
Nest Library Reference Manual

Alexander Dupuy
Jed Schwartz

Computer Science Department
Columbia University

New York. NY 10027-6699

Wednesday June 15th. 1988

Abstract

This manual describes the simulation library provided wilh Nest Version 2.5. Nest is available from Columbia
University. For infonnation. please contact the authors.

This research was suppcrted in part by the Department of Defense Advanced Research Project Agency. under
contract F29601-87-C-0074. and by the New York State Science and Technology Foundation. under contract
NYSSTF CAT (87}-5.

~est Library Reference \1anual

Table of Contents
1. Initialization and Simulation Functions

1.1. Initialization Routines
1.1.1. main
1.1.2. nest .J>arse _ args
1.1.3. nestJeadJraph
1.104. simulate

1.2. Monitor Routine
1.2.1. nest monitor

2. Communications Functions
2.1. Sending and Receiving Messages

2.1.1. sendm
2.1.2. recvm
2.1.3. recvmt
2.104. any messages

2.2. Channel Functions and Function Stacks
2.2.1. reliable
2.: :. channel sendm
2.~._. safe_string

3. Node Execution Functions
3.1. Node Timing Functions

3.1.1. runtime
3.1.2. cputime
3.1.3. slumber
3.1.4. stop time
3.1.5. start- time
3.1.6. advance

3.2. Mutual Exclusion Functions
3.2.1. hold
3.2.2. release

~. Utility Functions
4.1. Network Configuration Functions

4.1.1. get node id
4.1.2. get-locatiOn
4.1.3. get-neigbbors

4.2. Grapblanguage Utilities
4.2.1. writegraph
4.2.2. readgraph
4.2.3. rreegraph
4.2.4. nest_saveJrapb
4.2.5. nestJestoreY8ph

4.3. Socket Communication Functions
4.3.1. nbsocket
4.3.2. nbcoDDect
4.3.3. nbcoDD
4.3.4. nbwrite
·U.s. nbsend
4.3.6. nbrecv
4.3.7. nbread
4.3.8. discard
4.3.9. firstld
4.3.10. Macros ror rd set structs

4.4. Time Utility Functions
4.4.1. atotv

15 June 1988

Page I

1
1
1
2
2
3
3
3

5
5
5
5
6
6
6
6
7
7

9
9
9
9
9
9

10
10
10
10
10

11
11
11
11
11
12
12
12
12
13
13
13
14
14
14
15
15
15
16
16
16
16
17
17

Nest Library Reference Manual Page I

1. Initialization and Simulation Functions
This section describes the functions used to start the simulation loop of the Nest library, and the monitor routine

which can be used for communications management, logging, or network modification.

1.1. Initialization Routines
1.1.1. main

main
int
char

(argc, argv)
argc:

*argv[];

Usage: program [-n nodes] [-8 stacJcsize] [-p port] [-f file]

As in any Unix program. the user can write a mainO routine which takes command line arguments and provides
the overall program structure with calls to other routines to do initialization or processing. In most cases, the user of
the Nest library will wantLO do this. but for convenience and fast prototyping. a generic mainO routine is provided.

The purpose of the generic mainO which we provide. or a user-written mainO function. in Nest is to create an
initial graph and then call the simulateO function, passing it this graph as an argument Note that the Nest graph
includes not only topology but also header infonnation including some simulation parameters.

The generic mainO routine laclcs flexibility. but parses command line arguments specifying simulation
parameters, and will prompt for any unspecified parameters when run. If the generic mainO is used, the only
function that will be run on the nodes will be the node_mainO routine. All edges will have the function channelO as
their channel functionO. These two routines must be supplied by the programmer, and are the only functions which
need be provided.

The mainO routine detennines the following parameters which must be passed to the simulation loop: maximum
number of nodes allowed, total stack size. internet port numbet on which to listen for connections, and initial
network graph. These can be specified by command line arguments, or supplied by the user in response to prompts
from the program.

The ·n option sets the maximum number of nodes, the -p option sets the port number on which the simulation
should listen, and the -s option sets the initial size (in byteS) reserved for the staclcs of the simulation nodes. The·r
option specifies a file conlaining a graphlanguage description of the initial network configuration. This file can be

created with the nest_save~phO routine, or with the Nest user interface client.

If -0 option is unspecified, the generic mainO will prompt the user for a value. If the -s or -p options are
unspecified, the main routine will default them to 1024 times the numbet of nodes, and the port returned by

getservbyname("nest" ,"rep"), respectively. If the -r option is unspecified the user is prompted for the specifications

of nodes and edges.

The mainO function is in main.c.

