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ABSTRACf 

Solving the Depth Interpolation Problem 

on a Parallel Architecture 

with Efficient Numerica1 Methods 

Dong J ae Choi 

Many constraint propagation problems in early vision , including dep由 interpolation ， can be cast 

出 solving a large system of linear equations where the resulting matrix is symmetric and positive 

de缸由e (SPD). Usually，由e resulting SPD matrix is sp盯臼. We solve the de严h interpolation 

problem on a parallel architecture , a fme grained SIMD machine with loca1 and global 

communication networks. We show how the Chebyshev acceleration and the conjugate gradient 

methods can be run on 由is parallel architecture for sparse SPD matrices. Using an abstract 

SIMD model, for several synthetic and real images we show 由at 由e adaptive Chebyshev 

acceleration method executes faster than the conjugate gradient method, when given near optima1 

initia1 estimates of the smallest and largest eigenvalues of the iteration ma时x. 

We extend 由e臼 iterative meth创s through a multigrid approach , wi由 a fixed multilevel 

coordination strategy. We show again 由at the adaptive Chebyshev acceleration method executes 

faster than the conjugate gradient method , when accelerated fu时也r with 由e multigrid approach. 

Furthermore , we show 由at 由e optimal Chebyshev acceleration method performs best since 由is

method requires local ∞mputations only , whe陀臼由e adaptive Chebyshev acceleration and the 

conjugate gradient methods require both local and global computations . 
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1. Introduction 

1.1 Three Disciplines 

This 由esis is interdisciplinary research across 由r臼 a陀as: computer vision, numerical analysis. 

and parallel computer architectur四. As such , we believe it is representative of a necessa可

approach to a broad range of sensor-related computational problems: 由ey must be solved 

accurately , and 由.ey must be solved efficiently; but standard algorithrns on standard conventional 

machines used to fail ωperforrn satisf actoril y . 

Many midd1e-level constraint propagation computer vision problems , including depth 

interpolation. can be cast as solving a large system of linear equations with a symmetric positive 

defmite (SPD) matrix. Usually , the resulting SPD matrix is sp创百. We are interested in solving 

由is problem in a computationally efficient way . 

Many current iterative methods employ on1y local inforτnation in the matrix. Even when global 

inforrnation is used , it is done in an indirect fashion. We study the more efficient iterative 

me由ods well known in numerical analysis. In particular, we investigate those methods where 

global information in the matrix is obtained in adaptive fashion . 

Second1y, we explore whether these efficient iterative methods can be run on a family of 

emerging parallel architectu陀s，由us fully exploiting 由e computational power provided by these 

machines. We first defme the 缸chitectural need impo臼d by our application and then show the 

implementation of the algorithms on a parallel architecture step by step. As a result of analysis, 

we pr它dict how fast 由e algori由msw山 run and how much storage space 由ey will require. But 

the other side of the coin is 由at， even with the most powerful hardware avai1able now , we 

demonstrate how slowly this one particular problem in ∞mputer vision will run. (even not 

mentioning 吐le whole vision task which is so eas i1y and unconsciously performed by the human 

visual sys忧m.)
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1.2 Perspective on Parallel Computation 

In general. in the development of parallel machines. three perspectives on the machine should 

progress 1Ogether. First, there is 由e research work on theo陀tical models of parallel computation. 

Second, there is the actual implementation ofparallel hardwaJ它. based on existing technology and 

the accompanying development of software environments, high and low level languages. new 

programming techniques. and various so丘ware 1001s. Lastly, there is the development of the 

algorithms 由at can best utilize the new parallel machines. In fact , the urgent need of efficient 

execution of application programs 0仇en initiates the whole process of research and development 

Our research can be scrutinized under this tl宵。陀tical framewo rk. We have developed a model of 

computation for the single instruction multiple data (S lMD) class of machines imposed by our 

application need. Secondly , we have the algorithms; in our case. the efficient numerical methods. 

which we analyze for spa臼 and time complexi叩 of parà.Ilel computation. Finally. we discuss the 

陀sultant advantage on actual execution of application, presenting numerical results and 

predictions of enhanced perfonnances . 

Our work contributes to a par甘cular family of parallel machines. (S lMD architectures with local 

and global ∞mm山山ation netwo血s;) to the area of image processing. (the depth interpolation 

problem;) and more generally. 10 smoothness constraint propagation problems in early vision and 

other related sensing . 

1.3 Acceleration of Execution Speed 

We also p陀回nt a sUJVey of the iteration methods with particular stress on the execution speed. 

We stan with wide classifications and narrow 由e s∞pe until we reach the pa而cular result we 

have achieved. This sUJVey also pulls 10gether numerical analysis and parallel computation . 

Fi rst, we address the issue of execution on digi ta1 computers against analog processing on an 

analog mechanism. Digital procεssing has 臼veral advantages: flexibility , precision, and stability 

in terms of both maintenance and repeatability. But its problem is s院ed. We deal mainly with 

digita1 computation in our work , but we retum 10 analog ∞mputation in a section of the last 

chapter where we will discuss the possible image processing hardware in future. 
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Second. we address the choice of using a serial method 由at can be run only on the sequenùal 

machines against a parallel method 由at can be run on a parallel architecture as well. The Gauss

Seidel method is a typical ex缸nple of much used serial methods. which converges when the 

matrix is SPD. There ar它 variations of it. such as the successive overrelaxation or the symrnetric 

successive overrelaxation methods. which sp∞d up 由e iteration pro臼ss further on a serial 

machine. The Jacobi method is a first choice for the paral1el method. but it is slowcr than the 

Gauss-Seidel method when executed on 由e sequential machines and it converges only under 

restricted conditions. (for exarnple. when the matrix is irreducible with weak diagonal dominance. 

which happens to be not satisfiable in the depth interpolation problem.) However. 由e陀 a陀 still

other more powe而且 methods , such as 由e Chebyshev and the conjugate gradient, which can be 

run also in a paral1el fashion. These methods are indeed very powerful. and 由ey are provably 

optirnal. but they require global information. Naturally. our choice is on parallel rne由。ds.

Specifical1y. we have worked on the adaptive Chebyshev acceleration. which is a variation of the 

Chebyshev. 组ld the conjugate gradient methods. Even 由ough 由e adaptive Chebyshev 

acceleration me由od uses the slow Jacobi as the underlying basic iterative method, it is faster 由an

由e co时ugate gradient method when started with more accurate initial estirnate of the largest and 

smallest eigenvalues of the iteration matrix，由at is. with more accurate global information. 

Furthermore. when good estimates of the largest and srn al1est eigenvalues are available. we can 

use 由e optimal Chebyshev acceleration rnethod , which takes less execution time since global 

computations needed to obtain better estirnates of the eigenvalues are eliminated . 

Thi时， the iteration methods can be accelerated funher using a multigrid approach. where several 

∞arse and 阳1e grids of various 陀solutions are employed. The execution at ∞arse levels is f:出ter

but of lirnited precision, while at fine levels we have ordinarily slower response but finer details 

M冠 obtained. 节lfOUgh exeω由19 manY iterations on 由e coarser levels 臼 far as possible. at least 

in the initial 区ages. the iteration pr∞ess is s严咒died up. Others have 回ed 由e multigrid approach 

wi由出e Gauss-Seidel method as 由e underlying itcrative relaxation method: in our approach. we 

inv臼tigate 由e multigrid approach wi由 two methods mentioned above. which are more na阳rally

paral1el, but use global information in the matrix. Here. we ob白rve similar accelerations 由rough

由e adoption of multigrid approach. 0仇en. 由e degreεof irnprovement is less drarnatic since our 
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me由ods 缸芭挝ready powerfu1 enough for the execution on the finest level only . 

Lastly , we mention the parallel implementation issue again. The execution of the powerfu1 

numerical methods on a chosen parallel architecture , the SIMn machines with local and global 

communication networks , will be ana1yzed in detail bo由 in terrns of spa臼 and time complexity. 

ηle Connection Machine with a floating point accelerator 山lit， possibly of double precision 

缸i由metic ， is a good choice to run these a1gorithms efficienùy. We shall provide the necess红y

technical guidance and relevant comparisons on the matter of machine selection, but our main 

concentration will be in a more idealized sening. That is , a tree machine wi由 multiple mesh 

connections of different resolutions is nearly equivalent in powerωa pyramid machine, and 

naturally it can execute 由is kind of matrix iteration problems in the fastest way imaginable. Such 

an idealized architecture will be used as the main vehicle and one particu1ar abstract SIMD model 

based on this topology will be used extensively throughout our work . 

1.4 Overview of Thesis 

Chapter 2 examines the dep由 interpolation problem in detail. The forrnulation of the problem 

leads 10 solving a large system of linear equations with a SPO matrix. The previous work on 由is

problem and other related work are reviewed. We will show how , as an evolutionary process, our 

approach can solve the same problem in a computationally efficient way . 

Chapter 3 discusses 由πεmachines from the SIMO architecture family. An abstract model of 

SIMD computation whose features are drawn from the thr臼 SIMO machines is derived. The 

architectural features needed to solve a large system of linear equations with the sparse SPO 

matrices are elaborated further. The generalized abstract model which provides 由e power of the 

pyramid machine is then studied . 

Chapter 4 introduces two computationally efficient me由ods 由at are well known in numerical 

analysis. 节le parallelization of the computations on a SIMO architecture is given and the 

computational and the communication ∞st of 吐黯 computations are ana1yzed based on the SIMD 

model derived in Chapter 3. To this moment, the main focus is on the efficient execution at 由e

finest level. Then，由e multigrid me由od is reviewed to show eventually how two efficient 
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methods can be run faster by employing severallevels of the resolution. 

Chapter 5 looks at numerical results and compares 由em.

Chapter 6 reviews the contributions made and suggests possible future directions. 

The Appendix contains program listings and supplementary numerical results . 
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2. The Depth Interpolation Problem 

h 由is chapter, we stan the discussion of the depth interpolation problem in the context of early 

vision. We then describe the work done by Grimson [Grim 81] and Teπopoulos [Terz 84].1 

After discussion of further related work , we p陀sent 由e significance of our 陀sea比h.

2.1 Nature and Significance of the Problem 

Visual processing has been formulated as a series of computational stages. According ωMarr 

[Marr 82], pe巾a:ç应由e researcher most responsible for the popularity of 由is framework , each 

stage consists of a logically cohesive computation that takes as input some visual representation 

and produces as ou甲ut a new representation , a more ∞mplete and useful description of the visual 

world . 

Early vision is the set of processes 由at recover the physical pro归口ies of 3D surfaces from 2D 

imag臼.白le examples of early vision pr时esses are edge detection , binocular ste陀0 ， struc阳陀

from motion, shape from texture , shape from 由ading ， optical flow , surface reconstruction, andω 

on. 

M町's framework of early vision is characterized by at least three major processing stag臼. The 

first stage transforms 由e intensity 陀presentations of the retina into a primary 陀p陀sentation ，

called the primal skerch. Changes in the physical properties of surfaces almost always give rise 

to intensity changes in the images , and it is at the level of the primal sketch 由at the locations of 

由e臼 changes are made explicit In the second processing stage , special pro臼S臼s， such as those 

concerned wi由 stereo and 缸1alysis of motion, infer information about the shapes of surfaces from 

the contents of the primal sketch. Since inferences can typically 民 made only at those locations 

which have been marked in the primal sketch, so the information generated is sparse, and is 

∞llected into sparse representations of s毗ce shape that are 陀ferred to as 由eraw牛D skerch 

The final stage is one of full surface reconstruction in which the sp盯se representations a陀

tran如

1 Boult's dissertation 回oul 86] provides ano由町 gcx地 review on Ihe research done by Grimson 缸1d Terzopoulos. For 
his critical analysis. see his chapter 7. 
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points in the scene, consistent with our perception . 

Human peπeption is a vivid one of dense and coherent surfaces in dep由. This suggests 由at 由e陀

exists a midd1e level visual process 由at transfoπns 由e scattered information into a dense surface 

representation. The low level visual process臼 provide several visual cues to reconstruct 由e

visible surfacεs. One low level visual pro臼ss. sterω. generates depth only at scattered edge 

points; another process , shape from texture, generates orientation at texel points 由at may be 

scattered as well. Given these sparse constraints , a depth interpolation proαss wou1d compute 

由e dep由 of the visible surfaces at eveηpoint explicit1 y . 

2.2 Previous 飞，Vork

2.2.1 Work done by Grimson 

Grimson formu1ated one approach to 由e dep由 interpolation problem and studied it in the 

陀stricted context of dep由 constraints from stereopsis [Grim 81]. 

τbere is evidencε 由at the human visual system detects intensity changes over a range of 

r它solutions through the use of upωfive independent, spatial-台equency-tuned ， bandpass channels. 

Grimson proposed 由at before 陀construction begins. the mu1tiple , sparse dep由陀presentations

that are 叫utt阳h阳rou咱g副趴hth由阳he d副i伽穹凹m削ntba呻a臼邮s邱s chan阳nne

蚓ch in a way which mai剖削in阳I

contains spar回 depth information at 由e 仙lest resolution possible. Next. a single reconstruction 

process opera问 at 创s fir削 level generates a 叫ue M 2j-D sketch 陀presenting dep由

information at high resolution . 

The input 10 由e interpolation process consisted of the zero-crossings2 of the convolved image , 

with depth information ∞mputed along zero-crossing ∞n1Ours. 白lese contours tend to be 

scatte陀d at random rather 由an distributed uniformly. ln general , any one of a multitude of 

widely varying surfaces cou1d fit 由e explicit conditions , the depth or surfa臼 orientation values 

2Zero<rossings mark the 5ign changes of 且 band阳S5 filtered image . 
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imposed along the zero-crossing contours. The implicit conditions were 由at the surface should 

not impose any zero-crossing contours other than those which appea陀d in the convolved image . 

Grimson suggested an "interpolation" method. He suggested 由at given a set of scaltered depth 

constraints corresponding to points along the zero-crossing contours of the primal sketch, the 

surface which best fits the known constraints is 由at which passes through the known points 

cxact1y and minimizes 由eexp陀ssion ，3

55υ+2旷+以叫，
陀feπed10 部由e quadratic variation of the surface v.4 The interpolation approach is preferred. 

provided the known observations are exacL But since we have noise in practice , different 

approaches such as smoothing seem to be better; Teπopoulos uses smoothing only. 

Nevertheless , if we use very stiff "spring ∞nstants" to constrain the surface wi山 the known 

values , then we retum to 由e interpolation approach again. 

ln the implementation, Grimson w臼 concemed with biologicalfeasibili纱， which was important if 

one was to describe a model of the human visual system. A 民t of algorithmic criteria was stated 

as follows [Grim 81 , p. 163]. 

• Parallelism: The need to process large amounts of input data in short amounts of 
time implies the use of computations that can 民 implemented in a parallel manner, 
using a large number of interconnected procεssors. 

• Local support: If 由e number of processors involved in the computation is large , it 
民comes infeasible ωconnect each one 10 all of the others. Rather, there should only 
be local connections 民tween 由e proαssors. He陀 ， local means not only 由at 由e
number of connections be small , but also 由at since the information being pro臼ssed
has a two-dimensional plane as an underlying coordinate system，由e connections 
should also be local in a spatial sen臼.

• Uniformity: If it is possible , though not 出 critical as 由e first two , an algorithm 由at
uω泣臼 parallel networks of identical processors will be favor回 over other 
algorithms . 

于ηn阳T
ax Y it回萝

4Actually, Grimson invesúgated bo由 h田polation and a胃roximation m础叫s [Grim 81. p. 177). He suggested that 
由e conjugate gradient 创gor恤m is 叩propriate for the case of 叩proximating the surface, by r吨uiring 出at the surface 
minimize an objecùve function (由equa企四c variation) and pass near, but not necessarily through.山e known points. 
He suggested 创抽出"山e gradient JrOjection algorithm is appropriate for 由e cωe of interpolating the surface, by 
叫uiring that the surface minimize lUl ob严tive function (the quadratic variaúon) and pass eltactly through the known 
pomts . 
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He used 由e gradient projection method to find an interpolated surface but slow convcrgcnce rates 

were ObseIVed in his work. For ilIustrated examples , it took 5α}-}αX> iterations to reach the 

stopping condition. But it was indicated 由at a multigrid implcmcntation might require on1y 

25-50 iterations [Grim 83 , p. 67] . 

2.2.2 Work done by Terzopoulos 

Terzopoulos work.ed further on depth interpolation problem [Tcrz 84]. He proposed a 

computational 由e。可 of visible-surface representations and developed a visible-surface 

陀∞nstruction proαss for generating them. Instead of Grimson's "inte甲olation" approach , he 

proposed an "approximation" method where 由e disCI创e potential energy functional associated 

wi由 the surface is minimized. In his formulation , known dep由 constraints ， or orientation 

∞nstraints ， or bo由， contribute 出 spring potential energy terms . 

2.2.2.1 Visible Surface Representation 

The physical model for surface 陀construction by Terzopoulos can be described 臼 follows [Terz 

84 , p. 35]. 

.ηle implicit surface sIl，1∞由ness ∞nstr血t is modeled by a thin , flexible plate. 

• Ideal springs constrain the thin plate wi由 explicit constraints:ιeither dcpth 
measurements , or orientation measurements , or both classes of constraints. 

• To har咀le discontinuities , the smoothness imposed by the thin plate is relaxed locally 

• fr臼 boundaries are intrωuced along surface depth discontinuities and 

• patches of thin plates 缸它 joined by membrane strips along surface orientation 
discontinuities. 

2.2.2.2 The Continuous Form o( the Problem 

Mathematical problems for which the existence, uniqueness , or stability of solutions cannot be 

guarantβed a priori are said to be ilJ-posed. Ill -po四d problems cannot be solved in general , 

without imposing some additional restrictions on possible solutions. Through a number of 

systematic 叩proach臼， notably 由e regularization methods [Tikh 77 ], ill-posed problems can be 

solved by reformulating them as variational principles 由at are effectively ∞mputable. Un1ike the 

original problems , the variational principle formulations are well-posed in the sense 阳t a 

solution exists , is unique, and depends continuously on the data . 
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Terzopoulos' analysis [Terz 饵， p.73] 陀veals 由at the minimal sets of conditions under which the 

visible surface reconstruction problem is well-posed for a single surface patch are 

·由ree noncolinear dep由 constraints ， or 

• two dep由∞nstraints as well as a single p or a single q orientation constraint, or 

• a single depth constraint 出 well as a single p and a single q constraint, or 

• a single P and a singlc q constraint with the center of gravity of 由e surface fixed , 

where p and q are X and Y components of the surfa臼 normal. 

Since the visual processing of natural scenes readily yields many such constraints , the problem 

can be considered 出 being well-posed in general. 

Many visible surface reconstruction algorithms rely on the minimization of discrete functionals 

associated wi出 the surface. The ones Grimson and Terzopoulos used are given by the summaùon 

of the discrete potenÙal energy functional for thin plate，由e discrete functional for dep由

constraints , and the discrete functional for orientation constraints. 

The conùnuous forrn of the surface reconstruction problem is transforrned to yield the simplified 

approximate energy functional 巳h(0) ， where 由e 陀gion (由e projection of a surface patch to 

two-dimensions on the re由la) has been divided into identical squ缸它 elements E with sides of 

length h through a uniforrn tessellation 'th . 

巳h(内=号(内+毡(i) + 呜(vh) ，

where 

号(内 =iUL(VL问ψ2+(ψ2 俐，

巳毡;杂(v仲v ß [v\Xj巩)-d(Xi，y)]2.

(仅xi叮)e D 
(.rj .J} 

坞的==~ L 
(.rj .J}e P 

αp(XiJJ)[〈(冉，yJ-P(Xi，yJ]2

+~ L 
(.rj .Jj)e Q 

αq [v~汽机;气扣h(U伺伺x乓乓j'Y)-才q(乓附叫，Y句y马j川)川川]户
Z

(仅~i，y}
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where D denotes the set of points in the region at which the scattered dcp由 information is 

pre臼nt， and P and Q a陀由e set of points at which p and q measurements are available. The 

values of αand ß. . are given by the spring constants. 
。j'与 . (Xj句，.)

Terzopoulos applied the finite element method for the discretization instead of the finite difference 

method. an older technique. He used a nonconforming finite element [Terz 饵. p. 77]. 

2.2.2.3 Discretization of the Problem 

Since the 且mction is convex. to obtain 吐lC minimum. wc set to zero i岱 panial dcrivatives with 

h respect to each of the displacements uij for node (i ， β. 白le minimizing vector of displacements. 

tth, is equal 白白e 山世que solution of a large system of linear equalions: 

Ahuh = lJh . 

The nonzero coefficients of each equation is specificd 臼 summations of computational molecules 

由at denote multiplicalions of nodal variables by scalars. In the presen臼 of constraints and 

discontinuities , a set of computational molecules ∞mpules 由e nonzero coefficients of the linear 

system by 1∞al computations involving simple multiplications and additions of nodal variables in 

a specified spatial arrangement. Teπopoulos uses four set of computational molecules , plate 

molecules , depth constraint molecules. orientation constraint molecules. and membrane 

molecules. 

The platc molecules are shown in Figure 2- 1. The circles , or computational atoms , denote (h2 

山nes) 由e nonzero coefficients of the nodal variables. Node (i• ρis indicated by a double circle 

in each molecule . 

When a node is sufficiently distant from either constraints or discontinuities , only the plate 

moleωes contribute. This giv臼由e following nodal 叩ation which relates 心 for 川阳ior

node (i.β ， to 由e nodal variables of 仕le other nodes: 
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-(8/h2)(uiIJ+uilJ+ι1+ι1) .. 
+ (2/的 (uilrl+4IFI+ullpl+ullpl)

+ (1/的 (ulzJ+uLZJ+uι2+uLd)

= O . 
.. 

The nodal equation can be rep陀sented by a nodal molecule as illustrated in Figure 2-4. Note 由at

the interior node molecule is obtained by summing the plate molecules in Figure 2-1 . • 

τne effects of depth constraints are represented by the dep由 constraint molecule shown in Figure 

h耐 (i， j) 总 C则rained with 由e depth constraint value J:.i' 阳阳时al 叩ation for 2-2. 

Now , 由is node is obtained by summing the dep由 constraint molecule with the plate molecules . .. 
the nodal equation for dep由 constrained interior node is given by 

(2) (20/hZ+pfJUL 

- (8/的 (ullJ+uLIJ+uι1 +比1).. 

+ (2/的 (uilFI+uLlrl+ullFl+ul1JJ

+ (1/的 (ι.i + ιj + 呜-2 +ι2) 

=PL4 . • 

而咄le fi叫~j is dependent or 

Heused 

also ßh = Yd / h, where Yd varies from .1ω2且 [S臼 chapter 5 for a further discussion of ßh.] 

is constant The value employed by Terzopoulos for Yd is eitber .5 or 2.0 in most cases . .. 

The effects of orientation constraints are 陀P陀sented by the orientaùon constraint molecules 

For instan饵， ifnode (i-l ， βis p constrained then the nodal equalion for shown in Figure 2-3 . .. 
node (i， βis obtained by summing the upper left orientaùon constraint molecule in Figure 2-3 

with the plate molecules. Now. the nodal equation for interior nωe (i.βis given by 

' 

.. 
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(20/ h2 + αiIJ/(4的)u;

- (8/的 (ui1J+uLlJ+ιl+uLJ

+(2/h2)(uilFl+uLFI+uilJ+l+uLIJU) 

+ (l /h2 - aLj /(4的)42J+(l/的 (uLJ+uι2+uLd)

=(41J/(2h))plu 

τ币be v叫a创lu回时l爬e fl川:νj川is d由e庐阳阳n毗1

i沁s ∞nst阳臼t. T四lle usual value emp抖10叼yed byT曰er白zop庐ou凶ùoωsfì伽o町r)耳〉 i沁s 4.0. [Again s出 chaprer 5.] 

1-+ 

(3) 

Note 由at at nodes where 由e effects of constraints exist, bo由 the right and the left hand side of 

the nodal equations 缸它 modified as in equation (2) and (3). We will [毛turn to 出is later in section 

4.1.3 when we discuss estimation of eigenvalues of the iteration matrix . 

Smootlmess constraints are inapplicable at a depth discontinuity. The depth discontinuities are 

treatcd 臼 free boundaries. Consider a boundary node 由at is su旺icienùy near a dep由

discontinuity. Whenever a depth discontinuity node coincides with any constituent atoms of a 

plate or constraint molecule associatcd wi由 the bounda可 node，由at molecule is prohibited from 

taking part in the summation giving rise to the nodal equaùon. Suppose 由at 由e shape of 由e

陀gion is a 呵uare and consider a boundary node at the comer of the square. 白le nodal equation 

for 由is boundary node (ignoring ∞nstraints) is given by 

(4/的 U;

一 (4/hZ)(41J+ι1)

+ (2/的 (U:I ，i+ I)

+ (1/的 (uf+勾 +ι2
= O. 

(4) 

Figu陀 2-5 illustrates 由is boundary node (marked as a double circle) which is near dep由

disconùnuity nodes (marked by X's). In 由is ex缸nple ， only 由ree computational molecules from 

the set in Figure 2-1 p缸ticipate in 山e construction of the nodal equation. 
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Figure 2-3: Orientation Constraint Molecules7 

节le upper le丘 molecule is used only if (i-l, j) E p， 由e upper right only if (i+ 1 ， βε p ， 

the lower left only if (i , j-l) E Q, and the lower right only if (i, j+ 1) ε Q . 

• ‘ 
6taken fromπen 84, p. 92] 

7taken from [Ten 84, p. 93) 
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Figure 2-4: The Interior Node Molecule8 
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× 

Figure 2-5: An Ex缸nple of a Boundary Node Molecule9 

8 raken 仕om [Teπ84， p. 911 

9 raken 仕omπeπ84， p. 991 
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2.2.2.4 Properties of the System Matrix 

Definition 1: A real matrix A is symmetric and pOßitive definüe (SPD) if A is 
S归口metric and if (v , Av) > 0 for eve可 nonzero vector v. lO 

17 

Because of the symmetric nature of the computational molecules , it can be easily shown 由at 由e

resu1ùng matrix is symmetric for any regional shapes. Furthermore , Terzopoulos shows the 

stronger rcsult 由at 由e matrix generated is SPD [Teπ84， p.l∞] : 
The fmite element method has bestowed computationally desirable properties upon 由e system 

matrix, including sparsen臼S ， bandedncss , s严nmetry， and posiúve definiteness . 

In general , the depth interpolaùon problem is easier to solve when we have denser constraints. 

This statement can be given an informal，由ough quanùtative , interpretation. Consider 由e

restricted case of the dep由 constraints only. We can derive then the relation between the density 

ofthe dep由 constraints and the positive defmiteness of the system matrix as follows . 

11 .11 nll The matrix A n can be broken down as the sum of two matrices: A n = A: + Bn
• The coefficients 一申

of 出e matrix A~ are contributed by 由e plate molecules, while 由ose of 由e matrix Bh m 
h 

contributed by 由e dep由 constraint molecule. Suppose 由at we have u~; = c for eve可 node (i ， β 

where c is an arbitrary constant, i. 

11 .11 11, ,. 11 , 1111, , 11 nlllt (u" , A" u") = (u", A; u") + (u", B" u"). 

For 削s special image , (z九4: i) = 0 since c2 can 民 factored out. [As an exer侃， s山川te

ull = (c C ••• c) T into the left hand side of the equaùon (1) or (4).] Since Bh is a diagonal 

matrix where the coefficient is given by 

ßh if / = m and this node is depth constrained 
o 。由erwise ，

where BII = (bl",) for 1 S /, m S n. Here , n is 由e number of nodes in a depth continuous region. 

B y factoring out c2, it can be e臼ily shown 由at(J， Bh uh)is pmportiona1ω 由e number of depth 

h 
constrained nodes in the region. Thus，由e matrix A" becomes increasingly ill-condiùoned as 由e

density of the depth constraints gets sparser. 

The matrix A 11 is 剖50 spar百. Even for interior nodes which are sufficiently distant from a 

!OGiven two vectorsνand W of R", the iru田 product(ν， w) of the vecω凹的白 W is defmed by (v, w) 三 νT w where 
v' denoteS由e trar叩部e of the vector v . 
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boundary. 由ey interact wi由 OIÙy 12 neighbors. all of them at most OIÙy 2 nodes away. as 

illustrated in Figure 2-4. For nodes near discontinuities. even fewer neighboring nodes are 

involved. 

2.2.2.5 The 岛1ultigrid Relaxation Method 

Terzopoulos used a multigrid method [Bran 77] with 由e Gauss-Seidel rclaxation method at each 

relaxation sweep to speed up the convergcnce ratc.ηlcse multiresolution iterative algorilluns a陀

suitcd for implementation on massivcly parallel networks of simple. locally-connected 

processors; we shall discuss the multigrid method in full detail in section 4.3. 

2.2.3 Related 飞离70rk

1t is shown 由at two iterative meÙ1ods. the αlebyshev and the conjugate gradient meÙ1ods. are 

provably optimal in terms of computational ∞mplexity [Trau 84] . 

Lee investigated the Chebyshev meÙ10d on sever创 low levcl vision problems [L臼 85]. For shape 

行om shading [Ikeu 81] and optical flow [Horn 81] problems. previ。因 researchers used the 

Gauss-Seidel meÙ1od. which is slow . 

Lee observed 由at the original matrices we陀 not SPD and converted Ù1em to SPD. Fu时lcnnore ，

he derived Ù1e lower and upper bounds of Ù1e smallest and largest eigenvalues of Ù1e matrix. two 

quantities Ù1at 缸毛 essential for Ù1e Chebyshev method. Due to Ù1e simplicity of Ù1e matrix 

involved. he could estimate Ù1ese extreme eigenvalues , prior to major ∞mputation ， i.e. , before 

matrix iterations are staned . 

2.2.4 Significance of Current Work 

We have discussed Ù1e depth inter归lation problem at Icngth. in technical detail. Hc陀. we 

p陀sent the significance of our work. comparing it wi由 existing works. We start Ù1e comparison 

wi由Ù1e most recent work and discuss tcchnicalities again, but also discuss Ù1e bigger issues 

associated wi由 ourwork.

One difficulty associated wi由由e Chebyshev meÙ10d u臼d by Lee is 由at it needs good estimates 

of由e larg臼t and smallest eigenvalues of Ù1e undcrlying matrix. Unless 由is matrix is sufficiently 
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structw:时， it may be analytically impossible to get g∞d estimates [Golu 85]. In 出is thesis we 

shall study the adaptive Chebyshev acceleration method where 由e estimates of the extreme 

eigenvalues are adaptively improved. We shall study also the conjugate gradient method l1 where 

由e iterative process is not started with any initial global information. 

ηlese two iterative methods are numerically efficient but 由ey 陀quire global infonnation du由理

由e computational process. How can we get global information and also efficienùy compute it? 

In other words , what kind of ∞mputational structure can support 由e computational requiremeru 

of these highly efficient numerical methods? The problem here is a straightforward one-to-one 

mapping of algorithms to ∞mputer archi臼cture. Another related question is , if some computer 

architecture provides the convenient faci1ities to compute global infonnation, then why we do not 

take full advantage of these capabilities? With the suppo民 of hardware , the implementation of 

these algorithms becomes quite easy.12 

In our study, we follow the Terzopoulos' fonnulation on visible surface reconstruction and u白

白e matrix derived by him. However, we present an alternative depth interpolation process using 

由ωretically better iterative methods, which speed convergence and are amenable to certain 

classes ofp町allel computers. 

This aspect of the problem reminds us of Marr's discussion about three levels at which an 

information processing devi臼 is understood [Marr 82 , p. 24]. At the top level. we have the 

abstract ∞mputational 由ωηof the device. At the middle level, the focus is on the 

陀presentation 创划 algorithm ， used to implement the computational 由eory. At the bottom level, 

we 缸e concerned with the details of how the algorithm and 陀pre民ntation are 陀alized physically 

- the neural networKs in case of the human visual system or 由e computer architecture for the 

machine vision. From 血is point of view. the theoretical developments by Grimson and 

Teπopoulos were much inf1uenced by the human visual system , partly because of the wide 

IINote that 由e conjugate gr回ient method w臼 alrωdy studied by Grimson f，时也叩严。对mation approach and 
mentioned by Terzopoulo量 as well. 

l 去The a由ption of our approach 曲。ugh 阳 bottom叩恤ki吨 process mi民t be a sort of reformulation of the 
problem. In [Mins 86, p. 144], we have: "We of!也n self-impose 邸S山ηptions that malce our problem more difficult, 
and we can esca严 from this only by reformulating those problems in ways 阳t give ωmoreroom." 
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discrepancies betweεn the high perforrnance of the human visual system and the low performance 

of the machine vision system. and partly by the top-down way of their thinking. This may have 

led them to ÌTISist too much closeness to human visual system even at the implementation lcvel. 

Our study was deeply influenced by the hardware implementation issue. In particular. a 

particular parallel architectu陀. a fine grained SIMD machine wi由 local and global 

communication netwo血s. turned out to m臼t our need. First. 由is family of machines is 

increasingly available. Second. a1l ne臼ssary computational requirement. including the 

computation of global inforrnation. can be met. 13 

h 由is worlc. we study two efficient numerical methods and their implementation on the parallel 

architecture chosen. With 由is partial 陀sult， we examine again the issue of computational 

efficiency raised by Teπopoulos. He used the Gauss-Seidel method in his implementation of 

multigrid method. Here, we apply two highly efficient and other methods to multigrid approach. 

Again, we analyze the additional computational req凶rement and the implementation detail on 

this par况lel 但'Chitec阳re. 

In one sense. our study deals mainly wi由由e bottom level hardware implementation issue and 

can be designated 臼 funher refinement on worics done by Grimson and Terzopoulos. But the 

other 出pect of our s阳dy is a bit more general. Traditiona1ly, a lot of work in computer vision 

using the para1lel machines. in p创tlαJlar，由e SIMD class of machines , have been in the area of 

low-Ievel vision. our worlc extends the research into middle-level vision. As a concrete 

example , we have solved the dep由 interpolation problem. But our solution, the efficient 

execution of 让lesp缸田 SPD matrix iterations on a par挝lel architccture. can be applied to other 

middle-level machine vision tasks as well 笛 to other general areas such as map m政ing. 

In chapter 4 , we shall review rigorously 由e mathematical 由ω可 behind the iterative methods and 

discuss the implementation of them on a 阳rallel architecture. Before doing 由低， we sha1l discuss 

由is particular par划lel architecture in next chapter. 

\3We shall d臼αibe shonJy the r吨uirement on architecrure more formaUy in next ch昭er. a1 section 3.2.1. 
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3. Architectural Background 

3.1 SIMD Machines I 

白uee single-instrucùon multiple-data stream (SIMD) machines are reviewed to illustrate the 

architectural background concepts 由at moùvated the design of these machines for the eventual 

use in general AI and in particular in computer vision. 

In computer vision problems, we have tremendous amounts of data , either raw data itself or the 

propefÙes derived thereof, such as the depth. The conventional von Neumann machines su旺er

from two 臼pects. They have the famous "von Neumann bottleneck" between proαssor and 

memo可 [Back 78]. Also , serial processing offered by convenùonal machines or even moderately 

accεlerated processing, such as from pipeline 缸'Chitectu陀s ， provide only limited processing 

power.14 For a large number of low- and middle- level ∞mputer vision problems , we need 

identical processing re严atedly on whole or pan of data. Therefore, concurrent, fine grained 

SI岛ID processing is a natura1 one for 由is kind of task . 

Data are supplied usually in two-dimensiona1 fashion , for instance , 1024 x 1024 images. The 

mesh communication is a loca1 communicaùon scheme 由at matches the natural structure of such 

data In all 由r臼 systems we review , we asS1.皿e 由erefore SIMD processing and mesh 

comπlUrucauons . 

In addition ωthese common characteristics, interesting features from each system are 

emphasized. First , we review 吐le MPP, particularly stressing the arithmetic computational 

proαssing capability. Secqndiy, we discuss ~ON-VON， emphasizing its global communication 

capability, which is implemen忧d with the u回 topology. Thi rdly , we discuss the Connection 

Machine, noting its more general (albeit more costly to implement) global ∞mm山山ation

1~ PIPE is one of也 most powerful image processing engi:r四 ever developed [Aspe 8η. It is a special-purpose 
machine for real time low-level vision consisting of eight pr∞essing stag臼∞nnccted in a pipelined fashion. As an 
example of algoriÙlms developed on the PIPE, see the ∞nvolution algorithms reported in [Stew 86]. 

节le Warp Systolic Array is another high-严rlormanαhig}让y parallel pi严line 严。c臼sor. In current implementation, 
10 procesωrs are ∞nnected in a linear topology, but they are also in忧rconnec饵dwi山 crossbar switchcs. 白lÏs machine 
is designed as an execuùon vehicle for sysωlic algorithrns and has a high intercell bandwid由 of 80 M bytes/sec. Some 
严'OgraInS deve10pc对 for ∞mputer vision 叩plication are 1∞ x 1∞ matrU multip1icaûon, 512 x 512 FFT, 3 x 3 
convolution, and the Hough transforrn . 
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capability. which is implemented wi由 the boolean n-cube topology . 

Though the problem tack.led in 由is 由esis does not 陀quire symbolic processing capabilities yet. 

we have to note 由at these capabilities will be needed as well either for high level computer vision 

problems or for genera1 AI kind of tasks on top of ∞mputer vision. From 由is 臼pect. it is quite 

worthwhile to observe 由at efficient support of symbolic AI data representations. pa而cularly，出e

predicate ca1culus in NON-VON or the semantic networks in Connection Machine. were 

considered 企om 由e beginning of the design ph臼e of these machines . 

3.1.1 Massively Parallel Proc臼sor

The Massively Parallel Processor (如IPP) is organized of three basic ∞mponents: a sequentia1 

∞ntroller. parallel array of processing elements (PEs), and a staging memory [Batc 83] , [Pott 85] . 

τl1e parallel array of PEs is interconnected in a 128 x 128 square mesh. lt is possible for 128 

columns of l-bit data to be moved from/to staging memoηto/from 由e parallel array. Each PE 

can communicate with its four neighbors. In MPP, each PE can send a bit to its neighbor in a 

singIe machine cycle, where the nominal machine cycle time is 1∞ nanosecond. On chip. the 

PEs are connected in a 2 by 4 m臼h. 

Each PE is a bit-serial 山ùt. and contains five l-bit registers and a l-bit ALU which can perform 

boolean and arithmetic operations. Each PE is 础50 connected to an off-chip random ac臼臼

memo可 storing 1024 bits. Since 由is address bus can be expanded upω16 address lines , the PE 

memo可 can be exp缸回ed to 65.536 bits per PE . 

Each PE has a1so a shift register whose depth can be se t. under program control. from 2 to 30. 

With this shifter. f10ating point operations , such as a1igning f10ating point fractions or 

normalizing f10a由19 point results. can be proαssed qui也 efficiently. For example, for a parallel 

array 山山 of size 128 x 128. the actua1 execution speed of 470 million addition operations pcr 

second. 291 million multiplication 0归rations per second , and 165 million division operations per 

second have 民en reported with 32-bit f10ating point data format as shown in Table 3- 1. 

In the 如1PP. a lot of engineering effort has 民en spent on the staging memory. It is a large 
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multiωmensional-ac臼臼 memo可. It is divided into main-stager , an input su~stager. and an 

ou甲ut su~stager， words are 64七it wide in main-stager and single bit wide in sub-stager. Staging 

memo可 buffers the data between 由e parallel array and a front-end computer; it can also refo口ηat

data . 

It has 民en shown 由at 由e 岛1PP provides veηpowe而11 support for certain image processing 

operations like the Fast Fourier Transform σF盯 which requires communication between pixels 

or points located far apart in 阳 image. The staging memo可 allowed data to be permuted and 

routed at high s严ed rates to array memo叩 for computation of FFf 's of varying size and 

pr它clslon. 

