
Nest User's Guide 

Alexander Dupuy 

Jed Schwartz 

Computer Science Department 
Columbia University 

New York, NY l0027~99 

Wednesday June 15lh, 1988 

C.ue 5 - 3 1 3 -88 

Abstract 

This guide describes building simulations using the simulation library provided with Nest Version 2.5. Nest is 
available from Columbia University. For information. please contact the authors. 

This research was suppated in part by the Department of Defense Advanced Research Project Agency, under 
contract F29601·87-C-0074. and by the New York State Science and Technology Foundation. under contract 
NYSSTF CAT (87)-5. 



:\CSl Library user Guide 

1. Overview 
1.1. Source files 
1.2. Include files 

2. Implementin~a Simulation 
2.1. Main 
2.2. Node functions 
2.3. Channel functions 
2.4. Internal monitor function 

Table of Contents 

3. Implementing Your Own Interface Client 
~. Global Simulation Variables 

4.1. Read-only variables 
4.2. Modifiable variables 

5. Miscellaneous Hints 
5.1. Shared Data 
5.2. Debugging 

15 June 1988 

Page I 

1 
1 
2 

3 
3 
3 
4 
4 

7 
9 
9 
9 

11 
11 
11 



Nest Library User Guide Page 1 

1. Overview 

1.1. Source files 
All of the source files discussed in this guide can be found in the nest directory. You can work in this directory, 

or you can copy the..relevant source files and makeflle into a working directory, and simply link the obnjects with 

the Nest library. 

In order to implement your own application to run on Nest, you will need to provide a certain number of functions 

which are not in the Nest library. A sample source file containing these functions is skeleton.c. You can create a 

simulation by modifying or replacing skeleton.c. This file contains the code for a minimal example simulation 

which we will present below. It is designed so that you can simply delete all or much the bodies of the functions 

included and plug in your own code. In addition to this minimal skeleton example, you may want to refer to the 

code for the more complex mapper demo. This code resides in mapper.c, and uses the default mainO routine 

provided by the Nest library module main.c. 

In main.c you will fmd the default mainO function for the Nest simulation, which does some initialization and 

then initiates the simulation by calling the function call simulateO. While the simulation runs, control passes 

between the different simulated nodes. When all of these nodes fmish, or when there is a deadlock. the simulation 

fmishes. 

In a simulation. there are one or more IWtk Junctwns. One of these is associated with each node. These functions 

are the code which runs on the simulated nodes. If the default mainO is used. as in the mapper demo, the function 

node_mainO is the only function associated with any of the nodes. Thus all of the nodes run the same fWlction. 

However, when node_main is called for each simulated node. it is passes as a parameter the number of that node. so 

that it may behave differently depending on the node it is running on. 

Many distributed systems will fit naturally into this model, with each node running the same function. If you 

want to run different functions on different nodes, you can do this in much the same way that the skeleton demo 

does. You create a file containing a mainO routine which sets up the simulation. as well as the several node 

functions which you want to provide. 

Also. if you want to be able to associa1e more than one function with certain nodes. and to alternate which 

function runs on a particular node dwing the course of a simulation. then place these functions in this file. In the 
simple skeleton example which we provide, there are several node functions. All of these functions, in addition to 

lhe mainO function. reside in the file skeleton.c. You can build a complex Nest simulation by replacing the node 

functions in skeleton.c by your own node function(s}. In addition. you will have to modify the mainO function in 

skeleton.c to initialize your own network configuration properly. 

In addition. you may modify the file called "nestmon.c", if you want to provide automatic network 

reconfiguration. or periodic processing of any global values or non-node-resident taslcs. including custom 

monitoring features. In this file there is a function called nest_monitorO which is called once during each simulation 

pass. At each pass, this function exchanges data with any nest interface which is trying to communicate with it., and 

modifies lhe simulated network if directed to by one of these data exchanges. You can extend this function to 

automatically modify the network under program control, or to perfonn any other periodic task such as gathering 

data on system-wide basis. or communicating with a custom Interface which you have written. 

15 June 1988 



Page 2 Overview 

Another alternative is to create a fWlction called auto_monitorO which does any processing you want to do, and 

then calls nest_monitorO. This works quite easily if you are using the default mainO, since it will use 
auto_monitorO as the monitor function. 

1.2. Include files -
• nest.h: You will need to include nest.h in any nest application me which you create. Neslh defmes 

some basic values, types and macros, and in tum includes other important include flies. 