15 June 1988

Page 2

1.1.2. nest _parse _ args

int nest-parse_args (argc, argyl
int argc;
char *argv[];

graph
unsigned
unsigned
int

*Graph;
NO'des;
StackSize;
portNumber;

Initialization and Simulation Functions

The nest-parse_argsO function parses command line arguments in the same way as mainO. initializing the global

variables Nodes. StackSize. PortNumber and Graph as specified by the given command line arguments so that these

can subsequently passed as arguments to simulateO. The function allows a user provided mainO to parse the

standard command line arguments in the same way the generic mainO function does.

The global variable Graph should be initialized with an empty graph, containing only a graph header and function

lists, before nest....PafSe_argsO is called This allows the nesuestore...,graphO routine which is invoked by the ·r
option to properly set up the function values for nodes. edges. and the monitor function with addresses which are

valid for the current simulation. Failure to do this may result in coredumps if a graph me from another version of

the simulation is loaded.

If unrecognized command line options are given. a message is printed on stderr. and the return value status is .l.

Otherwise the return value is O. The two arguments argc and argv correspond to the standard arguments to mainO.

which main should pass to nest-parse_argsO.

The nest-Patse_argsO function is in nestargs.c.

1.1.3. nestJead_graph

graph *nest_raad_graph (nodes, node!n, chanin, men!n)
unsigned nodes:
int (*nodafn) ();
int (*chanfn) ();
graph * (*menfn) ();

The nescread~phO function interactively prompts the user for an initial graph. including both graph topology

(i.e. nodes and edges) and header flags. It takes the following arguments:

• nodes· the m8J{imum number of nodes which the interactive user can specify. This value should be the
same (or less than) the nodes argument which will subsequently passed to simulaleO.

• nodefn - the function which will be assigned as the node function for all of the nodes in the graph
created by the user.

• chanfn - the function will be assigned as the channel functions for all the edges in the graph created by
the user.

• monfn . the automatic monitor function which will be used in the simulation.

The nest_read~phO fuoction prompts the user on the standard error output. and reads from standard input.

returning a complete Nest graphianguage graph initialized in accordance with the arguments passed to it and the

values supplied by the user.

The nest_read-?3phO function is in gutils.c.

15 June 1988

:-.J'est Library Reference Manual

1.1A. simulate

int simulate (nodes, size, initgraph, portnumber)
unsigned
unsigned
graph
int

nodes;
size;

*initgraph;
po rtnumber ;

Page 3

The simulateO function invokes the Nest simulator and returns upon completion of the simulation. If the
simulation flnishes nonnally, Le. if all node functions return or if they deadlock waiting for messages, the function
will return O. If the simulation aborts due to a fatal error such as running out of stack space for the nodes, it will
print an error message and return -1.

It takes four arguments: nodes, size, initgraph and pormumber.

The nodes argument represents an absolute limit on the number of nodes; dynamic reconflguration of the network
will never allow more than this number of nodes.

The size argument tells the simulation how much stack space to allocate initially. This number represents not the
maximum size for anyone node, but the maximum total size for all the stacks at anyone time. If during the
simulation, more space is needed, the simulation will try to get more space via reallocO. Therefore, there is no
reason to overestimate this figure. since if it is too small, the simulation will not fail, unless there is no more
memory available.

The initgraph argument specifles the initial network conflguration as a graphlanguage structure. TIle nest

graphlanguage structure is discussed in mere detail in the appendix. While this argument can be left nil, the default
initial graph will probably not be what you expected. A better idea is to use the nesuead-YBphO routine to
generate a graph at runtime.

The pormumber argument specilles the internet port number which the server routines will listen to for
connections. It should be in network byte order (nest.J)al'se_argsO and getservbynameO return ports in network
byte order). A value of -1 will disable the port. A good way to get a port number (rather than hard coding in a
number) is to use the getservbynameO routine to look up an entry in the fetc/services database. You can then ensure
that you are not using the same port number as anyone else, and can change it without recompiling or editing.

The simulate() function is in simulate.c.

1.2. Monitor Routine
The automatic monilOr routine selected in the Nest graphianguage header is called at the beginning of every pass

of the simulation. You can supply any number of monitor functions, include them on the list of available monitor
functions and switch between them while the simulation is running using the client program or the monitor function
itself. A generic malilOr' function nescmonitorO is provided.
1.2.1. nest monitor

graph *nest_monitor (oldqraph)
graph *oldqraph:

The function accepts a single argument, oldgraph, which is the current graphlanguage model of the simulation
state. The function then communicates with client monitors as described below in order to report to them the current
simulation state. The function then returns oldgraph. unmodified.

15 June 1988

Page 4 Initialization and Simulation Functions

The nest_monitorO function will send graphlanguage messages to clients (if any) when they initially connect to

the simulation, and when the status of any nodes change from running (or blocked or paused) to dead or done. If it
detects that all the nodes in a simulation are blocked indefinitely or dead or done. and clients are connected. it

pauses the simulation so that the user can make modifications (0 the network and continue.