Operations Execution speed (millions of operations 庐rse∞nd)

8-bit 16-bit 32-bit 
íntegers mtegers floating point 

----------
Addition, Subtraction 6553 3343 470 

Multiplication 1861 538 291 

Division 1545 484 165 

Table 3-1: Speed ofTypical MPP Operations15 

IStaken from [Gilm 83. p. 166] 
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3.1.2 NON.VON Supercomputer 

In NON-VON, each PE contains a on-chip memo可 (a 64 word l-bit RAM and a 64 word 8-bit 

RAM), five l-bit registers , five 8-bit registers, an 8-bit ALU , and two s庐ci a1 combinatoria1 

networks , called the I10 switch and the RESOL VE circuit [Shaw 84a] . 

The I/O switch is a matrix of p出s transistors 由at routes data between the two interna1 buses and 

由e three inter-PE communication buses (parent, left child , and right child) in 由e course of 

executing inter-PE communication instructions. Depending on the particu1ar instruction, these 

switches may be configu陀d in such a way 臼 to suppon p创-ent/child tree communications or 

left/right linear neighbor comm山lÌcations. 

Any globa1 communication from the bottomω 由e top of the tree can be 严rformed by a sequen臼

of level by level tree comrnunications from the leaf to 由e top . 

Supponed by 由e tree communication cap抽出ty， machine vision applications using hierarchica1 

陀presentations like quadtrees were developed [Huss 84]. The a1gori由ms developed span 

different levels of ∞mputer vision tasks. They include image correlation, connected component 

labeling, the computation of geome回cprope而白， and the Hough transform. Furthermore，由e

conducted research propo田d two enhancements missing in origina1 NON-VON architecture. 

These additior毡， part of later NON-VON architecture，但它 described below . 

First. mu1tiplication capability has been enhanced by combining 吐1e already existing 8-bit adder 

and shifter wi由 a newly added barrel shifter. Two 8-bit numbers can be mu1tiplied to produα 

16-bit 陀sult in 28 cycles, about 7.0 microseconds , assuming a 250 nanosecond cycle time. 

se∞nd，由e original ∞mmunication paradigms supported by I/O switch, level by level tree 

comm山山ation betw臼n parent and children or one-dimensiona1町ay ∞mm山lÌcation betw臼n

left and right linear neigh协罚， did not suppon也 \oca\ comm旧业ca\Ìon fli臼d oî two-ùimens\ona\ 

pixel arrays. The comrnunication capab凶tyh臼 been enhanced with mesh connections at Ieaf 

level of tree: leaf n创es account for half of the PEs in the system. Since mesh communication 

instructions are provided , NON-VON can 严rform all computations 由at r叫uire loca1 cellular 

communications 臼 efficiently 出 other machines can do . 
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Here, a labeling scheme 由at incorporatcs leaf mesh on binary trcc is illustratcd. Inordcr labeled 

binary tr臼 is shown in Figure 3- 1. In quadtree represemation , often used to represent rcgion in 

machine vision, a node has four sons , labeled NW , NE, SW, and SE. In one particuIar algori由m

由at constructs a quadtree from a binary image , pixels are traversed recursively in NW, NE. SW, 

and SE 0时er starting from the smallest block to progressively bigger ones [Same 80]. 币le s扭le

sequence is used to construct leaf mesh from leaf PEs of binary tree. ResuIting mesh labeling at 

thc leaf level is shown in Figure 3-2. This mesh labeling scheme can be easily extended to any 

number of coarse levels above 由e finest one at the leaf. due to 由e recursive nature of labeling 

algori由m.τbe mesh labeling at 出e ∞arse level just above 由e leaf is shown in Figure 3-3 . 

In terms of 出e execution s院ed. the instruction can be divided into three groups. All intemal 

instructions and mesh communication instructions are executed in one machine cycle. All tree 

∞mm山咀cation instructions involving data transfer between adjacent tree levels are executed in 

two machine cycles. Linear neighbor communication instructions and 由.e RESOL VE instruction, 

where PEs even not at adjacent u回 levels communicate wi由 each other in a single instruction 

execution 由ne， takes three machine cycles to complete execution . 

The other applications develo严d on NON-VON includes the work on database and the 

production system [Shaw 84b]. In par咀ωlar. [Hillyer 86] investigated 由，e algori由ms ，

performance analyses , and simuIation resuIts for the execution of databa臼 queries and production 

systems on NON-VON. 

3.1.3 Connection Machine 

In the 由'st prototype of the Connection Machine (CM), there are 65 ,536 PEs [Hill 86]. Each PE 

contains 8 general purpose l-bit 陀gisters ， 4.ω6 bits of extemal memory , and a simple serial 

ari由metic logic unit Each chip contains 16 PEs and one router unit which sends global 

communication messages through a packet switching network..白le processorfrouter chip runs at 

a clock rate of 4 岛但也. The toIX>logy of the communication network is a boolean n-cube16 wi由 a

16A bc泊i四n n-cube is lU1 n dimensional cube; each vertex of the cube has a single neighbor in each of n orthogonal 
directions in n dimensional space. There 缸e 2" vertiωs in a boolean n-cube 8ßj过 each venex is ∞nnecωd to n other 
vertices. one in each dirnension . 
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router at each vertex. On chip, the PEs a[它 connected in a 4 by 4 square mesh, wi由 each PE 

connected to its four nearest neighbors. This two-dimensional mesh pattem is extended across 

multiple chips into a larger mesh. The mesh communication system does not involve the router . 

In the second proωtype of the CM released recent1y, the sizc of the extemal memo叩 W臼

extended from 4K to 64K bits and a floating point arithmetic accelerator of single or double 

precision was added [TMC 87a]. The new prototype can be equipped with a fast frame buffer 

and can achieve 1/0 transfer rates of 32。如白ytes per second . 

The flexibility of the global packet switching communication network supports irregular and 

d归amic comm山llcation patterns as well 臼陀思ùar ones. But 由e s防ed of 由e network 

communication mechanism is much slower than the mesh connections. Compared to 由e

bandwidth of the mesh communication, the bandwidth of the packet switching communication is 

much smaller, roughly 1αXJ times smaller for the worst case and 30 times smaller for 由e typical 

case as shown in Table 3-2. 

Two low level programming methodologies for programming theαtf were presented in [Chri 

84]. 
l. n-ωbe Model: Several low level operations can take advantage of the specific 

topology of the communication netv.'Ork , a boolean n-cube. This model exploits the 
fact 由at 由e fastest ∞mm山llcation is betw臼n neighbors in the boolean n-cube. 

2. Tree Model: This programming methodology deals wi由 algorithms for binary trees 
of proαssors in the CM. It is usedωsupport a graphical abstraction wi由 arbitrary
fan out, such as semantic networks. Two types of trees a陀∞nside陀d:

• Calculated Trees: The address of the parent and two children of a branch are 
calαùated 臼 a function of the address of the branch. Calculated trees 缸-e
usuaily projected onto some other topology so 由at it can be treated as a tree. 
For example. a binary tree can be impo民d on the boolean n-cube. 

• Explicit Trees: The address of the parent and children of a branch are sω陀d
explicit1y by 位1e branch. The advantage of explicit tr臼s is 由at 由ey can be 
manipulated quite easily. 

For the high levellanguages. parallel versions of C and LISP have been developed [TMC 86]. In 

the LISP implementation. storages should be reclaimed through the garbage collection process. It 

is inte陀S由理由at 由e Connection Machine su同xms the parallel con.sing as a primitive operation, 

where fI白白lls are consed in parallel by exploiting the boolean n-cube topology [Chri 84. p. 49] . 
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ηle utilization of several communication modes of the Connection Machine in implementing a 

set of low and intelTIlediate level vision modules are repo口ed in [Litt 86] and [Litt 87]. The 

implemented moduIes comprise edge detecùon, Hough transforrns , and connected component 

labeling. And a variety of geometrical algorithms were designed for the Connection Machine , 

including sever在1 convex hull algori由ms. 

Classes of Permutations 

Worst Case 

Typical Case 

2-D Pattem 

FFf Patte口1

Communication s严ed (bi岱 per 民∞nd)

3.2 x 107 

1.0 x 109 

3.3 x 1010 

5.0 x 1010 

Table 3-2: Communication Bandwidth of the CM 17 

3.2 Model of SIMD Computation 

3.2.1 Requirements on the Architecture from the Application 

As we will 回e in next chapter, a parallel archite口ure to support 由e particular structure of our 

appli臼tion demands the following characteristics: 18 

• fine gI垣ned，

• SIMD, 

17taken from [Hill 86, p. 71] 

18When we ∞m阳m 吐lC characteris tiC5 pro萨黯ed here with the set of algorithmicαiteria 严uposed by Grimson (su 
section 221). we see 出ato田! is quite sim且zω. or has grown naturally out of. Grim皿n's cri teria. 
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Many of the operations ought to be perfonned simultaneously on a subset of nodes properly 

chosen at each momenl Identical operations are carried out upon the data at each selected node. 

This first propeny naturally leads to a fine grained processor and a SIMO mode of execution. 

Secondly , the matrix involved is sparse. In particular, in the dep由 interpolation problem even an 

interior node far removed from the region boundary interacts only with 12 neighboring nodes. 

Therefore , mesh interconnections between nodes are sufficient for handling all the local 

communication needs for matrix-vector multiplication. 

Thirdly, what is needed as well is a fast global summary capability. In the iterative methods 由at

were invesùgated , we need ω ∞mpute various vector norms , a matrix norm , and inner products. 

ηùs global communication n臼d can be met well by any global networlc mechanisms, for 

instance，由e tr，臼 ωpology or 让le boolean n-cube topology , superimpo臼d on the underlying mesh. 

3.2.2 Derivation of Abstract Basic SIMD Models 

h 吐ùs 民ction ， we derive two a民tract models of SIMD computation. Various features of these 

abstract models will be extracted separately from thc SIMO machlnes we have reviewed before . 

The time complexity analysis of parallel machines involves two factors: the intemal 

∞mputational speed of each PE and the communication sp<咒d to move around data between the 

PEs. 

节le computational speed of each PE depends on the complexity of the hardware circuitry built 

into il In ∞mputer vision applications, we have a tremendous amount of data to be proces臼d.

Therefore , it forces the designer to design each PE as simply 臼 possible to accommodate more 

and more PEs. Nevenheless , we n臼d g'田地∞mputational capab山叩 as well , such 路由e floa由19

point calculations as required in 由is application. 

One such PE design which made effortωmeet 由臼e computational 陀qui陀ments is 由at of the 

如IPP. We t∞k 由e numbers of 32-bit floa由g point ex.ecution speed from Table 3-1 and 
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convened them into equivalent machine cycl臼 in Table 3-3. We took into account the 128 x 128 

square mesh size and 1∞ nanosecond machine cycle time of the 必1PP.

In MPP (出 in NON-VON and Connection Machine) mesh communication instructions , which 

handle local communications , execute in a single machine cycle. We assumed a single bit data 

pa由 between PEs , and 由at floating point data is moved from the memo可 of one PE to the other 

PE's memo可. For the transfer of each bit, we assumed a 5 machine cycle sequence: broadcast a 

source address , read a bit, send it through 由e mesh connecöon, broadcast a destination address , 

and then write it. Therefore , for 32-bit floa由19 point data , it will take 160 machine cycles for 

∞mpletion . 

For our global communication needs, we assumed the tree topology of NON-VON. We assumed 

由at 由e instructions which carηout the u回∞mm山咀cations between adjacent levels execute in 

2 machine cycles following 由e cxperience of the NON-VON chip and prototype system design 

and implementaöon efforts. We assumed again a single bit data pa由 between PEs. For the 

transfer of each bit, we assumed a 6 machine cycle 民quen臼 broadcast a source address , read a 

bit, send it through the tree connection, broadcast a des由lation address , and then write it. 

Therefore , for 32-bit floaöng point data , it will take 192 machine cycles for ∞mpletion . 

Our discussion is summarized in Table 3-3. We will make extensive use of this model of S卧10

computation in later chapters. 19 

For global communication , we could have also a臼山ned 由e topology of the Connection Machine , 

where global comm山让cation is handled by the 加olean n-cube topology. When the number of 

由e communications bandwidth for the FFf Pattem in Table 3-2 is converted into equivalent 

machine cycl臼， we get 63 , i.e. , it will take 63 machine cycles to move a single bit to 由eωbe

neighbor. In the Connection Machine , there is a single bit data pa由 between chips. We took into 

account the 256 x 256 呵ua陀 mesh size, the 4 MHz cl∞k， and 4 ，ω6 routers. For 32-bit floating 

1 竹'he sp<<咒d of operaù创15 for our 由何缸t model machine can be ∞mpared with the timings for 出e recent proωtype 
of the Connecùon Machlne、 reported in tables of [Liu 87, p. 18) 8J世 [TMC 87a, p. 60). For arithmeùc operations on 
single pr町sion floaùng point numben, a.ddiùon, su恼action， and mulùplication take 25 micro阻。nds wJúle division 
tak臼 66.7mi口时也onds. For mesh ∞mmunicati侃， NEWS acωSS of 32-bit takes 80 microseconds . 
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point data, it will take 2,016 machine cycles. The rcason why we have such big numbers 

compru它d to the ones we have derived before with the tree ωpology is 由at the messages are 

delivered across each dimension in 臼quence for eve可 petit cycle in the Connection Machine . 

When we 陀place 由etr四 topology wi由由e boolean n-cube topology, we get another abstract 

model of SIMD computation. This one is shown in Table 3-4. We will call the model in Table 

3-3 as Model 1 and the other in Table 3-4 as Model II . 

3.2.3 A Global Summation Algorithm 

An example is analyzed in detail to illustrate 由e power of 由e abstract SlMD models we have 

derived. Su叩1早p归s臼e 由a创t we have a s x s mesh and 由a刽t s is some p严owe町r of 2, i.eιe 

We want tωoc∞omp阳ut忧e the global sum of 3绍2-b灿i江tftωoa创u山n吨gp归oint numb民er岱-s a创t selected nodes of s吨quωa陀

mesh. For the sake of the simplicity, we assume 由at eve可 node is enabled. In fact，由is simple 

global summation algorithm tuπ15 out to be 由e part of the computation required for the 

calculation of a ~-norm of a vector or an inner product of two veω皿 For 由e vector 

calculation, we assume 由at each element of the vector is stored at the same address in the 

memo可 ofeach PE . 

First. the tree topology is assumed for global communications and the Model 1 is applied to ca口y

out the analysis of ∞mputationa1 and communication cost associated with 由is algorithm. We 

assume 由at 由e square mesh is located at the leaf of the tree. As shown in Figure 3-1. PEs at 由e

leaf of the tree account for the half of PEs in 由e tree. i.e.. there are to ta1 of 2泸- 1 PEs in the 

tree. The summation proceeds from 由e tree level just above the leaf to 由.e top of 由e tree in 

following fashion: select PEs of current tree level. get data from left child. get data from right 

child. add these two data to get a sum. and then transfer control to the level just above. 

Throughout the ∞mputation， identical instructions are executed concurrenüy for 由巳 PEs of the 

same tree level. For each tree level. we have two data moves and one addition operations. At 由e

end we have the global surn at 由e r∞t node of the tree and the data from the root PE is read out 

to host ∞mputer. This operation 陀quires one more data move. Since the numbcr of levels is 

(Jog2 s号 • it takes 2 (log 2 s2) + 1 tr回 communications and (log2 s2) addition operations. By 

multiplying the number of operations by the number of machine cycles defined in Table 3-3, we 
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Operations Data Type Execution s严ed (machine cyclcs) 

.. 

• ‘ 

Addition. Subtraction 

Multiplication 

Division 

Mesh Communication 

Mesh Communication 

Tree Communication 

Tree Communication 

32-bit fl. point 

32-bit fl. point 

32-bit fl. point 

1 bit 

32-bit fl. point 

1 bit 

32-bit fl. point 

348 

563 

993 

160 

2 

192 

.‘ 

Table 3-3: Speed of Typical Operations for Abstract Model Machine (Model I) 

.‘ 

Operations Data Type Execution s严ed (machine cyc1es) .. 
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Addition. Subtraction 

Multiplication 

Division 

32-bit 且 point

32-bit f1. point 

32-bit f1. point 
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MeshComm山ùcation 1 bit 

Mesh Communication 32-bit f1. point 

B∞lean n-cube Communication 1 bit 

B∞lean n-cube Comm山ùcation 32-bit f1. point 

Table 3-4: Speed of Typical Operations for Abstract Model Machine (Modcl Il) .. 
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get the total number of machine cycles, (2x 192 + 348) X (log2s2) + 192. For the 128 X 128 

mesh, the total numt陪r of machine cycles is 10440, substituting s with 128 . 

Now , the boolean n-ωbe topology is assumed for global conununications and the Model 11 is 

applied. To make our analysis simpler, it is assumed 由at each PE can talk directly to all of its 

own cube neighbo币， 1ιglobal communicaúon capability of the boolean n-ωbe is available at 

the PE level. Since we have S2 PEs the size of the cube is (log 2 S2). 币le summation proceeds in 

following fashion for i = 0, 1. ..., (log 2 s2) 一 1: select PEs whose i-th bit in address is 0, get 

data from my cube neighbor whose i-由 address bit is different from me, add the data obtained 

企om my cube neighbor to my own in order to get a sum , and then transfer control for next 

address bit At each step, we have one data move and one addition operations. At the end we 

have global sum at the PE whose address is 0 and data of 由is PE is read out to host computer. 

η山 operation requir，臼 one more data move. In s山nmary ， it takes (log 2 s2) + 1 boolean n-cube 

communications and (log2 s2) addition operations. By multiplying the number of operations by 

由e number of machine cycles defined in Table 3-4, we get the total number of machine cycles , 

(2016 + 348) X (log 2 泸) + 2016. For the 128 X 128 mesh, the total number of machine cycles is 

35112 . 

In s山nmary， we can point out two 臼pects of the computation r吨ardless of the particular 

topology employed. Fil霄， the communication pattem is quite regular and there is no collisions. 

Second, two sumrnation algorithms are goωfrom 由e point of view of the roundoff error 

皿alysis. The roundoff errors due to floating point arithmetic 缸'C smaller. Summing by pair leads 

to an error wi由 a small cumulative constant (= Log 2 s2) whereas standard summing up on a 

serial machine has a constant = s2 . 

The global summation algorithm was analyzed in detail. ln a likewise manner, the other global 

operations such as counting, average. minimum , maximum. logical OR, and logical AND can be 

exccuted in 0 (log 2 s) time as we lI . 
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3.2.4 Derivation of Abstract Extended SI~lD Models 

The pyramid machine , where several possible VLSI designs of 由is machine is proposed in [Dyer 

81]. can efficient1y perform many quadtree and pyramid 创gori由ms.20

In one organization of the pyramid machine. each node is connected to nine neighbors - i岱 father

pro臼ssor on the level above it. i岱 four son processors on the level below it. and its four nearest 

neighbors on its own leve1. ηlis scheme can be convenient1y implemented on a tree machine. 

Instead of a single me由∞nnection at the leaf of the tr肘. the mesh connections can bc extcnded 

to eve可 other tr臼 levels from the leaf. [See 由e labeling schemes in F胁lre 3-1 , 3-2. and 3-3.] 

Now , the basic model described in section 3.2.2 can be generalized to include multiple mesh 

connections of different resolutions . 

The mapping between each ∞de and its four sons will be interp陀ted in two ways. In the first 

ca罚，由ere is no special distinctions betw四n its sons. In the second case , we 出ink of mesh 

connections at two adjacent levels in terms of coarse and fme resolutions. Suppose 由at 由e node 

at coarse level is assigned with 阳 (image) coordinate 饵，马). Then 由e coordinates of its four son 

nodes can be assigned 臼 follows: (xj,y) for NW child , ((xj +Xj+1) / 2 ,y) for NE child, 

屿， 07+巧+1) / 2) for SW child. and ((x j +X j+1) /2. (Yj +Yj+l) /2) for SE child. This 创gnmcnt will 

be used later when we implement multigrid me由ods. [S臼 Figure 4-1 and the equation (67) in 

section 4.3.] 

Though we shall discuss the implementation of the multigrid method on a machine with the tree 

topology and multiple mesh connections, a realization of coar百 and fine levels on a machine with 

由e 民olean n-cube topology , for example，由e Connection Machine, is considered briefly. Since 

no 臼parate physical PEs exist for the ∞M百 level PEs, not like as in the pyramid and 由etr臼

machine. the coar回 level PEs should be map严dωthe finest level PEs.21 

A simple scheme proposed here requires the doubling of the storage space allocatcd and handles 

20See [Dyer 79] for a theoretical dωαi萨ion of many of lhese algoriÙlms. 

2! Recall our discussion in section 3.2.3. Suppose 由创 we have a s x s mesh. For 由e tree topology，出町e are 
2;'-1 PEs in 出e system. But for 出e boolean n-<:ube topology，阳e are如t? PEs in 出e system. 
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up to 4 ∞arse levels above 由e finest level. Suppose 由at 由e node at NW child posiùon is 

出signed wi由由e c∞rdinate 饵，马). Then the nodes at coarse levels having 饵，马) as their 

coordinates are map院d to NW, NE, SE, and SW posiùons. For ex缸nple ， refer back to Figure 

3-1 , 3-2，缸1d 3-3. PE4 is mapped to PEl and PE16 is mapped to PE3. Under 由is arrangement. 

the communication between the adjacent fine and coarse levels are handled using a simple mesh 

communication instrucùon. exαpt between the finest and the coarse level just above it where the 

interlevel communication is done by the moves 10 different memory locations in the same PEs. 

For the intralevel communication at the level 1. where 1 is 1 for the ∞arsest and L for the finest 

level. the data is sent through the mesh connections to the nodes 2h-1 distances away. For 

example. refer back to Figu陀 3-1.3-2. and 3-3. The intralevel communication from PE4. which 

is mapped to PEl. to PEI2 , which is mapped to PE9 , is done by sending data from PEl to PE9 

via PE3 . 

In the pyramid machine and the tree machine wi由 the multiple mesh connections. 出e intralevel 

∞mmw让cation at any level takes same amount of time because of the available physical 

connections. However. even 由ough the mesh communication instructions can be executed in a 

single machine cycle. the length of the physical wi陀 is longer at coarser levels.22 

3.3 Conclusion and Summary 

ln 由is chapter. we reviewed three SIMD machines , the Massively Para1lel Processor, the NON

VON Supercomputer. 缸1d the Connection Machine. We stressed the arithmetic and 

communication need to execute the efficient numerical methods, in our case, the adaptive 

Chebyshev acceleration and the conjugate gradient methods, for the iterations of the sparse SPD 

matrices, which are encountered frequently in sεveral proce臼es in early vision. We derived 由e

abstract SIMD models 10 support 由e computational requirement and applied them to 由e global 

summation algorithm 部 an exercise. We analyzed the time taken for execution of 由is algori由m.

In next chapter. we shall apply the basic and extended models to numerical methods in order 10 

ana1 yze the spa臼缸1d time complexity of the ∞mputation . 

22Needlessωsay. the length of the physical wire is much more longer for any global communication networks. 
whether the supponing topology is tree or boolean n-cube. . 



a 

.. 

.. 

.. 

• 

,-

.. 

• 

... 

' 

• 

36 

We can always underestimate the heavy need of number crunching in early vision. The eventual 

introduction of the floating point arithmetic hardware in the Connection Machine testifies to 由is

pomt. 

We extended the basic S1如ID model to handle the multigrid method as well.τlte iterations on the 

finest level only with either of two efficient methods improve already the computational 

efficiency g陀atly，∞mpared with the slow methods, such as 由e Gauss-Seidel. But the multigrid 

mode of execution of these efficient and other methods on several coarse and 由le levels s严eds

up the iteration process further. In the next chapter, we will review the mathematical theory 

behind 由e iterative methods and discuss the parallel implementation 臼pect of them under the 

abstract models of parallel computation developed in 由is chapter . 
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4. Iterative 岛lethods

We r它view the well developed ma由ematical 由e。可 behind the iterative methods of numerical 

analysis and then discuss the parallel implementation of algorithms on a p缸ticu1缸 parallel

architecrure. a fine grained SIMD machine wi由 local and global communication networks. 

The single theo陀tical assumption we make for the adaptive Chebyshev acceleration and the 

conjugate gradient methods is 由at the matrix is SPD. In the parallel implementation. we require 

another assumption 由at 由e matrix is sparse for practical reasons. Note 由at these two 

assumptions are applicable to , but independcnt of. the depth interpolation problem itself. 

4.1 Adaptive Chebyshev Acceleration 岛lethod

The derivation ofthe adaptive Chebyshev acceleration method when applied to any SPD matrix is 

shown first along with 由e introduction to basic iterative methods. Our discussion is based on 

[Youn 81] and in many places uses his equations and development. We show fu时rer how the 

adaptive Chebyshev acceleration method for sp创-se SPD manices, where the Jacobi method is 

chosen 出版 underl归g basic iterative method, can be run on a chosen parallel architecture . 

.. 
4.1.1 ßasic Iterative Methods 

In section 2.2.2.3. the depth interpolation problem has been cast as solving a sct of linear 

b -u 
-AA 

m 0 .hu 
兔
M

u nul piv 

(5) 

where A is a given n x n SPD manix and b is a given n x 1 vector . 

.. 
Using one of several known basic iterative me由ods. 由e equation (5) can be solved by the 

following iterative pr∞臼S

u{i+l) = Gu<O + k, i = O. 1, 2, '" (6) 

where G is the iteration manix for the method and k is an associated vector . 

• We assume 由at

G = 1 一 σlA ， k = σlb (7) 

for some nonsingular matrix Q. The assumptions of (7) together with the fact 由at A is 

nonsingular imply 由atαis a solution to 由e 陀lated system 
• 

• ‘ 
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(/-G)u = k (8) 

if and only ifαis also the 山甘que solution to (5) , i. e. ， α = A-1b . 

An iterative method (6) whose related system (8) has a unique solution αwhich is 由e same as 由e

solution of (5) is said to be COl叩letely consÎStent. Suppose 由at {U(I)} is 由e sequence of iterates 

detennined by (6). Then ∞mple臼 consistency implies 由at if 由e sequen臼 {u(i)} converges to 

some vector ïi , then ïi = a. 

The iterative method (6) is convergent if for any initial approximation u刨出e sequence u( l), u(2) , 

. detennined by (6) convergcsωthc 山闯ue solution α = A-1b. A ne臼ssary and sufficient 

condition for convergence is 由at S(G) < 1.0 where the spectral radiω S(G) of the rea1 matrix G is 

defmed as the maximum of the absolute values of the eigenvalues of G. 

η1e error vector eP) == u(i) 一 αsatisfies 由e relation 

eC1) = Gi ë(O). 

Therefore , we have 

lIë(')IIß S IIGil1日 11ε(O)IIß .

(9) 

(10) 

η邸， IIG'IIß gives a measure by which the norm of the error has been 陀duced after i iterations . 

The average rate 01 convergence for a basic iterative method (6) is dcfined by [Youn 81, p. 20] 

Rj(G) = - (1 / l) (log t IIG'II 日). (1 1) 

It can be shown that 江 S(G) < 1.0 , then 

lim (l IGill~l/j = S(G). 
1-+0。

Hence the asy"ψωtic rate 01 convergence is defined by 

Roo(G) = .lim R/.G) = - (log , S(G)). 
1 -+-

(1 2) 

(1 3) 

Frequent1y we refer to Roo(G) as the rate 01 convergence. We see 由at as S(G) approaches 1.0，由e

rate of convergence decreases. Sma11 values of S(G) (由at is , S(G) positive and near zero) gives a 

high convergence rate. 

There ar它 several well known basic iterative methods: the Jacobi , the Gauss-Scidel，由e

successive overrelaxation (SOR) , and the symmetric successive overrelaxation (SSOR) methods. 

However, methods other 由an these basic iterative methods are used in practice because of the 
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slow convergencεrates of the basic iterative mcthods. The rates of convergence can be 

accelerated by two major classes of accelerations: polynomial acceleration methods or 

nonpol严lomial acceleration methods. Note 由at the multigrid method is one of the 

nonpolynomial acceleration methods . 

Before we prl∞臼dω discuss two basic iter甜ve methods , some properties of 陀al symmetric 

matri∞S 缸它陀viewed [Youn 81, p. 4]. 

Theorem 2: If 由e n x n matrix A is real and symmetric , then 
1. the eigenvalues Àj. i = 1, ...• n. of A are 陀al ， and 

2. there exists a set of n re挝 eigenvectors {巳(i)) of A , iι 

a.A己(1) =λ点(1)， i = 1. ..., n, 

b. {号。) is a basis for the associated vector space , i.e. , {己(i)) is a set of n 
linearly independent vectors，皿d

c. (巳川ω) = {b if i = j 
。由erw1se.

When 由e eigenvalues of 由e matrix A are real. we let m(A) and M(A) denote , r它specùvely，由e

smallest and largest eigenvalues of the matrix A. Funhennore , if the matrix A is symmetric , then 

for any nonzero vector v, 

m(A) 三 (v ， Av) / (v. v) ~ M(A). 

4.1.1.1 Jacobi Method 

The Jacobi method is defined by 
n 

(1+1) _ ~吨(1) , /." = - 2. ajj uj' + 0 
j=l , j$j 

1, 2, .... n, 

where A = (a j ) and b = (b j ) for 1 ~ i. j ~ n. 

Hence, the iteration matrix G is related to the matrix A by 

gu = ~ 0 i~. i = ~ 
sd t-aiJ/auO由erwi回，

where G =也j).

The vcctor k is related to the vector b by 

Ki =bi/ai-i ' 

where k = (k). 

(14) 

(1 5) 

(1 6) 

The Ja∞bi method is convergent if and only if S(G) < 1.0. It can be shown 由at S(G) < 1.0 , for 
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cxample , if 出e matrix A is irreducible wi出 weak diagonal dominance [Youn 81 , p. 25]. 

In our depth interpolation problem , the largest cigenvalue of G , M(G), is less than 1.0 since 由e

Jacobi method is symmetrizable. (The fonnal dcfmition of the symmetrization pro严rty and its 

associated rcsults will be descri民d short1y in next 民ction.) However, the smallest eigenvalue of 

G , m(G) , is less than -1.0.23 Therefor毡， the Jacobi method itself is not convergent 

Nevertheless, the Jacobi method can be employed as the underlying iterative method of any 

polynomial acceleration me由ods. In such a case, it offers two ni臼出pects from the point of 

view of parallel computation. First, as shown in the equation (14), the Jacobi method displaces 

old values wi由 new values simultaneously. Therefore the computational step where 由e ma町ix

lteratlOn computation is perfonned using the Jacobi method may be parallelized. This 

observation was utilized in our implementation of the adaptive Chebyshev acceleration method 

wherc the entire ste归 of the ∞mputations have been parallelized. Second , as shown in the 

equation (1匀，阳 sparsity of the iteration matrix G is preserved. 

parallel ∞mputation ， described in detaillater . 

4.1.1.2 Gauss-SeideI Method 

η1e Gauss-Se ideI method is defmed by 

(1+1) _ 
aj.i Uj • = -豆向 立 aip

)=1+ 

Both aspects lead to efficient 

1, 2 , .•.• n. (1 7) 

When A is SPD , it can be shown 由at 由e Gauss-Seidel method al ways converges [Youn 81 , p. 

271. 

ln our dep由 interpolation problem , the Gauss-Seidel method always converges 民cau民 A is SPD. 

1bis method has the advarItage of being easyωimplement arId can serve 臼 a quick 皿d dirty 

solution. But it suffers from two as严cts. Its convergence rate is rather slow and the method is 

inher它ruly serial. 由us not amenable to parallel computation. 

23See the numerical result in section 5立节回吼叫G)isω由natedωbe close ω-2.2 . 
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4.1.2 Extrapolated Method 

For most of the acceleration methods , it is not necess盯y 由at the basic iterative method (6) be 

convergent Normally, it is sufficient 由at 由eme由od be symmetrizable in the following sense. 

Deflnition 3: The iterative method (6) is symmetrizab/e if for some nonsingular matrix 
W由e matrix Wυ- G) W-1 is SPD. Such a matrix W is called a symmetrization matrix . 

With 由is definition , we have the following results [Youn 81, p. 21]. 

Theorem 4: lf 由e iterative method (6) is symme时zable ， then 
1. the eigenva1ues of G are rea1, 

2. the largest eigenva1ue M(G) of G is less than 1.0, and 

3. the set of eigenvectors for G is a basis for the associated vector space . 

白1e symmetrization propeπy n出d not imply convergence. If 由e iterative method (6) is 

symmetrizable , then the eigenva1ues of G are less 由an 1.0 but not neαssarily less than 1.0 in 

absolute va1ue. Hence, the iterative method is not a1ways ∞nvergent. However, ther它a1ways

exists a so-called extrapolated method based on the iterative method (6) which is convergent 

whenever the basic iterative method is symmetrizable . 

η1e extrapolated method applied to 由.e iterative method (6) is defined by 

U(i+l) = y(Gu<O + k) + (1 - y) u<O = G[y)u<O + yk, 

where 

G[训三 yG + (1 -y)l. 

(1 8) 

(1 9) 

Here y is a parameter 由at is often refeπed 10 部由e "extrapolation factor." lf the basic iterative 

method is symmetrizable ，让lCn 由e optimum vaIue y for y, in the sense of minimizing S(G[yj)' is 

given by 

于= 2/ (2 - M(G) - m(G)). (20) 

Mor毛over， it easily follows 由at

S(G(ÿJ) = (M(G) - m(G)) / (2 - M(G) - m(G)) < 1. (2 1) 

Thus，由e optimum extrapolated method is convergent . 

ln general , the Jacobi and the SSOR me由odsar它 symmetrizable while the Gauss-Seidel and the 

SOR methods are no1. When the matrix A is SPD, the Jacobi method is symmetrizable with 
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W = Dlf2 where D is a diagonal matrix whose diagonal elcments are taken from the matrix A. 

When the basic iterative method is Jacobi, the extrapolated method is also called 臼 the weighted 

or 匈mped Jacobi method. [S四由e multigrid literature [Brig 87 , p. 10] or 由e discussion in [Terz 

84 , p. 108].] Note 由atwi由 y= 1 we have the original Jacobi iteration me由00. 

The Jacobi methoo is chosen as the underlying basic iterative methoo in 由is work since it is 

much simpler 由m 出e SSORme由OO ， ano由er symmetrizable basic iterative me由00 . 

4.1.3 Optimal Chebyshev Acceleration Method 

The polynomial acceleration method , which involves the formation of a new vector sequence 

from 1inear combinations of the iterates obtained from the basic iterative method (6), is one of the 

approaches used to accelerate the rates of convergence of the basic iterative methods. With 

Chebyshev acceleration method , we assume again 由at the basic iterative method (6) is 

symmetrizable . 

Consider a vector sequen臼 {u(i)} determined by 

u(') - α= Qj(G) (u(O) 一 α) ，

where Qj(G) = qi.O I + qi,l G +… +qhiGA is Ihe matrix polmomid such 由at

Iqij = 1, i = O. 1, . 

Fu由ermore，由e virtual spectral radius of Q,{G) is defmed by 

了(Q;(G)) = max 1 Q正λ) 1. 
叫白 =λS M~白 ' 

τlle virtual average rate of convergence for a polynomial acceleration method is defined by 

R ,{Q,{G)) = - (1 / i) (log i! S (Q,{G))) , 

and provided the limit elÙsts , the virtual ωynψtotic rate of convergence is given by 

R国(Q，{G)) = .lim R j(Qj(G)). 

(22) 

(23) 

(24) 

We seek 由ep创ticular pol归omial acceleration methoo which is obtained by choosing the matrix 

pol归omial 叫uen臼 (Q，{G)} such that {S (Q ,{G))} , i = 1. 2 , ... , is minimized . 
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白1e Chebyshev polynomial of degree i is defined by the 陀currence relation 

T。但) = 1, 

Tt (g) = g, 

T j+1(g) = 2gT,{g) - Tj_1(g), i ~ 1. 

Let P,{Å) be defined in terms of Chebyshev polynomials as 

P，{λ) = Tj(g(λ)) / T j (g(1)), 

where 

g(λ) = (2λ - M(G) - m(G)) / (M(G) - m(G)). 

lt now follows that 由e polynomial P，{λ) is 由e unique polynomial which satisfies 

43 

max \P矶)\ = max \Q，{λ.) \. (25) 
m(1的主 λ 亘 M~句 m(G) 三 λ~ M(旬 ' 

We refer to 由e polynomi础 acceleration method based on P，{G) 部由e optimalαebyshev 

acαleration method which has the form 

8(i) = Gu(i) + k - u(i), (26) 

u(i+l) = Pi+l (y8(') + u(勾+ (1- Pi+l)U(i- l), (27) 

where 

y = 2/ (2 - M(G) - m(G)) , (28) 

Pl 1, 

P2 = 1/ (1 -.5σ2)， 

Pi+l = 1/ (1 -.25σ2p卢， i ~ 2. (29) 

and 

σ = (M(G) - m(G)) / (2 - M(G) - m(G)). (30) 

We now examine the convergence rate of the optimal Chebyshev acceleration method. After a 

small amount of algebra. we obtain 由e virtual spectra1 radius of P,{G) as 

S(P,{G)) = 2 ,42 / (1 +卢)， (31) 

where 

r = (1 - • .JI - ( 2 ) / (1 + --Jτ02 ). (32) 
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ηlUS from (23) and (31)，由e average vinual rate of convergence for the optimal Chcbyshev 

acceleration method is 

EFi(G))=-;(bger) 一 :(logei一)，
2 -"l+r 

(33) 

and the as严nptotic rate of convergence defined by (24) is 

七(PKG))=-j陆 r) (34) 

From (33) and (34) , it easily follows 由at R j(P,{G)) < R国(P，{G)) for all finite i. In fact , it can 

be shown 由at R I{P,{G)) is an increasing function of i. However, many iterations are often 

req川red befo陀由e 臼ymptotic convergence is achieved. For example , if we have r ::: 0.1 after i 

iterations, then 由e average virtual convergence rate for these i iterations is only about one-half of 

i臼 value for later iterations when the 出严nptotic convergence rate is achieved . 

We can compare 由e optimum Chebyshev acceleration method with the optimum extrapolated 

method defined by the equation (18). For the op由n山n extrapolated method, we have by 由e

equation (21) 由at

Roo(G[ÿ]) = - log eσ. (35) 

For σclose to 1.0, we can show 由at

几(P，{G)) - 任币万曰). (36) 

节lUS，由e optim山n Chebyshev acceleration method is an order of magnitude faster 由m 由e

op山刀山n extrapolated me由00.

The convergence rate of the optimal Chebyshev acceleration method is fastest when the largest 

eigenvalue, M(G), and 由e smallest eigenvalue , m(G), of 由e iteration matrix G for 由e related 

basic method are known. In Lee 's wo rk. mentioned in section 2.2.3. he estimated the lower and 

upper bounds of the smallest and largest eigenvalues , al由ough he work.ed on 由e Chebyshev 

method , not on the Chebyshev acceleration methoo. 

ln the depth interpolation problem , it is impossibleωestimate the bounds of eigenvalues a priori 

due to 由e flexible nature of the matrix. For example, at nodes wher它 the depth constraints exist, 

both the right- and the le负-hand side of the matrix equation, Au = b , are modified , as seen in thc 
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equation (2). Since Ù1e matrix G is relatedω 由e matrix A by Ù1e equation (1 5) , m(G) and M(G) 

depend oruy on Ù1e left-hand side of Ù1e original equation (5). Therefor毡 ， m(G) and M(G) depend 

on the number of depth continuous nodes in the 陀gion，由e shape of the region, and the 

distribution of the constraints. However, m(G) and M(G) do not depend on the actual Values of 

the constraints , since the constraint values appear on Ù1e right-hand side of the equation (5) only. 

Fu由errnore ， m(G) and M(G) depend also on Ù1e choice of Ù1e values for the parameters ßh and 

ah• [For example , see the equations (2) or (3).] 

