
Incremental Evaluation of Ordered Attribute Grammars 
for Asynchronous Subtree Replacements 

Josephine Micallef 

Columbia University 

Deparunent of Computer Science 

New York, NY 10027 

(212) 280-8178 

September, 1988 

CUCS-380-88 

Abstract 

Incremental algorithms for evaluating attribute grammars (AGs) have been extensively studied in recent years, 
primarily because of their application in language-based environments. Ordered attribute grammars are a subclass 
of AGs for which efficient evaluators can be constructed. Previous incremental algorithms for ordered attribute 
grammars only allowed one modification 10 the program at a time, requiring attribute evaluation due 10 one change 
lO quiesce before another one due to a second change can start. This article presents new incremental evaluation 
algorithms for ordered attribute grammars that can handle asynchronous program modifications in an optimal 
manner. Support for asynchronous changes is necessary in environments for multiple users, where different 
programmers may be making changes 10 different parts of the program simultaneously. The key 10 the optimality of 
the algorithm is an ordering of the attribute evaluations so that an attribute affected by more than one change will 
only be evaluated once if the changes happen concurrently. 

Copyright ~ Josephine Micallef 

Keywords: Attribute grammars, incremental evaluation, interactive systems, language-based environments, 
multiuser programming environments, ordered attribute grammars, programming languages. 



1. Introduction 

Incremental algorithms for evaluation of attribute grammars (AGs) have been the focus of much research in the last 

few years. These algorithms are of practical importance in language-based environments and incremental compilers 

based on attribute grammars, where, after a change is made to a program, the attributes affected by the change are 

evaluated to reestablish consistency among the attributes decorating the program's parse tree. 

Incremental attribute evaluators vary along two dimensions. The first dimension determines whether the evaluation 

strategy is dynamic or static. When evaluating the attributes of a tree T, any evaluator must follow the partial order 

of Ts attribute dependency graph. The dependency graph contains an edge (a, b) between two attributes a and b if 

a appears in the semantic function defining b. Dynamic evaluators maintain the dependency graph at run-time. 

When a change is made to the program, the dependency graph is updated and attribute evaluations are scheduled by 

dynamically performing a topological sort on the dependency graph. Static evaluators, on the other hand, 

precompute plans that specify the order of evaluation of attributes of each production in the grammar. These plans 

are created once for each AG during construction of the grammar's evaluator. At run-time, the evaluator determines 

the order of attribute evaluations using the plans associated with each production instance in T. The advantage of 

static evaluators is that they are more efficient than dynamic evaluators in both time and space. The disadvantage is 

that not all well-defined attribute grammars can be evaluated by a static evaluation scheme. However, static 

evaluators can be constructed for a large subclass of AGs, including most of the ones that arise in practice [12]. 

The second dimension along which incremental evaluators vary is the model of change used by the algorithm. A 

change to a program corresponds to a subtree replacement, which replaces one subtree in the program's parse tree 

with another. Some algorithms allow only one change to the program at a time, so that the evaluation from one 

subtree replacement runs to quiescence before another one starts for a different subtree replacement Other 

algorithms handle multiple changes to the program. Some of these require that multiple modifications be 

synchronized, that is, the evaluator is only started after all modifications have been made. Others allow 

asynchronous changes, that is, when a change is made, the evaluation of attributes affected by the change starts, but 

it can be suspended if another change is made affecting attributes that should be evaluated first. 

A summary of existing incremental attribute evaluation algorithms according to the classification given above is 

given in table 1-1. In this article, we present a new static incremental evaluator that can handle multiple 

asynchronous subtree replacements. We only describe the evaluation algorithm for ordered attribute grammars 

(OAGs), a large subclass of AGs for which an efficient algorithm for constructing attribution plans is known [5]. 

However, the same general idea can be used to extend other static tree-walk evaluation strategies (such as the one 

described in [6]) to handle asynchronous subtree replacements. Our algorithm can be used for the synchronous case 

as well, and thus fills the two remaining entries (denoted by a star (*» in the table below. 

Dynamic Static 

Single subtree replacement [9] [14,10,12] 

Multiple subtree replacement: [11] • 
Synchronous 

Multiple subtree replaceTTlent: [4,2] • 
Asynchronous 

Table 1-1: Classification of Incremental Attribute Evaluators 



2 

The evaluation algorithm discussed in this article is oplimal in the following sense: (1) only attributes affected by 

each modification are evaluated, and (2) an attribute that is affected by more than one subtree replacement still in 

progress and which has not yet been evaluated in any of them is evaluated once only. In order to aa:omplish this for 

the class of OAGs, some run-time checks are required. We defme a subclass of OAGs, called the pairwise ordered 

altribUle grammars (POAGs). for which this run-time check can be replaced by a table lookup operation, making the 
evaluator even more efficient 

The rest of the article is organized as follows: Section 2 gives a brief overview of attribute grammars and 

incremental evaluation. A precise formulation of the problem solved in this article is found in section 3. The 

incremental evaluation algorithm for OAGs when asynchronous subtree replacements are allowed is presented in 

section 4. Section 5 defmes pairwise ordered attribute grammars, and describes algorithms to construct evaluators 

for these grammars that record information needed during incremental evaluation. The last section outlines the 

contributions of this article and compares it to other relevant work. 