Note that, while nesCl11onitor does not make any changes to oldgraph. a user-implemented monitor function may
do so in order to modify the graph topology or simulation state under program control. If such modifications are
made to the graph which is returned by the user monitor function. then these changes will be made to the simulation.

The nescmonitorO function is in nestmon.c.

15 June 1988

Nest Library Reference \1anual Page 5

2. Communications Functions

2.1. Sending and Receiving Messages
Messages are implemented in Nest as two 32-bit quantities. by convention an integer key and a pointer to data.

although both can hOld either pointers or integers. Each message has a header associated with it. consisting of the
node ids of the (initial) sender and destination.
2.1.1. sendm

sendm (dest,
ident
long
pointer

key, dataptr)
dest;
key;
dataptr;

The function takes as arguments a destination or receiver node. a key which represents the message type as

interpreted by the receiver. and a pointer to the message data in memory.

The destination may be any number between 1 and the maximum node number for the simulation (even if this

number does not correspond to a currently running node). Also. if the point-to-point flag is not set to true. 0 may be

chosen as a destination. which will result in the message being sent to all neighbors. Also. if the broadcast flag is set

to true. the message will be sent to all neighbors regardless of the specified destination.

Note that one or neither. but not both. of the broadcast and point-to-point flags should be set to true at a given

time. If both are set. all calls to sendmO will fail.

If the destination does not satisfy the above constraints. the function exits and a -1 is returned Otherwise. the

message is delivered to its destination node(s). This is accomplished by invoking the first function on the stack of

channel functions for the edge connecting to each destination. and then placing the possibly transformed message on

the receive queue of that destination node. The function then exits and returns the return value of the channel

function stack. In the case of broadcast messages. the result returned is the additive sum of the return values of the

channel function stacie for each edge.

The default channel function. reliableO. returns 1 if the message is successfully transmitted. or 0 if it could not be

transmitted. so that the net result of a broadcast message is the number of messages sucessfully sent. User written

channel functions are of course free to return other values.

Note that if a message is delivered to a node that is currently stopped, that node will be able to receive that
message if and when it begins running again.

The sendmO function is in sendm.c.

2.1.2. recvm

ident racvm
ident
long
char

(deatp, Itayp,
*deetp;
*ltayp;

**dataptrp;

dataptrp)

In order for a node function to receive a message. it must call the recvmO function. This function will return the

flfSt message to arrive at the node. Messages from different nodes are not segregated. but the sender of the message

is returned by the recvmO call.

15 June 1988

Page 6 Communications Functions

The recvmO function takes the arguments deslp. keyp, and dataptrp, which are the addresses of variables which

the function will setlO the destination, key, and data pointer of the message. These arguments can be 0 (castlO the
appropriate type) if the values are of no interest The recvm() function returns the id of the sender of the message.

If no messages are available yet (determined by the implicit arrival time field in messages). a node which calls
recvmO will block until one becomes available (that is, it will SlOp being scheduled, but will appear lO be using

simulated run time).

The recvmO function is in recvm.c.

2.1.3. recvmt

ident recvmt
idant
l.ong
char
timev
timev

(destp, keyp,
*destp;
*keyp:

**dataptrp;
*sendt;
*arrvt;

dataptrp, sendt, arrvt)

The recvmtO function is functionally equivalent to the recvmO function. but takes twO additional arguments.

which can be used lO get the time at which a message was sent and the time at which it arrived. These arguments
can be 0 (cast to the appropriate type) if the values are of no interest. In all other respects. recvmtO is identicallO

recvmO.

The recvmtO function is in recvmt.c.

2.1.4. any_messages

int any_massagaa()

The any _messagesO function takes no arguments. It returns 1 if any messages are available for receipt by the

node calling the function, and returns 0 otherwise.

The any _messagesO function is in anymess.c.

2.2. Channel Functions and Function Stacks
When a message is sent from one node to another. the actual delivery is done by channel functions. Each edge

has a list of channel functions called the channel function stack. or channel stack. A call to sendrnO causes the fU'St

function on the channel stack to be called with the message, sender. and destination arguments to sendrnO. the
weight of the edge. and the remainder of the channel function stack.. This channel function typically passes these

same arguments. modified as desired, to the next function on the stack, although this behavior is not enforced. Thus.

in addition to modifying the message data pointed to by dataplr. a channel function can change any of the
parameters before passing them to the next function on the stack, thus, for example, disguising the apparent sender

of the message by changing the value of sender.