In general, the optimal estimates of the m(G) and M(G) are not known a priori but can be 

computationally determined by using the adaptive Chebyshev acceleration m础。d . 

4.1.4 Adaptive Chebyshev Acceleration Method 

When estimates mE and ME are used for m(G) and M(G) , respectively，由e adaptive Chebyshev 

acαleration meÙ10d has Ù1e forrn 

where 

and 

8(1) = Gu(') + k - u(') , 

u(i+l) = Pi+l ("(8(i) + u(勺+ (1 - Pi+l) u(i- l), 

"( = 2 / (2 - M E - mE)' 

Pl = 1 , 

P2 = 1/ (1 -.5σi) ， 

Pp+l = 1/ (l - .25σipp>， 

if P = 0,24 

if P = 1, 

if P ~ 2, 

σE = (ME - mE) / (2 - M E -mE)' 

(3η 

(38) 

(39) 

(40) 

(41) 

Because ù1e basic iterative meÙ10d is symmetrizable , we have the inequality M(G) < 1.0. Under 

由e adequately general assumption of mE < M E < 1.0 and mE ~ m(G), it can be shown 由at 由e

asymptotic rate of convergence of the adaptive Chebyshev acceleration method is an increasing 

function of ME for ME ~ M(G). Also , the asym严otic rate of convergence is relatively insensitive 

24Here, p is 由e degree of 由e Chebyshev polynornial currently being used. 
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to the estimate mE as long as mE $ m(G). For example , if M(G) is close ω 1.0 and m(G) < - 1.0 , 

.. then mE need satis市 only (m(G) - m~ / 1 m(G) 1 三 0.1 in order 由刨出e increase in 由e number of 

itcrations using mE be less 由an 4%. But using an estimate mE which is considerably less than 

m(G) may significant1y increase 由e number of iterations required for convergence. However. 

iterative divergence may result if mE d臼s not satis句 mE $ m(G) . 
• 

In the adaptive procedure , a test is made during each iteration to determine whether or not the 

acceleration parameters currcnt1y being used are saùsfactory. If the present par扭leters ar它

judged unsatisfactory，由e adaptive procedure then gives ncw irnproved esùmates for the optimum 
• 

acceleration par沮neters.

We implemented two adaptive Chebyshev acceleration procedures as given in [Youn 81]. In one 

• algorithm (Algorithm 6-4.1 [Youn 81 , p. 107])，由e initial eSÙmate of mE is input 皿d is not 

changed throughout computation. ηle estimate ME is updated upward and converges to M(G) 

企om below. In the other algorithm (AIgorithm 6-5.1 [Youn 81, p. 117]) , e区imates of bo由

eigenvalues 缸它 updated. When the initial mE is too high , it is adjusted downward. If not, it is not 

changed. The other estimate, ME' is updated in the same fashion as in the previous algorithm. As 

both values approach their true values , the algorithm 's rate of convergence incre豁出.

.‘ 
We shall 明白verai different vector arld matrix norms. The definition of 由e ~- and L，啤唱 vector

norms 由at we u臼 are the following: 

II vll2 
112 (v , v)"" = (立 |η12)ω (42) 

• IIvll帽 军 max IvJ (43) 
j= 1,2, ... ," 

We also use a matrix norm 

(44) 主 i=lf?n:Zl|giJ|)IIGlloo 

• 
Under 由e stronger ass山nption of mE < M E < M(G) < 1.0 and mE 三 m(G) ， one of the ways to 

compute 由e 时tial estimate of m(G) is by compuùng a reasonable lower bound b臼ed on 由e

.. ‘ 
matrix norm; 由at is , m(G) 三 -IIGlloo [Youn 81. p. 63]. The assumption 由at M E < M(G) can be 

satisfied easily. All由at is required is 由at the initial estimate of ME being smaller 由arlM(G). 

.. 
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The iterations are to be tenninated whenever some nonn of the error vector becomes sufficienùy 

small. In the adaptive Chebyshev acceleration method. the pseudoresidual vector 8(i) defined by 

the equation (37) is related 10 the error vector e<i) by 

8(1) =(G- ηε(，). (45) 

Under the stronger assumption of mE < M E < M(G) < 1.0 and mE $ m(G) , it can be shown 由at

for any L~-nonn [Youn 81, p. 70] 

lim (11仰II~ I lIe(1) 11以= 1 -M(G). (46) 
，......。

τl1Us ， provided 由at i is sufficient1y large and the current estirnate ME is approximately equal to 

M(G) , we have 

11ε(')II~ == 118(<)II~ / (1 - M E)' (47) 

Often, a relative error rneasure is desired rather 由an an absolute error measu陀; i.e. , to terminate 

the i1erative process whenever 

lI e(')II~ $ r. 
11叫~

where ç is 由e desired aαuracy. 

Using (47) 刷出e approxirn甜on lIall" == IIU(i+l)ll", we obtain the tennination t创

巴')II~ == 1 旦旦ι 三 t
11叫1" 1 - ME lI u(i+叫

Usually. 由eL俨onn should be the L"，，-阳

4.1.5 ParalleIization 

(48) 

(49) 

The parallelization of the adaptive Chebyshev acceleration ∞mputation is now discussed in 

detai l. The computation proc出ds in two stag臼: pre-computation and a sequen臼 of iterations 

until the convergence is reached . 

As the model of computation for 由e discussion given in 由is 臼ction. we are assuming 由e abstract 

SIMD model we derived before in 臼αion 3.2.2. Specifically. we are referring back to the model 

in Table 3-3. where we have the mesh connection for the local communication and the tree 

connection superimposed on the underlying mesh for the global cornrnunication. In following 

discussion. we assume that the size of the mesh at 由e bottom of the tree is s x s . 
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4.1.5.1 Pre.computation Stage 

At 由e pre-computation stage. we ∞mpule Ù1e malrix A using a set of computational molecules in 

SIMD fashion wi由 four types of given inputs: dep由 discontinuities. dep由 constraints. orientation 

discontinuities. and orientation constrainlS. For each node. it computes 由e necessary 

multiplication factors for each of 12 neighboring nodes and itself. The right-hand side vector b is 

also ∞mputed at 由is time. Once the malrix A is computed. an initial estimate of mE can be 也o

compu臼d. 白le tr四 connections are used to calαl1ate 由e Loo-norm of G. IIGlloo. and mE might be 

initialized with the negated L∞-norm ， -IIGlloo' The inilia1 estimate of ME can be simply set to 0.0 

when a better estimate is not available. 

4.1.5.2 Iteration Stage 

At each iteration, computation goes through severa1 steps. Here, the attention is focused on the 

ca1cu1ation of the ncxt itcrate where all 由e malrix-vector multiplication and other vector 

operations are performed. The computations a陀(Algorithm 6-4.1 [Youn 81 , p. 107)25): 

• f:l l) = Gu(马 + k - U(I); 

• compute 118(')lh , 118ωII p ; 

.，j.忡 1) = Pi+1 (y8(') + U(I)) + (1 - Pi+l)u(i-1); 

• compute ll uU+l)l问·

The vector norm 118(1)112 is ∞mputed for parameter estimation. while 1i8(i)lIp and lIu(i+l)lIηare 

computed for the iteration termination 忧st.

Computalion of u(i+l) is straighûorward. Each node stores each e1ement of the vectors 切由at a 

simple SlMD execution will update each one. independent of other nodes. No communication is 

needed. It would ap严ar 由at storage is needed for each of the vectors u(i-l). u( l). and u(i+l). 

However. upon clo臼r ins严ction it is easy to 比E 由at storage for only two vectors is 陀quired and 

由at the elements of these vectors n臼d not be moved each iteration. 

Ca1culation of t阳f阳陇 t乌匀.刑n阳1

using any g副10饨ba础1 communication network. We assume he陀由e tree topology for the global 

25Complete lis由19 of Algorithm 6-4 .1 is given in Figure 1-1 of Appendix. with funher ellplanation on parameter 
eSUInaIJOn. 
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communication. Usually , 由阳eL句F旷俨.刑仰norrn 0町r 由阳eL纠Yη旷俨俨俨.斗刑n阳1

由el乌匀-n∞orrn i怡s needed. eve可 element in each PE is multiplied wiÙ1 itself. The summation of 

squared numbers is carried out from Ù1e bottom to 出e top of Ù1e tr时. one level at a time26. The 

squ创-e root of Ù1e final resulting sum obtained at Ù1e top is Ù1e value desired. When Ù1e size of 

Ù1e mesh at 由e bottom of Ù1e tree is s x s. the entire process takes 0 (log 2 s) steps. When the 

L国-norrn is desired, each PE calculates the absolute value of the element in it27.τnen each PE 

located at non-Ieaf level of the tr-ee comp缸'es two values coming from its own two sons and 

retains Ù1e bigger one. Both Ù1e comparison and the retaining of Ù1e biggest value is similarly 

carried out 仕om 由e bottom to 由e top of the tree. 白le single value obtained at 由e top is 由e

L",,-norrn desired. This too is a o (log2 s) pr侃ess. 

Fmall y , we ar它 left with 由e calculation 由at involves the matrix-vector multiplication operation28 . 

Computation of the pseudoresidual vector 8(i) can be done in SIMD fashion using mesh 

interconnections only. The only step remaining at 由is point is the computation of matrix-vector 

multiplication terrn , Gu(i). In section 4. 1.1.1, we have already seen 由at Ù1e Jacobi method is 

parallel (i.e. , it simultaneously displaces old values wi由 new values). Therefore, iterations based 

on the Jacobi method can be carried out in SIMD fashion wi由 mesh interconnections to assemble 

current dep由 values of neighboring nodes. Furtherrnore, all the coefficients that contribute to 由is

assemblyare in the forrn 

giJ=-aiJ/aiLi 

since i is not equal to j. Since the factor in denominator, QiJ' is common to all neighboring nodes, 

division by it is done only once. as the last step. By using the Jacobi method, neither explicit 

p陀-computation of the matrix G nor any particular sophisticated ordering of matrix elements is 

needed. Put in other words, only local computation supported by the mesh lopology is all 由at

UWe have carried out the detailed analysis of the global summation algorithm in 比ction 3.2.3. There, we analyz.ed 
由e aJg白白mwi由 two global ∞mmunication nelworlcs. i.e.，由e fITSl time wilh lhe treeωpology IIJ回 lhen wi由 lhe
以刚出n n-cubeωpology. 

27η"\e caJculation of lhe absolule vaJue is a ∞nstanl operation when we deal directly wi山山er句resentalÌon of lhe 
f10ating point nurnbers.ηUS operation jusl clears lhe sign of lhe fraction panωO. 

28-Jne lower level detail of 由eS岛10 implementation of 出iso伊!fa1ion will be elaboraled further in section 1.2 of 
Appendu . 
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needed to multiply the vector u(t) by the matrix G.29 

4.1.5.3 Space Complexity Analysis 

Under our SIMD model of computation, each PE is provided wi由由e fixed amount of memo叩

The spa臼 analysis shows the amount of memo可 to be allocated during the execution of the 

parùcular application. 

The storage space needed in each PE is shown in Table 4_1.30 The spa臼 allocated is divided into 

three groups. The first group is for the input vectors to 由e depth interpolation process. i.e.. 

discontinuities and constraints infonnations. The second group is for the iteration matrix and its 

associated vector.τbe last group is for 由e output and other vectors which are updated at eve可

itβration step. In the adaptive Chebyshev acceleration method. we need the space for three 

vectors. u(i-l), uCO, and 'fþ") • 

We analyzed 由e storage spa臼 requirement under general case. for ex创nple. when bo由由e dep由

and the orientation constraints exist But the simplification is possible when the depth constraints 

are present only.31 

For 血is restricted case. 由e input to the depth interpolation proce臼 consists of the dep由

discontinuities and constraints only. ln Table 4-1. the input vectors ar宅陀du臼d to 2 flags and 1 

floating point n山nber.

29Fig田e 2-4 ShOW5 the weigh由g factors for neighboring node.s of an interior node. But this figure 也picts ano由er
import.an1 point which 碍JPliesω lUlynαie. We can easily 臼t 由at 由e 也pth value of any neighboring node can be 
brought in (in order to 民 multiplied by lUl甲propria1e weigh由tg facωr) 出rough the execution of叫y one or two me.sh 
commwucanon tnStrucuons . 

30 A complete addre.ss map is given in Figure 1-3 of section 1.2 of A阴阳ldix.

31For instanω. ∞nsider the depth constraints da1a from the stereo or laser r且ngefmder.
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The coefficients of the matrix are stored in a form where 1 I h2 is factored out 32 [See Figure 2-4 

and the discussions in the section I.2 of Appendix.] For the 陀stricted case of the depth 

constraints only, the coefficients which are contributed by four nodes at [0,2], [0,-2] , [2 ,0] , and 

[-2,0] are always 1.0, if they exist at all. [Refer to Figu陀 2-4 again.] Therefo陀， these four 

f10ating point numbers need not be stored. The marking of 4 corresponding f1ags is enough . 

To summ arize , we need 16 1-bit f1ags and 20 floating point numbers. Assurning 32 bits for the 

f10ating po讪t number reprcsentation , we need 656 bits per PE. For the restricted ca臼 of the 

depth constraints only , we need 15 flags and 14 日oa由19 point numbers . 

Description Aag (1 -bit) Floating Point (32-bit) 

-------------------- ---------- ------------------
Input Vectors 3 3 

lteration Matrix and Vector 13 14 

Output 缸1<1 Other Vectors O 3 

Table 4-1: Storage Space Used (Adaptive Chebyshev Acceleration Method) 

32For all three itentive method.s, facω由g OUl by a ∞归国u. 11 w2.也es not affecl the ∞mpu削on. In the adaptive 
Chebyshev =1町ation method, we use the Jacobi lllI the un也rlying basic iterative methαi For 阳 i阳ation mattix G. 
由e coefficieru for I!:V町y non~agonal element is given by g;; = - a; ; / a;;. Since the ∞efficients of the A m且trix are 

'J -'J' -',' divided by another on the right-hand side, factoring out by a ∞nstant 由es not matter. In the conjugate gradient 
me由od. we adjusted every diagona1 elern田t of the matrlx A ω 1.0 in orderωmake the method ∞nverge. [See 由e
discussion in section 4.2.3.2.) S~ce the division, _aj.j 1 aij' is lat町 done ωpre-adjust the matrlx A, storing coefficients 
after factoring out by a constant 也es not matter for- this method as we l1. Fina11y. the Gauss -Seidel method is de阳ted

(/+1) 
by 由e 叫uation (lη. In orderωcompute the u j". ", all the terrns on the right-hand side of the 呵uation are divided by 
ai,i' i.e., the division aiJ 1 ai.i is encountered again . 
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4.1.5.4 Time Comple对ty Analysis 

The parallel computations are analyzed in fu巾er detail in terms of basic operations and shown in 

three tables. In Table 4-2 , we show loca1 computations which require intemal computations 

carried out inside of the PE or optionally using the mesh communication with nearby neighbors. 

节le computations of two vectors , õ(O and u(i+l), fall into 由is group. The matrix-vector 

multiplication, Gu(i), which is an embedded step of the computation for the vector õ(O, is 

pr它sented under a separate column . 

ln Table 4-3 , we show g/obal computations which 陀quire tree communications for Ù1e global 

S四m红y and other intemal computations carried out prior to or during 由e global s山卫m盯y. 白le

computations of three vector norms are put in 由is group . 

In Table 4-4, we show the number of operations in local and global computations and Ú1en totals 

for each operation. Under the column designated ‘ 'TOTAL'\ Ù1e number of operations are 

multiplied by Ù1e number of machine cycles which were dcfined before in Table 3-3. In 

summary , Ú1e tota1 number of machine cycl臼 requi陀d for each iteration of the adaptive 

Chebyshev acceleration meÙ10d is given by 4392 x (log2 s) + 17712. For Ù1e u四 with 128 x 128 

squ缸'e mesh at the leaf, the total number of machine cycles is 48456 . 

节le significancεof the derived number is two-fold. First , it gives a rough estimate of the 

execution time. At 由eαlrrent stage of development, 1∞ nanoseconds is a reasonable machine 

cycle time for a typical SlMD machine. Therefore , prediction of ex民ution time for an iteration 

of a particular method is possible. In next section , we shall carry out similar time ∞mplexity 

analysis for the conjugate gradiem meÙ10d as well. Second , when we ∞mpute Ù1e actual number 

of iteration ste庐，由e overall performan臼 comparison of the different iterative methods is 

pos到ble. 

丁、e total 山ne derived shou1d be 陀garded 出 a lower bound. We analyzed 由e most time

consuming part only , iι Ú1e calcu1ations and data moves associated wi Ù1 the floating point data 

items. We did not add up every detail of our implemented program. For example , we counted 

neiÚ1er l-bit marking and oÚ1er SIMD operations, nor Ù1e processing of the scalar variables in the 

host pro臼ssor. Nevertheless , the lower bound is not too low since the execution for SIMD part 
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and the host proαssor can be overlapped.33 

In the restricted case of the depth constraints only , a slight1y faster execution is possible. In the 

matrix-vector multiplication Gu<ï>, a shifted-in depth value from each neighbor is continua1ly 

multiplied by a corresponding pre-sto陀d coefficient and added to an intermediate sum. For the 

restricted case, four coefficients are always 1.0 , if they exist al all. Thus, four multiplication 

operations can be eliminated. However, note 由at the division a ij / ai.i can be done in 由ep陀

computation stage for the general case. But 由is division oper四on should be performed at each 

iteration step for the restricted case . 

In Table 4-2 , to ∞mpute Gu(t) and (5(i), for multiplication and division operations, we need 8 and 

1 of them instead. In Table 4-4, we have 11 muitiplication and 1 division operations for local 

computations but 由ere is no change for global computations. The total number of machine 

cycles per iteration step is given by 4392 x (log 2 s) + 16453. For the tree wi由 128 x 128 square 

mesh at the leaf, the total number is 47197 . 

Before concluding 由is 回ction ， we discuss the time complexi叩 analysis of the related iterative 

methods. When g∞d es由nates of m(G) and M(G) are available, say, through prior 

experimentation of the adaptiveαlebyshev acceleration method , we can use them for m(G) and 

M(G). In 由is ca白， we can u臼 either the optimal Chebyshev acceleration or the weighted Jacobi 

methods. Since the initial estimates 创-e used with no further improvementsωthe end , mo陀

iteration ste庐 might be n臼ded. on the other hand, we do not compute 由e vector nonns 

associated with the parameter estimation. Thus , in the parallel execution of these methods the 

global connections are not used and each iteration step takes less amount of time . 

For the weighted Jacobi method , the equation (1 8) can be rewritten as 

u(i+l) = y (5(ì) + u(O, (50) 

using the definition of the 严eudo陀sidual vector in 让1e equation (26). [Comp组它由e equation (50) 

with 由at of the optimal Chebyshev acceleration method , the equation (27).] 

33For further details, see section I.1.2 of AppendU . 
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In Table 4-5 , we show the analyzed resu1t of the ∞mputations for the weighæd Jacobi method. 

The toωnumber of machine cycles for 由is method is 15099. In Table 4-6. we show similar 

陀su1t for the optimal Chebyshev acceleration method. The total number of machine cycles is 

16573 , slightly bigger than 由at of the weighted Jacobi method ,34 but significantly smaller 由m

由at of the adaptive Chebyshev acceleration method. In the restricted case of the dep由

constraints only, a slightly f臼ter execution is also possible for two methods. The total number of 

machine cycles are 13840 and 15314 for the weighted Jacobi and the optimal Chebyshev 

acceleration methods. res}:也ctively. 

We did not include the global computations associated with the iteration termination test in Table 

4-6. There are three justifications for 由is decision. As explained already , by doing 由is ， we can 

d凶pen臼 wi由由e global ∞nnections. Furthermo陀， we have not included the termination tests for 

other methods , for instance , the weighted Jacobi or the conjugate gradient methods. Lastly, when 

these methods are used under the multigrid approach , different terτnination tests are used for all 

me由ods.

4.2 Conjugate Gradient Method 

τ'he conjugate gradient method is well known in numerical analysis and its description can be 

found in many stand缸司 textbooks and papers , for example , in [Youn 81) , [Golu 85 ], and [Wozn 

80]. Here. we follow the description given in [Wozn 80) . 

We show the conjugate gradient algorithms for the solution of a large system of linear 

36 equauons 

Ax = b (51) 

where A is an n x n SPD matrix and b is an n x 1 vector . 

34Recall that in_the depth interpolarion JX'oblem a node may interact wi由 upω12 neighbors. The 出rm Gu(i), which 
is a part of 阳"∞m阴阳on ∞mrnonωbo由 me由叫5， dorninates the computational ∞st. Thus，由einαemental
cost incurred for 由eo严imal Chebyshev 缸臼lention method is small. In other JX'oblems where a ß(烛 interacts wi由
fewer neighbors. 出e relative p。而on of the incremental ∞st will be higl田.

36In this section. we use z instead of '"ω 也note 出e depth vector following the notations in [Wom 80]. After this 
section. we will use both of them . 
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Operaùons Gu(i) 8(。 u(i+l) 

---------------
Addition. Subtraction 12 14 2 

Mu1tiplication 12 12 3 

Oivision O O O 

Mesh Communicaùon 16 16 O 

Tree Communication O 。 。

Table 4-2: Operaùons in Local Computation (Adaptive Chcbyshev Acceleraùon Method) 

Operaùons 

Addition. Subtraction 

Mu1tiplication 

Oivision 

Mesh Communicaùon 

Tree Communicaùon 

lIö(i)lb 

2 (log s) 

0 

0 

4 (log s) + 1 

118( i)1I圃. lIu(i+l)lIoo 

2(归g s) 

O 

O 

O 

4 (log s) + 1 

Table 4-3: Operations in Global Computation (Adaptive Chebyshev Acceleration Method35) 

Operaùons /oca/ g/oba/ TOT AL (machine cycles) 

--------------- ------- -------- -------------------
Addition. Subtraction 16 6(/og s) (6 (log s) + 16) x 348 

Mu1tiplication 15 16 x 563 

Division O 。 Ox993 

Mesh Communicaùon 16 O 16 x 160 

Tree Communication 。 12 (log s) + 3 (1 2(/ogs)+3)x 192 

Table 4-4: Summary of Operations (Adaptive Chebyshev Acceleration Method) 

35We assume Ihe base of log is 2 四让ess stated olherwise . 
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Operaùons õ(。 U(i+l) TOT AL (machine cycles) 

--------------- ------ ------ -------------------
• Addition. Subtraction 14 15 x 348 

Multiplication 12 13 x 563 

Division 。 O Ox993 

.. Mesh Communicaùon 16 。 16 x 160 

Tree Communication 。 。 o x 192 

Table 4-5: Operations in Local Computation (Weighted Jacobi Method) 

.. 

Operaùons õ(。 U<i+l) TOT AL (machine cycles) 
• 

--------------- ------ ------ -------------------

Addition. Subtraction 14 2 16 x 348 

Mulùplication 12 3 15 x 563 

.. 
Division O 。 Ox993 

Mesh Communicaùon 16 。 16 x 160 

Tree Communication 。 。 。 x 192 

.. 
Table 4-6: Operations in Local Computation (Optimal Chebyshev Acceleraùon Me由od)

.. 

.. 

.. 

... 
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4.2.1 Steepest Descent Method 

We solve 由e equation (51) iteratively by constructing a sequen臼{川 converging to 由e

solution α = A-1b. Let B be a matrix which commutes with A: BA = AB. 

Let 1~18 = IIB 1
/2xjl = (Bx, X)lβ雹 where 11x1l2 = (x, X)l /2 • 

The gradient iteration method constructs the 民quen臼{川} as follows. Let f..0) be an initial 

approximation and 

~O = Ax(O - b, 

f..i+l) =豆。 -Cj r<O ， (52) 

where ci is chosen in such a way 阳t the error ej+l = I~i+l)_ 叫18 is minimized.τbis yields 

(川O ， B(到0_α))C: = \' , ..，\~ ..... n (53) 
(~j) ， B,.(O) 

It is well known 由at {豆。} converges toα 缸ld

(x: - l)i+l 
lIf..i+1

) -叫18 s-一一I~O)_ 叫 18 ，
(x: + 1)忡 l

where x: = IIAIIIIA-1
1I is the condition number of the matrix A, i.e. , x: = M(A) / m(A). 

(54) 

For B = A , the iteration (52) , (53) is called the steepest descent method. It h笛， in genera1, ve可

slow convergence and therefore is not recommended in practice. The conjugate gradient method 

is much more efficient. 

4.2.2 Conjugate Gradient Method 

Consider a class of iteration methods for which the error formula satisfies the relation 

X<i) - α = W，{A)(五0) _α) ， 

where Wi is a pol归omial of degree at most i and W,{O) = 1. We seek the polynomials Wj such 

由邵阳 error ei = I川一 α118 is minimized. This means 由at 由e polynomials Wj are 由e solution 

of the following problem: 

IIW,{A) (f..0) -α)IIR = inf IIP(A) (f..0) -α)IIR (55) 
Pe W,(O,l) 

where W,{O, 1) is 由e class of polynomials of degree at most i normalized to unity at 由e origin. 

白le solution of the problem (55) is given by the 0巾ogonal pol严lomials derived as follows. Let 
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x队α= 王伊

where 巳ωis an eigenvector of A associated with the eigenvalue A.j : A巳ω= 怡(j)， λ1< 与〈…〈

λm， wi由 m ::;; n and Cj "# 0 for j = 1, 2, ..., m . 

From 由e orthogonality of tl尊严lynomials Wj it follows 由at 由ey satis句， a three-term recurrence 

formula. Th.is form is defmed as follows: 

Wo(λ) = 1, 

W1 (λ) = 1 - Coλ 

Wj+ 1 (λ.) = Wi(λ.) - Cjλwt札.) - UdWj_l(λ.)- Wj(λ.) + Cjλwρ.) }， i~ l， 

where 

(吭， W j ) C: = -=-_____ -
(λWj ， W j)' 

Uo = 0, 

(Wi-φWi';(Wi-l-Wi)+CiWi) 
Uj = 忡 i ~ 1. 

(Wj_1- Wi + 呐叭，丈(Wi-l -的 + CjWj) 

From this we 阴阳出ree-tenn recurrence formu1a for阳叫uen臼{五i)}，

rω = Ax<O-b , 

where 

Z(I) =豆。 -cir40，

y(j) = f • 1) - Z<I), 

fi+l) =纠 -uiMO，

C -(川i)， B(豆。 -α)). -
(川i}， 8川勾

Uo = 0, 

_ (y(i)， 8(zω-α)) 
U: = v i ~ 1. 
‘。(O ， 8y<勺

(56) 

(57) 



.. 

.. 

.. 

.. 

.. 

... 

-

.. 

.. 

.. 

... 

59 

In infinite precision arithmetic. the conjugate gradient rnethod (56). (57) solves the problern 

exactly in at most m steç焰. iι xf.k) = αfor some k ~ m . 

From the equation (55) one can estimate the s严ed of convergence for initial approxirnations xf.i) , i 

~ m. Setting 

Pj(λ) = Tj(g(λ.)) / Tj (g(l)) 

in the equation (5日. where Tj is 由e Chebyshev polynornia1 of degree i and 

g(λ.) = (2λ 一 λ'm λ1)1 (λ'm λ1)' 

we get 

(..fã - 1)' 
uX<i)一叫 18 ~ 2一一一 Ilx(O) 一叫18'

(..fã + 1)' 

wherea =λ'm/ λl' [Cornpare with the equation (54).) 

(58) 

In genera1, it seems that the choice B = AP for p = O. 1 or 2 covers all cases of practical interest. 

For B = AO = 1 we minimize I~O_ 叫1. For B = 1, we cannot, in genera1，∞mpute 由ec伺fficient

Cj in the equation (57). To compute the coefficients Cj and Uj we assurne 由at A = ~ M and b = 

~ g for a nonsingu1ar matrix M where M and g are given as data. 白白 variant of the conjugate 

gradient me曲创 is called 由e minimum error rnethod. 

For B = A 1 we rninirnize 11.4 1/2(x<0 - α)11.η1Ìs corresponds to the classical conjugate gradient 

rne由od. After subs岳阳ting B with A and Aαwith b , we have 

C: 一 (μ0，川勺
(μi)， A川i与

uo = 0, 

以 _ (y<O， A川 - b) . -
(y(O, Ay<j乃

i ~ 1. (59) 

On exarnination of the equations (56) and (59). we find that we seern to need four rnatrlx-vector 

mu1tiplications. But two rnatrix-vector multiplications , Ay(i) and Az(i). can be elirninated with 

substitutions. Now we have 



60 .. 
C -(r{i), rU)) . -一(μi)， A川i))

.. 
Uo = 0, 

τ
H
r
 

-A 

IHr-+ 

叫
-
u

r

户
可

以

-
M

一ω
v

i -主1. (60) 

.. 
For B = A2 we minimize the I臼idual vectors ,.(0, since IIA (x(i) - α)11 = I肘。11. 白lÌS variant is called 

the minimal residual method . 

.. 
Only B = A 1 will be used in 由is worlc，刨出ough analysis of the others is similar. 

4.2.3 Parallelization 

.. We show the para且el implementation of the classical conjugate gradient method defined by the 

equations (56) and (60). We assume the same model of computation used in section 4. 1.5. We 

assumeagain 由at 由e size of the mesh at 由e bottom of the tree is s x S . 

.. 4.2.3.1 Pre-computation Stage 

节le ∞mputation of the matrix A and the right-hand side vector b has been described in section 

4. 1.5. 1. The discussion is not repeatωhe陀• 

.. 4.2.3.2 Iteration Stage 

The matrix-vector multiplication operations. M') and Ar<O. of the conjugate gradient method 

proceed in the same fashion using the mesh connection as described in section 4.1.5.2 . 

.. 

In order for the conjugate gradient method not to diverge , eveηdiagonal element of the matrix A 

W出 adjusted to 1.0 by division. 丁llerefo陀. for non-diagonal elements of the matrlx. we have 

similar coefficients. ajj / aj,j . to those of the Jacobi method given 诅由e equation (15).η也 led

to funher similarity in the computational steps of the matrix-vector multiplication operations for 

the conjugate gradient and the adaptive Chebyshev acceleration methods . 

• ‘ 

.. 
When the inner products are computed. two elements (drawn sep盯ately from two vectors) in each 

PE located at the leaf of the tr臼 are multiplied toge由er. Once the product is in place. the global 

... 
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summation is canied out 仕om 由e bottom to 由e top of the tree using the tree connection. This 

t∞ isaO(/og2s) pro臼ss. 

4.2.3.3 Space Complexity Analysis 

The storage spa臼 needed in each PE is shown in Table 4-7. Compared to 出e adaptive 

Chebyshev acceleration method, the conjugate gradient method 陀qui陀s more space 10 caπy out 

each iteration. In addition to 由e spa臼 for two vectors , .x<i-l) and xω， we need additional space to 

store the result of 由.e matrix-vector multiplication, Ax<i- l), A,x<i), and A，仙，缸ld 剑50 由e spa臼 for

three other vectors, z<i), y<O, and 川。-

To summarize, we need 16 l-bit flags and 25 floating point numbers. In all , we n臼d 816 bits per 

PE. For the restricted case of the depth constraints only , we need 15 flags and 19 floating point 

numbers. [S∞ the discussion in section 4. 1.5.3.] 

Description Flag (1 -bit) Floating Point (32-bit) 

-------------------- ---------- ------------------
Input Vectors 3 3 

Iteration Matrix and Vector 13 14 

Ou甲ut and Other Vectors 。 8 

Table 4-7: Storage Space Used (Conjugate Gradient Method) 
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4.2.3.4 Time Complexity Analysis 

The parallel computations 缸它 analyzed in further detail in tenns of basic operations and shown in 

three tables. In Table 4-8 , we show Local computations. The computations of four vectors and 

two matrix-vector multiplications fall into 由is group. The matrix-vector mulùplicaùon 

operations , Ax<0 and Ar(i), which are embedded steps of 由e computaùon of the vector ,.<0 and 由e

coefficient ci' respectively, are presented toge由er under a separate col山nn. 

In Table 4-9, we show global ∞mputations. The computations of four inner products to compute 

twoc∞fficients ， c i and 屿， belong to this group . 

In Table 4-10, we show the number of operations in Local and global computaùons and then totals 

for each operation. Under the column designated ‘ 'TOTAL'\ 由.e number of 0庐rations are 

multiplied by the number of machine cycles. In s山nmary，由eωtal number of machine cycles 

required for each iteraùon of the conjugate gradient method is given by 

5856 X (log2 s) + 34825. For the tree with 128 x 128 squ红e mesh at the leaf, the total number of 

machine cycles is 75817 . 

In the restricted case of the depth constraints only, a slight1y faster execution is possible. [See 由e

discussion in section 4. 1.5.4.] In Table 4-8 ， ωcompute Ax(0 , Ar(i), and ,.<i), we need 8 

multiplication and 1 division operations. In Table 4-10, we have 18 multiplication and 2 division 

operations for local computations but the陀 is no change for global computaùons. The total 

number of machine cycles per iteration step is given by 5856 x (log 2 s) + 32307. For the tree wi由

128 x 128 squ缸'e mesh at the leaf, the tOtal number is 73299 . 

4.3 Multigrid Method . 

We now discuss the extension of the iteraùve methods by a multigrid approach. For the 由eory of 

multigrid methods , we generally fo l1ow the description of [Terz 84] , which is in turn based on 由e

seminar work of [Bran 77]. We fo l1ow also 由at of [Brig 87] , a 陀cent1y published introduction to 

the subject wi由 annotated suggested reading list For another recent sophisticated treatment of 

由e subject, see [McCo 87] . 
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• 

Operations Ax(i). A，(。 ，<。

---------------
Addition. Subtraction 13 14 

如fultiplication 12 12 

Division O O 

Mesh Communication 16 16 

Tree Communication 。 。

z<。 y{i) X<i+l) 

l 

o 1 

.. 
nununu nununu nununu 

Table 4-8: Operations in Local Computation (Conjugate Gradient Method) 

.‘ 

.. 

Operations (川η. ,<i)). (,(I). A~i)) (y(i).'<。一 CiA，<i)) (y(i).以-1)-Mi)+CiMi与

--------------- ------------- ------------ -------------------
Addition. Subtraction 2 (log s) 2 (log s) + 1 2 (log s) + 2 

如lultiplication 2 

Division 。 O 。

Mesh Communication O O 。

Tree Communication 4 (log s) + 1 4 (logs) + 1 4 (log s) + 1 

.. 

Table 4-9: Operations in Global Computation (Conjugate Gradient Me由od)

.‘ 

Operations local global TOT AL (machine cycles) 

--------------- ------ --------- -------------------
Addition. Subtraction 30 8 (log s) + 3 (8 (log s) + 33) x 348 

Multiplication 26 5 31 x 563 

Division 。 。 Ox993 

M臼hComm山让cation 32 O 32 x 160 

TreεComm unication 。 16 (log s) + 4 (1 6(logs)+4)x 192 

Table 4-10: Summary of Operations (Conjugate Gradient Me由。d)

• 

.. 

• ‘ 

.. 
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4.3.1 再1ultilevel Equations 

We have considered the solution of a large system of linear equ缸ions A" u" = 户. A to叫 of

L - 1 similar problems on increasingly coarser levels can 民 introduced to increase efficiency. 

τlle hierarchy of problems is then given by the sequence of L linear systems of the form 

A"l u"l = 户 1 ~ 1 ~ L, (61) 

h whose discrete solutions uß1 for 1 ~ ~ L constitute the hierarchy of full surface 

representatlOns . 

In general , solving the problems at coarser leve1s is faster because of two factors. First, the size of 

the matrices gets sma1ler. Second, the density of the constraints gets denser. However. it suffers 

from the loss of 阳1e detail because of crude resolution . 

To exploit the hierarchy of problems , the system can be solved at 由e ∞arsest level. and 由at

solution can be used as an initia1 approximation in the iterative solution of the next fmer level , 

proceeding in 由is way to 由e finest level L. 白白 idea of using coar民r grids to generate improved 

initia1 guesses is called nested iteration. However, it does not generate solutions having the 

acωracy of the fmest level in any of the coar回r leve1s. The way 由at a hierarchy of coarser 

solutions would maintain accuracies consistent wi由 the solution of the finest level is to allow the 

coarser levels to a∞ess 由e high-resolution information in 阳缸1er levels. Multigrid a1gori由ms

provide such communication . 

In general, the standard iterative methods, such as the weighted Jacobi or 由e Gauss-Seidel , 

decr它ases 由e error rapidly within 由e first few iterations , a丘er which it decreases much more 

slowly. Any initia1 error can be divided between high- and low-frequency modes. 出at is，由e

osc山aω可 and smooth componen臼 of the error. The initia1 rapid decrease in error is due to 由e

quick elimination ofthe high-frequency mod臼. The later slow decrease is due ω 由e presen臼 of

由e low-frequency modes. i. e. ，由e iteration is much less effective in reducing the remaining 

sm∞由∞mponents. We can assume 由at enough relaxation sweeps on the fine grid eliminates 

由e high-fr叫uency ∞mponents of the error. In fact. ve可 few sweeps may be needed to nearly 

accomplish 由is. 
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The important point is 由at smooth modes on a fine grid look less smooth on a ∞arse grid. This 

suggests 由at when relaxation begins to stal1. signaling the predominance of smooth error modes . 

it is advisable to move ωa coarser grid, on which those smooth error modes appear more 

oscillatory and relaxation w山 be more effective . 

Another powerful idea of using the residual equation to 陀lax on 由e error is cal1ed coarse grid 

correction. In 由is procedure. we first rclax on 由e fme levcll until the convergence deteriorates. 

h. h. .h. • h. h obtain an approximation v"I, and compute 由e residual r"l = f'1 - A"I y"l. Then we rel缸 on 由e

h. • ~h. • ~~h residual equation A"I-I e"I-1 = r"I-1 on the coarser level/- 1 to obtain an approximation to 由e

error i l-l. Finally. we correct the approximation obtained on the fme level wi由由e error 

h. h. h estimate obtained on the coarser level: y"l = y"l + e"I-1 

η1e coarse grid correction acting on sm∞th modes produ臼s smoo由 and oscillatory modes wi由

ve可 small ampli阳des. Therefore. the coarse grid correction scheme is effective at eliminating 

sm∞由∞mponents of error [Brig 87, p. 75]. 币1e臼 two pro臼臼es，陀laxation and correction, 

complement each other remarkably. By applying them in tandem , the multigrid methods reduce 

由ee口。rveηeffectively. 

The multilevel equations for L levels are given by [Terz 84. p. 110] 

h. h 
A"I u"l = g"l. 1 $ 1 S L. (62) 

where 

ghL = 广L• 

11 1 .l. II"r It.", ~ _".,. I. h l. t h g"l = A"I (/1+1• lu h1)+II+1 • 1 (g"I+1 - A"I+I u"I+I). 1 $ $ L - 1. (63) 

The ori国耐. right-hand side户 of 由e 1-由 level problem occurs only on 由e finest level L. The 

right-hand sides of胆 coarser levels have been modified using infonnation from 由e finer levels 

in order 由at 由e accuracy of the finest level be maintained throughout the coarser levels . 

飞呐1en 让1e solution uhl of the equation (63) is available. the approximation on the fine level can be 

corr它cted by the replacement 
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uhI+1=uhI+1+II • 1+1 (il 一 11+1 → 1 Uhl+1). (64) 

For the 四quence of L linear systems in the equation (61) or (62)，由e system matrices are SPD. 

Suppose 由at 由e constraints at 由e finest level was obtained.37 We can then show 由at the matrix 

at 也e fmest level is SPD. [See the discussion in section 2.2.2.4.] Given the condition 由at 由e

matrix at the finest level is SPD 缸ld 出e fact 由at 由e constraints at coarser levels are generated by 

sampling or by local averaging of values at 由e finer levels, we Can show 由at 由e matrices at 

coarser levels are a1so SPD using similar arguments . 