2. Preliminaries 
Attribute grammars were first introduced by Knuth [7] to describe the context-sensitive semantics of a programming 

language, complementing the way a context-free grammar describes the language's syntax. An AG extends a 

context-free grammar by attaching altribUles to the symbols in the grammar, and semanlic equalioflS defIning these 

attributes to the productions of the grammar. A semantic equation defines an attribute (LHS of equation) as the 

value of a semanlic /UlIClion applied to other attributes of that production (RHS of equation). The attribute on the 

LHS is/unclionally dependem on the attributes in the RHS of the equation. Attributes are divided into two disjoint 

classes: synlhesized and inheriled. A semantic equation defines a synthesized attribute of the left-hand symbol of a 

production, or an inherited attribute of one of the right-hand side symbols. 

The use of AGs for generating language-based programming environments was originated by Reps [8]. A program 

is represented by an allribUled derivalion lree (also called a semantic tree). The nodes of this derivation tree are 

labelled with symbols of the grammar. Each node contains fields that correspond to the attributes of its labelling 

grammar symbol. The value of an attribute instances is computed according to its defming semantic equation. 

Before an attribute can be evaluated, all other attributes that it is functionally dependent on must have already 

received values. The functional dependencies among the attributes in the tree create a partial ordering on the 

attribute instances in the tree. Any attribute evaluation algorithm must obey this partial order, but since the ordering 

is partial, there may be more than one order of evaluating the attribute instances of the tree. 

The program is modified by a sequence of pruning, grafting, or derivation operations on the tree; these operations 

are collectively called subtree replact~nl operations. After a subtree replacement, the attributes at the root of the 

replaced subtree may be inconsistent An attribute is incoflSislelll if its value is not equal to its semantic function 

applied to the current values of its arguments. An incremental attribute evaluator reevaluates the inconsistent 

attributes, thus reestablishing consistency among the attributes in the tree. 

AG evaluators for both incremental and non-incremental applications fall into two general classes - dynamic and 

Sialic evaluators. A dynamic evaluator builds a dependency graph of the attributed tree, where the nodes of the 

graph are the attribute instances of the tree and the edges correspond to direct and transitive dependencies among the 

attributes. The nodes of the dependency graph are then topologically sorted. and the attributes evaluated according 

to their topological order. The disadvantages of a dynamic evaluation strategy are twofold. First, most of the work 



3 

is done at runtime. In an incremental editor. this degrades the response time after an edit Second, in order to build 

the dependency graph, large structures must be kept around, resulting in an incredible use of storage. Static 

evaluators overcome both these problems; they are more efficient, both in terms of CPU time as well as memory 
utilization. 

Static evaluators do most of the work once only, during construction of the evaluator. A static evaluator uses a 

strategy that is pre-computed at construction-time by a static analysis of the grammar. This plan is applicable in ~ 

derivation tree of the grammar, and follows the attribute dependencies of the grammar. In the next two sections we 

describe briefly non-incremental and incremental evaluators for ordered attribute grammars, a subclass of AGs for 

which static evaluators can be constructed by a polynomial time algorithm. 

2.1. Evaluation of Ordered Attribute Grammars 
An attribute grammar is ordered if 

... for each symbol a partial order over the associated attributes can be given. such that in any context of the symbol 
the attributes are evaluable in an order which includes that partial order [5]. 

An evaluator for an OAG is guided by plans associated with each production instance in the semantic tree being 

evaluated. The plan for a production p: Xo ~ Xl' . . X 1\ is composed of the following basic instructions: 

• Eval{Xj.a) - Evaluates the attribute Xj.a according to the semantic function defining it in production p. 
Xj.a is a synthesized attribute if i = 0 and an inherited attribute if 1 ~ i ~ n • 

• v (i k) - {i = O. Visits parent of p for the JCh time. 
, i > 0, Visits child Xj for the JCh time. 

To evaluate the attributes of a semantic tree T. an evaluator executes the instructions in the plans associated with the 

production instances of T. Execution starts with the first instruction of the plan for the root production of T. When an 

Eval instruction is encountered. the specified attribute is evaluated, after which the evaluator moves on to the next 

instruction in the same plan. The plans for two adjoining productions cooperate 10 evaluate the attributes of an 

interior node X of the tree T. The inherited attributes of X are evaluated by instructions in the plan for the production 

where X appears as a right-hand side symbol, while the synthesized attributes of X are evaluated by instructions in 

the plan for the production where X is on the left-hand side. 

If the instruction is a "visit child" (or "visit parent") instruction, then execution is resumed in the plan for the 

production that applies at the child (or the parent). A function, MapDown, keeps track of the next instruction in the 

plan for the child (or the parent) that should be executed. 

A stack implementation of an OAG evaluator is given in Appendix A. 

2.2. Incremental Evaluation of Ordered Attribute Grammars 
The problem of incremental attribute evaluation can be stated as follows. Starting from a consistently attributed tree 

T. a subtree S of T is replaced by another tree, 5'. which is also consistently attributed. Let T' be the tree T with S 

replaced by 5'. The problem is to evaluate the minimum number of attributes in T' so that attribute consistency is 

reestablished. Optimal solutions to this problem for ordered attribute grammars have been described by Yeh 

[14] and Reps and Teitelbaum [12]. Here we summarize the algorithm discussed in the latter. 

Initially, there are two production instances in T which may have inconsistent attributes. These are the two 

productions at the point of subtree replacement If R is the nonterminal occurrence at the root of S' (and necessarily 



4 

of S), then the two productions are: 

p:Xo ~ Xl '" Xm , whereR = Xi' 1 ~ i $; m, and 

q:R~Yl'''YII 

The incremental evaluation algorithm starts executing the fIrst instruction of the plan for production p. Since plans 

associated with production instances not affected by the subtree replacement do not have to be evaluated, additional 

information must be maintained to indicate which production instances are affected. This information is stored in 

the set Reactivaled, which contains nonterminal occurrences deriving production instances which may have affected 

attributes. Initially, Reactivated contains Xo and R, which derive the two productions p and q at the point of subtree 

replacement. 