2.2.1. reliable

int reliable (a_node, sander, daat, key, dataptr, delay, chana)
idant a_node;
idant sender;
ident daat;
long key;
pointer dataptr:
long delay:
int (*chans[]) (); /* array ot tunction pointers */

15 June 1988

~est Library Reference 'bnual

This function is the prototypical channel function. It is the ultimate delivery agent for messages, and is impliciLly

at the end of all channel stacks (see channel_sendmO, below). The function delivers a message to the receive queue
of the destination node after a simulated time delay as specified by the delay argument, and without performing any

uansformations on the message data. If the delay argument passed to the function is non-zero, then this value is
used as the delay in delivering the message. However, if the delay argument is 0, then the delivery delay used is the
delay in the graph header.

The a_node argument is the actual recipient node for the message. This must be a valid node id, i.e. greater than
0, and less than or equal to the simulation's maximum node number. It is not required to be connected to the

sending node. If this argument is invalid, reliableO will return O.

The sender argument is the sending node id; the dest, key and dataptr arguments are from the initial sendmO
arguments; and the delay argument is the weight specified in the graph's edge information; but any of these may be
changed by channel functions earlier in the stack. No checking is done on these arguments.

The chans argument is the remainder of the channel stack. The reliableO channel function ignores this argument

(it can safely be left out) since it delivers the message itself, but the argument is present in all calls to channel

functions. It is an army of function pointers, terminated by a nil pointer.

The reliableO function is in messes.c.

2.2.2. channel sendm

int channel_sendm(to, andr, deat, key, dptr, weight, channels)
ident to;
ident andr;
ident deat;
long kay;
pointer dptr;
long weight;
int (*channela[]) (); 1* array of function pointera *1

The channel_sendmO macro is provided as a standard method for channel functions to pass the message on to the
remainder of the channel stack. It has the same calling sequence as other channel functions, but its behavior is

rather different. It pops the first function pointer from the channels argument, and if the pointer isn't nil, it invokes

that function with the other arguments, including the modified chans argument. If the pointer is nil, the reliableQ

function is invoked instead.

The channel_sendmO macro is in nest.h.

2.2.3. safe string

int aafa_atrinq(a_node, sander, deat, key, dataptr, delay, chana)
ident a node;
ident
ident
long
pointar
long
int

sander;
dest;
kay;
dataptr;
delay;
(* chans (]) (); 1* array of function pointars *1

The safe_stringO channel function changes only its dataptr argument. It assumes that dataptr is a pointer to a

null-terminated string, and replaces it with a pointer to a copy of the string. The copy is created with mallocO. and

copied with strcpyO. The altered message is then passed to channel_sendmO.

15 June 1988

Page 8 Communications Functions

The safe_stringO function is in safestr.c.

15 June 1988

~est Library Reference ~lanuaJ Page 9

3. Node Execution Functions

3.1. Node Timing Functions
Since functions running under the Nest simulation library are timesharing a Unix process, the standard Unix

functions involving .process times will not work properly. Therefore, Nest has several functions to provided

simulated timer interfaces using the timev type, defined in dcctime.h to be a Berkeley timeval struct (sys/time.h).

Do not use these functions in monitor or channel functions.

3.1.1. runtime

timev runtime ()

The function runtime() takes no arguments, and returns the total simulation time of the node which called the

function since the beginning of the simulation. This time includes time spent waiting to receive messages, sleeping,

and not running, in addition to time spent running. This time is not reset when a node starts running again, nor is it

affected by switching the node function running at the node.

The runtime() function is in the file runtime.c.

3.1.2. cpu time

timev cputime ()

The function cputime() takes no arguments, and returns the current cpu time used for the local node since the

beginning of the simulation. This time does not include time spent waiting to receive messages. sleeping, or not

running. This time is not reset when a node starts running again, nor is it affected by switching the node function

running at the node. The function is in the me cputime.c.

3.1.3. slumber

int s1umber (naptime, wakeup)
timev *naptime;
f1aq wakeup;

The slumberO function is a replacement for the Unix sleep and select functions (which should not be called in the

simulation). The function takes two arguments, naptime and wakeup. The function will block the node for an

amount of time pointed to by naptirne. If naptime is nil, the node will bloclc indefmitely. Note that this is different

from a naptime argument of 0 seconds, which does not block the node.

If wakeup is true, then if any messages arrive while the node is blocked, it will be awakened, and the slumber

function will rerum 1. Note that pending messages, as indicated by any-messages() returning I, will not prevent a

node from slumbering. If no messages arrive while the node is slumbering, it returns O.

The time spent slwnbering is charged as simulation runtime, but not cputime, for the node.

The slumberO function is in slumber.c.