• graph.h: You will need to include graph.h if you want to access the your simulation's global graph 
structure, or any other graph structure which you create, because it is in this file that the graph data 
structure is defmed. 

• defs.h: You may want to include this file which defines many convenient values, alternate C syntaxes. 
data structures and macros. 

15 June 1988 



Nest Library User Guide Page 3 

2. Implementing a Simulation 

2.1. Main 
In a Nest simulation. the mainO function initializes a simulation graph. a limit on the total stacksize and number 

of nodes. and a network portnumber for addressing the server by client displays. These parameters are then passed 

to the function simulateO. which runs the simulation until it exits. at which point control passes back to mainO for 

any post-processing that might be desired. 

A generic mainO is provided in the Nest library. which will be sufficient for some applications. If you can use the 

generic mainO as is. you will not need to write any mainO function of your own; the generic mainO will simply be 

linked in from the Nest library by default The generic main will initialize the simulation graph on the basis of a 

stored file, or interactive alphanumeric input from the terminal (see Nest Reference Manual for details). Its major 

limitations are that the simulation it spawns can run only a single function [which you must name node_mainO] on 

all nodes; that it will only utilize a single channel function [which must be named channelOl on all channels. Note 

also that the internal monitor function which is put into place by the generic main function is called auto_monitor, so 

if you use generic mainO and you write your own internal monitor. you must call it auto_monitorQ. 

If your simulation will include more than one node function or channel function. you will need to implement your 

own mainO which assigns these functions to the appropriate fields in the global graph header. If you provide your 

own mainO function. then when you link your code with the Nest library. your mainO will be used instead of the 

generic one. 

2.2. Node functions 
In nodemain.c you will find a function called node_main. You will need to write one or more functions like 

node_main. They will all have the same parameter list as node_main. Le. they will accept a single ident argument 

which corresponds to the id of the node they are running on. However. the code in your node function(s) will be 

entirely your own. In skeleton.c you will find two node functions like node_mainO. which are called producerO and 

consumerO. 

MainO. or a function which it calls, will assign the appropriate fields in Ihe graph header to your node function(s). 

so that they will run on Ihe proper nodes. See Ihe initialize~phO function in skeleton.c to see how this is done. 

When a node function is called it is passed a single argument which is the node it is running on. It can pass the 

value to functions that it in turn calls. if necessary, or else Ihese functions can discover Ihis value themselves by 

calling gecnode_idO. A node function can fmd out the location of Ihe node it is running on by calling 

geUocationO. It can find out which nodes it has a communication link to by calling get_neighborsO. 

A node function will ordinanly carry out some communication with its neighbors. It can do so by calling the 
function sendm and passing 10 this function an argument specifying which node(s) to send a message to. "The 
destination specified can be all neighbas (destination = 0). or Ihe (positive) node id of some node which it is linlced 

[0. The set of nodes which it is linked 10 can be gotten by calling the function geUleighborsO. 

A node function can fmd out if any messages sent by other nodes have been delivered to it by calling the function 

any _messagesO. It can receive these messages by calling recvmO. 

The simulated cputime and lOlal runtime for a node can be gouen by calling cputimeO and runtimeO respectively. 

A node can be put to sleep in simulation time with slurnberO, and its cputime and runtime can be directly 

incremented with advanceO. 

15 June 1988 



Implementing a Simulation 

2.3. Channel functions 
The fundamental channel function used by the Nest library to deliver messages between nodes is called reliableO. 

When you initialize the simulation graph for your application, you can place one or more channel functions on the 

channel stack of each edge in the graph. At the end of each of these functions there will usually be a call to 

channel_sendrnO. If there are functions remaining on your channel stack, then channel_sendrn will pop and call the 
topmost of these. If and .when all of the functions on your channel stack have been called, channel_sendrnO will 

then call reliableO to deliver the message to the destination node's queue. 

Thus. reliable need never be explicitly placed on a channel function stack. It would be a bad idea to do so, 

because reliable simply delivers a message and exits. ie. it doesn't call channel_sendrnO continue down the stack. so 

any functions placed on the stack below reliableO would never be called. 

The minimal channel function which can be placed on a channel stack is just a "wrapper" which simply calls 

channel_sendrnO with the same arguments that are passed to it. An example of such a wrapper function is 

"channeIO" which can be found in channel.c. 