The incremental OAG evaluation algorithm is given in Appendix B. It is similar to the non-incremental version 

described in the previous subsection, except that the set Reactivated is used to limit the scope of attribute evaluations 

to only those affected. When an attribute a is evaluated, if its value changes and it is an argument in a semantic 

function defIning another attribute b, then the production where b is defIned is added to Reactivated. nVisit childn 

and "visit parent" instruction are skipped if the child or the parent are not in Reactivated. Otherwise, they are 

executed in the same way as in the non-incremental algorithm. 

3. Problem Formulation 
Let T be a parse tree of some ordered attribute grammar G, T' the resulting parse tree after subtree Sin T is replaced 

by S', and Tn the resulting parse tree after subtree R in T' is replaced by R'. The two modifications at Sand Rare 

asynchronous, that is, the second one may occur while the evaluation of the fIrst one is still in progress. The 

problem is to design an incremental static evaluator that can handle this scenario in an optimal way, that is, it will 

only evaluate the minimum number of attributes required to restore consistency. 

An incremental evaluator for asynchronous subtree replacements is optimal if it meets the following requirements: 

1. For anyone modification, the algorithm will evaluate only those attribute instances affected by the 
modifIcation. 

2. For any two (or more) modifications affecting the same attribute a, where both evaluations are still in 
progress and neither one has yet evaluated a, the algorithm will evaluate a only once. 

The second requirement is the mcx-e important one for the purposes of this article, so we shall state it a lillle more 

formally. Suppose that subtree S was replaced at time 1\, and subtree R at time 12, where 1\ < 12, Let AFFECTEDs 
be the set of attributes that were affected (and therefore must be reevaluated) because of the subtree replacement at 

S, and similarly, AFFEcrED~ the set of attributes affected by the subtree replacement at R. Furthermore, suppose 

that the evaluations from the two modifIcations overlap, that is, 

AFFECIEDs nAFFECIED~ ~ 0 

If the evaluation due to the subtree replacement at S is still in progress at the time of the second modification, 12, 

then AFFECIEDs can be divided into two subsets: (1) EVAL, containing those affected attributes that have already 

been evaluated at the time of the second replacement., and (2) UNEVAL, containing the attributes still needing 

evaluation. 

AFFECTEDs !... = £VALs I u UNEVALs I 
'-~ , 2 • 2 

Note that all these sets are not known a priori but are determined as the evaluation is proceeding. The second 

optimality requirement states that every attribute a, such that 



5 

a E UNEVALs I nAFFECTED 
• 2 R' 

is evaluated only once. 

4. Solution for Ordered Attribute Grammars 
We fIrst introduce some terminology. During attribute evaluation. we refer to the instruction that is about to be 

executed as the currelll instruction; the plan containing the current instruction as the current plan; and the node 

deriving the production instance whose associated plan is the current plan as the currelll node. The current node is 

available in StackTop.Node; the current plan in Plan[StackTop.Node.Productionindicator]: and the index of the 

current instruction in StackTop.TableEnrry. 

The algorithm consists of three procedures. StartUp. Schedule. and Evaluate. shown in figures 4-1. 4-2. and 4-3 

respectively. Startup is called whenever a subtree replacement occurs, possibly interrupting another evaluation in 

progress. Startup initializes the state of the evaluation for the new modifIcation and places it on a list of pending 

evaluations, PendingList. This list records the evaluation state of previous subtree replacements whose evaluations 

have not yet terminated. The pending list is ordered, with the evaluation that will be resumed first at the head of the 

list. Then, it calls Schedule. 

procedure StartUp(R: nonterminal occurrence at root of replaced subtree) 
declare 

p 
q 
Reactivated 
PendingList 

begin 

: production Xo ~ XI '" Xm , where R = Xi' 1 ~ i ~ m 
: production R ~ Y\ '" Y

ll 

: set of nonterrninal occurrences 
: list of evaluations waiting to be restarted. ordered according to which should be restarted first 

Reactivated:= [Xo' R } 
push(Xo. MapDown(p,I» 1* evaluation starts at plan for production p which derives R */ 
Insen (StackTop, Reactivated) in appropriate place in PendingList 
ScheduleO 

end 

Figure 4-1: StartUp algorithm 

Schedule must determine which evaluation to resume. the one that was previously in progress whose state is 

recorded in StacktopcwrrutJ and Reactivaledcwmlll' or the first one in the list of pending evaluations. In order to 

determine this. it checks whether the current instruction (SlacJctoPcwrr~Ill.TableEntry) comes before the next 

instruction to be executed foc the first evaluation in the pending list (PendingList[l].stacktop.TableEncry) in the 

computation sequence of the semantic tree representing the program. The computation sequence of a semantic tree 

T is a linearization of the plans associated with the production instances of T, achieved by simulating the operation 

of an evaluator on T. where instead of executing the instructions. they are appended to the computation sequence. If 

the current instruction is before the flfSt pending instruction then the current instruction remains the same. If not. 

then the state of the current evaluation is placed on the pending list and the evaluation at the head of the pending list 

is made current The use of the computation sequence to order the pending evaluations is the key to achieving the 

second optimality requirement stated in section 3. 