3.1.4. stop_time

stop_time ()

This function is provided to turn off time accounting for simulation processing time used by a node. It takes no

arguments. After this has been called, any simulation cpu time used by the node will not count against its cputime

or runtime until starctime() is called (however, time spent in blocked for recvm or slumbering will count against

runtime). No value is returned.

15 June 1988

PJge 10

The stop_tim eO function is in stoptime.c.

3.1.5. start time

start_time ()

Node Execution Functions

This function is provided to tum on time accounting for simulation processing time used by a node. It takes no
arguments. After this has been called. the node will once again be charged for any cpu time it uses. No value is

returned.

The start_timeO function is in stoptime.c.

3.1.6. advance

advance (addtime)
timev addtime;

This function is used to charge time to a node. It works much in the way that slumber does, except that it can't be

interrupted, and the time is charged as cpu time as well as runtime. It takes one argument. a time struct (nol a time

pointer) which is to be charged to the node. The node will be charged for this time whether stop_timeO has been

called or not

This function can be used with stop_timeQ in effect to provide an artificial measure of cpu time usage which is

independent of machine speed.

The advanceQ function is in advance.c.

3.2. Mutual Exclusion Functions
3.2.1. hold

hold ()

This function can be used by a node function to enter a critical section. The holdO function prevents the node

from being interrupted. The function takes no arguments and returns no values. Multiple calls to holdO can be

made, and calls after the first only increment a hold count.

Critical sections which should not be interrupted include accesses of any global data which may be modified by

any other node (this sort of data sharing is best avoided altogether), and calls to library functions which are
non-reentrant, (this includes any function which calls rnallocO).

The holdO function is in handlers.c.
3.2.2. release

rele&sa(kay)
int lteyo;

This function is used to exit a critical section entered with a call to holdO. The function takes a single argument,

key. If key is 0, it will rel~ all holdO calls for the node. If it is I, it will only release one holdO call.

The releaseO function is in handlers.c.

15 June 1988

Nest Library Reference Manual Page 11

4. Utility Functions

4.1. Network Configuration Functions
This section documents a number of utility functions which are designed to be used by node functions running

under the Nest simulation library. Many of these functions take a node id as an (only) argument which specifies the
node in question. Except where noted otherwise. when these functions are called by routines running on a node. 0
can be used as a node id for the common case of the local node.

When the function for a node is called. it is passed only one argument; its node id. In order for a node 10 find out

more about the network configuration several functions are provided to simulate the local information which a node
might have.

4.1.1. get node id - -
ident get_node_id ()

Whenever a node function is called. it is passed a single argument which is the node it is running on. But since it

would be inconvenient and inefficient to pass the node id to every subfunction on a node which might need to know

it., the gecnode_idO function is provided.

This function takes no arguments. If called by a node function. it returns the local node id. If called from a

channel function. it returns the sending node. If called from a monitor function. it returns O.

The get_node_idO macro is in nest.h.

4.1.2. getJocation

position get_location (nodaid)
idant nodaid;

The location of a node and its neighbors. as found in the graphlanguage description of the network. can be
detennined with the geUocationO function. This function takes one argument., a node id. and returns a position

struct with integer x. y. and z coordinates as defined in graphlang.h. 1be argument can be any valid node id. not just

the local one. Note that this function rerums a position struct. not a pointer to a position StruCL

The geUocationO function is in getJoc.c.

4.1.3. get_neigh bors

node-ptr get_neighbor. (nodaid)
ident nodaid;

A list of the node ids of the connocted neighbors of a node can be obtained with the get_neighborsO function.

This function takes one argument. a node id. and returns a pointer to a node_item struct as defined in graphlang.h.

The argument can be any valid node id. not just the local one. The list returned is created with mallocO and sorted

by node id. It should be freed when no longer needed.

This function should not be used by a monitor or channel function.

The geUleighborsO function is in gembrs.c.

15 June 1988

Page 12

4.2. Graphlanguage Utilities
~.2.1. writegraph
byte *writegraph (oldgraph, header_fnx, node_fnx, edqe_fnx)
graph *oldqraph;
word (*header_fnx) (),

(*node_fnx) (),
(*-edqe_fnx) ();

Utility Functions

The writegraphO function takes as arguments a pointer to a graph, oldgraph, and the addresses of three functions.

Headecfnx is a function which will write out a graphlanguage message bytestream corresponding to a graph's

header. Node_fnx is a function which will write out a graphlanguage message byteStream corresponding to a node
in a graph. Edge_fnx is a function which will write out a graphlanguage message bytestream corresponding to an

edge in a graph.

The writegraphO function allocates a buffer of appropriate size using malloc and then uses these three functions to

ftll the buffer with a byteStream containing a graphlanguage message which corresponds to oldgraph. The function

returns a pointer to this buffer. Note that the function does not free, or any way modify, oldgraph.