We Can make another remark about 由e sequence of the smallest and largest eigenva1ues , m(Ghf) 

h. h. th. .h. h. _h. .'--_ ____ .h and M(G"l). In A"I u"l = 1'1 and A"I u"l = g"l , the same matrix A"I is employed on 出e left-

hand side of the equations. Note 由at m(Ghl) and M(Ghl) depend on the matrix Ahl only只

h. h. )s 
币lerefo陀，由e estimates of the eigenvalues ∞mputed while solving the A"I u"l = 1'1 can be used 

h. h, h in the solution of A"I u"l = g"l as well . 

自由er sma1ler size of the matrices or denser constraints leads to easier problems to solve. In the 

Chebyshev acceleration method，由is 创口ounts to smaller M(G) values. In multigrid approach, 

both conditions. sma1ler matrices and denser constraints , are satisfied at coarser levels. Thus , the 

values of M(Ghl) at coarser levels are sma1ler . 

In a simplified multigrid implementation, a 2 : 1 decrease in grid resolution between adjacent 

levels is employed as shown in Figure 4-1. The grid nodes of coarser grids ∞incide with grid 

nodes on adjacent finer grids . 

37For 8Il instance of the generation of 吐ledep由∞nstraints 凰山e finest level, see the G白白son's 叩proach which was 
discussed in section 2.2.1. 

38Recall 由e disαJSsion about 由e ~G) and M(G) 且1 由e 臼回 of section 4.1 3. 
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coarse 

medium 

fine 

Figure 4-1: Typical Mulùgrid Org但也ation39

4.3.1.1 Interlevel Computation 

The issue of intergrid transfers is discussed at some length in [Bran 82] . 

For the fine-ω-∞U白白S时口ion operaùon. 1[+1 ~ [ • sirnple injection or local averaging is used. 

In an injecùon. a coarse-grid node receives the value from the coincident fine-grid node . 

For 阳 coarse-to-fine prolongaùon 0归ration. I[ ~ [刊. polynomial Lagrange in印刷lation is 

employed. The two-dimensional interpolating polynomial of degree 3 in x and degree 3 in y is 

used wherever possible [Terz 饵. p. 122]. When discontinuities occur such as near the region 

boundary. 由e degree of interpolaùon is reduced accommodating only nearby depth continuous 

nodes . 

The two-dimensional Lagrange interpolaùng polynomial of degree m in x and degree n in y 

passing through the (m + 1)(n + 1) points 饵，巧. v(xj •. 马))， for 0 $ i $ m and 0 $ j $ n. is given by 

P"..,. (x.y) = 星星 Xm，j (X) 凡j (Y) 巾i 马) (65) 

wi由由e Lagrangian interpolation c侃而cients

39taken from [Tcrz 85 11., p. 15η 
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(66) 

When the third-degree interpolation is u臼d. m = n = 3 are substituted into the equations above , 

(65) and (66). For four nodes at and near (xl'Yl) at fine level, we have40 

P3 ,3 (x1 'Yl) = v(X1'Yl)' 

P3 ,3 ((x1 +与)/2'Yl) = (-v(xo'Yl)+9v(X1 'Yl)+9v(与'Yl) - V(.与'Yl)) /1 6, 

P3,3 (x1• (Y l +Y2) / 2) = (- v(x1'YO> + 9 v(x1 'Yl) + 9 v(x1'Y2) - v(x1 ,Y:0) /1 6, 

P3 ,3 ((x1 +与) / 2, (Y l +y~ /2) = (v(Xo， Yρ - 9v(x1,yO> - 9v(苟，Yρ+ v(与， YO>

- 9v(xO'Yl) + 81 v(x1'Yl) + 81 v(毛'Yl) - 9 v(~'Yl) 

-9 v(Xo，y~+81 V(X1'Y2) + 81 v(毛，y~ - 9 v(~'Y2) 

+v(句'Y3) - 9v(x1'Y3) - 9v(.xz'Y3) + V(.与'Y3)) / 256. (67) 

4.3.2 Multilevel C∞rdination Schem臼

In afued scheme. listed in Figure 4-2, the switching of levels occurs in a fixed manner from 由e

coarsest level 1 = 1 to 让1e finest levell = L [Terz 84, p. 113]. (See 挝50 the full multigrid V-cycle 

algorithm in [Brig 87 , p. 49].) 

In the control1ing procεdure F如lRA， a sufficient number of iterations are perfonned first to solve 

11. 11. Jt 
由e coarsest level discrete system A"l u"1 = /，1ωdesired aαuracy. Then the currently finest 

level, staned with l = 1, is incremented.τl1e first appro目mation on the new level is set by the 

interpolation and then the proαdure FMC is invoked. When it tenninates at level 1, we have 

obtained a hierarchy of l repre臼ntations. The current抄βnest approximation is then interpolated 

to 由e next finer level and the proαdure FMC is called again until the finest level L is 陀ached. 

In the main com阴阳tional procedure FMC. n1 iterations 缸-e perfonned first at level 1. It then 

perfoπns a restriction to the next coarser level 1 - 1. Next. it calls itself recursively on the 

40At ∞arse level/. for all j and j. we have xi+ 1 - Xj = Y介 1 - Yj = hr 
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coarser level ~ úmes. (In pracúce , only ~ = 1 and ~ = 2 are used.) Finally. it performs a 

prolongaúon 食。m the coarser level back to level L, fol1owing up with ~ more iterations on level L. 

On the coarsest level L = 1, the problem is solved to desired accuracy with the basic solution 

mcthod , SOL VE. It can be easi1y shown 由at when FMC is invoked on level L it cal1s RELAX a 

total of ~l-J: (n1 + ~) times on level k * 1 and it calls SOL VE ~l-l tirnes on level 1 . 

ln general , the relaxaÚon proces民s on the coarser scales suffer 仕om increasingly large 

discI吼ization errors, but 由ey converge to 由e coarse solution relatively quickly since 由e size of 

the matrices is smaller and the density of the constraints is denser. Conversely. those on the finer 

scales are increasingly accurate , but exhibit a substantially slower response43. With the coar虫'

to-fine coupling. the fast response characteristics of the coarser relax.ation pro臼sses is extended 

to the finer levels , but beyond a certain point 由e poor accuracy of the coarser levels ∞rrupts 由e

solution computed in the finest level. On the other hand , wi由由e 也le-to-∞arse ∞upling，由e

accurate approximations computed on the finer levels improve 由e accuracy of the coarser 

approxlmauons . 

To resolve the dilemma. the interlevel coupling can be modified during the iterative process such 

由at there is an initially strong but gradually weak.ening coarse-to-fine interaction, which 

accelerates convergenc刀， and an initially weak. but gradually strengthening fine-to-coarse 

intβraction ， which ultimately yields consistent accuracy on alllevels [Terz 85a].44 

For multilevel coordination schemes，由ere are actually two common approaches. The first. 

described above, is a fixed scheme , where the cycling par部neters are chosen a priori and remain 

fixed throughout the course of the algorithm. The choice may be made on the basis of analysis or 

pnor expenmentauon. 

The second strategy is cal1ed an accommodative scheme. In 由is adaptive approach. the cycling 

43For example, see the n山n町t四l resuJt in Table 5-13 which will be disc出sed in next chapter. 

44It is interes由19 to ∞mpare 出is control stTategy -wl由 tha1 of simulated annealing, which is a powerful ar回 gen町al
mcthod for finding global 0严ima of functioßS由at have many local optima. In [Gema 84). 由e schedule for reduction 
oftempera阳re is given by T = C I (log e (l + k)) a1 the Jt!Å iteration. where C is an 叩propriate 臼lergy ∞归国lL When 
Tis large. 白阳rgy inα芭也在s are often accepωd，臼18b!iJ唱出e sys田nωjump out of lc比al minima. As T → 0，由e system 
f云臼zes. becoming almost deterministic in its de也ent towards a minimum of energy . 
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procedure FMC (1, u, g) 

扩 1 = l, then 
u := SOL VE (1, u , g); 

else 
begin 

for n 1 times do u := RELAX (1, u, g); 

'= 1, . '-, u; I •1-1 

d := A
h
l-1 v + 马→ /-1 (g - A

h
/ u); 

for ~ times do FMC (1-1, v, d); 

u := u + 11-1 • /(v - 1/ • /-1 u): 

for fl:J times do u := RELAX (1, u , g); 
end; 

pro臼dure Fl\仅A

Ini归lize 户，卢， ... ,/L. Clear uh1 ， 此….. uhL ω zero.41 

ult1 := SOLVE (1 , i 1./1); 

for 1 := 2 to L do 
begin 

i/ := //- 1 • I 
UhF-1: 

FMC (/, v气户。:
end; 

Figure 4-2: Multigrid Algorithm (Fixed Scheme)42 

41H町e， "zero" means (0.00.0 ... 0.0) T. 

4zw.en from rren 84, p. 113-114) 
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P缸缸ηeters 缸可~ detennined on the run ωaccount for variations in the patterns of convergence. An 

accommodative scheme requir臼 a small overhead , but it can pay for itself by reducing 

unnecessary cycles and relaxation sweeps . 

An example of an accommodative strategy is the following test, which determines when 

h. h. .h. h relaxation should end on a given level. The residual vectors , given by r"l = g"l - A"l u"l , are 

computed after successive relaxation sweeps.45 When 

11μMW)||hl 〉 η lI，-(old)1I勺'

where ηis a specified switching par缸neter， then relaxation on 由at grid is declared ineffective and 

a move is made to the next coarser grid. The p红缸neterηcan be determined for certain model 

problems. For instance, for the two-dimensional Poisson equation， η== .6 is reasonable [Brig 87 , 

p.61] . 

Terzopoulos used an algorithm with a fully accommodative scheme (Algorithm 7.1 [Terz 84 , p. 

110]), which is based on [Bran 77] , as a main vehicle in his work. We will use the fixed scheme 

in next chapter to demonstrate the acceleration achieved by 由e multigrid approach . 

4.3.3 Parallelization 

The intra1evel ∞mputation employs 由e standard relaxation. When serial 陀laxation methods 

such as 由e Gauss-Seidel is used , it is not amenable to 由e parallelization . 

Terzopoulos used work units (WU) to measure 阳∞mputational cost of multigrid methods 

following [Bran 77]. A work 四t is defined as 由e amount of ∞mpu削on to perform one 

relaxation sweep on the finest level L. When the computation on a sequential processor is 

assumed. the work 山1Ït is propo币onal to 由e number of nodes where we can safely assume 由at

same amount of computation is 陀quired for nearly all nodes. Since there 町 about one quarter 

由e number of nodes on level 1 - 1 as there are on level 1, only 1 /4L-l work 旧业t is required to 

perform a 陀laxation iteration on level 1. Terzopoulos fo l1owed the convention of neglecting the 

∞st of intergrid 町缸1Sfer operations which could amount to 15-20 percent of the ∞st of the entire 

45Nole lhal the parallel ∞mputation of 阳也crete 乌- or L... -norm of lhe residual vecωr. 1I，.<1\~lhl 叫uires gJobal 

connections as 0由町 vector noπns . 
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cycle . 

In our work, we shall use the iterative methods executable on a f;缸nily of SIMD machines. We 

shall caπY out the corresponding space and time complexity analysis of multigrid algorithms. As 

a measure of comparison for various iterativc methods , we shall use principalIy the execution 

由ne，由ough work 山ùts can still be used. We shall return to 由is issue again in section 4.3.3.3 . 

τ'he interlevel ∞mputation interacts with local nodes in parallel fashion so 由at 由is

computational step is amenable to parallelization regar吐less of the method employed in the 

intralevel ∞mputation . 

As our analysis will reveal. the amount of time taken to perfonn an interlevel computation, 

especially a prolongation operation, is not negligible comp缸-ed to an intralevel computation, for 

cxample. an iteration for the adaptive Chebyshev acceleration or the conjugate gradient methods . 

As the model of computation, we are assuming the extended SIMD model we derived before in 

section 3.2.4. Specifically, we assume 由at we have multiple mesh connections for the local 

communication at 由e number of fine and coarse levels sufficient enough to execute multigrid 

algori由ms. We 挝so assume tree connections. bo由 for local interlevel computation and for global 

co口lmumcaUon. 

4.3.3.1 Pre-computation Stage 

We assume 由at 由e discontinuities and constraints inputs are available at 由e fmest level. Then , 

由e discontinuities and constraints are propagated level by level ω 由e coarsest one. A node at 由e

coarse lcvel is set to be depth continuous if at least one node at 由e adja∞nt fine level is 

continuous. For depth continuous nodes，由e constraints can be obtained by sampling or by local 

averaging of values at 由e fmer level. 

Once the discontinuities and constraints are in place for all levels. the matrices Ah[ and their 

mωiated vectors 广[ for 1 三 l~Lare ∞m归时 simultaneously. However, a part of 由e

∞mputation， i.e.. some tenns contributed by the constraints molecules. may be computed 

scparately for each level. 
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4.3.3.2 Space Complexity Analysis 

For the rnultigrid algorithm. the incrernent of allocated rnerno可 is trivia1. For the iterations on 

由e finest level on1y. 1 bit f1ag is allocated to rnark the depth continuous PEs at 世1e leaf. For the 

rnu1tigrid method. instead of 1. we need L bits to rnark the dep由 continuous PEs at each level 

separately. Another addition is 由e space for II veωr in addition to广1 vector . 

4.3.3.3 Time Comple对ty Analysis of Intralevel Computation 

For the iterative rnethods at each level. we can use either the weighted Jacobi. the adaptive (and 

optirnal) Chebyshev acceleration. or the conjugate gradient rnethod. Now. the results derived 

before in section 4. 1.5.4 and 4.2.3 .4 can be used with slight rnodifications , taking into account the 

different size of the rnesh at each level. Suppose 由at the size of the rnesh at the finest level L is s 

X s. Then 由e size of the rnesh at levell is (s 12叫 X (s 1 2lr-l) • 

At level /. the tota1 nurnber of machine cycles required for each iteration is given by 

4392 X ((/Og 2 s) - (L - f)) + 17712 for the adaptive Chebyshev acceleration and 

5856 X ((/Og 2 s) - (L -l)) + 34825 for the conjugate gradient rnethods , respectively. When good 

h estirnates of m(G"l) and M(G"l) are available, we can use the weighted Jacobi or 由e optirnal 

Chebyshev acceleration rnethod. Since these rnethods use on1y local connections. 由e

cornputation tirne does not depend on the size of the rnesh , i.e.. independent of level /.η1e total 

nurnber of rnachine cycles per ileration step is 15ω9 and 16573 for 出e weighted Ja∞bi and 由e

oplÏII凶Chebyshev acceleration rnethods , respectively . 

For the res时C臼d case of the depth constraints on1y. the lola1 nurnber of rnachine cycles per 

iteration at level 1 is given by 4392 X ((/og 2 s) - (L - f)) + 16453 for the adaptive Chebyshev 

acceleration and 5856 X ((/og 2 s) - (L - f)) + 32307 for the conjugate gradient rnethods. 

respectively. The to ta1 nurnber of rnachine cycles per ileralion step is 13840 and 15314 for the 

weighted Jacobi and the optimal Chebyshev acceleration rne由ods，陀spectively. 

To rneasure the ∞rnputationa1∞st of rnu1tigrid algori由rns. we can use work units or. rnore 

generally，吐1e execution tirne. Under the frarnework of a sequential processor, work units are 

0仇en used for a seria1 rnethod such 臼由e Gauss-Seidel. For a relaxation sweep on the finest 

level. we have 1.0 work uni t. For three coarser levels. we have .25 , .0625. and .015625 , 
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respectively. Under the framework of massive parallelism of a SlMD machi时， identical 

operations are carried out simultaneously on a set of chosen PEs. Here , the execution time is a 

better measure since we have invested 由e hardware already. Instead of a few powerful 

proαssors， we have huge number of small 由ough quite capable processors.46 For an iterative 

method which uses bo由 local and global communications such as the conjugate gradient. we 

have only small di旺erences of execution time for fine and coarse grids. Suppose 由at the size of 

the rnesh at 由e finest level is 128 x 128. On the finest leveI. an iteration of the conjugate gradient 

method takes 75817 rnachines cycles , while an iteration on three coarser levels take 69961 , 

64105 , and 58249 rnachine cycles , respectively (with the only differences due to global 

cornputation). If we set the execution time on the finest level as 1.0, then we have .9228 , .8455 , 

and .7683 for the three coarser levels，陀speαively. Note the relatively small decreases comp缸时

to the work 山lÏts. For an iterative method which uses only local communications such 部由e

optimal Chebyshev acceleration , we would have sarne execution tirne for all levels. In next 

section, we will carry out the time complexity ana1ysis of the computations 陀quired for the 

transfer of information between grids. By adding these costs toge由町， we obtain a much more 

p陀cise picture of par在llel computation . 

4.3.3.4 Time Complexity Analysis of Interlevel Computation 

For the restriction operation, simple injection or local averaging is used. We consider simple 

injection first. In most cases , a coar百-grid node 陀ceiv臼 the value from the coincident fine-grid 

node，由e NW child.47 But for boundary nod臼 it may happen 由at NW child is not depth 

continuous. In 由is c臼e， it 陀ceives the value 仕om one of the children in the order of NE , SW, 

and SE child. This is done at two successive tree levels (i.e. , one pyramid level). First, the data is 

m臼ived from the right child at the lower (fmer) level and then overwritten by the data from the 

left child，由us favoring the data from children in the west direction. Then , a level up , identical 

operation is carried out 10 favor the data from children in the north direction. The entire operation 

takes four data moves through tr四 connection. [Refer back to Figu陀 3-1 and 3-2. See alω 

46In由e series of Cray's super∞mpu比TS， a Cray 1, a Cray 2, and a Y-MP mα:le l have 1, 4, and 8 proce550TS. 

而S严cùvely， while a Cray 3 and a Cray 4 will have 16 and 64 pro<左路ors. In contrast, the Connection Machine has 
between 16K and 64K PrO<黯5Ors.

47Recall 由e disc山sion of c创>rdinates assigmnenl in section 3.2.4. 
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Figure 4- 1.] 

Now, we consider local averaging as 由e restriction operation. The depth data as well as 由e

number of depth continuous nodes in the subtree are sent up through the tree connection. At the 

coarse level, the local average is obtained by dividing the sum of the dep由 data wi白白e number 

of depth continuous nodes in 2 x 2 grid of the adjacent fine level. 

For the prolongation 0严ration， Lagrange interpolation is employed. The two-dimensional 

interpola山g polynomial of degree 3 in x and y is used wherever possible. Near and on r吨ion

boundaries , the degree is reduced ω2. 1, or even to O. This Lagrange interpolation is a rather 

costly operation comparedω 由e computation involved in itβration steps. 由ough it is not required 

so often 臼 iterations are. To show how costly it is. we can ∞mpare 由e third-degr四 interpolation

fonnula in the equation (67) where 15 neighbors ar冠 involved with the nodal equations (1) or (2) 

where 12 neighbors are involved. Also. we can compare 由e prolongation operation. 

1l-J• 1 i l-l. in Table 4-11 wi由 the nodal computations via the matrix-vector mu1tiplication, 

Axωand A,.(i) in Table 4-8 or Gu(l) in Table 4-2 . 

τlle restriction and prolongation operations are analyzed in terms of basic 0严rations in Table 

4-11 and 4-12. The tota1 number of machine cycles required for each operation is obtained by 

mu1tiplying the number of operations by the number of machine cycles defined in Table 3-3. In 

S山nmary. 让1e number of machine cycles for the prolongation operation in Th但A， Il-l 4l uhl-1 , 

ìs 52383. The number for 由e res回ction 0严ration in FMC, 11 ~ I-l u and 

h 
A"I-l V +几→l-J (g - A"I u) ωge由町. is 29912 or 36218. when simple injection or local 

averaging is used for the restriction operation. respectively. The number of machine cycles for 

由e prolongation operation in FMC. u + II-l• I(V - I1 • H 时 ， is 53847 or 57侧. when simple 

injection or local averaging is used for the restriction operation. respectively. The execution 由ne

for the民 operations is same for a1l levels since 由臼e operations involve only local interactions 

betw臼n 由e adjacεnt ∞缸se 创ld fine level using the tree connections and identical pr∞essing is 

done in SIMD fashion for a1l PEs at the same tree level. 

In the restricted case of the dep由 constraints only , a slightly faster execution is possible. To 

∞mpute Atl v+Il • 1_1 (g - A"I u) , we need only 16 mu1tiplication operatio邸. instead of the h 
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numbers in Table 4-11 and 4-12. Similarly, we need only 2 or 3 division operaúons. instead of 

由e numbers in Table 4-11 and 4-12. 陀spectively. (For 由e matrix-vector multiplication 

h operaúons. A"I-! v and A"I u. see 由e discussion in section 4.2.3.4.) In summa町. the number of 

machine cycles for the restriction operation in FMC, I1 ~ 1-1 U and 

h 
A'"I-! V + 马→ 1-1 (g - A"I u) ωge由er. is 27394 or 337∞. whcn simple injcction or local 

averaging is used for 由e restricúon operation, respectively . 

4.4 Conclusion and Summary 

For the dep由 interpolation problem we invesúgated where thc matrix A is SPD. the Jacobi 

method is not convergent but the other methods , the Gauss-Seidel. the weighted Jacobi. the 

opúmal Chebyshev acceleraúon. the adaptive Chebyshev acceleration. and the conjugate 

gradient. are all convergent 

Among convergent methods. the Gauss-Seidel method is scrial. 由us not amenable to 

parallelization. But all other methods can be implemented on a parallel architecture. in 由is work, 

a fine grained SIMD machine wi由 local and global communication networks.ηle iterations of 

由e weighted Jacobi and the opúmal Chebyshev acceleration methods critically depcnd on global 

parameters. 由e smallest and largest eigcnvalues of阳 itcration matrix G. where good bounds for 

these two extreme eigenvalues should be obtained analytically or g∞d estimates obtained 

由rough prior experimentaùon. However, the parallel implementaùon of these methods requires 

only local connections. The iteraùons of the adapùve Chcbyshev acceleration and the conjugate 

gradient methods can be started with no global information. but the parallel implementation of 

thcse mcthods then demand bo由 local and global connections. Nevenheless. since the adaptive 

Chebyshev 部celeration me由od ∞mputaúonally dctermines the esÚffiates of the extreme 

cigenvalues. the weighted Jacobi and the opúma1 Chebyshev acccleration methods can always 

use 出e estimates obtained . 

ηle spa臼四d 由ne ∞mplexity analysis 陀veals 由at the conjugate gradient me由od 陀quires more 

storage space and longer cxecution ùme per iteration step than the adapúve Chcbyshev 

acceleraùon method. But as will see in the next chaptcr, depending on the number of iteration 

steps requ民d for convergence. the conjugate gradient method performs sometimes better in total 
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Operations I 1 • 1-1 U 
h 11_1 • 1 U"I-1 

- --------------- -------- ----------

Addition, Subtraction 。 40 

如fultiplication O 28 

Division 。 11 
• 

Mesh Communication O 64 

Tree Communication 4 8 

.. 

.. 
Operations A"/-1 V + 1/ • 1-1 (g - A"J u) u + 11_1 • J(V - IJ • J-1 u) 

--------------- --------------------- --------------------
Addition, Subtraction 28 42 

Multiplication 24 28 .. 

Division 。 11 

Mesh Communication 32 64 

Tree Comm山ùcation 4 12 .. 

Table 4-11: Restriction (simple 闻自由n) and Prolongation Operations 

• 

• ‘ 

• 

... 
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Operations 1/ • /-1 U 1/-1 • l uhl-l 

--------------- -------- ----------.. 
Addition. Subtraction 4 40 

Multiplication O 28 

Division 11 .. 
Mesh Communication O 64 

Tree Communication 8 8 

.. 

.. Operations A
h/-l v + 1/-+ /-1 (g - Ah/ u) u + 1/_1 • /(v - 1/ • /-1 u) 

--------------- --------------------- --------------------
Addition, Subtraction 32 46 

岛fultiplication 24 28 
• 

Division 12 

Mesh Communication 32 64 

Tree Communication 8 16 
.. 

Table 4-12: R臼创口ion (1ocaI averaging) and Prolongation Operations 

.. 

.. 

.. 

.. 
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cost than the adaptive Chebyshev acceleration method , especially , when the laner is not started 

wi由 good estimates of the extreme eigenvalues. Therefore，由e nonadaptive former can serve as 

a good metric to check how the adaptive latter performs wi由 given initial estimates . 

Assuming multiple mesh connections with a tree topology , which has nearly 由e equivalent power 

of pyramid connections，由e incremental storage space for the multigrid approach is rather 

insignificant. ηle execution time for the iterations on coarser leve1s takes less time since 由e

global operations can be executed more quickly due to smaller mesh size. Even 由ough 由e

interlevel operatio囚， prolongation and restriction pro臼S民s ， are not performed quite often as the 

iteration pro臼岱白，由e exeαltion time for them are not negligible, especially , in the prolongation 

pro臼ss where the two-dimensional Lagrange interpolation is employed. 

The Gauss-Seidel, the weighted Jacobi. the optimal and adaptive Chebyshev acceleration , and the 

∞时ugate gradient methods converge when 由e matrix is SPD. But what about 由e multigrid 

acceleration of these methods? In our experimental results to be shown in next chapter. 由ey

converged and showed measurable degrees of acceleration. But theoretically , will 由ey be valid 

only under the condition 由at 由e matrix at 由e finest level is SPD? 

We can make bo由 weak and strong statements. First. here is a weak statement. Given the above 

mentioned condition. we can show 由at 由e matri臼s at the coarser levels are also SPD. 

Therefore，由e separate solutions at different resolutions ar它 at least guaranteed 10 converge. [See 

由e equation (61).] Nevertheless, regar吐less of the result of the theoretical question of 

convergence , the fast convergence rate at the coarser levels is still ve可 attractive in the initial 

stage of the iterative process. Since the desired aωuracy is quickly obtained at coarser levels , we 

can at least interpolate 由e resul由19 approximations to finer levels in order to get good initial 

guesses. Now , we can make a strong statement. For general problems , convergence analysis for 

multigrid me由ods is difficult. It is st山 an open area. However, we can give heuristic and 

qualitative ar:部lffients suggesting 由at 由e standard multigrid schemes , when applied to well

behaved problems , (for ex缸nple ， when the matrices are SPD)，由ey not only work. but 由ey work 

vc可 effectively. Furthermore. convergence results for such problems can be proved quitc 
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rigorously [Brig 87 , p. 54].48 

We use a fixed scheme as 阳 control strategy of multilevel coordination. Further study is called 

for the accommodative scheme when we cmploy iterative methods , such as the conjugate gradient 

or the adaptive (and optimal) Chebyshev acceleration , for relaxation sweeps . 

A related issuc is 由at one might 由ink 由at optimal iterative methods may not be nccessarily 

陀qui陀d for intra1evel computation , especially since slower iterative methods such 出由e

weighted Jacobi might nOL perform so badly at coarser levels. However, we should not ignore the 

fact 由at the optimal Chcbyshev acccleration method is an ordcr of magnitude faster than the 

weighted Jacobi method for the iterations on any size single-grid. [Refer back to the equation 

(36).] Recall 由at 由e size of the matrix is quite big; for 128 x 128 images , a typical size of the 

matrix is 1αX泊 xlα)oo!

In conc1usion , we arrive at the following suggestion. If the constraints of the images are not 

sp缸贺，由e execution carried out on the finest level only may be sufficient. For ve可 sparse

images. multigrid methods may be a better choice than the execution on the finest level only , 

since the multigrid methods may provide significantly faster response. ln the multigrid methods , 

ci由er the less powerful iterative methods , such as the weighted Jacobi , or 出e op山nal methods. 

such as the adaptive (and optimal) Chcbyshev acceleration or the conjugate gradient. may be used 

for relaxation sweeps. When we employ a fixed scheme 部由e control strategy of multilevel 

coordination , and the weighted Jacobi or 山e optimal Chebyshev acceleration as the 陀Iaxation

methods , onIy local mesh and tr回 connections are sufficient, i.e. , global connections are not 

needed. Nevertheless. even in 由is case , we may still need the adaptive Chebyshev acceleration 

method. at least in prior experimentations which are carried out for the separate solutions at 

di仔erent resolutions , in or世er to get good estimates of the smallcst and largest eigenvalues of the 

itcration matrices. In the next chapter, we will show numerical results on severaI synthctic and 

real imagery , which behave in accordance wi由 the suggestions we have drawn here . 

48Sarne problem applies 10 relaxarion algorithms in ∞arse-fme segmentation. edge linking, etc., throughouI 
computeT VlSlon . 



.. 

.. 

• 

• 

.. 

.‘ 

.. 

.. 

.‘ 

.. 

81 

5. ~umerical Results 

We present the actual numerical results for the iterative methods that were discussed theoretically 

in previous chapter. For various surface reconstruction examples , we inte甲r自由e number of 

iterations under a Sl扣ID model of parallel computation and show how fast the iterative methods 

will run on SIMD machines with local and global communication networks . 

5.1 Overall Discussions of Images and Iterative l\'lethods 

5.1.1 Root Mean Square Error 

When we solve the equation (51) iteratively, a sequence (xωconvergingω 由e solution 

α = A-1b is constructed where .Ji) and αare n x 1 vectors. 

τne root mean squa陀 error (RMSE) at the ith iteration is defmed as follows: 

肌S皿g趴.) = ((哇￡ [护俨-叫乌句叩咐;]俨阳]严2
}=l 

(68) 

h 吐1Ïs chapter, we shall 山e 由e RMSEω ∞mpare 由e perforr卫anc臼 of the different iterative 

me由。也. The standard lγ orL锢- vector norrns are a1s0 approp由te measures. Note 阳t~-nonn

of the error vector and the RMSE is related. [Compare the definition of the RMSE in equation 

(68) wi由由at of ~-norrn in (42).] There is another merit of using 由e RMSE rather 由an ~- or 

L回国 vector norrns. ln 由e mu1tigrid me由创， we deal wi由 sevcral r它solutions. At coarser levels , 

the dimension of the matrix , n, is smaller. Since 由e RMSE values are always normalized wi由

respect to n, we can ∞mpare convenient1y 由e resu1ts of iterations at coarse and fine levels . 

For the 陀al images , sÍnce we do not know the solution α， we cannot compute 由e RMSE values. 

Instead , we shall u臼 the r∞t mean square deviation (RMSD) which is defined as follows: 

RMSD(i) = φ40-4川 (69) 

where ncs is 由e number of the known dep山 constraints. The summation is now restricted to 由e

deviation of the computed dep由 values from the known dcpth constraints d. 

Instead of the RMSE or RMSD , one can use different convergence criteria. For the single-grid 

algorithms. a convergence criterion s严cific to each ilerative method may be used. For instance • 
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for the adaptive Chebyshev acceleration method , see the iteration termination test in the equation 

(49). For 由e multigrid algori曲时，由e discrete 乌- or L"" -norm of 阳 residual vector may be 

used. 

5.1.2 Iterative 岛fethods

We will show the number of iteration steps to reduce 由e RMSE to specified fraction. For 

me由ods 由at can be implemented on a parallel architectUI宅， we will compare 由e performan臼 by

the execution time , i. e. ，由e number of machine cycles . 

When the iterations are carried out on 由e finest level only , we will ∞mpare 由e performance of 

the conjugate gradient. the adaptive Chebyshev acceleration, and the Gauss-Seidel methods. ln 

particular, we will show 由at on a parallel architecture the adaptive Chebyshev acceleration 

method executes faster 由an the conjugate gradient method if 由is method is staned with mo陀

accurate initial estimate of the smallest and largest eigenvalues of the iteration matrix . 

For the multigrid algorithms. we will compare 阳 performance of the ∞时ugate gradient. the 

adaptive (and optimal) Chebyshev acceleration. the weighted Jacobi，缸ld 由e Gauss-Se idel 

methods. We will demonstrate 由e speed-up of multigrid execution over the single-grid 

algori由ms on 由e finest grid only. We will show also 由at 由e optimal Chebyshev acceleration 

method with fairly good estlmates of the eigenvalues executes faster 由四 the adaptive Chebyshev 

acceleration or the conjugate gradient me由odS.49

5.1.3 Kinds of Imag臼 Used

We will investigate a small set of model problems in dep由 with various iterative methods. For an 

extensive set of experiments 由at might be run with the iterative methods studied in 由is work, see 

chapter 8 of [Terz 84]. 

49Recall 由at the 0严山田Chebyshev ac臼leration 缸咀由e weighted Jacobi me由ods rely on the local ∞mputations 
only IU刮过 therefore utilize 1∞al ∞nnections only . 
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5.1.3.1 Synthetic Images 

τbe first syntheùc image is a floating plane of constant dep由， α= (1.0 1.0 ... 1.0) T. Thc 

shape of the boundary of the plane is a squar毡， with size 128 x 128. The depth disconùnuities are 

assumed ωbe present outside of the squ缸e. Most of the nodes 缸它 interior nodes located well 

inside the boundary, as depicted in Figu陀 2-4. But along the boundary，由e陀 are several kinds of 

bound缸y nodes 出 well. For example , at one corner of the squ但它. we have a boundary node as 

shoWß in Figure 2-5. The depth constraints are scatte陀d randomly over 由e plane and 由e

densities ofthe depth constraints are varied 10 50% , 30% , and 15% . 

The second synthetic image is a ponion of a cylinder whose axis is parallel to the j di陀ction. The 

synthetic depth for node [i, Jl is 

α[iJl = (1.。一(i - r /2)2/ (r)2)1尼，

where 0 ~ i ~ 127 and r = 127.0. The shape of the boundary is a squ町 wi由 size 128 x 128. 

白le dep由 constraints are scanered randomly 臼 M 由e plane example for 由e single-grid 

experiments. But for the multigrid me由ods，阳 constraints lie along one axis only . 

The last syn由eÙc image is 由e upper hemisphere of a sphere where the depth is changing along 

bo由 directions sm∞由ly. 节le synthetic depth for node [i, Jl is 

α!iJl = (1.0 一((i - r }2 + (j 一 r)巧 / (r)2)1 f2, 

where 0 ~ i , j ~ 127 and r = 63.5.ηle shape of the boundary of the sphere is the biggest circle 

由at can be contained in the squ缸毛 m臼h， and all nodes outside the circle are assurned to be depth 

discontinuous.τbe size of the square mesh is 128 x 128. The dep由 constraints are scattered 

randomly, t∞ For some experiments, we assume 由at 让le orientation ∞nstraints 缸e also 

available at all 出enod臼 where 由e dep由 constraints exist.币le densiùes of the constraints are 

varied to 50% , 30%, 15%. 5%. and 2%. 

5.1.3.2 R回Jlmag臼

For the 陀al imag臼， we used range data from the Utah range database [Hans 86]. Two exarnples 

of range data chosen for our experiments were those of a quasi-spherical object and the 

cylindrical portion of a soda can . 
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5.2 Discllssion on Estimate of Extreme Eigenvallles 

For the bulk of the simu1ation work , the first Young algorithm (Algorithm 6-4 .1 [Youn 81, p. 

107]) wωused. In 由is algori由m，由e estimate of M(G) is updated upward du由19 iterations but 

由e estimate of m(G) is not changed at a1l. When the estimate ME is close enough to M(G)， 由e

convergence is fast even in the case 由at mE is not close enough to m(G); in the adaptive 

Chebyshev acce1eration method, ME is more critical than mE' Therefore, before embarking on 

由is a1gorithm, we carried out an ex严riment to see how much we 10se by running 由is a1gorithm 

with the reasonab1e and simple to ∞mpute initia1 estimates of ME = 0.0 and mE = - IIGIL",. 

Another re1atcd prob1em is how we can gct more accurate initia1 estimates to speed convergcnce . 

ln 由is experiment，由e synthetic image used was a floating p1ane of constant dep由，

α= (1.0 1.0 ... 1.0) T. The dep由 constraints were scattered random1y over the p1ane and the 

density of thc depth constraints was 50%. 

We used another more genera1 a1gorithm of Young (Algorithm 6-5.1 [Youn 81 , p. 117]), in which 

由e estimate ME is updated upward while 由e estimate mE is updated downward if current 

estimate is bigger than the sma1lest eigenvalue , m(G). This a1gorithm can a1so be used to provide 

more accurate initia1 estimates for subsequent images. 

When we have no information at a1l, we can use 0.0 as initial estimate of ME and pick a large 

enough n山nber， say , - 0.1 for mE' When we started with these initial estimates , we got improved 

cstimates of mE' 一 2.157480 and -2.389980. These estimates wer毛 used from the iteration step 8 

and 170，陀spectively，臼 shown in the first entry of Table 5-1 50.τllese estimates are much 

sma1ler than the initial estimate，一 0.1 ， but still considerably bigger than the ca1cu1ated lower 

bound , - IIGII... = - 3.0, which means 阳t阳 lower bound is a rather conservative estimate. 

We can examine the system matrix to get some clues for the possible interpretation of these two 

values. Most of nodes are the interior nodes. In genera1, as the depth constraints get sp盯ser，

5GnùS algoriÙlm was run again ∞由eun吨es WI由 spar比r de严h constraints. Sarne iniùal estimates. 0.0 and - 0.1 
were used for M E and "'F;o res萨比由ely. When the 但由ity of 由e de界h ∞nstraints was 3α元. the improved estimates of 
"'E. -2.180764 and -2.402566, W町e used from the iteration Slep 8 and 399. r臼pectively. When the density was 15%. 
由ein市roved estima1e of "'E' - 2.19381 1. wasωed from 由e iteration s!ep 8. 
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mo陀 of these interior nodes are not depth constrained. The interior node with no depth constraint 

is illustrated in Figure 2-4 and its corresponding nodal equation is given in 由e equation (1). The 

definition of由e matrix norm IIGII.., given in 由e equation (44) is reproduced here. 

||G|L=i=12?nlZl|giJ|) 

When we compute 由e quan向 - L.; = 1 I g ij I for 由e interior node. we get 一斜 /20 = -2.2. 

which is much closer to 由e final estimates of mE we obtained above. Furthermore. when we 

compute the quantity 一 L.;二=l l gi乌叫ij川) fl伽01町r川巾.t阳he bo阳und町 no旧od出e whos臼e ∞correspon叫毗dωin鸣1唱g no削odωa础l 叩a剖川川tiωi阳O∞n

given in t由he e叫qua况川tion (付4). we get 一 1口2/4 = 一 3.0, which coincides wit由h the lower bou山md5引

Therefore. - 2.2 can serve as a more accurate initial estimate of mE'ηle second entry in Table 

5-1 shows the 陀sult where 0.0 is used 臼 initial estimate of M E and -2.2 for mE' In Table 5-2. 

we show the number of iterations to attain 由e specified fraction of the initial RMSE value. The 

comparison of the first two columns confirms that - 2.2 is a better initial estimate than - 3.0. The 

differ町lce in number of iterations is sma1l in 由e beginning but becomes increasingly larger as 由e

RMSE is reduced further . 

For the more accurate initial estimate of ME. we can pick a number 由at is sligh t1 y smaller 由m

由e final estimate at convergence. For 由is ex缸nple. we picked 0.99. As the fourth and fifth entry 

in Table 5-1 shows. the initial estimate of ME is quite g∞d so 由at it is not changed for more than 

l∞ initial iteration ste庐. In the adaptive Chebyshev acceleration method. the more accurate 

estimation of ME is more critical than 由at of mE for convergence. The 1它maining two columns in 

Table 5-2 show 由at effect. The RMSE values in the beginning rows are attained in much sma1ler 

number of iterations for initial M E of 0.99 ∞mpared to 由at of 0.0.ηle absolute differences in 

number of iteration steps a陀 maintained or incre出ed as the iterations go on. though in a less 

dcgrcc between the second and the third column. But the overall relative ratios of iteration steps 

get smalle r. ηùs is due to 由e fact 由at nearly 由es缸ne final estimate of M E is obtained at the end 

of iterations even with different initial choice of estimates . 