The rationale behind the operation of the scheduler is that the evaluation that is resumed will eventually reach the 

other evaluation that was placed on the pending list. This reasoning may be incorrect if a visit to the child or parent 



procedure ScheduleO 
declare 

T 
ReactivatedclITWIl 
StackToPcurrtfll 
PendingList 
Temp 

begin 

6 

: semantic tree representing program 
: set of nontenninal occurrences reactivated by current evaluation 
: top of stack of current evaluation 
: list of evaluations waiting to be restarted, ordered according to which should stan first 
: holds state of first evaluation of pending list 

if StackToPcllTUlII.TableEntry is before PendingList[l].stackTop.TableEntry in computation sequence of T then 
skip 

else 
Remove fust element from PendingList and place it in Temp 
Insert (StackToPcurrtlll.Reactivatedcllmlll) in appropriate place in Pending List 
StackToPcurrtlll := Temp.stackTop 
ReactivatedcllTUlII := Temp.ReactiV(ued 

fi 
EvaluateO 

end 

Figure 4-2: Schedule algorithm 

that would have reached the other evaluation is skipped because the child or parent were not in Reactivated. 

Therefore Evaluate must handle skipped visits in a special way. 

Evaluate is responsible for evaluating attributes affected by a modification. It is very similar to the incremental 

algorithm for single subtree replacements given in section 2.2. The only difference is that if a visit child or visit 

parent instruction is about to be skipped because the child or parent is not in Reactivated, Schedule is called. 

4.1. Determining Relative Order Among Plan Instructions 
The Schedule algorithm described above needed to determine whether an instruction i l in plan PI occurs before 

another instruction ~ in plan Pz in the computation sequence of T. This can be done as follows. (Step 1) Find the 

next "visit parent" instruction following i I in plan PI' (Step 2) Simulate the operation of the evaluator to detennine 

the instruction that would be resumed in the parent plan. Repeat these two steps. each time going up to the parent 

plan. until one of the following happens: (a) instruction j in plan Pz is encountered, or (b) instruction j in the plan for 

the root production is encountered. For case (a), if j < ~, then the answer to the question" Is instruction i l executed 

before instruction i2?" is yes, otherwise the answer is no. Case (b) requires some additional work. Repeat steps (1) 

and (2), but this time fer ~ in plan P2' until instruction k in the root plan is reached. Then if j < k the answer is yes, 

else it is no. 

4.2. Improvements 
The evaluation algorithm given above is asymptotically optimal, but it can still be improved if we can fmd a more 

efficient method for dctennining the relative order among plan instructions, such as precomputing this information 

at evaluator-constructiol) time. It twns out that this caIJllot be done for certain OAGs. One such grammar is shown 

in figure 4-4. Figure 4-5 gives possible attribution plans for the productions in this grammar, such as would be 

constructed by the algorithm given in [5]. 



procedure Evaluate() 
declare 

T: semantic tree representing program 
Reactivated: set of nontenninal occurrences 

begin 
repeat 

case StackTop.TableEntry of 

7 

Eval(X.a) : call semantic function defming X.a 
increment(StackTop.TableEntry) 
if New Val ue(X. a) ~ OldValue(X.a) and 3 attributes that depend on X.a then 

if X.a is a synthesized attribute then 
1* its value can be used in the production where X is on the right hand side * / 
Reactivated:= Reactivated u (X .PareniNode.Productionindicator} 

else 1* X.a is an inherited attribute * / 
1* its value can be used in the production derived from X */ 
Reactivated := Reactivated u (X .ProductionIndicator} 

fi 
fi 

v(i,Jc), i > 0 : 1* descendent visit */ 
increment(StackTop.TableEntry) 
if Xi E Reactivated then 

push(StackTop.X j • MapDown(StackTop. Xi' Productionindicator, k» 
else ScheduleO 
fi 

v(O.k) : 1* ancestor visit */ 

esac 

increment(StackTop.TableEntry) 
if Xo.ParenrNode E Reactivated then 

pop 
else ScheduleO 
fi 

until Staclcl sEmpry or Xo is root of T or this is the last instruction for plan for production p 
end 

prod uction Po a ::= ~ X y. 
attribution 

X.a ~ ... ; 
X.c ~ X.b; 

production PI X ::= r. 
attribution 

r.a ~ X.a; 
X.b ~ r.b; 
r.c ~ X.c; 
X.d ~ r.d; 

Figure 4-3: Evaluale algorithm 

production P2 r ::= Z. 
attribution 

Z.a ~ r.a; 
r.b ~ Z.b; 
r.d~ r.c; 

production P3 r ::= W. 
attribution 

W.a ~ r.a; 
r.b ~ W.b; 
W.c ~ r.c; 
r.d ~ W.d; 

Figure 4-4: Attribute Grammer thal is not Pairwise Ordered 

production P4 W ::= Z. 
attribution 

W.b ~ W.a; 
Z.a ~ W.c; 
r.d ~ Z.b; 

production Ps Z ::= Q. 
attribution 

Q.a ~ Z.a; 
Z.b ~ Q.b; 

The reason that we cannot detennine at construction time whether instruction i l in plan PI is executed before 