The writegraphO function is in graphs.c, as are the three functions (writeheader, writenode and writeedge) which

usually passed to writegraphO when called by the Nest library.

4.2.2. readgraph

graph *readgraph (bytes, haader_fnx, node_frut , edqa_frut)
byte *bytas ;
grhead * (*header_frut) ();
grnodedat * C*noda_fnx) ();
gredgedat *C*adqa_fnx) ();

The function takes as its first argument a pointer to a buffer containing a bytestream which is a graphlanguage

message corresponding to a graph. Its additional arguments are the addresses of three functions. Headecfnx is a

function which will read a bytestream and create a corresponding header data structure. Node_fnx is a function

which will read a byte stream and create a corresponding node data structure. Edgejnx is a function which will read

a bytestream and create a corresponding edge data structure.

The readgraph function allocates a graph structure using malloc and then uses these three functions to assign the

appropriate values to the fields within the graph. The function rerums a pointer to the created graph. Note that the

function does not free, or any way modify, the graphlanguage message buffer.

The readgraphO function is in graphs.c, as are the three functions (readheader. readnode and readedge) which

usually passed to readgraphO when called by the Nest library.

~.2.3. freegraph

freeqraph
graph
funcptr

Cdaadqraph, headar_fnx,
*de&dqraph;
header_fnx,
node_fnx,
adqa frue;

The function takes as arguments a graph. deadgraph. and the addresses of three functions. Header_fnx is a

function which will free any additional storage assocuued with a graph header. Node_fox is a function which will

free any additional storage associated with a graph node data structure. Edge_fox is a function which will free any

additional storage associated with a graph edge data structure. Freegraph frees deadgraph. and uses these functions

[0 free any additional storage associated with the graph.

15 June 1988

Nest Library Reference Manual Page l3

The freegraphO function is in graphs.c, as are the twD functions (freeheader and freeedge) which usually passed to

freegraphO when called by the Nest library. (Since there is no additional storage associated with a node, there is no

freenodeO function).
4.2.4. nest_save_graph

nest save graph (filename, oldgraph, header_fnx, node_fnx, edge_fnx)
char- - . * filename;
graph *oldgraph;
word (*header _ fnx) (),

(*node_fnx) () I

<*edge_fnx) ();

The nest_save--&raphO function takes as arguments a filename, a pointer to a graph, oldgraph, and the addresses

of three functions. Except for the filename argument, these are exactly the same as the arguments to writegraph O.

The nescsave~hO function opens the me specified by filename, and writes a graphlanguage message which

corresponds to oldgraph. If any errors occur, a message is printed on stderr, and -1 is returned. Otherwise. 0 is

returned. Note that the function does not free, or any way modify, oldgraph.

The nest_save-&raPhO function is in gload.c.

4.2.5. nest_restore_graph

graph *nest_restore_graph (filename, oldgraph, header_f, nOde_f, edge_f)
char
graph
grhead
grnodedat
gredgedat

*filename;
*oldqraph;
* (*haadar_f) ();
* (*node_f) ();
* (*edqe_f) ();

The nesuestore--&raPhO function takes as arguments a filename, a pointer to a graph, oldgraph, and the addresses

of three functions. These last three arguments are exactly the same as the last three arguments to readgraph O.

The nesuestore--&raPhO function opens the file specified by filename, and reads a saved graph in graphlanguage

message form. The second argument, oldgraph. should be have at least a valid header and function lists to allow the
nescrestore..$faphO function to properly set up the function values for nodes, edges, and the monitor function with

addresses which are valid for the current simulation. If the oldgraph argument is nil, nest_restore-&raphO will still

work, but coredwnps may occur if a graph file from another version of the simulation is loaded.

If any errors occur, a message is printed on stderr, and -1 is returned. Otherwise, 0 is returned. Note that the

function does not free, or any way modify, oldgraph.

The nest_restore..$faphO function is in gload.c.

4.3. Socket Communication Functions
These functions provide support for asynchronous i/o on non-blocking file descriptors. These can be sockets,

pipes. fifos, character special devices, or regular flIes, although these routines are most useful fer "slow" devices,

since writes to files never block.

They are Mt reentrant fer each file descriptor. you must do some sort of descriptor locking or interrupt masking if
you call these from a SIGIOISIGURG (or other signal) handler.

15 June 1988

Page 14 Utility Functions

These functions deal with a number of incompatibilities between various versions of the Berkeley networking

software, from 4.1c to 4.2 to 4.3. However, there are incompatibilities which aren't hidden; to see how one can deal

with them, look at the _server_initO code in server.c.