SI For depLh constrained n。但S， we get bigger values. when Lhe interior node is dep山∞nstrained. Lhe nodal 叫uation
is given in 由e equalion (2) and we get - 44 / 20.5 = - 2.1463 assuming .5 for '(. When the c创ner boundary node is 
dep山 constrained， we get - 12/4.5 - 2.6667 路sw划ng Lhe same '( value. lf Lhe '( value is increased lo 2.0, we gel 
-抖/ 22.0 = - 2.0 for Lhe interior J\(对eand -12/6.0 = -2.0for Lhe ∞πler boundary node . 
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We have done the same experimem using the sim i1ar sct of the estimates for the first Young 

algori由m. 白le only difference is 由at we used -2.3 instead of -2.2 for the initial estimate of 

mE' The results are 陀ported in Table 5-3 and 5-4. The overall performance is ve可 similar to 由at

in Table 5-1 and 5-2. Also , the choice of - 2.3 as an initial estima臼 of mE is not sensitive. When 

0.0 was used as initial estimate of ME' it took 192, 195 , and 197 iterations to reduce the RMSE to 

.α)()()1 for initial esÙmate mE values of - 2.2, - 2.3 , and - 2.4.陀spectively. When 0.99 was used 

臼 initial estimate of ME' the same phenomenon was observed, i.e. , it took 167. 170. and 172 

iterations. respectively. Note also 由at for initial estimate mE of - 2.2. it took same number of 

iteration steps for bo由 Young algorithms. iι192 and 167 iterations to reduce 由e RMSE to 

.00001 for initial estimate M E of 0 and 0.99, respectively . 

As discussed in section 4. 1.3 , the average virtual rate of convergence for the Chebyshev 

acceleration method increases to an 缸ympωtic value and many iterations are 。如n 陀qui陀d

before the asymptotic convergence is achieved. Thus, whcnever there is a change of estimate of 

ME' a new Chebyshev pol归omial is generated wi由 the better estimate but the convergence slows 

down for a while. For instance , compare 由e second and the fourth column of Table 5-4 where 

the same estimate of mE = -2.3 is used. When initial ME was 0.0, i.e. for the second column, a 

new estimate of ME is used from the itcration step of 48，路陀ported in Table 5-3. To reduce 由e

fraction of the RMSE 衍。m .2 to .1 , it takes 12 iterations in the second column while it takes only 

7 iterations in the fourth column. The similar phenomenon can be observed again for two 

columns. As another example , in the fourth column, a new estimate of ME isωed from the 

iteration step of 110. To reduce 由e 行action of the RMSE from .α)()5 to .仅旧2 ， it takes 16 

iterations in the fourth column while it takes on1y 11 iteraùons in the second column . 

Thus , it is clear from 由is discussion 由at using initial mE = - 2.3 determined from 由e analysis of 

由equan问 - '2.J=llgj川'or the in时or node is go∞创oωd en削1

first algorithm throughout 由i览s chapter . 



(Con山ued)-
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.. mE M E 

----------

1 - 121 -3.0 .99 

122 - 142 -3.0 .990878 
.‘ 

143 - -3.0 .992618 

Table 5-1: Change of Estimates of Extreme Eigenvalues (Algorithrn 6-5.1) .. 

-

.‘ 
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• 
R岛1SE mE = -3.0, mE = -2.2, mE = -3.0, mE = -2.2 , 

儿lE = 0.0 儿lE = 0.0 ME = 0.99 ME = 0.99 

------ --------- --------- ---------.. 0.5 28 26 12 11 

0.2 42 39 21 19 

0.1 55 48 29 26 

.. 0.05 67 61 38 34 

0.02 80 72 51 46 

0.01 95 86 63 56 

.. O.∞5 106 96 75 67 

O.∞2 119 108 93 83 

O.∞1 134 120 107 95 

.. O.α)()5 147 132 121 110 

O.α)()2 160 144 141 126 

O.α)()1 170 153 157 140 

.. O.α)()()5 181 163 166 148 

O.αX阳2 197 177 178 159 

O.α)()() 1 214 192 187 167 

.. 

Table 5-2: Effects of EITOrs in Initial Estimates of Ext陀me Eigenvalues (Algorithm 6-5.1) 

.‘ 

.. 

.. 



(Conùnued) 

.‘ 

.‘ 

-



Table 5-3: Change of Estimates of Extreme Eigenvalues (Algoritlun 6-4.1) 

... 

a‘ 

... 

... 

• 

... 
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.. 
R岛1SE mE = -3.0. mE = -2.3. mE = -3.0, mE = -2.3 , 

儿1E = 0.0 儿1E = 0.0 ME = 0.99 ME = 0.99 

------ --------- --------- ---------
h 

0.5 28 27 12 11 

0.2 42 39 21 19 

0.1 56 51 29 26 

.. 0.05 66 61 38 34 

0.02 80 73 51 47 

0.01 95 87 63 57 

.. O.∞5 105 97 75 69 

O.∞2 119 1ω 93 84 

O.∞1 136 124 107 97 

• O.α)()5 146 134 123 112 

O.α)()2 159 145 141 128 

O.α)()1 170 155 156 142 

• 0.(阳J05 181 165 165 150 

0.(刷刀2 202 180 177 161 

O.α)()() 1 212 195 187 170 

• 
Table 5-4: Effects of Errors in lnitial Estimates of Exu毛me Eigenvalues (AlgoriÙlm 6-4.1) 

.. 

.. 

.. 
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5.3 Experiments on Synthetic Images 

5.3.1 Single-grid Algorithms on the Finest Grid 

5.3.1.1 Experiments on a Floating Plane 

The synthetic irnage used was a floating plane of constant depth.α= (1.0 1.0 ... 1.0) T. The 

densities of the depth constraints were varied to 15%. 30%. and 50% . 

In Table 5-5. we show the nurnber of iterations i to a口ain 由e specified 仕action of the initial 

RMSE value.52 The results are tabulated side by side for three different iterative methods. the 

conjugate gradient. the adaptive Chebyshev acceleration. and the Gauss-Seidel me由od. 

We observe 出at 由e ∞时ugate gradient method perforrns best in the sense 出at it takes the least 

number of iterations. The adaptive αlebyshev acceleration rnethod comes next and the Gauss

Seidel method perforrns worst. But we should note 由at each step of the iteration of the frrst two 

me由。ds is completely parallelized 50 出at overall execution is rnuch faster. compared to 由e

Gauss-Seidel method where the cornputation is done in serial fashion. As the dep由 constraints

becorne sp缸臼r. 由e discrete depth interpolation problern itself becornes inherently harder to 50lve 

and takes mo陀 iterations. Even he罚，由e degradation in 由e Gauss-Seidel rnethod tuπ1s out to be 

由e worst 

Suppose 由at 由e size of the rnesh at the leaf of the tree is s x s. When there are depth constraints 

only. we have derived before 由at 由e total nurnber of machine cycles per iterations a陀

4392 x (log 2 s) + 16453 for the adaptive Chebyshev acceleration method (s臼 section 4. 1.5.4) 

and 5856 x (log 2 s) + 32307 for the conjugate gradient me由od (s臼 section 4.2.3.4). 

陀spectively. For the tr臼 with 128 x 128 mesh. the nurnber of machine cycles 缸巳 47197 for the 

adaptive Chebyshev acceleration method and 73299 for the conjugate gradient method. In Table 

5-6. we show the normalized nurnber of iterations for two methods in the first two columns. For 

the adaptive Chebyshev acceleration method , we use the sarne numbers 剖 in Table 5-5. For the 

conjugate gradient method. we have multiplied 由e nurnber of iterations in Table 5-5 by 73299 / 

町、.e trivial initial approxirnation. }O) = (0.0 0.0 ,.. 0.0) T , was used. ηlUS，由e initi创 RMSE was 1.0 for this 
example . 
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47197 = 1.5530 . 

After nonnalization. the conjugate gradient method st山 perfonns better than the adaptive 

Chebyshev acceleration method. This is in part due to 由e errors in the initial estimates of the 

eigenvalues. The initial estimates of the largest and the smallest eigenvalues. ME and mE' were 

0.0 and -IIGII∞= -3.0. 而spectively. ln the first few iterations , the conjugate gradient method 

perfonns much better, but as more computations are done the estimates of the eigenvalues (in 由is

case. ME only) get better. The final estimates of ME values at 由e iteration steps of 170, 271 , and 

495 were .991694. .996805. and .999064 when the densities of the dep由 constraints were varied 

to 50%. 30%. and 15%. respectively. [S臼 Table 1- 1.] Thus. the ratio (or relative difference) of 

由e number of iterations bctween the conjugate gradient and the adaptive Chebyshev acceleration 

methods gets smaller . 

The third column in Table 5-6 shows the result from the adaptive Chebyshev acceleration method 

wi由 more accurate initial estimates. For the initial estimates of ME. we used the values slightly 

smaller than final estimates from previous runs: we used .99, .993, and .997 臼 the initial 

estimates of M E' For the initial estimates of mE' we used - 2.3. With these near optimal initial 

estimates. 由e adaptive Chebyshev acceleration method perfonned better than or at least 

comparable 10 由e ∞时ugate gradient method. i.启ιe

sma础11er ne 缸l与yeve叩whe 陀阻. It i沁s not surprising s剖inc览:;e the iteration proc臼es臼s i沁s started with global 

infonnation: here. the near optimal estimates of the largest 缸1<1由e smallest eigenvalues. In 

contrast. the conjugate gradieru method is 剑arted wi由 no global infonnation. at least in the 

beginning. However. for 臼ver创 iteration steps in the first row in Table 5-6. we have a 

paradoxical result in the sense 由at the conjugate gradient method turns out to be faster. This can 

be explained by the fact 由at 吐le convergence rate is slow in the beginning even for the optimal 

Chebyshev acceleration me由od. as mentioned in section 4.1.3 . 

Other numerical values are given in section I.3 .1 of Appendix with fu时也r explanations . 



• 
95 

• 
R岛1SE Conjugate Gradicnt Chebyshev Accel. Gauss-Seidel 

----------------- ----------------- ------------------
50% 30% 15% 50% 30% 15% 50% 30% 15% 

也

0.5 6 9 16 28 36 55 30 52 112 

0.2 13 21 37 42 60 99 73 131 296 

• 0.1 21 32 55 56 80 129 107 196 460 

0.05 28 43 74 66 94 158 142 265 648 

0.02 38 58 104 80 121 207 191 364 950 

• 0.01 46 70 130 95 137 251 229 445 1231 

O.∞5 53 82 153 105 161 297 269 531 1555 

O.∞2 63 99 179 119 183 354 323 654 2024 

• O.∞1 71 110 2∞ 136 208 384 365 752 2394 

O.α)()5 79 122 220 146 224 416 408 855 2769 

O.α刀2 89 136 247 159 247 470 465 995 3269 

O.α)()I 96 146 267 170 271 495 509 1103 3650 
• 

• ‘ 
Table 5-5: Number of Iterations (plane) 

.‘ 

-

.. 
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• 
R如ISE Conjugate Gradient Chebyshcv Ac∞1. 

( initial mE = - 3.0. ( initial mE = -2.3 • 

... 儿IE = 0.0 )儿IE 主 0.99 ) 

50% 30% 15% 50% 30% 15% 50% 30% 15% 

,a 0.5 9.3 14.0 24.8 28 36 55 11 15 21 

0.2 20.2 32.6 57.5 42 60 99 19 30 45 

0.1 32.6 49.7 85.4 56 80 129 26 45 70 

... 0.05 43.5 66.8 114.9 66 94 158 34 62 102 

0.02 59.0 90.1 161.5 80 121 207 47 93 165 

0.01 71.4 108.7 201.9 95 137 251 57 110 197 

.. O.∞5 82.3 127.3 237.6 105 161 297 69 124 240 

O.∞2 97.8 153.8 278.0 119 183 354 84 152 289 

O.∞1 110.3 170.8 310.6 136 208 384 97 169 315 

.. O.α)()5 122.7 189.5 34 1.7 146 224 416 112 184 344 

O.α)()2 138.2 21 1.2 383.6 159 247 470 128 211 395 

O.α)()1 149.1 226.7 414.7 170 271 495 142 224 422 

• 

Table 5-6: Normalized Number of Iterations (plane) 
a 

,-

... 
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5.3.1.2 Experiments on a Cylinder 

We show the number of iterations in Table 5-7 and the nonnalized values in Table 5-8. We have 

similar results. but the overall number o[ iterations are smaller. because of the parameter change 

in the nodal equations. For the plane ex缸ηple. we employed smaller value for y. 0.5 , but for the 

cylinder and the sphere ex缸nple. we employed 2.0. This has the effect of giving the center nodes 

and the dep也 constraints more weight. and 由us speeds up the convergence. [See 由e equation 

(2).] 

For the adaptive Chebyshev acceleration method run with more accurate initial estimates. we 

proceeded in similar fashion. For the initial estimates of mE' we used -2.3. When the initial 

estimates of mE and M E were - IIGII国= -3.0 and 0.0. we obtained .98233 1, .993159. and 

.998364 出 the final estimates of M E values at 由e iteration steps of 117. 191，扭d 380 when the 

densities of the depth constraints were varied 10 50%. 30%. and 15%. 陀spectively. As the 

improved initial estimates of ME• we used .97. .98. and .99，陀spectively.

5.3.1 .3 Experiments on a Sphere 

We show the number of itcrations in Table 5-9 and thc normalized values in Table 5-10. We 

have similar resultsωthose of the cylinder. but the overall number of iterations are a little bit 

smaller.ηle major difference he陀 is 由at only limited accuracy cou1d be obtained even after 

sufficient numt陪r of iterations for all iterative methods.53 For example. even after 1∞ iterations 

were carried out with the conjugate gradient method over the sphe陀 image of the 50% depth 

∞m汀aints ， the fraction of the RMSE eITOr w臼 still .∞63. In Table 5-9 , we observe 由at 由e bulk 

of the accuracy，由e 仕action .01 , was obtained after on1y 29 iterations. This phenomena was also 

observable in the cylinder examples，由ough in a much less deg陀e . 

For the adaptive Chebyshev acceleration method run with mo陀 accurate initial estimates , we 

proceeded in similar fashion. For the initia1 estimates o[ mE' we used - 2.3. When the initia1 

estimates of mE and M E were - IIG川崎 = - 3.0 and 0.0 , we obtained .987428 , .991676 , and 

S3We can explain 由e limited 8CCuracy as following. Starting wi由 the plane, and thenωthe cylinder and the sphere 
examples, the 也pth v创U臼严ogressively change more rapidly at 由e boundary. We observe al四 that 由e nod臼 at the 
boundary are cormected wi由 a fewer nwnber of neighboring nodes. i. e. 由ey are less suppon吨以自cause of the pres四ce
of 吐Je d叩由 dis∞nlinuity. In fac t, we deaJ with a free plate 严'Oblem. [Recall the discussion at the end of section 
2.2.23. For instance，∞mpare 由E 呵uaoon (1) with the 吨uaoon (4 ).) 
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R扣ISE Conjugate Gradient Chebyshev Acccl. Gauss-Scidel 

----------------- ----------------- ------------------
50% 30% 15% 50% 30% 15% 50% 30% 15% 

... 

0.5 4 7 12 17 23 36 8 15 36 

0.2 9 15 28 27 39 67 21 42 109 

• 0.1 13 22 42 33 52 94 33 66 187 

0.05 18 29 56 42 66 123 45 94 288 

0.02 24 40 82 53 85 164 62 138 470 

• 0.01 29 49 1∞ 60 102 203 77 178 647 

O.∞5 34 59 116 70 114 232 92 222 843 

O.∞2 41 70 l35 79 136 273 114 287 1114 

.. O.∞1 46 77 152 90 153 295 131 339 l323 

O.α)()5 51 85 170 97 165 318 149 393 1532 

O.α刀2 58 95 189 106 179 360 173 466 1803 

• O.α旧1 62 103 202 117 191 380 192 521 2仅归

.. 
Table 5-7: Number of Iterations (cylinder) 

.. 

,. 

a队
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RMSE Conjugate Gradient Chebyshev Ac臼1.

( initial mE = - 3.0, ( initial mE = -2.3 , 
... 

ME = 0.0 ) ME ~ 0.97 ) 

----------------- ----------------- ------------------
50% 30% 15% 50% 30% 15% 50% 30% 15% 

-----... 

0.5 6.2 10.9 18.6 17 23 36 6 8 12 

0.2 14.0 23.3 43.5 27 39 67 10 17 32 

• 0.1 20.2 34.2 65.2 33 52 94 15 26 58 

0.05 28.0 45.0 87.0 42 66 123 20 39 91 

0.02 37.3 62.1 127.3 53 85 164 28 64 128 

0.01 45.0 76.1 155.3 60 102 203 36 75 159 ... 
O.∞5 52.8 9 1.6 180.2 70 114 232 45 91 190 

O.∞2 63.7 108.7 2ω.7 79 136 273 58 111 228 

O.∞1 71.4 119.6 236.1 90 153 295 69 121 266 
• 

O.α)()5 79.2 132.0 264.0 97 165 318 75 131 294 

O.α)()2 90.1 147.5 293.5 106 179 360 83 146 322 

O.αX)I 96.3 160.0 313.7 117 191 380 89 160 到4
... 

Table 5-8: Nonna1ized Number of Iterations (cylinder) 

... 

.. 

... 

... 
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.997106 as the final esLÏmales of M E values at the iteration sleps of 113 , 190, and 383 when the 

densities of the depth constraints were varied to 50% , 30% , and 15%，陀spectively. As the 

improved initial estimates of ME' we used .97, .98 , and .99 , respectively . 

Up to 由is point, we have dealt wi由 the images of the dep由 constraints only. For the sphere 

image , we have another 陀sult with both 由e depth and the orientation constraints. We assume the 

identical depth constraints but we assume alSD 由at the orientation constraints ar它 available at 由e

same nodes.55 For 由e coefficients of 由e constraints terms in 由c nodal equations , we used ß" = 

2.0 / h2 for the dep由 constraints and a." = 1.0 / h for the orientation constraints. [See 由e

equations (2) and (3).) 

We show the number of iterations in Table 5-11 and the normalized values in Table 5-12.τ'he 

densities of the constraints are varied to 30% , 15%, 5% , and 2%. When we compare 由e 陀su1ts

of the iterative methods on depth constraints only wi由 the methods on bo由 depth and orientation 

constraints for same densities (30% and 15%), we observe 由e improvements. The number of 

iteration steps to reach the .2 , .1 , and .05 of the initial RMSE valucs are smaller for all iterative 

methods when both constraints exist. However, the improvements are surprisingly marginal . 

When both constraints exist, we need to use a slight1y different normalizing factor. We have 

derived before 由at 由e total number of machine cycles per iterations a陀

4392x (log2 S) + 17712 for the adaptive Chebyshev acceleration method (see section 4. 1.5.4) 

and 5856 x (/Og 2 s) + 34825 for the ∞时ugate gradient method (see section 4.2.3.句，

陀spectively， when the size of the mesh at the leaf of the tree is s x s. For the tree with 128 x 128 

mesh，让le number of machine cycles are 48456 for the adapùve Chebyshev acceleration method 

and 75817 for the conjugate gradient method. For the adapùve Chebyshev acceleraùon method , 

we use 由e same numbers as in Table 5-1 1. For 阳∞njugate gradient method , we have 

mu1tiplied the number of iterations by 75817 148456 = 1.5647 in Table 5-12 . 

5Ýfhe p 叫or时巾阳川i怆阳e创E

a创t 由巾en时1叫ode [i.口i. β . For the specific image ∞ nsidered. we have u[iJl = (1.0 - ((i - r y' + (j - r Y.) I (ry. )l f2. We can 

show 由a1 P[iJl = (r - i) I (u x ,2). Similarly, we have qU.íJ = (r-β I (u x ,.2) • 



.. 
101 

RMSE Conjugate Gradient Chebyshev Accel. Gauss-Seidel 

.. 50% 30% 15% 50% 30% 15% 50% 30% 15% 

0.5 4 6 11 17 23 36 8 15 35 

• 0.2 9 14 26 27 38 65 21 41 103 

0.1 13 20 39 33 50 88 32 63 172 

0.05 17 27 53 41 61 113 43 88 259 

.‘ 
0.02 23 36 71 49 76 147 60 126 406 

0.01 29 47 ***54 60 95 *** 77 172 *** 

Table 5-9: Number ofltcrations (sphere) 

, .. 

RMSE Conjugate Gradient Chebyshev Ac臼1.

' 
( initial mE = - 3.0, ( initial mE = -2.3 , 

ME=O.O ) ME 主 0.97 ) 

----------------- ----------------- ------------------
50% 30% 15% 50% 30% 15% 50% 30% 15% 

也.

0.5 6.2 9.3 17.1 17 23 36 6 8 12 

0.2 14.0 21.7 40.4 27 38 65 10 16 30 

.‘ 0.1 20.2 31.1 60.6 33 50 88 14 24 53 

0.05 26.4 4 1.9 82.3 41 61 113 19 35 86 

0.02 35.7 55.9 110.3 49 76 147 26 52 111 

.‘ 0.01 45.0 73.0 ****事 60 95 *** 34 73 *** 

Table 5-10: Normalized Number of Iteraùons (sphe陀)

.. 
54……, refersωa number 由at could not be computed even if sufficient number of iterations w臼e performed . 

.. 
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For the adaptive Chebyshev acceleration method. we uscd - 2.3 for the more accurate initial 

estimates of mE. When the initial estimates of mE and ME were -3.0 and 0.0. we obtained 

.986494, .995370, .999063 , and .999835 as 由e estimates of M E values at the iteration steps of 96 , 

123 , 244 , and 591 when the densities of the depth constraints were varied ω30% ， 15%, 5% , and 

2% , respectively. As the more accurate initial estimates of ME' wc used .98 , .99 , .998 , and .9998 , 

respectively . 

5.3.2 岛1ultigrid Algorithms 

5.3.2.1 Experiments on a Cylinder 

One of the two synthetic images we 时ed is a portion of a cylinder, the same one used in 回ction

5.3. 1.2. However, the depth constraints are not scanered randomly. The constraints lie along j = 

8，坷.64 ， 93. 四d 119 where 0 ~ j ~ 127.56 

We ran four-level multigrid algorithms ωsee how much speed up is achieved against iteration on 

由e finest level on1y. The sizes of the images arc reduced from 128 x 128 to 64 x 64.32 x 32 , and 

16 x 16 as seen from the finest level (l = 4) to 由e coarsest one (l = 1).ηle depth constraints at 

the coarser levels are generated by sampling the same cylindrical surface. For 由is particular 

ex缸nple. the depth constraints 但它 constrained along one arc of the cylinder on1y so that the 

densities of the depth constraints are doubled for each coarser level. At 由e finest level. we have 

the density of 3.91 %. For the coarser levels. we have 让le densities of 7.81 %, 15.63% , and 

3 1.25%. 陀S民ctively. 

Befo陀 running the multigrid algorithms. we obtained the result separately for each level. [See 

由e equation (61)]. We show the number of iterations in Table 5-13 . 

节le trivial initial approximations, xf,O) = (0.0 0.0 ... 0.0) T • were used for a1l 1evels.τne initial 

RMSE values were .956515. .956709. .956742. and .956742 for the level 1 = 1, 2. 3. and 4. 

re st:陪ctively.

In the adaptive Chebyshev acceleration method , we show the result with more accurate initial 

5勺lùs example is similarω 由e one used in [Terz 84, p. 125] . 
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RMSE Conjugate Gradient Chebyshev Accel. Gauss-Seidel 

30% 15% 5% 2% 30% 15% 5% 2% 30% 15% 5% 2% 

0.5 6 11 29 69 23 35 76 168 15 35 152 661 

0.2 13 24 66 166 38 61 154 380 39 98 519 2756 
.. 

0.1 19 37 95 235 46 85 220 545 60 161 914 5221 

0.05 25 50 126 356 58 lω 280 757 83 239 1419 9145 

0.02 35 72 •• • ••• 76 148 ••• .. ... 123 409 •••• ...... 
• 

Table 5-11: Number of Iteraùons (sphere wi由 dep由 and orientaùon ∞nsLraints) 

... 

R岛fSE Conjugate Gradient Chebyshev Acα1. 

( initial mE = - 3.0, ( initial mE = -2.3 , 

... 儿IE = 0.0 ) M E ~ 0.98 ) 

---------------------- ---------------- ----------------
30% 15% 5% 2% 30% 15% 5% 2% 30% 15% 5% 2% 

-----

... 
0.5 9.4 17.2 45 .4 108.0 23 35 76 168 8 12 26 60 

0.2 20.3 37.6 103.3 259.7 38 61 154 380 15 28 70 146 

0.1 29.7 57.9 148.6 367.7 46 85 220 545 22 48 129 222 .. 
0.05 39.1 78.2 197.1 557.0 58 1ω 280 757 31 77 213 399 

0.02 54.8 112.7 .......位...* ............ ... 76 148 ....* ••• 48 112 ..... .** 

Table 5-12: Normalized Number of Iteraùons (sphe陀 wi由 depth and orientaùon constraints) 
.‘ 

• 

... 
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estimates only. For the initial estimates of mE' we used - 2.3. As the improved initial estimates 

of ME, we used .97, .99 , and .999 , for thc level 1 = 1, 2 , and 3, respectively.57 For the finest level , 

we used .99995 as 由e estimate of M E from the beginningωthe end without any change at 剖l.58

In the optimal Chebyshev acceleration and 让1e weighted Jacobi methods, for the real eigenvalues , 

m(Ghl) and M(Ghl), we simply used these initial estimates instead, assuming 由at these estimates 

are fairly good . 

When the depth constraints exist only , we have derived in section 4.3.3.3 由at at level 1 it takes 

5856 x ((Iog 2 s) - (L -l)) + 32307 machine cydes for an iteration of the conjugate gradient 

me由Od.59 Thus , an iteration on each level from coarsest to finest respectively takcs 5573 1, 

61587 , 67443，缸1d 73299 machine cyd臼 We have derived also 由at at level 1 it takes 

4392 x ((log 2 s) - (L -l)) + 16453 machine cydes for an iteration of the adaptive Chebyshev 

acceleration method. Thus. an iteration on each level from coarsest to finest respectively takes 

34021, 38413 , 42805 , and 47197 machine cydes. For an iteration of the op由nal Chebyshev 

acceleration and the weighted Jacobi methods, we have derived 由at at a11 1evels it takes 15314 

and 13840 machine cycles , respectively . 

We can now normalize 由e number of iterations to compare 由e iterative methods. In Table 5-14 , 

we show the normalized number of iterations. For the optimal Chebyshev acceleration method , 

we use the s缸ne n山nbers as in Table 5-13. The number of iterations for other iterative methods 

we陀 multiplied by ∞πesponding normalizing factors. 

We ∞mpare first the unnormalized number of iterations of the adaptive and opùmal Chebyshev 

S7When the initial es由nates of "'E and ME were - 3.0 and 0.0, we obtained .979848, .997912, and .999869 路出E
es出nates of ME values at the iteration 5忧ps of 88, 279, and 1205 for the level1 = 1, 2, and 3, res严ctively.

S8In get田al， for a larger image with sparser ∞nstraints ， the dep由 interpolation problem is har也rωsolve. In the 
Chebyshev acce1eration me由od， the largest eigenvalue M(G) is clω町 ωup防军 bOlmd, 1.0. (Recall our discussion in 
section 4.3.1.) For this large image with very sparse and highly artificial dis町ibution of depth constraints, the 回aptive
Chebyshev accel町四onpr回回町e did not work OUI well since M(G) w臼 ωoclωeω1.0. Note 由at .9佣95 is the 
largest value of the imposed upper bo lDlds for initial estirnate of ME• [For the numerical valu臼 of the upp町 bounds，

5臼阳明uation (72) in Apt览ndìx.) We needωe;.;tend the u阴阳 bow由 ofthe 吨uationσ2) suggested by Young. He 
states that the 叩阴~ bounds were imp<骂ed infr吨uenùy. In his numerical e;.;periments. 由e typical s出 of the matrix 
was 1∞ x 1∞ or 1 以)() x 1仪陇 But in our case, we are dealing wi由山e 也pth ∞ntinuous region of the size 128 x 128, 
四由at the size of the matrix is 16384 x 16384. Further srudy is called for with regardωe;.;tending 由e upper bounds. 

5争The size of the mesh at 由e fmest level L is s x s . 
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acceleration methods. The used initial estimates of thc extreme eigcnvalucs ar巳 quite good. Thcy 

are not updated, i.e. , same for both methods , until the RMSEs are reduced to .1 of initial values. 

At 由e coarsest level , the number of itcrations are nearly same even until the RMSE is reduced to 

.01. We compare now the normalized number of iterations of the adaptive Chebyshev 

accεleration and 由e conjugate gradient methods. For all levels , nearly all numbers in 由e first 

由ree rows , iιm咀由.eRMSEs ar巳 redu臼:d to .1 , show 由at 由e adaptive Chebyshev acceleration 

method executes faster . 

When the RMSEs are reduce:d to .1 ，由e norrnalize:d numbers are 2575.1 , 2490.2. and 808 for the 

conjugate gradient. the adaptive. and the op由nal Chebyshev acceleration methods. respecti vel y. 

for the finest level. The normalized numbers are 54.6. 51.1 , and 23 for the coarsest level. When 

由e RMSEs a陀陀du臼d to .01. 由e normalized numbers are 6255.8. 11655.9. and 3782 for the 

finest level and 109.2, 117.7 , and 55 for the ∞arsest levcl. 

We discuss now 由e multigrid execution results. For 由e multilevel coordination, the fixe:d 

scheduling scheme was used. [For the listing, refer back to Figure 4-2]. At 由e coarsest level , 

pro臼dure SOL VE performs iterations to desired accuracy. The fixed number of iterations 

performe:d by SOL VE are designated as 10 and so' when invoke:d inside of pro臼dure FMRA and 

FMC , respectively . 

For the conjugate gradient method , four sets of parameters were used to obtain differ它nt precision 

of fmal RMSE values. We ∞mpare the amount of time taken to arrive at the same final RMSE 

values at 由e finest level, when iterations are caπie:d out on the finest level only versus multigrid . 

For the first set, 10 = 15 w出 use:d. In Table 5-13 , we can read 由at 由e RMSE va1ue is redu臼d to 

.1 of initia1 va1ue at the coarsest level.节1e actual value obtained was .101114. For the 0由er

parameters , So = 4 , n1 = 6, "2 = 1, and ~ = 6 were used.η1e total number of iterations performed 

on each level from coarsestωfinest r它spectively is 27 , 36, 24 , and 12. The fina1 RMSE value 

obtaincd on each level from coar百st to finest respectively is .0664448 , .0675243 , .0680527. and 

.0683314. When the relaxation is carrie:d out on the finest level only. 由e RMSE va1ue .0682560 

is obtained after 683 iterations . 
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.. 
RMSE Conjugate Gradient Adapt. Chebyshev Accel. Opt. Chebyshev Accel. 

------------------ ------------------ ------------------
1=4 1==3 1==2 1== 1 1=4 1==3 1==2 1=1 1=4 1=3 1=2 1=1 

.. 
0.5 167 44 13 4 164 42 15 7 164 42 15 7 

0.2 419 1∞ 27 10 430 127 37 15 430 127 37 15 

• 0.1 538 130 35 15 808 245 67 23 808 245 64 23 

0.05 894 216 55 20 1470 4∞ 94 32 1470 432 101 32 

0.02 1088 268 78 25 2748 569 141 47 2748 771 171 45 

.. 0.01 1307 323 91 30 3782 677 170 53 3782 1045 231 55 

o.∞5 1575 393 107 35 4850 748 189 59 4850 1330 293 66 

o.∞2 1788 472 121 44 6308 846 214 68 6308 1721 379 85 

o.∞l 2083 533 137 ** 7459 • 935 237 ** 7459 2038 455 ** 

o.α刀5 2235 585 *** ** 8743 1065 *** ** 8743 2419 *** ** 

.. 

(Continued) 

• 

• ‘ 

.. 

.. 



.. 

.. 

• 

.. 

.. 

‘ 

• 

• 

• 

.. 

107 

RMSE Gauss-Seidel Weighted Jacobi 

1=4 1=3 1=2 1=1 1=4 1=3 1=2 1=1 

0.5 5422 375 44 12 #=t#样 #### 144 40 

0.2 ####60 1280 123 31 #### 样样 403 102 

0.1 样样 2365 204 47 #### 样## 665 155 

0.05 样样 4033 313 65 #### #### 1011 213 

0.02 #### 7073 512 89 样样 样样 1652 295 

0.01 #嗣在# 9572 686 108 样样 #### 2223 358 

O.∞5 #### 样样 866 128 #### #### 2817 426 

O.α丑 #### 样样 1114 165 样样 样样 3635 550 

O.∞1 样样 样样 1333 ...... ... #### 样样 #嗣样 ...... ... 

O.α)()5 #### #### ............ ...... ... 样样 样样 ......... ... ......... 

Table 5-13: Number of Iterations on Fine/Coarse Levels (cylinder) 

ωH制##" refen to a num~宫由at was not ∞mputed. It could be comput阜生 but it would just show 由at some 
iterative methods are ind能d very slow . 



,a 
108 

.. 
RMSE Conjugate Gradient Adapt Chebyshev Acα1. 

--------------------------- ---------------------------
1=4 1=3 1=2 1=1 1=4 1=3 1=2 1=1 

----- ------ ----- ------
• 

0.5 799.3 193.8 52.3 14.6 505.4 117.4 37.6 15.6 

0.2 2∞5.5 440.4 108.6 36.4 1325.2 355.0 92.8 33.3 

.. 0.1 2575.1 572.5 140.8 54.6 2490.2 684.8 168.1 5 1.1 

0.05 4279.0 95 1.3 22 1.2 72.8 4530.5 1118.1 235.8 7 1.1 

0.02 5207.6 1180.3 313.7 91.0 8469.2 1590.4 353.7 104.4 

• 0.01 6255.8 1422.5 366.0 1ω.2 11655.9 1892.3 426 .4 117.7 

O.∞5 7538.6 1730.8 430.3 127.4 14947.5 2ω0.8 474.1 131.1 

O.∞2 8558.1 2078.7 486.6 160.1 19440.9 2364.7 536.8 15 1.1 

O.∞1 9970.1 2347.3 55 1.0 ***** 22988.3 2613.5 594.5 ***** ... 
O.α刀5 10697.6 2576.4 ***** ***** 26945.5 2976.8 ***** ***** 

• 

(Continued) 

... 

• ‘ 

匾• 

... 
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.. 
R如1SE Opt. Chebyshev Accel. Weighted Jacobi 

--------------------------- ---------------------------
1=4 1=3 1=2 1=1 1=4 1=3 1=2 1=1 

--------------------------- ---------------------------• ----- -----

0.5 164 42 15 7 IlilfjJl 1111 ff 11 fI JJ 1111 130.1 36.1 

0.2 430 127 37 15 # IUlttfl f! fllfNIIN (f 364.2 92.2 

• 0.1 808 245 64 23 JI !f NNlf J! 11 iI (1 111111 601.0 140.1 

0.05 1470 432 101 32 1111 if /1 11 JI 11 1/ 11111111 913.7 192.5 

0.02 2748 771 171 45 11/111#1111 UJl1!;'{fJf;' 1493.0 266.6 

.‘ 0.01 3782 1045 231 55 111111 /1 iJll 11110111111 2∞9.0 323.5 

o.∞5 4850 1330 293 66 111111111111 lI/l tlNN Jt 2545.9 385.0 

o.∞2 6308 1721 379 85 11111#" 1111 Ij JjIlJlJl II 3285.1 497.1 

• o.∞1 7459 2038 455 •• 11 ~II: :: 11 :t 111111111111 111111111111 ••••• 
o.α)(}5 8743 2419 .** .* J:JJJJ JJ;:;: u.u......叫"

'" 画 ""lflf •••••• ..**. 

a 

Table 5-14: Nonnal泣ed Number of Iterations on Fine/Coarse Levels (cylinder) 

.‘ 

• 

• ‘ 
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The multigrid algorithm takes 622∞89 machine cycles for iterations on four levels. To 由is ， we 

should add the time taken by 3 prolongation operations invoked in procedure H<IRA , 6 restriction 

operations in FMC , and 6 prolongation operarions in FMC. We have derived in section 4.3.3.4 

由at it takes 52383 , 27394 , and 53847 machine cycles for a prolongation operation in FMRA. a 

restriction operation in FMC, and a prolongation operation in FM"C，陀spectively ， when the depth 

constraÏnts exist only. Therefore, 644595 machine cycles are added to yield a total of 6864684. 

For the iterations on 由e finest level only , it takes 5∞63217 machine cycles. When the numbers 

of machine cycles are dividcd, we get a spced-up factor of 5∞63217 / 6864684 = 7.2929.61 

When we compare 由e number of iterations to attain .1 of initial RMSEs on the coarsest and finest 

levels , translated into total number of machine cycles, we get a speed-up factor of 39434862 / 

835965 = 47.1729. In contrast. the s严ed-up factor of multigrid execution result (7.2929) is much 

smaller 由m 由e speed-up factor obtained (47.1729) which can serve as a rough upper limit. 

由ough a too high one. This is due ωtwo reasons. First.阳 iterations are perfonned on all 

levels. Though we caπy out 27 iterations on 由e coarsest level. including 10 iterations to reach an 

initial acωracy. we have 36. 24 , and 12 iterations on other 由ree fine levels. Second , interIevel 

computations are carried out. too. For this case , it amounts to 644595/6864684 = 9.39 per民nt

of the entire execution time . 

For the second set. to = 30 was used. The RMSE value .∞938218 was obtained at 由e ∞M回st

level after 30 iterations. For the other parameters , So = 4 , n l = 6, ~ = 1. and ~ = 6 were u臼d.

The total number of iterations performed on each level from coarsestωfinest respectively is 42 , 

36 , 24 , and 12.ηle final RMSE value obtained on each level from coarsestωfinest respectively 

is .∞704917， .∞727274. .∞749481 ， and .∞758961. When the relaxation is ca时ed out on 由e

finest level only. the RMSE value .∞760190 is obtained after 1467 iterations. After carrying out 

a similar ana1ysis , we get a spc:划-up f;缸tor of 107529633/77∞649 = 13.9637 . 

For the 由ird set, 10 = 44 was used.ηle RMSE value .∞194568 was obtained at 由e coarsest level 

61 When smaller pararneter v创ues are used, more speed-up is possible. For exar叩le. with So = 3, fl l = 3, nz = 1, and 
~ = 3，出e 岛1a1 RMSE value obtained on each level 丘。m coarsestωrmest res萨比tively is .0793532, .0838957, 

.0858741 , and .0867920. When 由e rehuation is carried out on the fmest level only, the RMSE value .0868207 is 
obtained aI町 558 iteratioru. Here, we get a speed叩 factor of 4似lO842/4339815 = 9.4246. 
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时ter 44 iterations. For the other par缸neters. So = 4. n1 = 8. ~ = 1. and ~ = 8 were used. The 

total number of iterations perfonned on each level from coarsest to fmest respectively is 56. 48. 

32. and 16. The final RMSE value obtained on each level from coarsest to finest res严ctively is 

.∞154726. .∞ 181073 ， .∞202964， and .∞213553. When the relax.ation is carried out on 由e

finest level only. the RMSE value .∞213782 is obtained after 1735 iterations. After carrying out 

a similar analysis , we get a s严ed-up factor of 127173765 / 1∞52667 = 12.6507 . 