In our mapper example. as in most Nest applications, all that is desired is the reliable delivery of all messages on 
all edges, without modification or duplication of message data.. Thus, aU that is required is to use the channelO 

wrapper function as the sole function on the channel stack of every edge. If you are using the default mainO the 

channelO function will be used as the channel function for all edges. If you are providing your own mainO you can 

explicitly place channelO on the channel stack for each edge. or you can leave the channel stack empty, in which 

case, reliableO will be called. 

Another simple and common alternative to this approach would be to use. instead of the function channelO which 

does nothing. the function safe_stringO which malces a copy of the message data before calling channel_sendrnO. If 
a message is sent with safe_stringO. then the sending node may safely modify or free its copy of the message data, 

and the destination node may do the same after it is received. 

If. on Ibe other hand. you want to do some custom manipulation of message data. as we did in our skeleton 

example. you should include your own channel function(s) in your source me. These must be properly assigned to 

fields in your simulation graph during initialization in mainO. See skeleton.c for the custom channel function 

translateO. and the way that it is placed, along with safe_stringO. on a channel function stack. 

2.4. Internal monitor function 
One or more internal monitor functions can be defined. and included in the list of available monitor functions in 

the simulation graph header. Of these. one must be assigned as the current internal monitor function. in the graph 

header. and it is this function which is called at the end of each simulation pass. Other internal monitor functions (if 
there are any). serve as altemalCS which one can switch to interactively or under program control by assigning the 

current monitor field in the graph to be of another function from the list 

The general purpose monitor function provided by the nest library is called nest_monitorO. If you are only using 

our sunvclient for simulation monitoring and dynamic configuration. then nest_monitorO should be adequate. 

However. if you want to communicate with a custom interactive monitor which receives application level data, or if 

you want to reconfigure the simulation or collect statistics under program control. or if you want to automatically 

perform any olber sort of non-node·resident task. you will need to write your own monitor function. 

The approach that is best for most customizations is to write a function which performs your custom monitor 

functions and then calls the generic nest_monitorO function before exit. Thus, after your custom code performs its 

IS June 1988 



~eSl Library User Guide Page 5 

tasks, nesl_monilorO services interactions from sunvclient monitors. This is the approach we have taken in 
skeleton.c. 

In the mapper example, there is not, in fact, any monitor customization, so we define a monitor function called 

auto_monitorO which is simply a wrapper function that calls nest_monilorO. The auto_monitorO function resides in 
automon.c, and our generic main initializes "auto_monitorO" to be the sole internal monitor function for the 
simulation. Thus, if your simulation requires only a single internal monitor, as most simulations do. you can 

customize your monitor by adding code to our aUlo_monitorQ function in automon.c. You will still be able to use 
the generic Nesl library mainO, if desired, if you do not rename "auto_monitorO". If you are writing your own 

mainO, you should assign the appropriate fields in the simulation graph to include whatever monitor or monitors you 

like. If you simply wanl to use nescmonitorO, you can assign nest_monilorO to the appropriate fields directly, i.e. 
there is no need to use the auto_monitorO wrapper. 

In skeleton.c you will fmd an example of a simple customized monitor function. It is called user_monitorO. 

Notice that it exits by calling return(nescmonitor(newgrat)), thus invoking the generic nescmonitorO and ensuring 

that its return value will be returned. Notice also how user_monitorO is established as the current internal monitor 

function, and both user_monitorO and nest_monitorO are established as available monitor functions by the 

initializeJraphO function in skeleton.c. 

Nest_monitorO. like any custom internal monitor which you may write. is passed a pointer to a graph as a 

parameter, and returns a graph pointer. NescmonitorO does not modify the graph which it is passed. and it returns 

this same graph, unmodified. Thus. nest_monitorO does not change the simulation state. it merely sends updated 

simulation information to client monitors. However. you may require a custom internal monitor to modify the 

simulation state. Note first of all that the internal monitor function, unlike a node function, is non-preemptible, i.e. it 

runs until completion, so you do not have to concern yourself with critical sections of code. There are two ways that 

you can modify the simulation state within a monitor function. 

The first is by returning a pointer to a simulation graph which is a modified version of the graph which is passed 

lO the function as a parameter. If you choose this way, then you may either modify the actual graph passed to the 

function and return it, or else you may make a duplicate of this graph, modify this duplicate, and return the modified 

duplicate. If you do the latter. you will probably want to free the original graph which is passed to the function 

using the function graph_freeD. In either case. you can call return(oest_monitorQ) as we did in skeleton.c, passing 

nest_monitorQ a pointer to your modified graph. Nest_moniLa will then return this modified graph when it exits. 