Evaluate r.a 
Move to r 
Evaluate X.b 
Move to parent 
Evaluate r.c 
Move to r 
Evaluate X.d 
Move to parent 

a) Procedure for X ::= r 

Evaluate Za 
Move toZ 
Evaluate r.b 
Move to parent 
Evaluate r.d 
Move to parent 

b) Procedure for r ::= Z 

8 

Evaluate W.a 
Move to W 
Evaluate r.b 
Move to parent 
Evaluate W.c 
Move to W 
Evaluate r.d 
Move to parent 

c) Procedure for r ::= W 

Evaluate W.b 
Move to parent 
Evaluate Z.a 
Move toZ 
Evaluate r.d 
Move to parent 

d) Procedure for W ::= Z 

Evaluate Q.a 
Move to Q 
Evaluate Z.b 
Move to parent 

e) Procedure for Z ::= Q 

Figure 4-5: Altribution algorithms for alcribwe grammar of figure 4-4 

instruction ~ in plan P2 is that the answer depends on the structure of the tree containing the two productions P and q 

associated with the plans PI and P2. respectively. Consider the two atuibuted trees, TJ and T2• shown in figure 4-6 

below. Production P is X ::= r and production q is Z ::= Q. If the plan for ~uction q is the current one, and 

instruction "Evaluate Q.a" is being executed, then when the plan for p is eventually resumed, the next instruction is 

"Evaluate X.b" in the case of T I , whereas in the case of T2• the next instruction is "Evaluate X.d". 

In the next section. we define a subclass of OAGs, called the pairwise ordered atuibute grammars, for which it is 

possible to precompute the relative order among plan instructions. 

q: 

z a 0 

Q Jet 
Figure 4-6: Two St11Ulltlic trus 



9 

5. Pairwise Ordered Attribute Grammars 
Pairwise ordered attribute grammars are defined as a subclass of ordered attribute grammars. An AG is pairwise 

ordered if: 
1. It is ordered, and 

2. For each pair of symbols, X and Y, such that X -4 Y, a partial order over the attributes of X and Y can 
be given, such that in any semantic tree where X is an ancestor of Y, the attributes of X and Y arc 
evaluable in an order which includes that partial order. 

5.1. Algorithm to Compute Plans for POAGs 

In this section we describe an algorithm that constructs plans for POAGs according to the defmition given above. 

The algorithm is modelled after Kasten's original algorithm to construct visit-sequences for ordered attribute 

grammars [5]. Only the steps that differ from Kasten's algorithm are described in detail here. Furthermore, we 

make use of an algorithm to compute transitive dependencies between pairs of symbols in an attribute grammar that 

was published in [11]. The details of this algorithm are also not repeated below. 

In the algorithm below we use the following notation: 

• Ax is the set of attributes associated with the nonterminal symbol X. Ax is divided into two disjoint 
subsets, AI X' containing the inherited attributes of X, and ASX' containing the synthesized attributes of X. 

• SF is the set of semantic functions associated withthe productions in the grammar. SFp is the set of 
semantic functions associated with production p. 

• The relation TDSx contains direct and transitive dependencies between attributes of a nontecminal 
symbolX. 

• The relation TDP p contains direct and transitive dependencies between attribute occurrences in 
production p. 

• The relation TDP Sx, r contains direct and transitive dependencies between attributes of symbols X and 

Y, where X ~ Y. 

Step 1 and Step 2: Computation of TDSx and TDPSx• r' 

Method: Use algorithms described in the appendix of [11].1,2 Note that TDP p is not computed in these first two steps 

(as is done in [5]) but in step 4. This is done only to simplify the description of the algorithm. 

Step 3: Use TDSx to partition Ax into subsets Ax•i ' i = 1, ., .. m, such that Ax.i is a subset of AIx for odd i and a 

subset of ASx for even i. The attributes of X can be evaluated in the order Ax. I' ... , Ax.",' The output of this step is 

a vector P ARTlTION describing the disjoint partitions of Ax ' 

Method: Same as Step 3 of Kasten's algorithm. 

Step 4: Computation of TDP p' 

M etho<i: The algorithm is given in Appendix C. Arcs are added to the (initially empty) TDP p for the direct 

dependencies among attribute occurrences in p; the transitive dependencies among attributes of each symbol X in p 

lOur notation foUows that of K.utcns, It diffen frem the noutioo used in [Ill, whe~ DS(X) and DP(X),) a~ used instead d TDSx and 

TDPSX,T respectively, 

~cp. ~I aI. use the !dation TDPSX,T in their algorithm to handle multiple SYflcllTOft()II.f subtree repla=enu. 



10 

(given by TDSx ): the transitive dependencies among attributes of the left-hand side symbol X of p and OCCurrences 

of each unique symbol Y in the right-hand side of p (given by TDPSx, r); and the dependencies among attributes of 

each symbol X due to the partitions of X. After adding an edge to TDP p' other edges required to transitively close 

TDP are also added. This is accomplished by the function AddArcTrans which is the same as defmed in [5]. 

Step 5: Construction of visit-sequences. 

Method: Same as Step 5 of Kasten's algorithm. 

5.2. Computation of Relative Order Among Plans 
For each two productions,p: Xo ~ Xl ... Xm and q: Yo ~ YI ... Y

II
, such thatXo -4 Yo' we want to compute: 

• Index in PLAN[q] where control is transferred after a "Visit child i" instruction in PLANfp]' where i is Yo 
or an ancestor of Yo-

• Index in PLANfp] where control is transferred after a "Visit parent" instruction in PLAN[q]. 

This information will be computed once for each grammar, and stored in the two tables, MapVisitChiltfToPlanlndex 

and MapVisitParentToPlanIndex. MapVisitChiltfToPlanIndexfp,q,ll returns the index of the next instruction in the 

plan for q to be executed after the "visit child" instruction at index i in the plan for p. 