For the last set, to = 44 was used again. For the other par缸neters ， So = 4 and ~ = 1 were used as 

before. For n1 and 呵， we used different values for each level. ln Table 5-13 , at 由e coarsest level 

由e RMSE value is not reduced further after 44 iterations τl1erefore. we increased 由e numberof 

iterations at finer levels 10 get smaller final RMSE values. For n1 = 吨. we used 12. 36, and 108 

for thc levell = 2, 3, and 4 , res严ctively. The total number of iterations performed on each level 

from ∞arsest to finest res严ctively is 56 , 72 , 144. and 216. The final RMSE value obtained on 

each level from coarsest 10 fin出t respectively is .α)()496926 ， .α)()519746. .α)()551625 ， and 

.α刀42770 1. When the relax.ation is carried out on the finest level only , the RMSE value 

脱刃428212 is obtained after 2269 iterations. Here. we get a s严ed-up factor of 166315431 / 

33744171 = 4.9287. 

Since the conjugate gradient and the Cαh怆1陇ebys白he凹v acceleration methods ar陀它 p庐er巾fonning a剑1陀ady

well on 由阳e s归i讪ng阱le-g剧rid ， 由阳e s耶庐阳ed-叩s 盯 relatively small (例140町r les臼ss). 币ley are also insensitive 

to par缸neter 臼国ng， i. e. ，由ey vary continuously with differenl values of so' n1, and ~岛r a given 

to. 

For the adaptive Chebyshev acceleration method , two 四ts of paramcters were used . 

For the first 田1， to = 23 was used. 币le RMSE va1ue .ω55011 was obtained at 由e coarsest level 

矿ter 23 iterations. For the other par缸neters ， So = 4. n1 = 7, ~ = 1. and ~ = 7 were used. The 

total numt炮r of iterations perforrned on each level from coarsest to finest 陀spectively is 35 , 42 , 

28 , and 14. The fina1 RMSE va1ue obtained on each level from coarsest to finest respectively is 

.0627607 , .0624723 , .0621976. and .0620595. When the relax.ation is carried out on the finest 

level only. 由e RMSE va1ue .0620297 is obtained after 1174 iterations. A仇er carrying out a 
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similar analysis , we get a speed-up factor of 554ω278 / 5307974 = 10.4389.62 

Compared with the similar resu1t of the conjugate gradient method for the first set of par缸neters ，

由e final RMSE values are reduced further with less machine cycles. This r它mark applies to 由e

other examples as well . 

For the second se t. to = 53 was used. The RMSE value .α:>987263 was obtained at 出e coarsest 

level after 53 iterations. For the other p缸ameters ， So = 6, n1 = 8, n2 = 1, and ~ = 8 were used. 

τbe to ta1 number of iterations performed on each level from coarsest to finest 陀spectively is 71 , 

48 , 32 , and 16. The final RMSE value obtained on each level 台om ∞缸-sestωfinest 陀spectively

is .∞647283 ， .∞672038 ， .∞701148，皿d.∞712965. When the rel缸ation is carried out on 由e

finest level on1y, the RMSE value .∞712748 is obtained after 4232 iterations. Here , we get a 

S严εd-up factorof 199737704 /7028822 = 28 .4170.63 

When the switching of level occurs , the most recent estimates of the extreme eigenvalues are 

pre臼rved. As each level is entered, a new Chebyshev polynomial is generated based on the 

stored estimates. For the set of parameters employed , to was relatively big but Soo n1, and ~ were 

not big enough for the change of estimates to ocωr64η1e change of estimates occurred at 由e

coarsest level on1y during 由e initial iteralion steps when the desir叫 accuracy was obtained. The 

initial estimate of M E was .97 at 由e coarsest level. Wi山 to = 53，由e improved estimates of 

.973413 and .981453 were obtained at the iteration steps of 35 and 43 , respectively. A丘er 剧s

update of the es山nate of M E at 由e coarsest level, no further estimate changes were obse凹ed. 

62When smaller parame田 values are used, more speed-up is 归ssible. With So = 4, "1 = 6, ~ = 1, and "3 = 6, the 
finaJ RMSE value obtain因而回.ch l凹el from ∞arseslωfineSI res严ctively is .0642141. .0649569, .0648902, and 
.0648521. When 吐le reluation is carried oul on Ihe finesllevel onJy, the RMSE value .0648646 is obtained after 1129 
iterations. Here, we get a speed-叩 factor of 53285413/4811882 = 11.0737 . 

63For 由Ì! example, we varied ,,) and "3 while "1 +句 was kept sarne as before. With smaller "1 value, ,,) = 6 and 
"3 = 10，由e final RMSE value obtained on the fir四 level is .α)847359. When 由e relaxation is carried oUI on 由e

finesl level onJy, Ihe RMSE value .∞847447 is obtained after 3967 iterations. Here, we gel a speed-up fac lOr of 
26.6375. Since "1 + ，、 is same, il takea same amounl of computation for 由e multigrid algorithm. With larger "1 
vaJue, "1 = 10 and ，、= 6, we get smaller final RMSE vaJue on Ihe fmesl level. .∞74560 1. However, nole 由at both 
final RMSE val出S are larger 由an tha1 of Ihe originaJ ,,) = 8 and "3 = 8. When the relaxation is carried out on the 
fmesl level onJy，由e RMSE value .∞745516 is obtained after 4163 iterations. Here, we get a speed-up factor of 
27.9536 . 

64For the discussion of p., the integer threshold that governs the generation of new Chebyshev 阴阳lomial and is 
greater 由an 5, see section 1. 1.1 of API咒ndix. 
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One more remark should be made about the estimates of the largest eigenvalue. In general, the 

size of the matrices is smaller and the constraints are denser at coarser levels. Both facts lead to 

easier matrix iteration problems to solve. In terms of the adaptive Chebyshev acceleration 

method. we have smaller numerical values for the largest eigenvalue at coarser levels. Therefore. 

at eve叩 switching to finer levels, the improved initial estimate may be set as the bigger value 

from following two choices: 由e es由natc at 由e current level or the one at 由e adjacent coarse 

level. 

For the optimal Chebyshev acceleration and the weighted Jacobi methods. two sets of par但neters

were used. Recall 由at in the optimal Chebyshev acceleration method , given (estimates of 由e)

eigenvalues are used throughout the computation wi由 no changes . 

For the first set of parameters , where to = 23 , So = 4, n l = 7 , "2 = 1, and 11:3 = 7 we陀 used， we have 

the identical results of final RMSE values since there were no changes of eigenvalue estimates in 

由e adaptive Chebyshev acceleration method. But the tota1 execution time is faster since the 

computation of 吐le optimal Chebyshev acceleration method employs the local connections only. 

After ca口γing out an analysis , we get 17978636 and 2466961 machine cycles for 让le execution 

on 由e finest level only and the multigrid，陀spectively. Therefo陀， we get a speed心p factor of 

17978636/2466961 = 7.2878. 

For the second set, ta = 55 w臼 U臼d. 币le R.'vISE value .α)967034 was obtained at 由e coarsest 

level after 55 iterations. For the other par缸neters ， So = 6. n l = 8. "2 = 1, and ~ = 8 were used. 

币le total number of iterations performed on each level from coarsest to finest respectively is 73 , 

48.32, and 16. The final RMSE value obtained on each level from coarsest to finest respectively 

is .∞638630. .仅>662617. .∞691268. and .∞702903. When the 陀laxation is ca时ed out on 由e

finest level only. the RMSE value .∞703077 is obtained after 4253 iterations. Here. we get a 

S严划-up faωr of6513归42/3232661 = 20.1476 . 

For the Gauss-Seidel method , two 回ts of parameters were used . 

For the first set, to = 47 w出 used. The RMSE value .0967473 was obtained 矶山e coarsest levcl 

after 47 iterations. For the other par缸neters. So = 6 , n l = 8. ~ = 1, and 11:3 = 8 were used. The 
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to ta1 number of iterations perfonned on each level from coarsest to finest 陀spectivcly is 65. 48. 

32 , and 16. It amounts to 28.015625 work units.τl1e fina1 RMSE va1ue obtained on each level 

from co创百st to finest res严ctively is .0683368 , .0680508. .0678371, and .0677086.65 

Here , we did not compute a s(>(记d-up factor since it t∞k too many iterations on the fines[ level. 

[See the Table 5-13.] The Gauss-Seidel meÙlod is indeed very slow for this example . 

With same to = 47 , we varied~. Wc used So = 4 , n1 = 8, ~ = 2. and ~ = 8. The tota1 number of 

iterations perfonned on each level from coarsest to fmest respectively is 103, 112.48 , and 16. It 

amounts to 36.609375 work units. The fmal RMSE value obtained on each level from coarscst to 

finest res严ctively is .0642819 , .0640420, .0638443 , and .0637243. For this example , more WOl女

units are required but smallcr final RMSE valucs are obtained as wcll . 

For the second set. to = 108 was used. The RMSE value .∞968758 was obtained at 由e ∞arsest

level after 108 iterations. For the other parameters. So = 8, n) = 20, ~ = 1, and ~ = 20 were used. 

The tot创 number of iterations perfonned on each level from coarsest to fmest respectively is 132 , 

120, 80, and 40. 1t amounts to 69.5625 work units. The final RL\.1SE value obtained on each level 

行om ∞arsest 10 finest respectively is .∞562791 ， .∞568184 ， .∞574512 ， and .∞577894. 

Befol它 concluding this section , we examine the range of execution time for the conjugate gradient 

and the Chebyshev acceleration methods. For instance, we consider the result of the first 

par缸neter set where the accuracies obtained at 由e coarsest level 但它 close 10 .1 of the initial 

RMSE value. At one extreme end , the iterations on the finest level only using the conjugate 

gradiem method takes 5α:>63217 machine cycles. At the other end , the multigrid execution with 

由e optimal Chebyshev acceleration method takes 2466961 machine cycles. When we compare 

these two , we get a speed-up fac10r of 5∞63217 /2466961 = 20.2935. 1n a similar way , for the 

second set, we get a speed-up fac10r of 107529633/3232661 = 33.2635 . 

币le traced execution result of the first parameter 臼t for each iteration method is given in section 

65When smaller parameter values are used. smaller wor\t uni lS are ohtained. With So = 4, n1 = 6, "2 = 1, and ，、= 6, 
theωtal number of iteraùons perfonned on each level from ∞町sestωfinest respectively is 59. 36, 24, and 12. It 
amoWl臼 to 21.171875 work units. The fin创 RMSE value obtained ∞ each level from coars四 ωfinest respecùvely is 
.0733860， β730684， .0728650, and .072733 1. 
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1.3.2 of Appendix with further explanations . 

5.3.2.2 Experiments on a Sphere 

The second synthetic irnage we tried on the multigrid methods is 由e upper hemisphere of a 

sphc陀. the same one used in section 5.3.1.3. wi由 bo由 the depth and the orientation constraints. 

节le densities of the ∞nstraints are 2% and 15% . 

The three-level multigrid algori由ms were run. The sizes of the mesh are reduced from 128 x 128 

to 64 x 64 and 32 x 32. The constraints at 由e coarser levels are generated by sampling the same 

spherical surface. When the density at 由e finest level is 2.02% , we have the densities of 7.71 % 

and 26.19% at the coarser levels. When the density at 由e finest levcl is 14.93% , we have the 

densities of 47.47% and 89.52% at the coarser levels . 

Bcfore showing the result of multigrid algorithm , we show the result for each level in Table 5-15 

and 5-17. The initial RMSE valu臼 were .687068 , .698895. and .707767 for the levell = 1.2. 皿d

3. 陀spectively. 

For the adaptive Chebyshev acceleration method, we show the result with more accurate initial 

estimates only. For the initial estirnates of mE' we used - 2.3. When the density at the finest 

level is 15%, we used .9 1, .97, and .99 for the levell = 1, 2. and 3. 陀spectively. 出由e improved 

initial estimates of ME.66 When the density at 由e finest level is 2%. we used .985 , .995. and 

.9998 for the levell = 1, 2 , and 3 , respectively.67 In the optimal Chebyshev acceleration and the 

weighted Jacobi methOOs, we simply used these initial estimates for the real eigenvalues . 

When both the depth and the orientation constraints exist. we have derived in section 4.3.3.3 由at

at level 1 it takes 5856 x ((log 2 s) 一 (L -l)) + 34825 machine cycles for an iteration of the 

conjugate gradient me由00. Thus , an iteration on each level from coarsest to finest respectively 

tak臼 64105 ， 6996 1， and 75817 machine cycles. We have derived also 由at at level 1 it tak臼

66When 由e initial 臼由nales of '"E and ME were - 3.0 and 0.0, we oblained .917046, .971150, and .995370 as the 
eSÚJnates of ME values al 由e ileration steps of 20, 55, and 123 for the levell = 1, 2，皿d 3, respectively. 

67When 山e initial es由nates of '"E缸ld M
E 

were.-3.0 and 0.0, we obtair四d .988769, .998959, and .999869ω 出e
eslÌmates of ME values at 由e iteration 5回ps of 77, 261 , and 705 for the levell = 1, 2. and 3, res严:cuvely.
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4392 x ((log 2 s) 一 (L -l)) + 17712 machine cycles for an iteration of Lhe adaptive Chcbyshev 

acceleration meLhod. Thus , an iteration on each level from coarsest 阳 fmest respectively takes 

39672 , 44064 , and 48456 machine cycles. For an iteration of Lhe optimal Chebyshev acceleralion 

and Lhe weighted Jacobi meLhods. we have derived 由at at all levels it takes 16573 and 15099 

machine cycles. respectively . 

In Table 5-16 and 5-18. we show Lhe normalized number of iterations. We compare 由e

normalized number of iterations of three itcrative meLhods. We consider first Lhe result of 15% 

density. When thc RMSEs are reduced to .05，由e normalized numbers are 228.7. 225.1 , and 75 

for the conjugate gradient, the adaptive , and the optimal Chebyshev acceleration methods , 

respectively. for the finest level. The normalized numbers are 42.5. 43. 1, and 18 for Ùle ∞arsest 

level. We consider now Ùle result of 2% density. When Ùle RMSEs are rcduced to .1 ，由e

normalized n山nbers are 1075.1. 649. 1. and 222 for the fmest level 缸ld 104.4, 74.2. and 31 for the 

coarsest level. 

For the conjugate gradient and Ùle Chebyshev acceleration methods. we ∞mpare the amount of 

time takcn to arrive at Ùle same final RMSE values at the finest level , when iterations are carried 

out on the finest level only versus multigrid. For the Gauss-Seidel method. we compare work 

uruts. 

We analyze Ùle result of the conjugate gradient method first When the density of the constraints 

is 15 %, to = 5 was used. The RMSE value .0666681. nearestω.1 of initial value. was obtained at 

由e coarsest level after 5 iterations. For the other par缸neters. So = 3. n 1 = 3. "2 = 1, and 11:3 = 3 

were used. 白le total number of iterations performed on each level from coarsest to fmcst 

respectively is 11 , 12, and 6.τ'he final RMSE value obtained on each level from coarsestω 

finest respectively is .042ω33. .0377653 , and .0334779. When the relaxation is carried out on 

由e 阳lest level only. Ùle RMSE value .0325647 is obtained a丘er 51 iterations. 

For the three-level multigrid algorithm wiLh "2 = 1, 2 prolongation operations 缸'C invokcd in 

pro∞dure F岛1RA. 3 restriction operations in FMC，缸x1 3 prolongation operations in FMC. We 

have derived in section 4.3.3.4由at it takes 52383. 29912. and 53847 machine cycles for a 

prolongation operation in FMRA , a restriction operation in FMC, and a prolongation operation in 
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Table 5-15: Number of Iterations on Fine/Coarse Levels (sphe陀: 15% density) 
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FMC, rcspectively , when both constraints exist. Therefore , 356043 machine cycles should bc 

added to account for the restriction and prolongation operations. 

For the iterations on the finest level only, it takes 3866667 machine cycles. For the multigrid 

algori由m， it takes 2355632 machine cyc1es. When the numbers of machine cycles are divided , 

we get a s院ed-up factor of 3866667/2355632 = 1.6415 . 

W吁len 由e density of the constraints is 2% , to = 27 was used.τlle RMSE value .0687782 was 

obtained at 由e coarsest level after 27 iterations. For the other p缸缸ηeters ， So = 4 , n1 = 5 , ~ = 1, 

and ~ = 5 were used. The total number of iterations perfonned on each level 仕om coarscst to 

finest respectively is 35 , 20, and 10. The 他lal RMSE value obtained on each level from coarsest 

to finest respectively is .0672145 , .0616802 , and .0578548. When the rel缸ation is carried out on 

由e finestlevel only, the RMSE value .0580171 is obtained after 263 iterations. After carrying 

out a similar analysis , we get a s严ed-up factor of 19939871 /4757108 = 4.1916 . 

We consider now the result of the adaptive Chebyshev acccleration method. When the density of 

由e constraints is 15%, to = 11 was used. The RMSE va1ue .0682193 was obtained at 由e coarsest 

level after 11 iterations. For the other p创冠meters ， So = 3 , n1 = 3 , ~ = 1 ，扭d ~ = 3 were used. 

The total number of iterations perfonned on each level from coarsest to finest respectively is 17 , 

12, and 6. The final RMSE value obtained on each level from coarsest to finest 陀spectively is 

.0424810, .0389937 , and .0357214. When the relaxation is carried out on the finest level only, 

由e RMSE value .0356335 is obtained after 77 iterations. After carrying out a similar ana1ysis , 

we get a speed-up fac10r of 3731112 /1849971 = 2.0168 . 

When the density of the constraints is 2% , (0 = 31 was used. The RMSE va1ue .0686763 w出

obtained at 由e coar百st level after 31 iterations. For the other parameters , So = 4, n1 = 7 , ~ = 1, 

and ~ = 7 we陀 u臼d. The ωta1 number of iterations perfonned on each level from ∞arsest 10 

finest res严ctively is 39, 28 , and 14. The final RMSE value obtained on each level from ∞arsest 

to finest 陀spectively is .0632827 , .0581492 , and .0542605. When the 陀laxation is carried out on 

the finest level only, the RMSE value .0542546 is obtained after 272 iterations. After car可ing

out a similar analysis , we get a speed-up factor of 1318∞32/3815427 = 3.4544 . 
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For the optimal Chebyshev acceleration and the weighted Jacobi mcthods. we 陀peated 由e

experiments with two densities . 

For the optimal Chebyshcv acceleration method. we used the same estimates of the eigenvalues 

wi由出e s缸ne parameters 出 in the adaptive Chebyshev acceleration method. We have the 

(nearly) same final RMSE values but the total execution time is faster . 

When 让1e density of the constraints is 15%. to = 11 was used. The RMSE value .0682193 w出

obtained at 由e coarsest level after 11 iterations. For the other par泪neters ， So = 3, n1 = 3. ~ = 1, 

and ~ = 3 were used. The total number of iterations perforrned on each levcl from coarscst to 

finest 陀spectively is 17, 12, and 6. The final RMSE valuc obtained on each level from coarsest 

to finest respectively is .0424810, .0389937. and .0357214. When the relaxation is ca时ed out on 

由e finest level only. the RMSE value .0353510 is obtained after 75 iterations. After carrying out 

an analysis. we get a speed-up factor of 1242975 /936ω8 = 1.3278 . 

When the density of the constraints is 2% , to = 31 w臼 used. For the other par缸neters. So = 4. n1 = 

7 , ~ = 1. and ~ = 7 were used. We have the identical results of final RMSE values as in the 

adaptive Chebyshev acce1eration method. After carrying out an analysis. we get a speed-up 

factor of 4507856/1698456 = 2.654 1. 

For the weighted Jacobi method. we repeated 由e experiments wi由 two densities . 

When the density of the constraints is 15%. (0 = 49 was used. The RMSE value .0685087 w出

obtained at 由e coar臼st 1evel after 49 iterations. For the other parameters , So = 6, n1 = 8, ~ = 1, 

and ~ = 8 were used. The total nurnber of iterations perforrned on each lcvel 仕om coarsest to 

h臼t respectively is 61, 32，缸回 16. (This amounts to 27.8125 work 四川The final RMSE 

value obtained on each level 仕om ∞arsest to finest 陀spectively is .0445619, .0410180. and 

.0375995. When the relaxation is carried out on the finest level only，由e RMSE value .0376335 

is obtained after 762 iterations , which amounts ω 由e s缸ne number of work.山咀ts. After carrying 

OUl an analysis. we get a s严ed-up factor of 12628626/21625∞= 5.8398. (wi白白e multigrid 
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approach , work 山咀ts are reduced by a factor of762 / 27.8125 = 27.3978.)68 

When the density of the constraints is 2% , {o = 305 was used. The RMSE value .0686376 was 

obtained at 由e ∞arsest level after 305 iterations. For the other parameters. 50 = 7 , n1 = 10, ~ = 

1, and n3 = 10 wereωed. The total number of iterations perfonned on each level from coarsest 10 

finest respectively is 319 , 40, and 20. (This amounts to 49.9375 work units.) The final RMSE 

value obtained on each level from coarsestωfinest rcspectively is .0705693, .0654956 , and 

.0619304. The number of machine cycles required for the execution of the multigrid algorithm is 

6078564 . 

For the Gauss-Seidel method , we 陀peated 由e experiments with two densities . 

When the density of the constraints is 15% , to = 15 was used. The RMSE value .0657366 w部

obtained at 由e coarsest level after 15 iterations. For the other parameters , So = 3, n1 = 3 , ~ = 1, 

and ~ = 3 were used. The total number of iterations perfonned on each level from coarsest to 

finest respectively is 2 1. 12, and 6. This amounts ω10.3125 work units. The final RMSE value 

obtained on each level from coarsest to finest respectively is .0386824, .0347583, and .0309097. 

When the relaxation is carried out on the rmest level only , the RMSE value .0309190 is obtained 

after 257 iterations, which amounts to 由e s缸ne number of work units. With the multigrid 

approach, work UI对ts are 陀duced by a factor of 257 / 10.3125 = 24.9212 . 

When the density of the constraints is 2% , to = 91 was used. The RMSE value .0687677 w臼

obtained at 由e ∞arsest level after 91 iterations. For the other parameters , So = 4 , n1 = 6, ~ = 1. 

and ~ = 6 were used. The 10tal number of iterations perfonned on each level from ∞arse沉 m

h臼t respectively is 99 , 24，矶d 12. This amounts to 24.1875 work 山úts. The fmal RMSE value 

obtained on each level from coarsest to finest 陀spe口ively is .0682326 , .0630561. and .0593441. 

When the relaxation is carried out on the finest level only , the RMSE value .0593413 is obtained 

68We show also 由er臼ult with smaller par田ne田 val出5ωcompare with 0由er iterative meÙlods. With So = 3, n1 = 

3, ~ = 1, and ~ = 3, the total number of iterations perlormed on each level from ∞arsestωfinest res严坦ctively is 55, 
12, and 6. 口1ùs amoun臼 ω12.4375 worlc 回归.)节11: final RMSE value obtained on each level from ∞arsest to fmest 
respectively is .0574017, .0546859, and .052佣99. When Ùle relaxation is carried out on Ùle fmest level only, Ùle 
RMSE value .0520627 is obc.ained after 636 itera1Ïons. After carrying out an analysis, we get a s伊时-up factor of 
10540428/1565872 = 6.7314. (wi白白e multigrid approach. worlc units are redu臼d by a fac町 of 636 112.4375 = 
51.1 357.) 
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时ter6∞7 iterations. Wilh 由e multigrid approach. work units are reduccd by a factor of 6∞7/ 

24.1875 = 248.3514 . 

Compared to 由e poor speedups of the conjugate gradiem and the Chebyshev acceleration 

methods. we have significanùy higher s严edups for the weighted Jacobi and the Gauss-Seidel 

methods. This is due to two reasons. First, for comparison. we used the execution time for the 

conjugate gradient and the Chebyshev acceleration methods. while we used the work units for the 

Gauss-Seidel method. Note 由at when we use both execution time and work units for the 

weighted Jacobi method. the s防ed-up factor of execution time is smal1er. Second, comparedω 

the conjugate gradient and the Chebyshev acceleration methods. the 严rfonnance of the weighted 

Jacobi and the Gauss-Seidel methods on a single-grid is ve可 poor. 

Before concluding this section, we examine again the range of execution time for the conjugate 

gradient and 由e Chebyshev acceleration methods . 

Fi町， we consider the case wher它由e density of the constraints is 15%. At one extreme end , the 

iterations on the finest level on1y using the conjugate gradient method takes 3866667 machine 

cycles. At the other end. the multigrid execution with the op由nal Chebyshev acceleration 

method takes 936ω8 machine cycles. When we ∞mpare these two , we get a s严ed-up factor of 

3866667 /936098 = 4.1306 . 

Now , we consider 让lC case where 由e density of the constraints is 2%. At one extreme end , the 

iterations on the finest level only using the conjugate gradient method takes 19939871 machine 

cycles. At the other end , the multigrid execution with the optimal Chebyshev acceleration 

method takes 1698456 machine cycles. When we ∞mp但它 these two , we get a s伊εd-up factor of 

19939871 门698456 = 1 1.74∞ . 

5.4 Experimeots 00 Real Images 
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5.4.1 Multigrid Algorithms 

For 由e re划 irnages of range data, we used 问= 2.0/ 句69 and 0.2 /与 for a quasi-spherical 0时ect

and a soda can, respectively . 

5.4.1.1 Experirnents on ActuaJ Range Data from a Quasi-sphericaJ Object 

A data 臼t of 976 depÙl constraints in a (x, y , z) forrnat was scaled to generate data in a (i, j , d) 

forrnat , where 0 ~ i, j ~ 127 and 0.01 ~ d ~ 1.0. A SIMD region labeling routine was then run 

to rnark the dep由 continuous region 由at contains given depth constraints. The generated region 

contained 10628 nodes. Next, we patched the 陀gion by adding 84 rnore depth continuous nodes 

to get a smoother boundary . 

The three-level rnultigrid aJgorithms were run. The sizes of the rnesh are reduced 仕orn 128 x 128 

to 64 x 64 and 32 x 32. The constraints at 出e coarser levels are generated by local averaging the 

∞nstraints at the finest level. At 由e finest level (L ==匀， 976 nodes are constrained out of 10712 

dep由 continuous nodes. At the rnediurn level (l = 匀， 961 nodes are constrained out of 2748 

depth continuous nodes. At 由e ∞缸sest level (1 = 1) , 605 nodes 缸e constrained out of 720 depth 

continuous nodes. Thus，由e density on each level from coarsest 10 fmest respectively is 84.03% , 

34.97% , and 9.11 % . 

Before showing 由e result of rnultigrid algori由m， we show 由e 1它sult for each level in Table 5-19. 

节le initial RMSD values were .779238 , .747674 , and .742538 for the level 1 = 1, 2, and 3, 

I它spectively.

For the adaptive Chebyshev acceleration method, we show the result with ffiOI毛 accurate initial 

69In com阳阳明白的= 2.0 I 与2 叫 for the s>nthetic irnages of 1阳he 呐仙1由d缸er叫呐ere eJl; arnp阳les臼盹5， W附ec锢凯 s庐i讪ve

削川耶x叩呐p抖内1 8llation阻1

W咄hile 的= 2.0 I 与 contribu国 smaller wei如 of 0.8, 0.4. and 0.2 for 阳∞m毗 medi1.D1l, 8Ild 由e finest level when 

曲ee-level m山igrid scheme is u时 wi由 11 1 = 0.4. ~ = 0.2, 8Ild 与= 0.1. 1叼hysi叫恒rms. 吨ual-strength 年由gsare

used for all levels in the synthetic irnages, while generally weaker. 由ough graduaily stronge:r, springs are used for 
∞M优r levels in the real irnage5. 币lese choices are me8ll1ω h.andle the noise pr白白t in the real irnages. N01e 由at in 
the real irnages the constrainLS at coarser levels are more reliable since 由e av町aging 严ocess res阴阳ible for the 
generation of these constrainLS tendsωc8llcel out the noise. Since we use generally 1∞ser springs. 由e irregulariùes 
Cal.臼ed by spurious noise can be lessened. However. overall convergence is slowed down ∞mparedωthe s归出etic
irnages of similar size wi由乳milar density of censtrainLS. In the Chebyshev acceleration me由叫，由is effec1 is 
manifested as a bigger M(G) value which is closer 10 1.0，由e 由四retical upper bound . 
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estimates only. For the initial estimates of mE' we used -2.3. As the improved initial estimates 

of ME' we used .98 , .995 , and .9995 for the level 1 = 1, 2 , and 3 , respectively .10 In the optimal 

Chebyshev acceleration and the weighted Jacobi methods, we simply used these initial estimates 

for the real eigenvalues . 

When the dep山 constraints exist only , we have derived in section 4.3.3.3 由at at level 1 it takes 

5856 x ((log 2 s) 一 (L -1)) + 32307 machine cycles for an iteration of the conjugate gradient 

method. Thus , an iteration on each level from coarsest to finest respectively takes 61587. 67443 , 

and 73299 machine cycles. We have derived also 由at at level 1 it takes 

4392 x ((log 2 s) - (L -1)) + 16453 machine cycles for an iteration of the adaptive Chebyshev 

acceleration method. Thus. an iteration on each level from coarsest to finest respectively takes 

38413.42805 , and 47197 machine cycles. For an iteration ofthe optimal Chebyshev acceleration 

and 由e weighted Jacobi methods. we have derived 由at at all levels it takes 15314 and 13840 

machine cycles，陀spectively. 

In Table 5-20 , we show the nonnalized number of iterations. We ∞mpare 由e nonnalized 

number of iterations of three iterative methods. When the RMSDs are reduced to .05，由e

nonnalized numbers are 607.9 , 477.7 , and 155 for the conjugate gradient. the adaptive , and the 

optimal Chebyshev acceleration methods，陀S严ctively ， for the finest level. The nonnalized 

numbers are 68 .4. 62.7. and 25 for 仕1e coarsest level. 

For the conjugate gradient 创划由e Chebyshev acceleration methods , we ∞mp缸它 the amount of 

time taken to arrive at the same final RMSD values at 由e finest level, when iterations are carried 

out on the finest level only versus multigrid. For the Gauss-Seidel method. we compare work. 

m臼. For也 weighted Jacobi method. we compare bo由 ex民ution time and work.川ts. 

We analyze the resu1t of the conjugate gradient method first We used to = 9.ηle RMSD value 

.0791359 was obtained at 由e coarsest level after 9 iterations. For the other par缸neters ， So = 3. n 1 

= 5 , ~ = 1, and ~ = 5 were used. The tot剑 number of iterations performed on each level from 

10Wh团由e inirial estimates of '"E and ME were - 3.0 and 0.0. we obtained .983780. .995785. 缸叫 .999489 as 出e
estimates of ME values at Ûle iterarion 由伊 of 50, 102. and 296 for Ûle levell = 1, 2. and 3. respecùvely. 
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Table 5-19: Number of lterations on Fine/Coarse Levels (sphere : range data) 
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coarsestωfinest I毛spectively is 15 , 20, and 10. 白le final RMSD obtained on each level from 

coarsest to fmest respectively is .0772859 , .0769072 , and .0722429. When the relaxation is 

carried out on the finest level only，由e RMSD value .0720139 is obtained after 85 iterations . 

For the three-level multigrid algorithm with "2 = 1, 2 prolongation operations are invoked in 

pro臼dure FMRA, 3 restriction operations in FMC, and 3 prolongation operations in FMC. Wc 

have derived in section 4.3.3.4由at it takes 52383, 337∞， and 57α刀 machine cycles for a 

prolongation operation in FMRA , a res往iction operation in FMC, and a prolongation operation in 

FMC，陀叩ectively ， when the dep由∞nstr组nts exist only and loca1 averaging is used for the 

restriction operation. Therefore , 376866 machine cycles should be added to account for the 

restriction and prolongation operations . 

For 出e iterations on 由e 自lest level only , it takes 6230415 machine cycles. For 由e multigrid 

algori由m， it takes 3382521 machine cycles. When the numbers of machine cycles are divided, 

we get a s严ed-up factor of 6230415/3382521 = 1.8419 . 

We consider now 吐览 result of the adaptive Chebyshev acceleration method. We used to = 17. 

节le RMSD value .0790101 was obtained at 由e coarsest level after 17 iterations. For the other 

parameters, So = 4 , n1 = 6, "2 = 1, and ":3 = 6 were used. The tota1 number of iterations performed 

on each level from coarsest to finest 陀spectively is 25 , 24 , and 12. The final RMSD value 

obtained on each level from coarsest to finest respectively is .07∞527， .0695689, and .0672210. 

When the relaxaùon is carried out on the finest level only , the RMSD va1ue .0669729 is obtained 

after 110 iteraùons. After carrying out a similar ana1ysis , we get a speed-up factor of 5191670 / 

2930875 = 1.7714 . 

For the optima1 Chebyshev accεleraùon method , we used the same estimates of the eigenva1ues 

with the same parameters as in the adaptive Chebyshev acceleration method. We have the sarne 

final RMSD va1ues but the to ta1 execution time is faster. After carrying out an analysis, we get a 

smaller speed-up factor of 1684540/ 1311020 = 1.2849. 

For the weighted Jacobi method , to = 116 w出 used. The RMSD va1ue .0777064 was obtained at 

由e coarsest level after 116 iterations. For the other par缸neters ， So = 12, n1 = 16，吨= 1, and ":3 = 
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16 were used. The total number of iterations performed on each level from coarsest to fmest 

respectively is 140, 64 , and 32. (This amounts to 56.75 work units.) The final RMSD value 

obtained on each level from ∞arsest to finest respectively is .0759227. .0739616 , and .0721752. 

When the relaxation is canied out on the finest level only，由e RMSD value .0721828 is obtained 

after 5243 iterations, which amounts to the same number of work 山让ts. After carrying out an 

analysis , we get a speed-up factor of 72563120 / 3643106 = 19.9179. (Wi白白e multigrid 

approach , work units are 1它duced by a factor of 5243/56.75 = 92.3877.) 

For the Gauss-Seidel method. we used to = 35. The RMSD value .0767458 was obtained at 由e

coarsest level after 35 iterations. For the other par部neters ， So = 4 , n1 = 6, ~ = 1. and ~ = 6 were 

used. The total num民r of iterations performed on each level from coarsest to 缸lest respectively 

is 43 , 24 , and 12. This amounts to 18.6875 work 山lÌts. The final RMSD value obtained on each 

level from ∞arsest to finest 陀S庐ctively is .0692349, .0678860, and .0662348. When the 

relaxation is canied out on the finest level only，由e RMSD value .0662035 is obtained after 1657 

iterations. which amounts to the same number of work 山lÌts. With 由e multigrid approach. work 

山lÌts ar它陀duced by a factor of 1657/18.6875 = 88.6689 . 

We examine again the range of execution time for the conjugate gradient and 阳Chebyshev

acceleration methods. At one extreme end, the iterations on the finest level only using the 

conjugate gradient method takes 6230415 machine cycles. At the other end, the multigrid 

execution with 由e optimal Chebyshev acceleration method takes 1311 020 machine cycles. 

When we ∞mpare these two, we get a speed-up factor of 6230415/1311020 = 4.7523 . 

Again. note the 陀latively smal1 s严ed-ups as in the synthetic ex缸npl臼. 

5λ1 .2 Experiments on Actual Range Data from a Soda Can 

Thethr四-level multigrid algorithms were run. The sizes of the mesh are reduced from 128 x 128 

to 64 x 64 and 32 x 32. The constraints at the coarser levels are generated by local averaging the 

∞nstraints at 出e finest level. At 由e finest level (l =匀， 1483 nodes are constrained out of 12080 

depth continuous nodes. At the medium level (1 = 匀， 1312 nodes are constrained out of 3084 

dep由 continuous nodes. At the ∞U回st level (l = 1) , 660 nodes are constrained out of 805 dep由

continuous nodes. Thus , the density on eåch level from coarsest to finest respectively is 81.99% , 
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42.54% , and 12.28% . 

Before showing 由e result of multigrid algori由m， we show 由e result for each level in Table 5-21. 

The initial RMSD values wcre .926353 , .919643 , and .885797 for the level 1 = 1, 2, and 3, 

respectively . 

For the adaptive Chebyshev acceleration method, we show the result with more accurate initial 

estimates only. For the iI1Îtial estimates of mE' we uscd 一 2.3. As the improved initial estimates 

ofME, we 山ed .995 , .999 , and .9999 for the levell = 1, 2 , and 3，陀spectively.71

In Table 5-22 , we show the normalizcd number of iterations. We ∞mpare 由e normalized 

number of iterations of three iterative methods. When the RMSDs are reduced to .2，由e

normalized numbers are 1258.8 , 859.9 , and 279 for the conjugate gradient，由e adaptive , and 由e

optimal Chcbyshev acceleration methods , respectively , for the finest level. The normalized 

n山口bers are 160.9, 155.5 , and 58 for the ∞缸曰st level. 

We analyze the result of the conjugate gradient method first. We used to = 40. 节le RMSD value 

.187266 was obtained at 由.e coarsest level after 40 iterations. For the other par缸neters ， So = 6, n1 

= 8 , "2 = 1, and ll:3 = 8 were used. The to ta1 number of iterations performed on each level from 

coarsestωfinest respectively is 52, 32 , and 16. 节le final RMSD obtained on each level from 

coarsest to finest respectively is .166422 , .185920 , and .221586. When the rel但ation is caπied 

out on the finest level only, the RMSD value .222083 is obtained after 175 iterations.72 

The iterations on three levels take 6533484 machine cycles. Then, 376866 machine cycles are 

added to account for the restriction and prolongation operations. Thus , for the multigrid 

algori由m， it takes 6910350 machine cycles. For the iterations on the finest level only, it takes 

12827325 machine cycles. When the numt陪rs of machine cycles are divided , we.get a s严ed-up

71 When Ùle initial es由l lUeS of "'E and ME were -3.0 and 0.0, we obtained .995935, .999189, and .999882 as 出e
es山nates of ME valu笛 at 由e iteration s忧ps of 61 , 164, and 428 for Ùle levell = 1, 2, and 3, rcspecùvely. 

72For 阳刚制d algori帆阳 d山rete ~-norm of 出e resid叫 mωr obtained ∞ each level from ∞arseslω 
缸lcst respectively is .∞1499∞， .∞164972，时 .α)557牛~O. For 出e single-grid algorithm.由e norm of Ùle residual 
vecωr obtained on Ùle finesl level is .∞831499 . 
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Table 5-21: Number of Iterations on Fine/Coarse Levels (soda can : range data) 
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Table 5-22: Norrnalized Number of lterations on Fine/Coarse Levels (soda can : range data) 
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faclor of 12827325 / 6910350 = 1.8563.73 

We consider now the result of the adaptive Chebyshev acceleration method. We used to = 62. 

The RMSD value .185203 was obtained at 出e coarsest level aftcr 62 iterations. For the other 

parameters. So = 7. n1 = 9. nz = 1. and ":3 = 9 were used. The 1Ota1 number of iterations performed 

on each level from coarsest to fmest respe创刊ly is 76. 36. and 18. The final RMSD value 

obtained on each level from coarsest to finest 陀spectively is .167187. .186873. and .220360. 

When the relaxation is carried out on the finest level only. the RMSD value .220293 is obtained 

aftcr 188 iterations.74 After carrying out a similar analysis. we get a speed-up factor of 8873036 / 

5686780 = 1.5603 . 

For the optimal Chebyshev acceleration method. we used to = 58. 币1e RMSD value .185933 was 

obtained at 由e coarsest level after 58 iterations. For the other par况neters. so::;: 7. n1 = 9. nz = 1, 

and ":3 = 9 were used. The 10tal number of iterations performed on each level 仕om ∞arsest 10 

finest respectively is 72. 36. and 18. The final RMSD value obtained on each level 仕om coarsest 

to 缸1est 陀spectively is .167904. .187397. and .221142. When the 陀laxation is carried out on 由e

finest level only. the RMSD value .221389 is obtained a仇er 187 iterations. After carrying out an 

analysis. we get a smaller speed-up factor of 2863718 / 2306430 = 1.2416 . 

We examine again the rarIge of execution time for the conjugate gradient and the Chebyshev 

acceleraùon methods. At one extreme end. the iteraùons on the finest level only using the 

conjugate gradient method takes 12827325 machine cycles. At the other end. the multigrid 

execution with the opùmal Chebyshev acceleration method takes 2306430 machine cycles . 