The second method of modifying simulation state within an internal monita' function is to directly modify 

simulation globals (see below. Section 4.2, Page 9), rather than the graph passed to the function, and then return nil. 
instead of a pointer to the graph. It is essential that you return nil if you want Nest to retain your direct simulation 

global changes rather than modifying the state to correspond to a graph that you return. Thus these two methods. 

that of modifying and relUrTling a graph. and that of modifying simulation globals and returning nil. are mutually 

exclusive and cannot be mixed. SpecifICally, if you do the latter. then your custom monitor function must not 

invoke nest_monitorO. which is expecting a pointer to an actual graph and will return one. Note also that if you 

choose this method you should ItOI free the graph passed to the monitor function using graph_freeO. 

One important feature of nescmonitorQ is that if there is a deadlock in the simulation (i.e. all nodes are waiting 

for events which will never occur) and there is a user interface client connected to the simulation, nest_monitor() 

will pause the simulation. This is imponant because the nest simulation would exit on this condition if 
nest_monitorQ did not trap iL Thus. one paradigm for nest use is to establish several available monitors. one which 

is, or which invokes, nest_monitor(). and one or more which do nOL The first monitor is used initially. but when 

and if it traps a deadlock, another monitor which specially handles deadlock can be switched to. 

15 June 1988 



Page 6 
Implementing a Simulation 

15 June 1988 



Nest Library User Guide Page 7 

3. Implementing Your Own Interface Client 
A Nest client is an independent program, usually interactive, which communicates with the Nest simulation 

process via socket ioe. T~?-re are several approaches to writing an interface client. Sunvclient is an example of 

chew whiCh "Jmmunicates with Nest's built in server. The advantage to writing this son of client is that you do not 
have to write any server-side code; you simply make use of the built-in server facilities. The built-in server handles 

multiple connections-and services asynchronous requests without disturbing the simulation. 

You may be able to create the custom monitor you require by simply modifying sunvclient This is certainly the 

easiest way to go since it would not require you to recode any communications functions. Sunvclient, and any client 

which interacts with the built-in Nest server, must do so using the Graphlanguage protocol described in the Nest 

Overview and the Graphlanguage document. If you write your own client to interact with the built-in server, it must 

obey this protocol. 

Sunvclient, and other clients which interact with the built-in server, can only exchange information regarding the 
basic simulation state and network topology. Application level information is not available from the built-in server. 

If you want a client which handles application-specific infonnation, you will need to handle the communications 

yourself both on the client end and on the simulation end. This can also be done with sockets. 

One approach which is convenient in many cases is to place in a custom internal Nest monitor the code required 

on the server side. This is the approach taken in the skeleton.c example. This internal monitor function handles 

such things as accepting socket connect requests made by the client, and reading data sent by the client It is best to 

have such input operations done by the internal monitor function for Nest, rather than by individual Nest node 

functions, because the internal monitor is non-preemptible, and it can easily distribute any data destined for 

individual nodes via global variables. 

As far as output goes, this may be done by the internal monitor function, or by nodes themselves. Global 

statistics and state infonnation should certainly be sent by the monitor function. However application level data 

possessed by a certain node function could be sent directly over the socket by the node function, or it could be 
placed in global storage where the internal monitor would later grab it and send it out to the client Note that if the 

node is going to send over the socket directly, it must bracket the socket calls as a critical section using holdO and 

releaseO since the socket calls are non-reentrant Note also that a node should check some global flag set by the 

internal monitor indication whether or not a socket it might send to has yet been connected. See the user_monitorQ 

and consumerO functions in skeleton.c for this approach. 

15 June 1988 



Implementing Your Own Interface Client 

15 June 1988 



~est Library User Guide Page 9 

4. Global Simulation Variables 

4.1. Read-only variables 
The following values are set at the initialization of the simulation and should not be modified. They should be 

treated as read-only ~alues during the simulation: 

struct graph "Graph -- The graph structure which contains simulation state and topology. This structure should 
not be modified directly. Instead. this structure is passed to the internal monitor function when it is called. 