MapVisitParentToPlanIndex[p, q, iJ returns the index of the next instruction in the plan for q to be executed after the 

"visit parent" instruction in position i in the plan for p. 

The first algorithm, shown in figure D-l in Appendix D, computes the ANCESTOR relation for pairs of productions 

in the grammar, where 

ANCESTOR = {(P, q) I p, q are productions, and p is an ancestor 0/ q in some parse tree 0/ the grammar J. 
A directed graph G is used, initially containing vertices representing the productions of the grammar and no edges. 

First, edges are added to G to represent the PARENT relation between pairs of productions - an edge between p and 

q indicates that one of the right hand side symbols of p derives q. The edges added in this step are blue. Then the 

transitive closure of G is computed to give the ANCESTOR relation. Edges added to transitively close G are red. 

Edge color is used in the next algorithm. 

The next algorithm, shown in figure D-2 in Appendix 0, builds the two tables MapVisitChiltfToPlanIndex and 

MapVisitParentToPlanIndex. The algorithm sorts the edges (p, q) in the ANCESTOR relation in increasing path-of

blue-edges order, that is, first the pairs of productions such that p is the parent of q are considered, (length of 

path-of-blue-edges is I), then those such that p is the grandparent of q (length of path-of-blue-edges is 2), and so on. 

Then, the algorithm iterates over the sorted list of edges, considering them one at time. 

If the edge considered, (p, q), is blue (a direct edge), then the actions of the evaluator are simulated to find the 

instruction in q's plan that is executed after each "visit child" instruction in p's plan, where the child visited is the 

left hand side symbol of q. If the edge (p. q) is red (a transitive edge), then the principle of dynamic programming is 

used. We fmd a production r such that (p,r) and (r,q) are edges in ANCESTOR, and (p,r) is a blue edge. The 

length of the path-of-blue-edges of both (p,r) and (r,q) is less than that of (p,q), and !.here fore we must have already 

computed !.he relative order for these pairs of plans. To find the next instruction that is executed in q's plan after 

each "visit child" instruction in p's plan, where the child visited is the left hand side symbol of r, we find the first 

"visit child" instruction in r's plan where the child is an ancestor of the left hand side symbol of q, and then use 

MapVisilChiltfToPlanIndex to determine where this takes us in q's plan. The entries in the 



11 

MapVisitParenlToP/anlruJex table are computed in a similar way. 

6. Contributions and Comparison with Related Work 
The primary contributions of this work are: 

• A new incremental evaluation algorithm for ordered attribute grammars that can handle asynchronous 
program modifications in an optimal way. 

• Th~ dcfmition ~f a new subclass of attribute grammars for which the scheduling information [or 
attnbute evaluatIons necessary for asynchronous subtree replacements can be precomputed during 
construction of the evaluator. 

Incremental evaluators that allow asynchronous program modifications are important for environments that support 

programming-in-the-many (PITM), that is, the development and maintenance of large software systems by many 

different programmers. An incremental evaluation algorithm for multiple asynchronous subtree replacements is 

used in MERCURY, a generator of language-based environments for PITM [3,4]. This algorithm does not satisfy our 

second optimality requirement: an attribute affected by two different subtree replacements may be evaluated twice. 

Geitz' describes an optimal algorithm for asynchronous subtree replacements which maintains additional 

infonnation about dependencies between the modified subtrees [2]. His algorithm relies on the computation of 

TDPSx , y for each pair of symbols in the grammar, and therefore only works for a subset of AGs.3 The relation 

TDPS is also used in the algorithm described in [11] for synchronous subtree replacements.4 The ability to handle 

synchronous subtree replacement is useful in environments that provide editing commands that do not correspond to 

subtree replacements, such as transformations, which may result in modifications to more than one part of the tree. 

All of these algorithms are variants of the optimal incremental evaluator for single subtree replacements described in 

[9], and are therefore all based on a dynamic evaluation strategy. 

The class of ordered attribute grammars was defined by Kastens, who also described polynomial time algorithms for 

constructing evaluators for them [5]. Yeh describes an incremental version of Kasten's evaluator [14]. The 

evaluator used in the Cornell Synthesizer Generator for ordered attribute grammars is presented in [12]. This 

algorithm is also based on Kasten's, and is similar to Yeh's. Both these incremental algorithms only allow single 

subtree replacements. 

Parallel incremental attribute evaluation techniques 'for ordered attribute grammars are described in [15]. Two 

versions of parallel evaluation are presented.. In the synchronous version. a process is forked for each attribute that 

is ready for evaluation, Le .. those attributes whose arguments have already been evaluated. In the asynchronous 

version. a process is forked for any arbitrary attribute evaluation, but this process may have to wait if one of its 

arguments is not yet available. Zaring's algorithms only apply to single subtree replacement Boehm and 

Zwaenepoel also describe a parallel evaluator, but in their case the application area is AG-based compilers, and the 

algorithm is therefore not incremental [1]. The parse tree is divided into subtrees, which are evaluated in parallel by 

evaluators executing on different machines. The algorithm uses a combined static and dynamic evaluation strategy: 

attributes that depend on other attributes associated with nodes in a different subtree are computed dynamically, 

whereas those whose arguments are in the same subtree are computed statically. 

l-Jbis subset is not equal to the dAu of OAG. or the clus of POAGs. It is a IUblet of the partitiooable grammarl [I3J in the same way !hat the 
class of POAG. is a subset of OAG.. 

+ro the author's knowledge, this is the flnl algorithm to use the TDPS rdatioo for scheduling attribute evaluatioos. 