4.3.1. nbsocket

iot nbsocket (options, address)
lot options;
struct sockaddr *address;

The nbsocketO function can be used to create a non-blocking stream socket in the ARPA Internet domain. The

nbsocketO function takes two arguments, options, which is a bitmask of desired socket options, and address, which

is an address to which the socket should be bound. If the address argument is nil, the system will assign one (4.1c

bsd) or none will be assigned (4.2/4.3 bsd).

Multiple socket level options can be set true, by simply or'ing them together. On 4.1c bsd, if the socket will be
used to accept connections, the SO_ACCEPTCONN option must be set. On 4.2/4.3 bsd, listenO should be used

instead.

4.3 socket options which take values other than the integer 1 can't be set, nor can 4.2 SO_DON1LINGER be sel

The nbsocketO function is in the me nbsock.c.

4.3.2. nbeanneet
iot nbconnect (fd, mask, address)
int fd;
fd set *mask;
struct sockaddr *host:

Connecting a socket to a pon is done with the nbconnectO function. It takes the file descriptor of the socket, a
mask pointer, and a socket address. If a connection cannot be made immediately, it returns 0 and sets the descriptor

bit in the mask so that later calls to selectO will indicate when the connection has been made or has failed. At this

point a second call to nbconnectO will return the correct status (either 1 or -I), and the descriptor bit will be cleared.

In a second call to nbconnectO the address argument is ignored and can be O.

The nbconnectO function is in nbsock.c.

4.3.3. nbeann

iot nbconn (fd, mask, hoat, port)
int fd:
fd set *mask:
struct hostent *hoat:
int port

struct in addr *nbconnaddr:
int nbtryagain:

A more convenient connection interface for 4.2/4.3 systems is provided by the nbconnO function. It takes the me

descriptor of the socket, a mask pointer, a host entry (such as returned by gethostbynameO), and a pon number. The

host and pon arguments are used to create a struct soclcaddr argument for nbconnectO.

If a connection cannot be made immediately, it returns 0 and sets the descriptOr bit in the mask so that later calls

to selectO will indicate when the connection ~ been made or has failed. At this point a second call to nbconnO

wiU return the correct status (either lor-I), and the descriptor bit will be cleared. In a second call to nbconnO the

host and pon arguments are ignored and can be O.

15 June 1988

:-.lest Library Reference Manual Page 15

An additional fearure of nbeonnO. not present in nbconnectO. is that a pointer to the address (a struct in_addr) is

placed in the global variable nbconnaddr. On 4.3 bsd. or other systems where multiple host addresses can be

returned in a struct hostent. if a connection attempt fails. and there are more addresses which can be tried. -1 will be

returned. but the global variable nbtryagain will be set true.

In this case. if n~onnO is called with a host argument of 0 (cast to the appropriate type). it will try connecting to
the next address. If a non-zero host argument is given. it will use that instead.

The nbeonnO function is in nbsock.c.
4.3.4. nbwrite

nbwrite (fd, bytes, length)
int fd;
char *bytes;
int length;

The nbwriteO function is a non-blocking version of the writcO system call. No data is actually sent until nbsendO

is called. but it returns the length. or -1 if the arguments are invalid. Each write is separated. so that nbreadO will

never return more than one nbwrite of data at a time. It is possible to write more data before and during sending

with nbsendO.

Once nbwriteO has been used to write a message. nbsendO should be called to actually start sending it If the
global fdset variable Writes has the bit set corresponding to the descriptor which is written. Nest will eventually

write this data. and clear the bit in Writes.

The nbwriteO function is in the me nbsock.c.

4.3.5. nbsend

int nbsend (td, mask)
int td;
fd set *mask;

The nbsendO function is the function actually used by Nest to write the data queued by nbwriteO. Data is written

from the queue to the fd file descriptor until it blocks or all of it is written. If nbsendO cannot send all the data

wriuen. it sets the descripta' bit in mask so that later selectO calls will note when the descriptor is ready for

additional output and returns O. If all the data in the queue is written. the bit for the file descriptor is cleared from

the fdset pointed to by mask and 1 is rerumed. If an error occurs, -1 is returned.

The nbsendO function is in nbsock.c.

4.3.6. nbrecv

int nbracv (td, ma.k)
int td;
fd sat *ma.k;

Receiving data is done by calling nbrecvO. If a complete message is available. nbrecvO returns the length of the
message. The message itself can be obtained by calling nbread(). which rerums a pointer to the buffer holding the

message (which can be disposed after use). Otherwise it will return 0 and set the the descriptor bit in mask so that

later selectO calls will indicate when the descriptor has more data to read. If end of rue is detected, ermo is set to

EPIPE. any data received is thrown out. and the descriptor bit in mask is cleared. On this or any other error.

nbrecvO returns -1.

The nbrecvO function is in nbsock.c.