When we ∞mpare 由臼e two, we get a speed-up factor of 12827325/2306430 = 5.5616 . 

73When smallcr parame田 values areωed， more 5严ed-叩 is possible. With So = 4, nl = 6. ~ = 1, and 11:3 = 6，吐le
fmal RMSD value obtained on each level from ∞arsest 10 fmest respectively is .175867, .195881 , ar百i.233αXl. When 
由e relaxation is carried out on the fmest level only. the RMSD value .233180 is 0民血led after 166 iterations. Here. we 
get a 5萨坦d-up f8C tor of 12167634/5831262 = 2.0866. 

74For 由，e mu1tigrid algori肌 the discrete ~-norm of the resid叫 VCCtof obtained on each level from ∞arsestω 
finest respecùvely is 且用41147 ， .∞122146， and .∞7∞397. For the single-grid a1goriÙlm, the norm of the residual 
vector obt.ained on the finest level is .∞211884. 
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5.5 Implementation Experiences 

We have rewritten the existing NON-VON simulator [Choi 85a] 10 handle the floating point 

operations. Our simulators ran on OEC-20, V AX lln5o, and IBM 4381 machines. The iniùal 

version of the software was wrinen in PSL. By transporting our software progressively across 

these machines, we were able to handle bigger images. The size of the biggest image we could 

handle under PSL was 16 x 16. 32 x 32 , and 64 x 64 陀spectively. Then the entire code was 

rewrinen in FORTRAN 77 and tr缸瓦ported to an IBM 4381. This brought two advantages for us. 

We could run bigger images. up to 128 x 128 images. Our program ran in the maximum virtual 

user space allowed, 16 Mbytes ofvirtual machine, under CMS. Se∞ndly，由is simulation ran 3 to 

5 times faster . 

1t w出 straigh百orw缸咀 to implement and test 由e SIMO control, mesh connections. and tree 

topology 出严cts of the ∞mputation. We later simulated the Gauss-Seidel method. which 

陀q凶res only mesh connections. for comparison . 

节le language VS FORTRAN provides 由reep陀cisions for floating-point num民rs [IBM 841. A 

I它al number can occupy 4 , 8. or 16 bytes of storage , which a陀. approximately, 6, 15. and 32 

dec丽lal digits. In our implementation, we chose the real numbers of 8 b严es long, i.e. , double 

preclslon . 

We examine the general S1MD programming techniques we used. Usually , each procedure has a 

set of associated 协olean predicates which made the hierarchical construction of SIMO programs 

easier. The general form of the predicates is 臼 follows: "For such and such PEs. such and such 

conditions hold." The predicates are classified as input, ourput, pre-condition , and 

post-condition. The input and output p陀dicates state how and where the input vectors (or scal町

values) are pre阳red before ente巾g 由is procedure and the output vec10rs (or scalar v剑ues) are 

generated 臼 the execution r它sult.节1e pre-∞ndition and post-conditions state what conditions 

hold. usually about 由e marking of the set on which operations a陀 to be caπied out The 

statement about 由e post-condition helps the calling proαdure. Sometimes the pre-conditions 

rcmain valid as post-conditions, or some other use fu1 post-conditions are set up. 1n bo由 cases.

the calling procedure can utilize them so that it avoids 由e unnece臼aηnew set up of context for 
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following actions . 

Inside the pro臼dure ， predicates are interspersed with actions. The acúons are execution of a 

sequence of SIMD instrucúons or function calls. At the beginning of the procedu陀，由e pre

condition and optiona1 set up of the context establish the initia1 condiÚons. After each minor or 

major acúon, dcpending on the need of detail, new conditions a陀 declared. In our programming 

development，让lÌs served two purposes: verification and expectation , which are rea1ly two sides 

of the same coin. By stating the condition explici t1y , we know what we have done , where we are. 

and where we are going. In this sense , verification is carried out 但由e informal proof of 

correctness of 由e SIMD program .15 The declaraÚon of 由e conditions reveal 由e expectation or 

intent of the programmer. The explicit statement of the condition to hold at panicular point of the 

program helps the debugging process. When the program does not work, i.e. , does not follow the 

origina1 intention of the programmer, we can menta1ly execute the sequen臼 of actions or 

examine the dumped out contents of registers and memory , especially, when the program is under 

development using simulator, to find out the bug. But 由e tracing of the condiúons usually helps 

to correct the wrong behavior of 阳 program ， where some action is missing or 由e sequen臼 of

actions has 民en execuled in wrong order. The statement of conditions are declared in 

hierarchical manner as 由e sequen臼 of actions are. 

节lis general description will be elaborated further in 臼ction 1.2 of Appendix where actual listing 

of SIMD programs are given. The fina1 remark about the declaration of conditions in our 

program is 由at 由e臼 conditions are used in passive sense. In our case，由ey are written as 

comments, enclosed in curly brackets. We can imagine a hypo由etica1 active usage of conditions , 

iιenforcing 由e conditions through further redundant actions or dynamica1ly checking them , at 

certain crucia1 points to ensure 由e correcmess of program execuúon . 

75For the rigoro山lJ"eatment of the correctness 严。of of the prograrns running on the sequential machines, see [Mann 
74] . 
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5.6 Conclusion and Summary 

节le ac阳al expe币ments on the adaptive Chebyshev acceleration and the conjugate gradient 

methods confirmed 由at the performance depends strongly on global information. In 由e case of 

由e adaptive Chebyshev acceleration method , the global parameters are the largest and smallest 

eigenvalues, where the eSÙITlate of the largest eigenvalue ME is more critical. When the adaptive 

Chebyshev acceleration method is started with the more accurate initial estimates of the extreme 

eigenvalues, we observe nearly a1ways 由at it executes faster than the conjugate gradient method. 

Howevcr. when 由ere are frequent changes or updates of ME due to 由e error of 由e initia1 

estimates, the overall execution time is 0仇en slower than steady conjugate gradient method which 

is not started wi由 any initia1 g1oba1 information. Recall 由at in the optima1 Chebyshev 

acceleration method. many iterations are often 陀quired to achieve the asymptotic convergence 

rate. 币le slowdown occurs at eve可 change of ME• when a new Chebyshev polynomial is 

generated again . 

In section 5.2 , we gave an interpretation of the estimate mE based on the system ma时x.

specifically , the nodal equation of an intemal node. For the more accurate estimate of ME' further 

theoretica1 study is needed. In practice , more accurate initia1 estimates. stilllow enough to satisfy 

the condition mE ~ m(G) and M E ~ M(G). may be prepared in a lookup table form. The search 

parameters for 由is table may be 阳 number of the depth continuous nodes in 由e region. which is 

relatedωthe size of the matrix. and the density of the constraints. Less influential parameters 

may be 由e shape of the region , i. e.. 由e two-dimensiona1 spati a1 extent of the region. and the 

distribution of the constraints on it. Note 出at these proposed par缸neters can be easily obtained 

through the globa1 communication networks of the SIMD machine. Such global operations as 

counting. summation. average , minimum , and maximum can 民 executed in 0 (log 2 s) time when 

the size of the mesh is s x S • 

In our experiments, we used the fairly good estimates of mE and M E va1ues in 吐lC following sense: 

either the execution time for the adaptive Chebyshev acceleration method was faster 由白白e

conjugate gradient me由od. or the initia1臼由nates were hardly changed at all. or bo由. until the 

specified fraction of RMSE is attained. But, theOl它tica1ly ， how accurate the estimates should bc? 

For the sing1e-grid a1gorithm of the optima1 Chebyshev acceleration method. section 4.4 of [Youn 
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81] discusses the sensitivity of the asymptotic vinua1 rate of convergence to the esùrnates of mE 

and ME. But for the multigrid a1gorithms，由e 由eoretic a1 anaylsis w山 be more difficult since we 

have both iterations and interlevel computations , restrlction and prolongation. However, we can 

make general assenions about 由e accuracy of the estimates. In many c出白， since given initia1 

esùrnates may not be changed，由ey should be fairly accurate. Nevenheless , because computation 

does not depend on iterations OIÙY，由ey need not bc so accurate as in the single-grid a1gorithms. 

Funhermore , the estirnates on coarser levels can be computed more easily as well as accurately. 

since the sizes of the matrices are smaller and the constraints 缸它 denser. 1n practi饵. during 

initia1 iterations on the coar曰st level, the Chebyshev acceleration method can be run adaptively 

for possible updates of the initia1 estimates. In the case of actua1 estimate changes, the estimates 

on other finer levels can be adjusted. After 由is adjustment. the Chebyshev acceleration method 

might be run non-adaptively . 

For the images wi由 very sparse constraints. 由e adaptive Chebyshev acceleration and the 

conjugate gradient methods accelerated by 由e multigrid approach demonstrated 由e speed-up by 

two or seven times or more compared to the execution on the fmest level on1y. From these 

meager s归ed-up factors. one might conclude 由at the acceleration achieved by the multigrid 

approach may not be wonhwhile for the additiona1 hardware and so仇ware ∞mplexity.

Nevenheless. for bigger images. more s严εd-up is possible. The陀fore. 阳 adoption of the 

multigrid approach should be made after a relevant costj民nefit analysis 由at depends on each 

application . 



.. 

" 

• 

• ‘ 

-

.. 

,. 

139 

6. Conclusion and Future Directions 

6.1 Contributions 

h 由is 由esis ， we showed how a middle-level computer vision problem , in particular the 

smoothness constraint propagation problems in early vision which are cast as solving a large 

system of linear equations wi由 a resulting matrix 由at is sparse SPO, can be run efficient1y on a 

class ofparallel computers. Specifically , we have worked on the dep由 inte甲olation problem . 

Basically , the speed-ups of the computation have 民en achieved by two factors. First. we used 

由ωretically better iterative methods. In the Gauss-Seidel method , only local information is used. 

However, in the Chebyshev (including the adaptive Chebyshev acceleration) and the conjugate 

gradient methods. local as well as global information are used in each step of the matrix 

iterations . 

Second, all ∞mputational steps have 民en parallelized 缸ld can be run on any fine grained SIMO 

machines wi由 local and global communication networks. We have analyzed the space and time 

complexity of the two iterative methods based on our abstract SIMO model derived from actual 

machines built. In p缸ticular. we have analyzed the computational and communication costs of 

parallel computing. Also. we have analyzed two modes of comrnunications. local and global. 

necess缸y for local interactions and global summary. respectively. 

We have shown the results 行orn two methods. the Chebyshev acceleration and the conjugate 

gradient, and compared them with the results from the Gauss-Seidel method. We applied these 

methods to 由es严1由etic and real irnages and found the degr时 of improvement. 

We also applied the iterative methüds ωmultigrid approach. We have listed in Table 6-1 由e

s阳ed-up factors of the execution tirne obtained by the multigrid approach of various iterative 

methods. (fhe speed-up factors of the work. uni !S are enclosed in parenthesis.) The results in the 

top two rows a陀 frorn 让1e S归1由etic irnages , while those in the bottom two rows are from the real 

images of range data. The size of the rnesh at 出e finest level is 128 x 128. The number of dep由

continuous nodes in the region. n. for four irnages a陀 16384. 12867 , 10712. and 12080, 

陀甲ectively. Recall 由at the size of the matrix is n x n. The densities of the dep由 constraints are 
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3.91 %, 2.02% , 9.11 %. and 12.28%. 陀spectively. 白1e initial accuracies, RMSE 'Or RMSD valucs. 

a饥ained at 由e coarsest level are .1 ex臼pt the last row where .2 is attained. ln general , m'Ore 

speed-up is possible 臼 more iterations are required for convergence of the single-grid algorithms; 

路由e size 'Of the image gets bigger, the density 'Of the constraints is sparscr, 'Or smaller eπ'Ors are 

wanted . 

ln Table 6-2 , we sh'Ow the executi 'On timc 'Of vari 'Ous iterative meth 'Ods when the s严ed-up fact'Ors 

'Of Table 6-1 are obtained. (The work units are enclosed in parenthesis.)η1e multigrid executi 'On 

'Of the adaptive Chebyshev accelerati 'On meth'Od is fastcr 由an the c 'Onjugate gradient method f'Or 

all images. Furtherm'Or毡. the 'Optimal Chebyshev accelerati 'On method is the fastest one. 

H'Owever. we 'Observe 由at 由e speed-up factors get smaller 臼 we employ a m'Ore 'Optimal mode of 

execution. ln c 'Ontrast, the speed-up factors achieved by the weighted Jac'Obi or 由e Gauss-Seidel 

methods are rather big. sin臼由e convergence rates of the single-grid algorithms ('On 由e fmest 

grid) are ve可 sl'Ow. Note als'O the sl'Owest executi 'On time 'Of the weighted Jacobi method 

compared t'O由e fast臼t optimal Chebyshev method. even accelerated wi由由e multigrid approach. 

6.2 Implementation Restrictions 

Our implementation ex缸nples were smaller than most standard camera generated images. The 

m'Ost 陀cent versi 'On 'Of 'Our program handled up t'O 128 X 128 images due t'O the limitati 'On 'Of the 

virtual spaα 'O f the machine where simulati 'On was carried 'Out. Often , images in the real w'Orld 

are 512 x 512 'Or 1024 x 1024. The SIMD machines now in existence seem t'O keep up with the 

demand. The initial prot'Otype 'Of the C 'Onnection Machine is a 16K machine. which means it can 

handle 128 x 128 images. When a bigger machine is built , it will be able to handle larger images . 

6.3 Extension of Current Research Work 

h 由is w'Ork. we presented a method 'Ol'Ogy 'Of s'Olving a large system 'Of linear equati'Ons where the 

matrix is spar回 SPD in a ∞mputati'Onally efficiently way. In particular. we have w'Orlced 'On the 

dcpth interpolati 'On problem. In mathematical terms. the particular matrix we worked on is 

derived from the biharrn 'Onic equati 'On. Our methodol 'Ogy , an implementati 'On 'Of efficient itcrative 

methods 'On a parallel architec阳陀 for spar臼 SPD matrices. can be applied in 'Other areas. We can 

use other interpolating functi 'Ons to generate different system matrices f'Or the dep由 interpolation
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Conjugate Adaptive Optimal Weightcd Gauss-
lmages Gradient Chebyshev Chebyshev J acobi Scidel 

• ------------
Cylinder 7.2929 10.4389 7.2878 11 fI JI /1111111 111111# 11111111 

Sphere 4.1916 3.4544 2.6541 (248.3514) 

Quasi-spherical 1.8419 1.7714 1.2849 19.9179 (88.6689) 
• (92.3877) 

Soda Can 1.8563 1.5603 1.2416 

• Table 6-1: Speed-up Factors of Multigrid Approach 

• 

• Conjugate Adaptive Optimal Weighted Gauss-
lmages Gradient Chebyshev Chebyshev Jacobi Seidel 

------------
Cylinder 6864684 5307974 2466961 (28.015625) 

... Sphere 4757108 3815427 1698456 6078564 (24.1875) 
(49.9375) 

Quasi -spherical 3382521 2930875 1311020 3643106 (1 8.6875) 
(56.75) 

... Soda Can 6910350 5686780 2306430 

Table 6-2: Execution Time of Multigrid Algorithms (in machine cycles 76) 

-

a‘ 

76Recall 由al a cycle time is 1∞ nanoseconds fc厅。ur abstract S曲10mωel.

.‘ 
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problem. For instance, see chapter 9 of [Boul 86].τ"he other constraim propagation problcms in 

early vision may be another choice for extension. For examples of the constraint propagation 

problems , such 臼 shape from shading, oplical flow , etc. , see chapter 10 of [Tcrz 84]. But recall 

由at our methodology is general enough so 由at it can be applied to the soluùon of any sparse , 

SPD matrices . 

In terms of the depth interpolaöon problem in 阳 fuller context of actual computer vision 

systems , there needs ωbe added another layer of modules to our solution. In our experiments , 

we always used the constraints and the discontinuiùes as the input, and concentrated on efficient 

solutions of the matrix iteraùon. In pracúce , we have two stages , the segmentaúon and the 

iteraúon, where two can altemate to 陀construct a better surface. The segmentaùon pro臼ss

detec凶 the discontinuiÚes. In the beginning, we have an iniÚaI gross segmentaúon, for example , 

based on the thresholding of the constraints. But after sufficient number of iteration stcps , we 

may need a refined segmentaùon which can now be based on the computed smooth surface 

vaIues. 白白 is addressed in [Schu 83] where the general issue of segmentaùon versus iteration is 

∞nsidered，由ough it deals wi由吐le mOÙon problem. Especially, for the boundary detection , see 

chap阳 8 of [Schu 83]. For the detecÙon ofthe disconùnuiùes in the depth interpolaùon problem , 

see chapter 9 of [Terz 84] and [Terz 85b]. See also the 陀cent work of [Blak 87]. 

In the concluding 臼cùon of chapter 5, we stressed the p陀paration in a table form of the estimates 

of 由e largest and smallest eigenvalues, especially the largest one, of the iteraùon matrices , if one 

desires the pracöcaI use of the optimal and adapúve Chebyshev acceleraùon methods. More 

experiments and fu巾er 由ω陀öcal work will be needed for preparation of these tables. Further 

investigation of the e仔ects of the density and distribuùon of the constraints and the shape of the 

surface upon the extreme eigenvalues will be needed . 

h 由e multigrid me由创s， we have only explored 由.e effects of a fixed scheme for a multilevel 

coordination stratcgy. The study of an accommodative scheme will be beneficial, sincεit is more 

flexible and can be executed on the fly with no prepaI它d par缸neters. Alω， it can eliminate 

possible 山mecessary 陀laxation sweeps，由us increasing sp<划心p over 由e single-grid method. It 

is not clear how great 阻 effect this may have: 严rhaps 由e speed-up using theoreùcally better 
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iterative methods will continue to be found mcager. e甲ecially since such adaptivity is dependcnt 

on global computation of the residual norms . 

6.4 Future of Parallel Architecture for Image Processing 

We proceed in two steps in 由is final 臼ction. We describe 由e prospects of near term future first. 

and thcn specu1ate about what may arrive in not too distant future. For the longer term prospect. 

we only mention possibilities. 由ough research may lead u1timately to such realizations in terms 

of a large scale system implementation . 

ηle 由ree layers of ∞mputer vision problems require different processing needs. On the one 

hand. low level problems. typified by the edge detection. and midd1e level ones. for example 由e

depth interpolation problem investigated in detail in 由is 由esis. requi陀 SIMD architectures with 

demanding numerical computational power. On the other. high level problems. for example 

object recognition. are not defined wel1. in terms of both algorithms and architectures. The more 

useful architecture may be in software. not in hardware. ln 由is sense. high level problems may 

陀q山陀 MIMD architectures (or MSIMD architectu陀s) wi由 symbolic computational power. too. 

ln chapter 3. we noted already 由at two SIMD machines. the NON-VON and the Connection 

Machine. support symbolic processing as wel1出 numeric processing. For MIMD architectures. 

some interesting machines 缸它 based on global shared memory. such as 由e U1tracomputer77 [Gon 

86]. For an integrated vision system. we will need features of both architectures . 

As a shon exercise. one might review the implementation of the connected component labeling 

algorithms on three parallel architectures although of midd1e level vision. [Huss 84] provides 由e

one based on the NON-VON, [TMC 87b] on the Connection Machine. and [Humm 87] on 由e

U1tracomputer. Note 由at the NON- VON and 出e Connection Machine are SIMD machines while 

由e Ultracomputer is a MIMD machine. However. in terms of global communication topology. 

the NON- VON is based on the tree. while the Connection Machine and the U1tracomputer are 

based on 由e variations of boolean n-cube . 

n.η1e白白reriωlly inclined reader may consult [Vish 83] where fonnal paraI lel ∞mpu田 models are s田veyed The 
Ultra∞m阴阳 is interesting since it emlx对i臼 one of the earliest direct irnplementation of these theoreticaI models. 
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The human brain is one of阳 most complex structures in the universe. It is thought to consist of 

perhaps 1011 individual neurons. A given ncuron in the brain may receive several thousand 

synaptic connections from other neurons. Hence if the human brain has 1011 neurons, then it has 

at least 1014 synapses.18 The brain is a vast network of connecLions among neurons. At each 

point where a nerve fiber forms a connection or synapse onto another neuron, infonnation is 

transferred and may be transfonned or processed. Infonnation is ∞ntinuously flowing 由rough

the multitude of synaptic contacts and networks in the brain. During evolution certain rcgions of 

cell bodies where these connections occur have expanded enormously, as in the human cerebral 

cortex. The brain is not simply a collecLion of special structures but a vast infonnation processing 

system [币10m 85]. 

How can we cver, (or perhaps never,) achieve the performance of the human brain as an 

infonnation processing system? Part of the answer may lie in the great expansion of the number 

ofpro臼岱ors and the other in the increase of the number of connections. We discussed the SIMD 

machines wi出 local and global communication networks. When the future version of the 

Connection Machine 由at can handle a 1024 x 1024 image will become available , it will have 

only 1()6 pr∞essors compared to 1011 neurons in the human brain. For the connections , instead 

of several thousand connections at eve可 neuron ， it will have only 24 connections per PE , where 4 

are for local mesh connections to nearest neighbors 四d 20 for global conncctions to boolean cube 

neighbors.79 We see the obvious limitations in tenns of the number of processors and 

connectlOns . 

One of the promising researches to alleviate 由is shortfall is the electronic neural networks [Jack 

86 ], [Graf 86]. In r它cent research work. 山e electronic neurons 缸它也lly interconnected, at least 

locally.η1e proposed network ∞mplexity is 104 neurons and IOS synapses. 节le authors hope 

78For irnage processing, in each human eye Ù四re are about 126 m且且on photorecepωr cells whose irnpulses 缸t
channeled inω1 million ganglion cells. Information from the outside world is increasingly sirnplified and abstracted as 
由e informalÌon 国.vels from the outsideω 由e visua.l cortex of the brain. Thcre are over 1∞ million neurons in the 
human visua1 cortex. 缸百:i we do not yet Icnow well the extent of their specia1ization. 

79Recall 由at our application can be run on any SIMO machine wi由 lcx:a1 and globa1 communication netwo此s. for 
exarnple. 由e Connection Machine. But when it is run on the trωmachine with multiple mesh connections or 由e
pyrar时d machine、 the nurnber of connections is still smaller. 7 for the tree machine and 9 for the pyr缸nid machine, 
res严~tively. For each node, there are 4 locaJ mesh ∞nnectiα15ωits neighbors. 1ωits own parent, 2 or 4ωits own 
children . 
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由at neural-net algorithms will become one of the main strearn AI tools and some neural-net 

hardwares will become standard t∞Is in pattem classifying machìnes. wher芭 their highly parallel 

and regular structure wil1 be fully utilized. As an application in the irnage processing wi由 neural

nets, a feature map can be produced by moving image processing kemels through a1l possible 

ìmage locations . 

Anothcr possibility is optical processing. It provides two advantages compared to existing 

semiconductor technology. First. 由e processing may be done at 由e speed of the photons instead 

of the electrons. One of the main reasons of the recent scalìng down of the supercomputer project 

ìn Japan was the techno10gìcal barrier of buìldìng high s庐ed semiconductors , which was 

expected to be sunnountable.80 Instead. we have steady development in optical processing 

elements and storage devi臼s. Second. we can have flexible optical connections 由at are 

arbitrarily changeable under program control. 

The final possìbìlity ìs 由e analog , or hybrid. analog-digital processìng. Even 由ough 由e digital 

∞mputer has 民en in use for more than 40 years. a lot of processing in nature is done by the 

analog computation. Analog processing has aroused a lot of interest re臼nt1y ìn the visìon 

∞mmunity. and we can mention two examples. One is 由e replicating of the function of a neuron 

[Koch 84]. The other is 由e dep由 interpolation problem ìtself. and more generally，由e

smoothness constraint propagation problems in early vision. Terzopoulos mentions a cascaded 

electrical resistance network where there ar它 2 processors and 10 local connections for an intemal 

depth constrained node [Terz 84. p. 219]. The solutions are obtained as node voltages after the 

injection of currents, and the imposition of 阳 depth constraints 臼 appropriate voltages. 节le

analog computation is supposed to provide s{>(咒dier execution but limited p陀cision compar叫 to

the digìtal ∞mputation. In our research. we have shown how the computation is done in a 

computationally efficient way using a parallel digital ∞mputer. It may be simply a temporary 

stop gap measure. and eventua1l y be superceded by an analog computation mechanism . 

80For a speedier chip. gallium arsenide potentially offers far gr刨出 (fiveω 臼V旬出阴阳回) sp铠d 白血 silicon. In 
additionωs严时， it dissipates less heat, 50 chips can be packed clos町 ωge由er. And it can emÎt light, allowing for iLS 
use in 0严ical fiber ∞mm山山aòon systems. The lechnology for pr∞essing g山山n ars町de is 5咀1 far behind that 
available for sili∞n. but it h邸由e best chanceωπplκe silicon in applications 由at r吨uire speed. 
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1. The Appendix 

1.1 AIgorithm 6-4.1 . 

1.1.1 Listing of Algorithm 6-4.1. 

The listing of a procedure for the adaptive Chebyshev acceleration method which uses the 

乌-norm (Algorithm 6-4.1 [Youn 81, p. 107]) is reprodu∞d in Figure 1-1 and further explanation 

of the details of 由is algorithm is given below. In 由is algorithm the adaptive par创neter

estimation utilizes only 由eL俨orm of the pseudoresidual vector 8 . 

The initial approximation is input as u[Ol. The trivial initial approximation, u(O) = (0 0 . .. 0) T , 

was usualiy chosen. 

The counter i is for the current iteration step number, while the counter p is for the degr时 of the 

Chebyshev polynomial currently being used . 

We assume 出at the input estimate mE for m(G) , the smallest eigenvalue of G, satisfies mE ~ 

m(G). The other algorithm (Algorithm 6-5.1 [Youn 81 , p. 117]) detects when an initial estimate 

mE is greater 由an m(G) and obtains a new estimate for m(G) if needed. We have given the 

discussion for numerically getting estimate mE in section 5.2 . 

白le initial estimate M E for M(G) , the largest eigenvalue of G , should satis马， mE 三 ME < 1.0. 

When mE < 0.0 and it is known 由at M(G) > 0.0, then M E = 0.0 is appropriate if no better choice 

is available . 

As discussed in section 4.1.3 , the average virtual rate of convergence for the Chebyshev 

acceleration method increases to an asymptotic value and many iterations are often requi陀d

before 由e 臼ymptotic state is 陀ached. 节1US if M E is changed t∞ frequently ， the optimum 

asymptotic convergence rate will never be achieved. A damping factor F is used to prevent M E 

from being changed too often. In the following parameter change tcst.由e current estimate M E is 

judged to be unsatisfactory if 

118(l)lh / 118(q)112 > [2 'p/2 / (l + ,P)t, (70) 

with r being defined by 
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, = (1-..Jl- σl)/ (1 +..J l - σl). (7 1) 

and q denoting the last iteration step at which the previous estimate M E w臼 U臼d， i.e.. q = i - p . 

节le constant F is a strategy parameterB1 which is chosen in the range 0-1. Choosing F = 1 may 

result in changing parameters ve可 frequently. On the other hand. with F = 0 one would never 

change parameters no matter what value of M E < 1.0 is chosen. Numerical studies indicate 由at F 

in the range 0.65-0.85 is appropriate but 由at 由e effectiveness of the adaptive Chebyshev 

acceleration method is relatively insensitive to F. By choosing F < 1. we are in effect resigI由19

ourselves to an average convergence rate which may be oruy F Ùmes the optimum attainable 

[Youn 81. p. 66] . 

A new esùmate M E' is obtained as the largest 陀alλ 由at satisfies 

Tp 也i)'.)) / Tp (gi 1)) = 11刷12 / 118(q)112• 

where 

giλ) = (2λ - M E - mE) / (M E - mE) . 

Let 

B = 118(1)112 / 118(q)1I
2 

and 

Q = 1/ 马也E(l)) = 2 川/ (1 +的.

If the condition. mE < M E < M(G) < 1.0 and mE ~ m(G). is satisfied and if B > Q. then the new 

estimate M E' is given by 

M ,; = 生2E+(2-ME -mE)坐立i
ι

2 20 +,) X 
where 

x = [((l+rP)/2)(B+ ..J82 -Q2)]1伊• 

币le new estimate M E' obtained may be greatcr than M(G). Two p陀cautiona可 steps are taken in 

Algorithm 6-4.1 to ensure 由at all es由口ates M E used are le臼 than or equalω M(G). First is the 

陀q凶陀ment 由at each Chebyshev polynomial generated to be at least of degree p. before 由e

81By strategy parameter, it is mearu 由且t no mathemalical basis exists for ch∞吉ing this parameter ar叫出at 由e
opumum parameter 叫ue is likely to be problem depcndenL U叫Jy，由e effectiveness of 由e process is relativ句
UlSen51UVeω 由e value chosen for a strategy pararneter [Youn 81 , p. 66] . 
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estirnate M E can be changed. The strategy is to pick p' to be the smallest integer greatcr 由却15

由at satisfies 

rI' :::;; d , 

or, equivalently , 

p. ~ (log á) / (log r) . 

The constant d is a strategy p盯缸neter lying in the range 0-1. Nurnerical studies indicate 由atdin

the range 0.03-0.15 is appropriate. We note that p. could equivalently be defined as the smallest 

integer greatcr than 5 such 由at the ratio of average to asyrnptotic convergence rates is grealer 

由矶 some constant , say a. A value of a in the range 0.6-0.42 is equivalentω d in thc range 

0.03-0.15. For instance , a = 0.481 is equivalent to d = 0.1 [Youn 81 , p. 105] . 

The second precautiona.ry step is 由at of irnposing upper bo山1ds on 由e M E estirnates. 

Specifically, if s - 1 Chebyshev polynornials have been generated , then for pol归ornial s, we 

require 由at M E :::;; 1:", where 由e strategy pararneters 飞 are chosen to be [Youn 81. p. 109] 

τ= 0.948 ， τ2 = 0.985 , 1:3 = 0.995 , 

1:4 = 0.9975 ， τ5 = 0.9990, 1:6 = 0.9995 , 

1:.s = 0.99995 for S ~ 7. 

For the terrnination test, we use 

lI ö(')11帽

l-ME' ll uU+ 1 )11帽~

(72) 

(73) 

where ç is 由e stopping criterion nurnber and M E" is 由e best available estirnate for M(G). ç = 

1O- 6 w臼 often used in [Youn 81] . 

1.1.2 Overlapped Execution 

The computations in Algorithrn 6-4.1 can be broken down into three big parts: Nextjteration , 

Caiculare_Newjterate , and 由e 陀s1.

A11 the SIMD computations are handled in Calculate_New_'terate part. Calculations of Ö, u(b) 

are strictly ne臼ssa可 for nex.t iterate , while lIölb, lI öll圃， and lIu(bl ll... are needed for possible 

pararneter change or iteration terrnination. In the calculation of IIöll2 ;: Ý(军苟，由e SIMD pan 
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computcs 侈， 8) and the host ∞mputes squa陀 root of it. Since 118112 is necded for parametcr 

change test, the calcu1ation on the host part can be done in background.82 

In Nextjteration part, as long as there is no par剑neter change , i.e. , p ~ 1, the involved 

calcu1ation on the host is trivial. Therefo陀，由e computation time is dominated by the SIMD part 

and the ove r1apped execution of SIMD and host pro臼ssor is simple. The only precaution needcd 

is providing spa∞s for enough copies of u vector and corresponding scalar pointers (a , b. c, d , 

...) so 由at we can back up.η1Ìs P陀caution is justified if parameter change and iteration 

termination test performed on 由e host processor takes longer time than 由e calcu1ations delegated 

to 由e SIMD hardware . 

Calculate_New_Estimate_ME", Convergence_Test, Parameter _Change_Test, and the part of 

Nexclteration for the case of p = 0 constitute time-consuming scalar processing on the host 

proαssor.白1e ∞mputation depends on some resu1ts from the SIMD part: the value of (8 , 8) 

which is provided to ∞mpute 118112, and the values of 11811∞ and lI u[b)ll面出 well. It also needs other 

scalar variables such 臼 r， p , mE' and ME . 

Norma1ly，由e Nextjteration and Calculate_New jterate p盯ts proceed at full speed assuming 

由at 由C陀 is no need of par缸neter change. When it tums out 由at par缸neter change is necessary , 

the case of p = 0 in Nextjteration is started and the SIMD part is set idle and the pointers arc set 

back to the correct u vectors. This action is 悄地 similar to 由e preemption in conventional 

pipeline processing whe陀 computational resu1ts 由at are done in advance but no longer relevant 

are thrown oul When the convergence is reached , similar action takes place for the Sl如ID part . 

In the conjugate gradient me由0<1，由is kind of sophisticated overlapped execution is unnecessary 

because the scalar processing on 由e host is simple. [Sc坦白e equations (56) and (60).) 

82lf this compulation.∞mputing 由e 吨uare rool of some va1uc, needs to be s严eded 叩， it may be dispatchedωa 
取出C1剖 floating point ari出metic hardware uni t. 
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DATA DEFINITION PART 

• Real MATRIX: 

G; 

Real VECTOR: 
.‘ 

k; 

u[Ol , u111: 

8: 
• 

Integer SCALAR: 

t: . 
p , p: .. 
S, sÎ1liJ: 

a, b, C: 

.. Real SCALAR: 

ç: 

F; 
d: 

.. 
厅lE;

ME' ME: 
τ$' 

y， σE' p; .. r; 

DEUlP, DELNPI; 
DEUlE: 
YUN; 

• Q, B: 
X; 

.. 

.. 
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PROGRAM PART 

Input: (Ç , ME' mE, U[O)) 

I国tialize:

扩 ME ~ 0.948 , then 

Sillil = 0: 
elseif M E ~ 0.985 , then 

S. = 
I1I Ù 

elseif ME ~ 0.995 , then 

SiniJ = 2: 
elseif ME ~ 0.9975 , then 

S'_" = ,j I1IÙ 

elseif ME ~ 0.999. then 
S iniJ 4: 

elseif ME 二 0.9995. then 

Sinil 5: 
else 

Sinil = 6;83 

F = 0.75: 
d = 0.1:84 

u[I J = (0 0 ... 0) T : 

i = 0: 
p = -1: 

ME'= 儿IE:
S = Sj1Úl: 

a = 0: b = 1: 

151 

83In orderω 山e 出e large iniùaJ ME estimates unmodified as inpu t, while saùs句ing 由e imposition of up萨!:I' bounds
set by the 吨uation (72), we introduωd the variable sinil ωAIgorithm 6-4. 1. For instance, in section 5.3.1 .1 , when the 
adaptive Chebyshev a∞eleration me山地 was run with more accurate Înitial estimates, we u民d .99, .993 , and .997, 
respectively, as the iniùaJ M E estimates. 

84F = 0.75 and d = 0.1 were oft白山叫 fc厅 exampl e， in [Youn 81 , p. 123) . 
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Next Iteration: 

i = i+l: 
p = p + 1: 

扩 p = O. then 
Begin 
s = s + 1: 

扩 ME- > 飞. then ME = 1:s: 

ME = ME-: 

p = 1.0: 
y = 2/(2-ME -mE): 

σE = (ME - mE) / (2 -ME - mE): 

r = (1 -..Jl 一 σi)/ (1+..Jl- σE2):

p. = [(1og d) / (1og r)]: 
扩 p. < 6. then p. = 6: 
End 
else 
Begin 
矿 p = 1. then p = 1 / (1 - .5σE2); 

else p = 1 / (l - .25σip): 
End 

Calculate New lterate: 

õ = GU[a) + k - U[al: 

DELNP = I\Õlh: DELNE = I\õll..: 

u[bl = P (yõ + U[a)) + (1 - p) u[bJ: 
YUN = l\u[b)l\oo: 

c = a: a = b: b = c: 
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Calculate New Estimate M E': 

扩 p ~ 2, rhen 
Begin 
扩 p = 0, rhen DELNPI = DELNP: 
Go 10 Next Iteration: 
End 
else 
Begin 
B = DELNP / DELNPI: 
Q = 2 'pn. / (l +川):

扩 B 主 1.0 ， rhen 
Begin 
Go ωNext Iteration: 
End 

扩 B > Q , rhen 
Begin 

End 

ConvergencεTest: 

X = [((1 + r叫 /2)(B + ...JB2 - Q2)]1伊

M.: = 生2E+(2-ME-mE)坐立).-
ι2 2 (1 + r) X 

End 
else ME = 儿{E:

If (DELNE / 只IN) ~ Ç(1 - ME'), then STOP(converged); 

Parameter Change Test: 

扩 p 三 p. ， rhen 
Begin 
扩 B > (f, then p = -1; 
End 

Go ωNext lteration; 

Figure 1.1: Complete Listing of Algorithm 6-4.1 85 

S乓球en from [Youn 81 , p. 107.109) 
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1.2 Listing of SIMD Programs 

The lower level details of the p缸挝lel implementation under SIMO framework is given here. 

Particularly. we discuss the preparation of the system matrix at the pre-computation stage and the 

matrix-vector multiplication 0院ration at the iteration stage.86 

Our program is constructed out of a layer of procedures where 由e bottom layer consists of a set 

of instructions and operations. 0盯 implementation work is based on a simulator of a panicular 

SIMD architecture called NON-VON. whose shon description was given in section 3. 1.2. In 

Figure 1-2. we have a partial s山nmary of the semantics for the instructions and operations defined 

in 由e cxtendcd NON-VON simulator. We have shown only a part of definitions just needed for 

illustrating the SIMO program listings presented in 由is section. The complete description of the 

semantics can be found in [Shaw 82]. [Shaw 84a]. and [Choi 85a]. In general, the instructions 

and operations are executed on enabled PEs only wi由 a single exception of the enable instruction 

(NVENBL) which enables eve可 PE again regardless of its previous state of the enable flag 

但Nl). For the mesh or tr臼 communication instructions，让1e semantics is defmed as follows: 

each data item is delivered to enabled receiving PEs only. regardless of the states of sending PEs. 

In NON-VON. we have five l-bit flags (Al , B 1, C1. 10 1. and EN l), five 8-bit registers (A8 , B8 , 

C8 , 108 , and MAR) , a l-bit memo可 (MEMORYl) ， and an 8-bit memo可 (MEMORY8). In the 

extended simulator, we convenienùy introduced four floating-point registers (AF, BF. CF. and 

10日 and floating-point memo可队伍MORYF). For the instructions , we have equivalent ones 

operating on 由e floati吨-point 陀gisters and memo可. For example. we have l-bit and 8-bit 

broadcωr instructions which load the designated register (or direct1y a memo叩 cell pointed to by 

contents of its MAR) of the enabled PEs with the data item broadcasted from the host processor. 

To perfonn 由is function we have introduced the floating-point version of 由is instruction. 

[Compare the semantics of the instructions NVBCl , NVBC8. and NVBCF in Figure 1-2.] 

In Figu陀 1-3 ， we show how the data in each SIMO PE are organized for our sample program. In 

S句"he implementation detail of the ∞mputation of global infonnations will not be given.ηle higher level 
descri严ion SeeJ旧 ωbead呵uale. [See the discussion of the global summation algorithm in section 3.2.3, the 
com阳tation of 出e vecωr norms in section 4.1 .5 .2，出百:l the ∞mputation of the inner produc臼 h 臼cúon 4.2.3.2.) 



.. 

,-

.. 

• 

.. 

.. 

.. 

• 

-‘ 

... 

... 