12 

Appendix A. An Evaluator for Ordered Attribute Grammars 
Figure A-I shows a stack implementation of an evaluator for OAGs. MapDown(p,k) is a function that returns the 

next instruction to be executed in the plan for production p: Xo ~ X I ... X II after the JCh visit to Xo' For any 

nonterminal occurrence X in the semantic tree that is being evaluated, the production derived from that nontenninal 

is found in X.Production!ndicaJor, and the parent of X is found in X.ParentNode. 

procedure OAGevaluate(root: root of semantic tree to be evaluated) 
begin 

push (root. MapDown(root.Production! ndicalOr ,1» 
repeat 

case StackTop.Tab/eEntry or 
Eva/(X.a) : call semantic function defming X.a 

increm ent(StackTop. TableEntry) 
v(i,k), i > 0 : 1* descendent visit ., 

increment(StackTop.TableEnrry) 
push(StackTop.X j. MapDown(StackTop. Xj' Production! ndicator, k» 

v(O.k) : 1* ancestor visit ., 

esac 
until StacklsEmpry 

end 

pop 

Figure A-I: Evaluator for Ordered AllribUie Grammars 



13 

Appendix B. An Incremental Evaluator for Ordered Attribute Grammars 
Figure B-1 is an implementation of the incremental evalualor for OAGs described in section 2. 

procedure IncOAGevaluate(T: semantic tree: R: nontenninal occurrence at root of replaced subtree) 
declare 

p: productionXo -+ Xl '" Xm , whereR = Xi' 1 S; i S; m 
q: production R -+ Yl ... Y

II 

Reactivated: set of nontenninal occurrences 
begin 

Reactivated:== (Xo• R } 
1* start evaluation of plan for production p which derives R "'/ 
push(Xo. MapDown(p.l» 
repeat 

case StackTop.TableEntry of 
Eva I(X. a) : call semantic function defining X.a 

incremen t(S rackTop. T ableEntry) 
if New Val ue(X. a) *- OldValue(X.a) and 3 attributes that depend on X.a then 

if X.a is a synthesized attribute then 

fi 

1* its value can be used in the production where X is on the right hand side "'/ 
Reactivated:== Reactivcued u (X.ParentNode.ProductionlndicalOr} 

else 1* X.a is an inherited attribute "'/ 

fi 

1* its value can be used in the production derived from X "'/ 
Reactivated:= Reactiwued u (X.Productionlndicator} 

v(i,k). i > 0 : 1* descendent visit "'/ 
increment(SrackTop.TableEntry) 
if Xi E Reactivated then 

push(StackTop.Xi • MapDown(SlaCkTop. Xi' Pro<iuctionlndicator, k» 
fi 

v(O.k) : 1* ancestor visit "'/ 

esac 

increment(StackTop.TableEntry) 
if Xo.ParentNode E Reactivated then 

pop 
fi 

until SraeJ:lsEmpry or Xo is root of T or this is the last insuuction for plan for production p 
end 

Figure B·1: Incremental Evaluator for Ordered Attribute Grammars 



14 

Appendix C. Computation of TDP
p 

The algoriLhm below computes the relation TDP p in step 4 of the construction of evaluaLOrs for POAGs. 

proced ure stcp40 
begin 

roreachproductionp:Xo ~ XI ... X" do 

od 
end 

~ add direct dependencies among attribute occurreoces in p */ 
for each f e SF p defining X/,.b do 

(or each argument X;.a 0 f do 

od 

ir (Xi .a, X/b) e: TDP p then AddArcTrans(TDP p ,(Xj.a, X/b» fi 
od 

,. add transitive dependencies among attributes of each symbol X in p (given by TDS,,) */ 
(or each unique Xi in P do 

(or each edge (c.d) in TDSx . do , 
let (Xi,a, Xi,b) = (c,d) in 

ror each occurrence X/ of Xi in P do 
if (X,:.o, X/b) Ii! TDP p then AddArcTrans(TDP p ,(X':.o, X/ b» fi 

od 

od 
od 

r add transitive dependencies among auributeS o f each pair of symbols X and Y in p (given by TDPSx,Y) *' 
(01'" each Xi in p, 1 :s; j S; k. do 

ror each edge (c,d) in TDPSXO'X
i 

do 

let (XQoG, Xi.b) = (c,d) in 

ni 

ror each occurrence X; of Xi in p do 
if (Xo.o. X/b) E TDPp then AddArcTrans(TDP p .(Xo.a, X/.b» fi 

od 

od 
od 

r add dependencies amoog Illaibutes of eac h symbol X due LO the partitions of X· / 
ror each nontenninal occurrence X/ of Xi in p do 

od 

roreachX/.a do 
ror each X"' .b do 

il'PAJt1TI10N[Xj .a) > PARTTTION[X j .b) tbfo5 

AddArcTrans(TDP P ,(Xi'" Xi·b» 
n 

od 
od 

Figure C.l : Algorithm 10 compult. TDP p 



15 

Appendix D. Computation of Relative Order Among Plans of POAGs 
Figure D-l shows the algorithm for computing the ANCESTOR relation described in section 5.2. 

procedure Ancestor(out G: a directed graph) 
declare 

V 
E 
p.q 
Xj' Yj 

begin 

: set of vertices of G 
: set of edges of G 
: productions 
: nonterminal symbols 

V:; {p I p is a production} 
E:;0 
for each vertexp: Xo ~ Xl .,. Xm in G do 

(or each vertex q: Yo ~ Yl ... Y" in G do 
if Xj ; Y ()o i ; 1, . . . , m then 

AddBlueEdge(p.q) to G 
fi 

od 
od 
Compute transitive closure of G, adding red edges 

end 

Figure D-l: Algorithm to compUle ANCESTOR relation 

The algorithm in figure D-2 builds the two tables, MapVisilChildToPlanlndex and MapVisitParentToPlanlndex as 

described in section 5.2. 