151une 1988

Page 16

.. t3.7. nbread

pointer nbread (fd)
int fd;

Utility Functions

The nbreadO function returns a pointer to the last complete message received by nbrecvO. The contents of the
message are in a buffer created with mallocO that should be freed when no longer needed. Note also that when
nbrecvO indicates that a -complete message is available. nbreadO should be called before any further calls to
nbrecvO. or the message buffer will be lost

The nbreadO function is in nbsock.c.
4.3.8. discard

discard (fd, massage)
int fd;
char *message;

The discardO function is used to get rid of a file descriptor on which an error has occurred. It takes two
arguments, a file descriptor, fd, and a character string error message. The file descriptor fd is closed, and cleared

from the fdsets used by Nest, and the error message is printed out on sCderr using perrorO.

The discardO function is in server.c.
4.3.9. firstfd

int firstfd (mask)
fd set *mask;

The flrstfdO function is useful in manipulating the fdsets used by NesL It returns the corresponding descriptor
number of the ftrSt bit set in the fdset pointed to by maslc. and clears that bit from mask.

The ftrStfdO fuoction is in server.c.

4.3.10. Macros for fd set structs
The following macros for manipulating fd bit strings are in dcctypes.h:

zerofda (set)
fd set .sat;

Clears to 0 all bits in the fd_set pointed to by set

clrfd (set, fd)
fd set
int

·set;
fd;

Clears to 0 the bit for fd in the fd_set pointed to by set (other bits are not modified).

setfd(sat, fd)
fd set * •• t;
int fd:

Sets to I the bit for fd in the fd_set pointed to by set (other bits are not modified).

test fd (set I fd)
fd set
int

·sat;
fd;

Returns the value of bit for fd in the fd_set pointed to by set: 1 or O.

15 June 1988

Nest Library Reference ~anual

4.4. Time Utility Functions
4.4.1. atotv
t~v atotv (timestring)
string timestring;

Page 17

The function accepts a character string representing a time interval and converts it into a timeval SlIUct which it
returns. The timestr'ing is a positive or negative decimal number of seconds. with an optional decimal fraction of
seconds. i.e. "[+-Jxxx[.yyy)".

The atotvO function is in times.c.

4.4.2. Assorted ti meval macros
A zero-valued timeval structure called time_zero is declared in times.c. This is a global which can be passed to

functions, as can pointers to it However, it must be treated as a read-only variable -- it must not be changed or
many functions will break.

The following are macros which are in dcctime.h and perform some useful operations on timeval structures:

int time_nonzero(tv)
timev tv;

Takes a timeval argument, and returns true if it is non-zero, otherwise returns false.

int time_iszero(tv)
timev tv;

Takes a timeval argument, and returns true if it is zero. otherwise returns false.

int time_equal(tvl,tv2)
timev tvl;
timev tv2;

Takes two timeval arguments. and returns true if they are equal. otherwise returns false.

int time_after(tvl,tv2)
timev tvl;
timev tv2;

Takes two timeval arguments, and returns true if the ftrst is greater than the second, otherwise returns false.

int time_befora(tvl,tv2)
timev tv1;
timev tv2;

Takes two timeval arguments, and returns true if the ftrst is less than the second, otherwise returns false.

int time-POsitive(tv)
~imev tvl;
~imev tv2;

Takes a timeval argument., and returns true if it is greater than zero. otherwise returns false.

int time_neqative(tv)
timev tv1;
timev tv2;

Takes a timeval argument., and returns true if it is less than zero, otherwise returns false.

timeval time_clear(tv)
timev tv;

15 June 1988

P3ge 18

Takes a timeval argument and clears it to zero.

t~val time_normalize (tv)
timev tv;

Utility Functions

Takes a timeval argument and convens ilto normal form with the microsecond form corresponding to a positive
fraction of a second.

timeval time-plus(tvl,tv2)
timev tvl;
timev tv2;

Takes two timevals and returns their sum.

timeval time_minus(tvl,tv2)
timev tvl;
timev tv2;

Takes two timevals and returns the difference of the fIrst minus the second.

timeval time_add(tvl,tv2)
timev
timev

tvl;
tv2;

Takes two timevals and adds the second one to the flISt

timeval time_sub(tvl,tv2)
timev
timev

tvl;
tv2;

Takes two timevals and sublract the second one to the flISt

timeval time_elapsed_add(tvl, tv2, tv3)
timev tvl;
timev
timav

tv2;
tv3;

Takes three timevals and adds the difference of the second and the third to the fIrst

boolean timerissat(timevalp)
timev *timevalp;

Takes a pointer to a timeval and returns lrue if the time is non-zero.

timerclaar(timevalp)
timev *timevalp;

Takes a pointer to a timeval and clears it to zero.

15 June 1988

