher address than the 
low-order byte. 

In addition to machine independence for data. it is important to have machine independence in coding. This 

requires that the coding of the algorithms involved be done with some care. In the case of the system built, all the 

server machines were running variations on the UNIX operating system. Care simply had to be take to avoid word 

size dependent coding in the C language. 

Implementation 
The basic system components are indicated in figure 1. The underlying network used in this system is an 

Ethernet Ethernet interfaces are pervasive. All of the computers that were of interest for this work had Ethernet 

interfaces available for them. Ethernet also has sufficient bandwidth for the voice work contemplated. In panicular, 

the transmission time is small compared to the computation time. It is easy to imagine situations in which this might 

not be true. In this case, optical networks hold great promise. Transmission bandwidths available with optical 

networks are several orders of magnitude greater than current coax cable based networks. 

The method chosen for implementing data transmission over the network was me sharing. Explicit data 

transmission could have been used. however, me sharing offers considerable benefits while the costs can be 

mitigated File sharing simply means that there is a common disk available to all of the potential servers and 

communication is achieved by writing data to an agreed upon location on the disk. A major advantage of this 

approach is that the destination machine need not actually be available to receive data. Debugging is simpler with 

flIes than data streams. The only penalty involved in using the file sharing approach is the delay for actual disk 

writing and reading. With appropriate buffering this delay can be made nearly invisible. 

File sharing is implemented using the Network File System (NFS) from Sun Microsystems. NFS is widely 

available and well documented. An important reason for using NFS is the fact that it is built on remote procedure 

calls. The use of remote procedure calls will fonn the basis for the rest of the system. NFS allows the mounting of 

a remote disk: system as if it were local storage. NFS takes care of all network level error handling and provides 

reasonable translations between different operating systems. For example, in UNIX a file name is case sensitive and 

of nearly unlimited length: while on the mM PC (running MS-DOS) me names are case insensitive and are at most 

8 letters with at most a single three character extension. NFS provides narning translation in this case. Conversion 

of information such as dates, time, owner, permissions, last writer, and length are also performed by NFS. NFS is 

stateless so that if a server crashes and is restored. the client machines need not reinitiate their connections -- they 

resume as before the crash. 

Actual requests for computational services are made through the remote procedure call (RPC) mechanism. RPC 

is a system service implemented by Sun to support the Network File System. In RPC a server process on a machine 

registers each of its callable routines with the operating system. The parameters for the remote procedures are 

declared as well as data translation routines to support interpretation of the parameters. In the case of this system. 

the parameters passed are just the file names of the mes to be operated on. For example, there is a remote fast 

fourier transfonn (FFT) routine in the system. The parameters are just the name of the input file and the name of the 
output me. Since all of the machines on the Network File System have the same view of the file system. the names 

passed are valid on any machine. 

The call made on the client computer is made after contact is established with the server process. Contact is 

established with an "open" call. The choice was made to have a few server programs each of which supports several 

signal processing functions. The panicular function desired is encoded as a parameter to the server. Consider the 



case of the FFf call. First an open call is made to the machine that is running the server program. Then the data to 

be transformed are written to a flIe and a call is made to the remote server with the predetermined function number 

for FFr as well as the name of the file to be transformed. As a return result from the remote call we get the name of 
a flIe which contains the result of the transform. 

As discussed above. there are several good reasons for using flIes as the transfer medium. A cleaner method 
would be to pass the data to be transformed as a parameter to the remote routine and then expect a return value to be 

the result of the transform. Unfortunately the transmission protocol is based on a transmission protocol (UDP) 

which limits parameters to 8K bytes of data. It is however possible to use TCP as the protocol and have nearly 

unlimited parameter size. At some point in the future we will move the system to TCP. In the mean time the 

performance is not significantly impacted by the file writing as the calculation time dominates the flIe write time. 

The interface to the system is primarily through an IBM PC equipt with both a monochrome monitor for text and 

an enhanced graphics adapter. The graphical interface represents three speech buffers. Each of the three buffers are 

displayed simultaneously in time domain. A low resolution plot of energy is provided as one line for each speech 

buffer. A cursor can be moved left or right along each of the speech buffer energy plots. The cursors have definite 

width. There are three high resolution windows (one for each speech buffer). The high resolution windows display 

the waveform corresponding to what is indicated by the low resolution cursor. The high resolution windows are 

updated as the low resolution cursors are moved. Marks can be placed at any point in any of the speech buffers. 

The marks are displayed as yellow vertical lines. 