16 

procedure BuildMapsO 
declare 

p 
q 
r 

: production Xo -+ Xl ... Xm 
: production Yo -+ Y1 ••. Y" 
: production Zo -+ ZI ... Zt 

pIndex,qIndex,rIndex 
EdgeList 

: integers, used as indices into plans for p, q and r respectively 
: list of edges 

begin 
EdgeList := sort edges (p, q) in ANCESTOR graph in increasing order of length of path of blue edges 

between p and q 
for each edge (p, q) in EdgeUst do 

if (p, q) is blue then 
let i be the index of the right hand side (RHS) symbol of p such thalXj = Yo' i = 1, ... ,m in 

qIndex:= I; 

ni 

for pIndex:= Ito Length(plan[pD do 
if Plan[p] [PIndex] = "Visit Child i" then 

MapVisitChilcIroPlanIndex[p,q,pIndex] := qlndex: 

fi 
od 

while Plan[q][qIndex] ~ "Visit parent" do qIndex:= qIndex + 1 od 
MapVisiJParentToPlanIndex[q,p,qInthx] := pIndex + 1: 
qIndex := qIndex + I 

else!* (p,q) is red, a transitive edge */ 

fi 
od 

end 

let r be a production such thal (p, r) and (r, q) are edges in ANCESTOR and (p, r) is a blue edge, and 

ni 

i be the index of the RHS symbol of p such thalX j = Zo, i = 1, ... ,m and Zj ~ Yo' j = 1, ... ,k, in 
rIndex := qIndex := 1 
for pIndex:= Ito Length(plan[p)) do 

if Plan[p] [PIndex] = "Visit Child i" then 

fi 
od 

while Plan[r][rIndex] "# "Visit childj" do rIndex:= rIndex + 1 od 
MapVisitChilcIroPlanlndex[p.q.pIndex] := MapVisitChilcIroPlanlndex[r,q.rIndex] 
while Plan[q][qIndex] "# "Visit parent" do qIndex := qIndex + 1 od 
rindex := MapVisitParentToPlanlndex[q,r,qIndex] 
while Plan[r)[rIndex] ~ "Visit parent" do rIndex := rIndex + 1 od 
MapVisitParenfJoPlanlndex[q.p.qIndex] := MapVisitParentToPlanIndex[r .p.rIndex] 
rIndex := rIndex + 1 

Figure 0·2: Compuuuion of MapVisitChiWIoPlanIndex and 
MapVisitParm([oPlanIndex 



17 

References 

[1] Hans-Juergen Boehm and Willy Zwaenepoel. 
Parallel Attribute Grammar Evaluation. 
1986. 
Rice University. 

[2] Bob Geitz. 
Asynchronous Subtree Replacement for Language-Based Editors. 
1987. 
Oberlin College and Cornell University. 

[3] Gail E. Kaiser, Simon M. Kaplan and Josephine Micallef. 
Multiple-User Distributed Language-Based Environments. 
IEEE Software :58-67, November, 1987. 

[4] Simon M. Kaplan and Gail E. Kaiser. 
Incremental Attribute Evaluation in Distributed Language-Based Environments. 
In 5thACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 121-130. Calgary, 

Alberta, Canada, August, 1986. 

[5] Uwe Kastens. 
Ordered Attribute Grammars. 
Acta Informatica 13:229-256, 1980. 

[6] K. Kennedy and S.K. Warren. 
Automatic Generation of Efficient Evaluators for Attribute Grammars. 
In Third Annual ACM Symposium on Principles of Programming Languages, pages 32-49. January, 1976. 

[7] Donald E. Knuth. 
Semantics of Context-Free Languages. 
Mathematical Systems Theory 2(2): 127-145, June, 1968. 

[8] Thomas Reps. 
Optimal-time Incremental Semantic Analysis for Syntax-directed Editors. 
In Ninth Al11Will ACM Symposium on Principles of Programming Languages. January, 1982. 

[9] Thomas Reps, Tim Teitelbaum and Alan Demers. 
Incremental Context-Dependent Analysis for Language-Based Editors. 
ACM Transactions on Programming Languages and Systems 5(3):449-477, July, 1983. 

[10] Thomas Reps. 
Generating Language-Based EnvironmenlS. 
M.I.T. Press, Cambridge, MA, 1984. 

[11] T. Reps, C. Marceau and T. Teitelbawn. 
Remote Attribute Updating for Language-Based Editors. 
In Thirtunth ACM SymposiJJm on Principles of Programming Languages, pages 1-13. S1. Petersburg Beach, 

FL, January, 1986. 

[12J Thomas RepsIDd Tun Teitelbaum. 
The Synthesize Generator. 
1988. 
Boole being prepared for publication. 

[13] W. Waite and G. Goos. 
CompiJer Construction. 
Springer-Verlag, New Yode, 1984. 

[14] Dashing Yeh. 
On Incremental Evaluation of Ordered Attribute Grammars. 
BIT 23:308-320, 1983. 



(I5J Alan Zaring. 
Parallel Attnbute Evaluation. 
1986. 
Indiana Universiy and Cornell University. 

18 