Modifications made to this copy by the internal monitor function are automatically copied back to Graph when the 
internal monitor exilS and returns ilS modified duplicate graph. 

unsigned Nodes -- the maximum number of nodes which may exist at any time during the simulation. 

long StackSize -- amount of memory (in bytes) which is initially allocated to contain the combined stacks of all 

node functions. This is only a soft limit on total stack space -- additional space it is dynamically allocated if this 
space is filled. 

int PonNumber -- the host port to which client monitors must connect in order to communicate with the 

simulation server. 

4.2. Modifiable variables 
The following values may be modified during the course of a simulation by an internal monitor function (see 

above, Section 2.4. Page 5 for details of how and when globals can be modified by an internal monitor): 

boolean Altered -- set if there any nodes have exited or aborted on error during the current simulaion pass. 

boolean Paused -- When true, execution of the simulation is temporarily halted, and all that goes on is 

communication with client monitors. 

boolean Logging -- if set to true, reports of each context switch and each simulation pass completion is printed on 

stderr. (Note: if the Nest library has been compile with the preprocessor symbol "debug" defmed, additional 

information useful for debugging Nest itself will be printed. 

boolean Broadcast -- if true, then messages are sent from a sender to all of its neighbors, regardless of designated 

destination. (Note: this flag and Poim2Point are mutually exclusive). 

boolean Point2Point -- if true. then all messages must be addressed to individual node destinations, not to the 
"a1I-of-my-neighbors" destination indicated by O. (Note: this flag and Broadcast are mutually exclusive). 

long Delay -- default global delay used to set message delivery delay on links which have weight set to O. 

fd_set ClienlS -- bit mask which indicates which file descriptors correspond to sockets with clients monitors 

connected to them. 

Cd_set Writes -- bit mask which indicates which file descriptors correspond to soclcets for which data to be sent to 

a client monitor via nbwriteO is still pending completed transmission by a subsequent call to nbsendO. 

15 June 1988 



Page 10 Global Simulation Variables 

15 June 1988 

.. 



-"est Library Cscr Guide Page 11 

5. Miscellaneous Hints 

5.1. Shared Data 
The Nest programmer must be careful with storage which is accessed by more than one node. Such storage falls 

into two categories, static or extern data, and heap data. It is suggested that global data be allocated in the fonn of 

arrays with one entry per node, so that each node only access its own entry. If this discipline is followed there can 

be no corruption of one node's data by another node. In cases where this is too restrictive because several nodes 

need to share a single global data location, critical sections of code should be bracketed by calls to holdO and 

releaseO· 

It is common for nodes to share access to data structures in the heap to which a pointer has been passed from one 

node to the other in a message. As with globals, holdO and releaseO might be needed to enclose critical sections if 
both sender and receiver node were concurrently accessing the data structure. However, this is a very bad practice 

which should be avoided. not only because creates programming difficulties. but because it compromises message­

passing semantics; ie. a message should be readable in the state it was in when it was sent. Thus. concurrent access 

to message data should be prohibited by either synchronizing access through message passing. or else by passing 

sending pointers to copies of data structures. not pointers to the original data structures. in messages. 

In addition to the problem of concurrent access, there is the problem of ensuring that all storage allocated on the 

heap is freed_ If a sender sends a pointer to a data structure to several recipients. no recipient, nor the sender, should 

free it unless it is somehow sure that all recipients have read it. Once again. message passing can be used to provide 

the necessary synchronization for this. but a better solution is to duplicate data sttuctures, either before sending 

them. or in transit by a channel function. When this is done. all recipients can and should free messages after they 

get them. and senders can free their original copies of the data whenever they like. 

5.2. Debugging 
You can use your favorite debugger. ego dbx, dbxtool. adb. to debug a Nest simulation. One factor that 

complicates debugging is that, while you step through a the function running on a certain, Nest may switch context 

on you. so that you are suddenly thrown into the middle of a function running on another node. As a result, it is 

important to be cognizant of the current node id at all times. and to make sure that you notice whenever it changes as 

a result of a context switch. One very convenient way of doing this is provided by dbxtool on SUN workstation. In 

dbxtool you can ask to "display" the variable node_id. and the current value of node_id will be constantly 

displayed in a subwindow so that it will change whenever the context is switched. 

Note that in order to debug Nest in dbx. you should have dbx ignore the signals SIGPROF, SIGALRM and 

SIGURG. You can set this in a .dbxinit file. 

15 June 1988 