While any of the speech buffers may be used for any purpose. the general intent is more specific. The first buffer 

is the primary buffer. Operations such as flItering. smoothing. and voice/unvoiced detection are typically performed 

on the primary buffer. The results of these operations are placed in the second buffer. The cursors for each of the 

buffers may be moved in lock: step. In this way. it is simple to judge the results of particular algorithms. Binary 

operations such as distance measures are performed on the first two buffers with the results displayed in the third 

buffer. The markers are also used to delimit sections to be saved as separate voice flIes or to be played as short 

segments. Parts of the different buffers can also be concatenated together to be played as one piece. The 

functionality of the facility is always changing as signal processing functions are added and manipulated. 

All of the fl1es used by the system are stored on one or more network: file system servers. As a result, all of the 

fl1es are available to all of the machines simultaneously. It is straight forward to have large numbers of graphics 

workstations on the network: at the same time accessing these files. The file system manages the problems of 

multiple access. In general it is best for each of the stations to have its own file space with common. read-only pools 

of voice flIes. 

There must be a server process fa' each client workstation. Idle server processes occupy almost no resources on 

their machines. As a result it is not a problem having many machines doing signal processing at the same time. It is 

important, however. to have a facility to check: the CPU load on each server. It is usually best to pick a server with 

the lowest load -- though this may not always be the case. Many load balancing mechanisms are possible with this 

system and only a few have been explored. 

Applications 
Sampled data such as speech must be band limited before it is sampled to avoid aliasing of frequencies above the 

nyquist rate. The analog filters used to band limit always leave some artifact in the high frequency sections of the 

signal due to the ripple inevitable with any real-world filter. To provide speech input that has no ripple. a very high 

order low pass digital filter is provided to funher band limit the signal below the limit of the analog input filter. 



This brickwall filter is provided as a simple remote procedure call as the data are received by the 110 computer. 

Linear predictive coding (LPC) is a very common speech signal processing technique and is the starting point of a 

great many other signal processing algorithms. A remote procedure call version of LPC has been built for the 

system. The call takes a time series voice file as input and produces files for the LPC parameters and errors. Fast 

fourier transforms (FFT) are also very useful for further processing and spectrogram displays. FFTs of various 
widths and window functions have been implemented for the system. 

A very important signal processing application that is used in many, larger systems is distance measure 

computation. Distance measures take as input two samples of speech signal and return a number or a time series 

which is interpreted as the distance (with respect to something) between the two inputs. A simple distance measure 

for example is just the difference in squared energy over time. More complex distance measures such as dynamic 

time warping, itakura, and cepstrum have been implemented on the system. Over a dozen different distance 

measures have been implemented on the current system to support several different investigations. Distance 

measures are at the heart of most recognition tasks as well as the concatenative synthesis project described below. 

The major use that the system has been put to is a project involving the selection of vocabularies for a 

concatenative synthesis project In concatenative synthesis systems there are vocabularies of elements used in the 

construction of speech sounds. In prior work. the sets of elements are selected by hand using some sort of editing 

system. It is usually not possible to be sure that the choice of elements is optimal in any sense or in fact to 

investigate whether the pool of elements should be expanded or can be shrunk without loss of overall quality. This 

project involves making large numbers of comparisons between natural and synthesized speech to determine an 

optimal vocabulary set. This large number of comparisons are implemented as remotely executed distance 

measurements on many different computers. 

Summary and Future Directions 
The major motivation for this work is access to greater processing power than would otherwise be available. 

Taken as a start, the 8 Mhz 80286 machine with math coprocessor is one sixth the speed of the system with server 

running on a Sun 2 (10 Mhz 68010). A Sun 3 with a floating point accelerator board is fully ten times the speed of 

the Sun 2. We have therefore obtained a 60 fold speed up over the personal computer. Further the server computer 

can be used by several clients at once with little apparent degradation. 

The servers have been implemented on Sun 2s, Sun 3s. and HP 9000 worIcstations. In all of these 

implementations, the code was developed on the Sun 2. Porting consisted only of recompiling the code with the 

appropriate floating point options. Of course all three of these machines use the same data representations. 

However, software that detects what the byte ordering is in a given machine is straight forward. 

Probably the I1IOIt interesting aspect of this work: has been the investigation of client/server models of 

computation in an instrumentation environment. One can easily imagine a standard protocol being established for 

data and remote functions. Once such a standard were established (as it has been within our lab) instruments could 

simply be hooked to each other via a digital network. Such a network would probably need to be optical for many 

interesting high perfonnance applications. though coax is fine for some applications as we have seen. 

One could have a generic spectrum analyzer that is hooKed to a particular input system via the network. In this 

case the input system would act as a server of data to the analyzer. Any input system could be used so long as it 

conformed to the protocol. Many other such combinations of analysis tools and input/output systems are possible 

with a digital interconnection using a client/server protocol. The flexibility and noise immunity of such a system 

make an attractive possibility. 