Operands 
src1, dst1 {$A1 , $B1 , $C工， $工01 ， $EN1} 
src8 , dst8 {$A8 , $B8 , $C8 , $工08 ， $MAR} 
sr矿， ds扩 {$AF ， $BF ，♀CF ， $工OF}
n1 {$A1 , $B1 , $C1 , $EN1} 
r矿{$町，♀BF ， $CF} 
nbr = {$E , $W , $N , $S} 
rtype { $ RC , $ LC , $ P , $阳~， $LN} 

NON-VON 1nstructions 
NVENBL () EN1 of al工 PEs := 1 

NVBCR1 (bit) MEMORY1 [ (MAR) ] := bit 
NVBCR8 (byte) MEMORY8 [ (MAR) ] -句te
NVBC1 (dst1 , bit) dstl := bit 
NVBC8 (dst8， 句Ite) dst8 :=句te

NVRRM1 (dst1) dst1 := (MEMORY1 [ (MAR) ] ) 
NVRRM8 (出(8) dst8 := (MEMORY8 [ (MAR) ] ) 
NVWRM1 (srcJ) MEMORY1 [ (MAR) ] (src1 ) 
NVWRM8 (src8) MEMORY8 [ (MAR) ] . (src8) 

NVMOV1 (src1, ds(1) dst1 := (srcl ) 
NVMOV8 (src8 , ds(8) dst8 := (src8) 

NVAND1 () C1 := (A1) AND (B1) 

NVMSH1 (nbr) B1 of nbr PE := (B1) 

NVRCV1 (rs1 , rη'pe) rs1 := (101) of rtype PE 

Floating Point Extension of NON-VON 1nstructions 
NVBCRF (βMEMORYF [ (MAR门 -β
NVBCF (ds矿， 11) ds矿 -β

NVRRMF 他们
NVWRMF (sr价

NVMOVF (sr矿" ds叭

NVMSHF (nbr) 

NVRCVF (r，矿， rtype) 

ds旷:= (MEMORYF [ (MAR) ] ) 
MEMORYF [ (MAR)] := (srcj) 

ds矿.-旷的

BF of nbr PE := (BF) 

r扩:= (10F) of rtype PE 

Basic Floating Point Operations 
FAUC () CF := (CF) + (BF) 
FSUC () CF := (CF) (BF) 
FMAUC () CF := (CF) + (AF) * (BF) 
FMSUC () CF := (CF) (AF) * (BF) 

Figure 1.2: Part of NON-VON Instructions (Extension lncluded) 
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the data definition part of the listing of Algori由m 6-4 .1 given in Figure 1- 1, we have matrix , 

vectors, and scalar variables. Since the scalar variables are allocated in the familiar manner in the 

host processor which is a conventional serial machine, our attention is focused on the SIMD 

implementation of data structures , i.e. , the matrix and vectors . 

The data in 由e SIMD part are allocated for every PE at 由e fixed s缸ηememo可 addresses. They 

are of two kinds , l-bit flags and floating-point n山nbers . 

The data in Figure 1-3 form three groups. The first group is the input information provided to 由e

dep由 interpolation process: depth discontinuities, depth constraints , orientation discontinuities. 

但ld orientation constraints.87 

Given these inputs，由e pre-computation stage computes 由e system matrix A 阻d the vector b 

using the series of the computational molecules. [See. the discussion about the derivation of the 

system matrix in section 2.2.2.3 and 由e parallelization in section 4. 1.5.] The second group 

provides the space for the coefficients of the system matrix A and the vector b 由us generated. 

Note 由at in the depth interpolation problem we have a sparse matrix , i.e. , even an interior node 

interacts with 12 neighbors as shown in Figure 2-4 and a boundary node at a comer wi由 only 5 

neighbors as shown in Figure 2-5. As typical in the organization of SIMD data. the data spa臼S

(in our problem，由e maoix coefficients) are allocated to cover all possible configurations (in our 

case , an interior node turns out to be 让1e most general configuration). The 13 matrix coefficients , 

one for itself and 12 for neighboring PEs, are stored at designated addresses ac∞rding to 由e

spatial arrangement and the corresponding flags are markedß8 Usually , a flag and a number are 

allocated in a pair，江由e number is conditionally assigned. For instance. for each depth 

constrained node，吐le flag is marked first 缸1<1 then the associated depth constraint is stored . 

币le 由ir司 groUp of the addresses are allocated for the vectors which are repeatedly updated for 

eveηiteration step 刨出e iteration stage. These vectors include the depth vector. 

87For the sake of simpücity. we assumed 由at for ev町y orientation-∞nstrained node both p and q ∞nstraints exisL 

88In由e genera1 case. for instan饵. wh臼lbo由由e de萨h and 由e orientaLÏon ∞nstraints exist, one more pre
computation st叩 may be necessary. For every dep由∞nûnuous PE. a11 other terms are divided by the diagona1 
elemCn1电 i.e. ， by 由e number at SFMOMO . 
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C Continuity/constraints 

C 

PARAMETER($1DDSC=1 , C 1 if depth is continuous. 
女 $FSYND=1) C contains synthetic depth. 

PARAMETER($1DCS=4 , C 1 if depth is constrained. 
* $FDCS=4) C contains depth constraint . 

'曾

食

PARAMETER($10CS=2 , C 1 if orientation is constrained. 
$FPCS=20 , C contains p constraint. 
$FQCS=21) C contains q constraint. 

System matrix , vector 

C coefficients of matrix A (G). 
PARAMETER($1MOP2=5 , $FMOP2=5) C for node [0 , 2] 
PARAMETER($1N1P1=6 ， $FN1P 工=6) C for node [-1 , 1] 
PARAMETER($lMOP1=7 , $FMOP1=7) C for node [0 , 1] 
PARAMETER($lP1P1=8 , $FP1P1=8) C for node [1 , 1] 
PARAMETER($1N2MO=9 , $FN2 l10=9) C f。主 node [-2 , 0] 
PARAMETER($lN1MO=10 , $FN1MO=10) C for node [-1 , 0] 
PARAMETER($lMOMO=ll , $FMOMO=ll) C for node [0 , 0] 
PARAMETER($lP1MO=12 , $FPIMO=12) C for node [1 , 0] 
PARAMETER($1P2MO=13 , $FP2MO=13) C for node [2 , 0] 
PARAMETER($1N1N1=14 , $FN1N1=14) C for node [-1 , -1] 
PARAMETER($lMON1=15 , $FMON1=15) C for node [0 , -1] 
PARAMETER($lP1N1=0 , $FP1N1=0) C for node [1 , -1] 
PARAMETER($lMON2=3 , $FMON2=3) C for node [0 , -2] 

PARAMETER($FF=24) C vector b (k). 

C Computed vectors 

PARAMETER($FUCA=18 , C depth vector u[O). 

* $FUCB=19) C depth vector u[l). 
PARAMETER($FDLT=2) C pseudoresidual vector ô. 

Figure 1.3: Address Map (Adaptive Chebyshev Acceleration Method) 
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In Figure 1-4, we have a SIMO listing of one of the procedures from 由ep卧∞mputation stage 

that ∞mpute 出e coefficients of the system matrix A and the vector b. This procedure computes 

由e contributions made by the upper left plate molccule in Figure 2-1 and the up严r le仇

orientation constraint molecule in Figure 2-3 , i.e. , if three consecutive PEs in a row 缸它 depth

continuous when 由ey are seen from the rightmost PE . 

The declarations of global constants (either defined by simulator or user program) and aπays 

(simulator de阳1ed) come fir乳 With the size of the tree set here , the size of the mesh at the leaf 

level is 128 x 128. The global arrays for the 陀gisters and memory of PEs are irnplemented with 

labeled COMMON statement of FORTRAN . 

When computation begins , it starts wi由 a plate molecule. All depth continuous PEs whose two 

neighbors on 由e left side 缸e also dep由 continuous need to be selected. For the depth continuous 

PEs their contents of 101 were set to 1 before 由is pro臼dure was called. This pre-condition is 

declar回 at 出e header of the procedure. The sequence of conditions are declared as ∞mments. 

[Recall the general description about conditions in section 5.5.] Note the sequen臼 of actions 

leading to the selection of the desired sel of nodes. First. all PEs are enabled. Second. we are 

onl y interested in 由e marked set of the pre-condition. Thi时. the flag from west neighbor is 

m臼ived and ANDed wi由 its own flag to 回lect all pair of PEs which 创它 dep由 continuous.

Finally. 由e flag from west neighbor is received again and ANDed to 民lect all three consecutive 

dep由 continuous PEs in a row. Note 由at the flag of eve可 PE is transmitted by the execution of 

each mesh communication instruction since eveηPE is enabled up to 由e 阳刚 selection time. 

Because the flag was received twice , the one received at the most 陀cent step is the one from two 

neighbors away . 

For the selected 臼t，由e 山田 coefficients. [1. 号. and 1 ].89 are 甜ded to at three add陀sses

($FN2~O. SFN1~O. 缸1d SFMO~O) after the flags are mar古(ed.

When the orientation constraint molecule is applied. the more restricted set is 回lected. Three 

consecutive PEs in a row should be depth continuous and the left neighbor of the rightmost PE be 

89Com严red to 由e nodal 吨uaùon (匀• 11 h2 is fac lOred OUL (See the Figure 2-4.] 
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P orientation constrained as well. The desired condition is generated as follows: Ù1e orientation 

constraint flag 陀ad at left neighbor is shi民ed in to be ANDcd to自由er wi由Ù1e 陀tained condition 

of Ù1e Ù1ree consecutive depth continuous nodes . 

The three coefficients, [2p- l.o' -l/h , and 1/h].90 are added to at three addresses ($FF, $FN2MO, 

and $FMOMO) where P-1.0 is 由e p constraint of Ù1e le仇 neighbor. 

In Figur巳 1-5. we have the SIMD listing of Ù1e matrix-vector multiplication operation performed 

at each iteration step. Note the declaration of all four conditions, i.e. , irψ川• ou伊旧，

pre-condition. 缸1<1 post-condition, at the header. The operalion performed at eveηdcpth 

continuous PE is a rather simple one. After checking whcther 由is particular term is p陀臼nt or 

not in the nodal equation of 由is PE, each element value shifted-in from its neighbor is multiplied 

by 由e appropriate c倪fficient and added to 由e intermediate sum. In the listing. we show two 

such sequences. The first one gets the value from its west neighbor and multiplies it by 由e

coefficient at $FN 1 MO.ηle second one gets the value from the west neighbor of its west 

neigh切r and multipli臼 it by the coefficient at $FN2MO. Observe again the pipeline-like shift-in 

of data. When the PE sends data to its east neighbor. it gets data from its west neighbor and at 

next shift, the PE gets data from two neighbors away . 

90we assumed that a h = 'fn / h, where 'fn is 4.0. [See the nodal equation (3).] 
P" 'P 
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C Pre {For depth continuous PEs at chosen level , 
C their (工01) 1. 
C 
C ( 1 , -2 , [1] ) 

常

* 
* 
* 

* 
* 
* 
食

食

* 
'每

SUBROUT工NE FPHWWM(HINV) 

INTEGER $M工NPE
PARAMETER ($MINPE 1) 
工NTEGER $MAXPE 
PARAMETER ($MAXPE 32767) 

工NTEGER $E , $W , $N , $S 
PARAMETER ($E 1 ，♀W 2 , $N 3 , $S 4) 

INTEGER*2 $EN1($MINPE:$MAXPE) , 
$A1($MINPE:$MAXPE) , 
$B1 (♀MINPE: $MAXPE) , 
$C1($M工NPE: $MAXPE) , 

$I01($M工NPE:$MAXPE)
COMMON /NV1/ $EN1 , $A1 , $B1 , $C1 , $工01

INTEGER*2 $MAR($MINPE:$MAXPE) , 
$A8($MINPE: ♀MAXPE) , 
$B8($MINPE:$MAXPE) , 
$C8($MINPE:$MAXPE) , 

$工08 ($MINPE:$MAXPE) 
COMMON /NV8/ $MAR, $A8 , $B8 , $C8 , $工08

REAL*8 $AF($MINPE:$MAXPE) , 
$BF($MINPE:$MAXPE) , 
$CF($MINPE:$MAXPE) , 

$工OF($MINPE:$MAXPE)
COMMON /NVF/ $AF , $EF , $CF , $工OF

INTEGER $lN2MO ，♀FN2MO 
PARAMETER ($lN2MO 9 , $FN2MO 9) 
INTEGER $lN1MO , $FN1MO 
PARAMETER ($lN1MO 10 , $FN1MO 10) 
INTEGER $lMOMO , $FMOMO 
PARAMETER ($lMOMO - 11 , $FMOMO 11) 
INTEGER $10CS , $FPCS , $FQCS 
PARAMETER ($10CS - 2 , $FPCS 20 , $FQCS 
INTEGER $FF 
PARAMETER ($FF - 24) 

REAL*8 日工NV

21) 
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CALL NVENBL () 

CALL NVMOV1($I01 , $A二)
C {(A1) 1 if this PE is depth continuous . 

CALL NVMOV1($ 工01 ， $Bl) 
C {(B1) 1 if this PE is depth continuous. 

CALL NVMSHl($E) 
C {(B1) 1 if west neighbor PE is depth continuous. 

CALL NVAND 1 ( ) 
CALL NVMOV1($C1 , $A1) 

C {(A1) 1 if both this PE and 
C its west neighbor PE are depth continuous. } 

CALL NVMSH1($E) 
CALL NVAND 1 ( ) 
CALL NVMOV1($C1 , $EN1) 

C { Only those PEs are enabled 
C where three contiguous horizontal PEs 
C seen from rightmost PE are depth continuous. 

C rel-x -2 and rel-y O. 

.. CALL NVBC8($MAR, $1N2MO) 
CALL NVBCR1(1) 

.. 

• 

.. 

.. 

.. 

• ‘ 

CALL NVBCF($BF , 1.0DO) 
CALL NVRRMF ($CF) 
CALL FAUC () 
CALL NVWRMF($CF) 

C rel-x -1 and rel-y O • 

CALL NVBC8($MAR, $1NIMO) 
CALL NVBCR1(1) 
CALL NVBCF($BF , 2.0DO) 
CALL NVRRMF ($CF) 
CALL FAUC () 
CALL NVWRMF ($CF) 

C rel-x ~ 0 and rel-y O • 

CALL NVBC8($MAR, $1MOMO) 
CALL NVBCR1 ( 1) 
CALL NVBCF($BF , 1.0DO) 
CALL NVRRMF ($CF) 
CALL FAUC () 
CALL NVWRMF ($CF) 
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C Orientation constraint . 

... CALL NVENBL ( ) 
CALL NVBC8($MAR , $10CS) 
CALL NVRRM1 ($B1) 

CALL NVBC8($MAR , $FPCS) 
CALL NVRRMF($BF) 

CALL NVMSH1 ($E) 
CALL NVMSHF($E) • 

户
L
V
F
V户L
V户
-
v

(B1) 1 
if west neighbor PE is orientation constrained. 
BF contains p orientation constraint 
。f west neighbor PE . 

• 
CALL NVMOV1($C1 , $A1) 
CALL NVAND 1 ( ) 
CALL NVMOV1($C1 , $EN1) 

.‘ 

C { On1y those PEs are enabled where three contiguous 
C horizontal PEs seen from rightmost PE are depth 
C continuous and 1eft neighbor of rightmost PE is 
C orientation constrained. 

C b vector . 

• ‘ 
CALL NVBC8($MAR , $FF) 
CALL NVRRMF($CF) 
CALL NVBCF($AF , 2.0DO) 
CALL FMAUC ( ) 
CALL NVWRMF($CF) 

C re1-x -2 and rel-y O • 

... CALL NVBC8($MAR , $FN2MO) 
CALL NVRRMF ( $ CF ) 
CALL NVBCF($BF , HINV) 
CALL FSUC () 
CALL NVWRMF ($CF) 

... C re1-x - 0 and re1-y O. 

CALL NVBC8($MAR , $FMOMO) 
CALL NVRRMF($CF) 
CALL NVBCF($BF , HINV) 
CALL FAUC () 
CALL NVWRMF ($CF) .... 
RETURN 
END 

... Figure 1-4: Pre-cοmputation Stage (Computation of Matrix Coefficients) 

• 
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C PRE 
C 
C PRE 
C 
C 工N

C 
C POST 
C 
C OUT 
C 

For every depth continuous PE at chosen level , 
(I01) 1.} 

Depth continuous PEs at chosen level 
are enab1ed. } 
For every depth continuous PE at chosen leve1 , 
IOF contains current value of the vector v. 
Depth continuous PEs at chosen leve1 
are enabled. } 
For every depth continuous PE at chosen level , 
e工ement value of the vector Gv is left in CF.} 

SUBROUTINE FCGVCR() 

C { For every depth continuous PE at chosen level , 
C 工01)工 (EN1) 1 , i.e. , enabled , and 
C IOF contains its own depth value. } 

C Clear CF. 
CALL NVBCF($CF , O.ODO) 

C Two horizontal left terms. 

C { Depth continuous PEs at chosen leve工 are enabled. } 
C { CF contains intermediate sum. } 

C re1-x -1 , rel-y 0 

CALL NVMOVF电 ($IOF ， $BF) 
CALL NVMSHF($E) 

C { BF contains depth value of west neighbor PE. } 

CALL NVBC8($MAR , $lN1MO) 
CALL NVRRM1($EN1) 
CALL NVRRMF($AF) 

C { AF contains locally contributed multiplication fact。主
C for west neighbor PE. } 

C CF:= (CF) + (AF) * (BF) 
CALL FMAUC ( ) 

C { CF contains updated intermediate sum. } 
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C rel-x -2 , rel-y 0 

CALL NVENBL ( ) 
CALL NVMOV1($I01 , $EN1) 

C { All depth continuous PEs at chosen level 
C are enabled again . 

CALL NVMSHF($E) 
C { BF now contains current depth value of 
C west neighb。主。f west neighbor PE. } 

CALL NVBC8($MAR , $lN2MO) 
CALL NVRRM1($EN1) 
CALL NVRRMF ( $AF) 

C { AF contains locally contributed multiplication factor 
C for west neighb。主。f west neighbor PE. } 

C CF:= (CF) - (AF) * (BF) 
CALL FMS UC ( ) 

C { CF contains updated intermediate sum. } 

RETURN 
END 

Figure 1-5: Iteration Stage (Computation of Matrix-Vector Multiplication) 
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1.3 Supplementary Numerical Results 

1.3.1 Other Numerical Values 

飞'1Ve show other numerical values of single-grid algorithm execution result for the plane example 

discussed in section 5.3. 1.l. 

In Table 1-1 we have the resu1ts from each iterative method for three different densiÙes of the 

dep由 constraints. In Table 1-2 we have shown another 陀sult from the adaptive Chcbyshev 

acccleration method when more accurate initial estimates were uscd. The measures listed are the 

number of iterations; the minimum. the maximum , and the average of the dep由 values: and the 

乌-norms of 由e error ve口or. Furthermore. we have listed 11.4 1!2(X<,) -α)11 for 由e conjugate 

gradient method and the final estimate of the largest cigenvalue, ME' for the adaptive Chebyshev 

acccleration method . 

Whcn we examine 由e final dep由 values ， they show another aspect of 由e dep由 interpolation

problem becoming harder as the depth constraints become spar民r. With comparable or 

sometimes better average va1ues，吐1c minimum and the maximum va1ues deviate further from the 

solution.ηtis phenomenon is common to all three iterative methods. For example, for the 

conjugate gradient method , we have smaller va1ues of 1 1A 1!2(x<O-α，) 11，由e quantity being 

minimized in 由is me由od. as the depth constraints become sparser. Nevertheless. we have 

comparable ~-nonns of 由e error vector and 由e average va1ues, and worse minimum 叫

maximum va1ues. 
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Densiη 0/ the Depth Constraints = 50% 

.. 
Results from the Conjugate Gradient Method 

X<')min 到。
max x{Oavs 1110 一 α11 IlA 1'\10 -α)11 

.‘ ----------
21 .457691 1.250388 .969833 12.433526 1.5220272 

46 .899396 1.024408 .999615 1.229187 .1426707 

.. 71 .984603 1.∞2782 .999994 .126194 .0143727 

96 .998077 1.α)()396 .999999 .013349 .∞14978 

.. Results from 由e Adaptive Chebyshev Acceleration Method (initial mE = -3.0, ME = 0.0) 

X<')_: 
MJJl X<'\ta% 到飞lIg I!x<O -α11 λfE 

------- -------- ------

• 56 .574881 1.027588 .915067 12.90ω60 .988772 

95 .907512 1.∞5085 .994到6 1.296641 .990385 

136 .985364 1.α刀801 .999687 .124797 .991694 

.. 170 .997973 1.α泪107 .999982 .012647 .991694 

R臼ults from 由e Gauss-Seidel Method 

.. 
X<')_: 

MJJl 
到。

"也1.1:
x{s7avs I !x<O 一 α11

------- -------- ------

107 .637535 1.0348ω .910398 12.746128 

.‘ 
229 .927154 1.∞3870 .992740 1.291107 

365 .988639 1.α)()352 .999474 .127688 

5ω .998467 1.α)()()85 .999962 .012823 

.. 
(Con由lUed)

• 
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Density 01的e Depth Constraints = 30% 

• 
Results 丘。m the Conjugate Gradient Method 

:r!-') min 到。
max x{Oavg l !fi)一 α11 IIA l f2(;r!..i) - α)11 

.‘ ----------
32 .361134 1.213464 .970978 12.562866 1.0888625 

70 .844512 1.019αm .999614 1.268632 .0957∞4 

... 110 .980571 1.∞3009 .999988 .130898 .∞96369 

146 .998821 1.α刀854 1.臼:xx:削 .010304 .∞10545 

.‘ 

Results from the Adaptive Chebyshev Acceleration Method (initial mE = -3.0, ME = 0.0) 

:r!-')_: 
mJII 

到。
"也u

x{Oavg l!fi) -α11 ME 
------- -------- -------

• 80 .453362 1.038548 .922690 12.645528 .993695 

137 .855935 1.∞5517 .995953 1.284419 .994744 

208 .9794∞ 1.α刃410 .999826 .126349 .996296 

.. 271 .997705 1.(汇刷:>47 .999991 .012930 .996805 

R臼ults from 由e Gauss-Seidel Method 

... 
:r!-I) mÚt x〈。"四 :r!-飞vg l!fi) -叫|

------- -------- ------
196 .510884 1.026782 .915佣4 12.750857 

445 .879459 
• 1.∞3267 .994288 1.279349 

752 .981034 1.α)04 12 .999687 .128378 

1103 .997807 1.旺的048 .999983 .012805 

.. 
(Continued) 

• 
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Density 01 the Depth Constraints = 15% 

• 
Results from the Conjugate Gradient Method 

X<I)_ , 
nWI 

X<1)ma.x x{83avs IIxCi) -叫| IlA 1 !2(耳。 -α)11.. 
----------

55 .567370 1. 171957 .973058 12.643796 .6655899 

130 .755494 1.015766 .999641 1.282472 .0487649 

.. 2∞ .979287 1.∞7&:IJ .999997 .125836 .∞53095 

267 .998963 1.∞1350 1.(旧α)()1 .0127∞ .α)()5662 

.. Results from 由e Adaptive Chebyshev Acceleration Method (initial mE = - 3.0. ME = 0.0 ) 

X<I) . 
INII 

X<1)ma.x X<飞vg Itx<i) -叫| ME 

-------- --------

• 129 .139∞1 1.039侃4 .931920 12.797598 .997510 

251 .766146 1.010805 .997725 1.286709 .998322 

384 .971733 1.∞1309 .999929 .127170 .998905 

.‘ 
495 .997079 1.α)()135 .999993 .012906 .999064 

Results from the Gauss-Seidel Me由od

.. 
X<I) ".u. 五。

"‘u 
到。

avg Itx<i) -叫|
------- -------- -------- -------

460 .088604 1.030712 .925998 12.793736 

• 1231 .766415 1.011704 .997æ7 1.278771 

2394 .971534 1.∞1434 .999货泪 .127979 

3650 .997069 1.α)()148 .999993 .012799 

.. 
Table 1-1: OtherResults (plane) 

.‘ 
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Results 企om 由e Adaptive Chebyshev Acceleration MCÚ10d 

.. 
Densiη ofthe Dep仇 Constraints = 50% (initial mE = -2.3. ME = 0.99) 

X<O _: 
l7Wl 

X</)max x(t7avg I~i)_叫| 儿IE
------- -------- ------

• 
26 .485533 1. 158198 .944240 12.718857 .99 

57 .890348 1.011170 .997374 1.297171 .99 

97 .983999 1.000908 .999732 .127034 .99 

• 
142 .998015 1.α)()l05 .999979 .012739 .992610 

Density ofthe Depth Constraints = 30% (initial mE = -2.3. ME = 0.993) 

.. 
t X</)müt X<1)ma;c x<飞vg I~i) _α11 儿IE

--------

45 .392290 1.093854 .934956 12.558977 .993 .. 
110 .856176 1.∞5725 .995760 1. 3仅厄41 .995482 

169 .979αp 1.α)()427 .999845 .127135 .996110 

224 .997772 1. OC刷)46 .999991 .012565 .996747 

.‘ 

Density ofthe Depth Constraints = 15% (initial mE = -2.3. ME = 0.997) 

• x<o _' 
""" x<飞I<U xoavg I~')- 叫| ME 

------- -------- ------

70 .591026 1.079271 .947534 12.793268 .997 

197 .765680 1.010865 .997963 1.268198 .998358 .. 
315 .971242 1.001331 .999939 .128831 .998937 

422 .997084 1.仅)()135 .999994 .012879 .999069 

.‘ 
Table 1-2: OÚ1er Results (plane : wi由 more accurate initial estimates of mE and M~ 

.. 
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1.3.2 Sample Traces of Multigrid Algorithm (Fixed Scheme) 

We show further details of multigrid algorithm execution result for the cylinder ex缸ηple

discussed in section 5.3.2. 1. 

For 由e multigrid methods , we u自由e discrete L2-norm of the error vector (at 由e nth iteration 

step) , e(n) 三 x(n) - α. which is defined as follows [Brig 87 , p. 62]: 

|川lI e(惟Mεd州(轨ω叫n吟q飞)斗| (74) 
]=1 

where nl represents 让lC number of the dep由 continuous nodes in the region and hl the length of 

the sides ofthe tessellation square elements9L at level l. 

白le ~-norm of the error vector is not available in most problems and a more practical measure of 

h , h , .h 
∞nvergence is 由e discrete ~-norm of the residual vector, rnl = gn/ - A

ß
/ xß1, similarly defined 

by 

11叫 =(hIE 叶仙(飞]2)1 (75) 

Figure 1-6 shows the scheduling of grids for 由e fixed scheme with ~ = 1. [For the fixed scheme , 

see the program listing in Figure 4-2.] 

As explained already, the value of to was chosen ωachieve the desired accuracy at 由e ∞arsest

level. Though we did not run extensive expe由nents ， the choice of ~ = 1 and n1 = 时 seems to be 

simple and good enough. 

The set of so. n1, and ~ wer穹 chosen 部由e possible , but not always , minimal values where 由e

final RMSE value for every level is smaller than the initial RMSE value when each level is nrst 

entered. For the coarsest level. the fmal RMSE value is ensured to be smaller than the desired 

acωracy obtained after to iterations. For the other levels , the fmal RMSE values are ensured to 

be smaller 由an the initial values generated through the prolongation process in the procedure 

FMRA before invoking the procedure FMC. 

911ñe acrualleng比 of the sides from ∞m副 ω 缸臼t respectively were h1 = 0.8, ~ = 0.4, ~ = 0.2, and h4 = 0.1. 
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finest 

coarsest 

Figure 1-6: Schedule of Grids on Four Levels92 

As the first trace example of the scheduling, we show the result of the conjugate gradient method. 

The parametεr values are {o = 15. So = 4 , n1 = 6, "2 = 1, and ~ = 6 . 

We trace 吐le change of the RMSE values as the grids are visited. We trace also the discrete 

~-nonns of the residual vector but the v必ues of the residual norrns are enc10sed in parentheses . 

After initial 15 iterations (n = 1 日， we have the RMSE value of .1011137 (.12556313) at 由e

coarsest level l = 1 . 

τne prolongaùon in the procedure FMRA provides the iniùal guess for level 2 and the initial 

RMSE value at this level is .1∞5757 (.07040571). The procedu陀 FMC is invoked for the flfSt 

time and after 6 iteraùons on level 2. we have the restriction back to level 1. 节le reduced RMSE 

value at the coarsest level is .0872281 (.02锁)6745). After 4 iterations it is 陀du臼dfu口her to 

.0795454 (.03侃侃42) and we have the prolongaùon to level 2. After 6 iterations on level 2, we 

have the RMSE value of .fJ7277f:S (.02480185) and the first call ofFMC is finished . 

The prolongaùon in the procedure F岛ffiA provid臼 the iniùal guess for level 3 and 由e 时tial

RMSE value is .0731687 (.02369524). The proαdure FMC is now invoked for the second 由ne

92uken from [B rig 87, p. 4η 
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and after 6 iterations on level 3, we have the restriction back to level 2. The reduced RMSE value 

at level 2 is .0709065 (.01 163662) and after 6 iterations on level 2, we have the restriction back ω 

level 1. The reduced RMSE value at 由e coarsest level is .0685103 (.∞639124). After 4 

iterations it is reduced further to .0682280 (.∞522123) and we have the prolongation to level 2. 

A丘er 6 iterations on level 2, we have the R..MSE value of .0691420 (.∞539452) and we have the 

prolongation to level 3. After 6 iterations on level 3, we have the RMSE value of .0693508 

(.∞605052) and the second call of FMC is finished . 

The prolongation in the procedure F孔1RA provides the initial guess for the finest leveI and the 

initial RMSE value is .0696286 (.∞991621). 白le procedure FMC is now invoked for the last 

time and after 6 iterations on leve14. we have the restriction back to level 3. The reduced RMSE 

value at level 3 is .0691617 (.α:>425162) and after 6 itcrations on level 3. we have the restriction 

back to level 2. The r它duced RMSE value at level 2 is .0682678 (.∞336418) and after 6 

iterations on level 2, we have the restriction back to level 1. The reduced RM:SE value at 由e

coarsest leveI is .0665816 (.∞173到4). 

Now. starting at 让le coarsest level. we have a final series of iterations and prolongations down ω 

由e finest level. After 4 iterations (n = 81). 由e RMSE value is redu臼d further to final .066斜48

(.∞191015) 阻d we have the prolongation to level 2. After 6 iterations on level 2 (n = 87). we 

have the final value of .0675243 (.∞228414) and we have the prolongation to level 3. After 6 

iterations on level 3 (n = 93) , we have the final value of .0680527 (.∞363177) and we have the 

prolongation 10 level 4. A且er 6 iterations on the 阳lest level (n = 99) , we have the final value of 

.0683314 (.∞244497) and the whole proαdure is fmished . 

As the second tracεexample of the scheduling. we show 让le result of the adaptive Chebyshev 

acceleration me由od. 白le par缸neter values are to = 23. So = 4. n1 = 7. ~ = 1. and ~ = 7. We 

trace again the change of 臼 RMSE valu臼但回由e residual norms as 由e grids are visited. 币le

values of 由e residual norms are enclosed in parentheses. 

After inilial 23 iterations (n = 23). we have the RMSE value of .0955011 (.0290453ηat 由e

coarsest level 1 = 1 . 
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The prolongation in Ù1e pro∞dure F岛1RA provides 由e initial gucss for level 2 and the initial 

RMSE value at this level is .ω51464 (.05456750). The procedure FMC is invoked for the first 

time and after 7 iterations on level 2. we have the restIÌction back 10 level 1. The reduced RMSE 

value at 由e coarsest level is .0810578 (.01965193). After 4 iterations it is reduced funherω 

β779575 (.0112∞22) and we have the prolongation to level 2. After 7 iterations on level 2. we 

have the RMSE value of .0685260 (.01813959) and the first call of FMC is finished . 

The prolongation in Ù1e proαdure FMRA provides the initial guess for level 3 and the initial 

RMSE value is .0684786 (.01851928). 节le pro臼du陀 FMC is now invoked for the second time 

and after 7 iterations on level 3. we have the restriction back to level 2. The rcduced RMSE value 

at level 2 is .0669836 (.α:>9 18446) and after 7 iterations on level 2. we have 由e r巳stIÌction back to 

level 1. The reduced RMSE v创ue at 由e coarsest level is .0654301 (.∞367233). After 4 

iterations it is redu臼d further to .0647048 (.∞225785) and we have the prolongaùon to level 2. 

After 7 iterations on level 2. we have the RMSE value of .0634130 (.∞356676) and we have the 

prolongation to level 3. After 7 iterations on level 3, we have the RMSE value of .0625448 

(.α:>975163) and the second call of FMC is finished . 

ηle prolongation in the pro∞dure f}.但A provid臼 the initial guess for the finest level and the 

initial RMSE value is .0625041 (.∞758814). The procedure FMC is now invoked for the 1臼t

time and after 7 iterations on level 4, we have the restriction back to level 3. The reduced RMSE 

value at level 3 is .0624155 (.∞4∞121) and after 7 iteraùons on level 3, we have Ù1e restriction 

back to level 2. 币1e reduωd RMSE value at level 2 is .0624187 (.∞231163) and after 7 

iterations on level 2 , we have the restIÌction back to level 1. The reduced RMSE value at 由e

coarsest level is .0627756 (.α)()92782) . 

Now , starting at 由e coarsest level, we have a final series of iteraùons and prolongations down to 

由e finest level. After 4 iterations (n = 98)，由e RMSE value is reduced furtherωfinal .0627607 

(.仅归52839) and we have the prolongation ωlevel 2. After 7 iterations on level 2 (n = 105) , we 

have the 由国 value of .0624723 (.αX>89367) and we have the prolongation to level 3. After 7 

iterations on level 3 (n = 112) , we have Ù1e final value of .0621976 (.∞224931) and we have the 

prolongation 10 level 4. After 7 iterations on the finest level (n = 119), we have the final value of 
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.0620595 (.∞436349) and the whole procedure is finished . 

As the last trace ex创口ple of the scheduling. we show the result of the Gauss-Scidel method. The 

parameter values are to = 47. So = 6. n[ = 8. ~ = 1, and n3 = 8. We tracc again the change of the 

RMSE values and 由.e residual norms 皑白e grids are visited. The values of 由e residual norms 

are enclosed in paren由eses. 

After initial 47 iterations (n = 47). we have the RMSE value of .0967473 (.02969730) at 由e

coarsest level 1 = 1 . 

The prolongaùon in the procedure F岛饭A provides the iniùal guess for level 2 and the initial 

RMSE value at this level is .ω62959 (.057ω785).ηle procedure FMC is invoked for the first 

tirne and after 8 iteraùons on level 2. we have the restricùon back to level 1. 节le reduced RMSE 

value at 由e coarsest level is .0860415 (.01137371). After 6 iterations it is 陀du臼d further to 

.08α刀77(.∞710874) and we have the prolongaùon to level 2. After 8 iterations on level 2. we 

have the R岛1SE value of .0729618 (.α:>927485)创1d the first call of F孔1C is finished . 

The prolongaùon in the procedure FMRA provides the iniùal guess for level 3 and the iniùal 

RMSE value is .0727732 (.01824689). The proαdure FMC is now invoked for the second ùme 

and after 8 iteraùons on level 3. we have the restriction back to level 2. The r它duced RMSE value 

at level 2 is .0716791 (.∞394246) and after 8 iterations on level 2. we have the restriction back to 

level 1. 白le 陀duαd RMSE value at 由e ∞arsest level is .0710175 (.∞ 136784). After 6 

iteraùons it is reduωd further to .0703222 (.侃到D89113) and we have the prolongation to level 2. 

After 8 iteraùons on level 2. we have the RMSE value of .0692155 (.∞125151) and we have the 

prolongaùon to level 3. After 8 iteraùons on level 3. we have the RMSE value of .0683705 

(.∞29313ηand 由e 臼∞nd call of FMC is 缸ùshed. 

ηle prolongation in the procedure f}.仅A provides the iniùal guess for the finest level and the 

iniùal RMSE value is .0682978 (.∞7331 (4). The procedure FMC is now invoked for the last 

tirne and after 8 iteraùons on level 4, we have the restriction back to lcvel 3. The reduced RMSE 

value at level 3 is .0682557 (.∞ 150354) and after 8 iterations on levcl 3, we have 由e restricùon 

back to level 2.ηle reduced RMSE value at level 2 is .0683084 (.α泪51254) and after 8 
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itcrations on level 2, we have the restriction back to level 1. The rcduced RMSE value at 由c

coarsest level is .0684145 (.α刀17451). 

Now , starting at 由e coarsest 1evel , we have a final series of iterations and prolongations down to 

the finest leveL After 6 iterations (n = 137)，由e RMSE value is rcduced fur由er to final .0683368 

(.仅归10632) and we have the prolongation to level 2. After 8 iterations on level 2 (n = 145), we 

havc the final value of .0680508 (.∞015623) and we have the prolongation to level 3. After 8 

iterations on level 3 (n = 153), we have the final value of .0678371 (.αx)4∞12) and we have the 

prolongation to leve1 4. A仇er 8 iterations on the finest level (n = 161), we have the final value of 

.0677086 (.∞105797) and the whole procedure is fmished . 

We show other numerical resu1ts of mu1tigrid execution in Table 1-3 , 1-5 , and 1-7 for the 

conjugate gradient，由e adaptive Chebyshev acceleration, and the Gauss-Seidel me由。由，

respectively. We start with the accuracy achieved at 由e coarsest level after initial iterations on 

由at level. We show then the effects of the prolongation operation to level 2, iterations on that 

level. and the restriction 0严ration back ω 由e coarsest leveL We show next the initial guesses at 

level 3 and 4 after the prolongation operations. Lastly, we show the values at final iterations on 

each level and the effects of the prolongation operations to adjacent finer levels . 

We show also numerical resu1ts for the iterations on a single level , i.e. , on the fmest level only, in 

Table 1-4 and 1-6, for the conjugate gradient and the adaptive Chebyshev acceleration me由0缸，

respectively . 

The measures listed are 由e number of iteration steps n and 由e levell; 由e discrete Lz-norms of 

the residual vector. the minimum , the maximum , and the average of the depth values; the 

minimum, the maximum , and the average of the relative dep由 values where the computed depth 

values are divided by the ideal s泸1由etic dep由 values; the discrete L2-norms of the error vector 

and the RMSE values. Furthermo陀， we have listed IIA 1!2(~n) -α)11 for the conjugate gradient 

method. 由e estimate of 1阳he 1吨创咿n咄川小M阳 Lι圄oc-n刑norr川f 阳严阿阳e饥u呻i叫巾dωO则ωωa础1 v四e臼蚓Cαt

for the adaptive Cαhe陇ebyshevacc臼εl比era拟创tio∞n metho<1. and the accumulaled work units for the Gauss

Seidel me由0<1• 
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Aftcr the initiaI 15 iterations on level 1 : 

n = 15 , 1 = 1 
||rO)||h1=.12556313 

X<II) min = .684947. 
rel. X<II) mill = .704688 , 

11ε(n)||hl=1.447022 • 

~吟，咄= 1. 127059, 

~1I)n皿= 1.148635 , 

RMSF;\II) = .1011137 , 

After prolongation operation [11• 2iq in 即1RA:

IIr(II)1I与 =.07040571

XO)m=.684947 , 
re1. X<II) min = .703046 , 

IIE(II)II~ = 2.035510, 

After 6 iterations on level 2 : 

n=2 1, 1=2 
11卢)11与 =.04193274

X<II) min = .687771 , 

rel. x例m=.7035刀，

11ε创II~ = 1.787390 . 

X<1I )rnaz = I.I27059, 

xOU皿= I.I48635 , 

RMSF;\II)=.1∞5757 

X<吟，四= 1. 14788 1. 
xO)mz=1.166643 , 

RJ..fSF;\") = .0883160, 

~1I)avg = .934484 
x{nLg=.978427 
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11.4 1n.(X<n) - α)11 = .2746703 

X<1I )av1' = .935062 
到nLVS=-978854

五飞l' = .936341 
叫斗 =.98仰9

1!A 1 n.(.且具n) _ α)11 = .2316637 

After r穹striction opemtion [/2• l xh2MId Ahlxhl+/2• 1 (g~ - A~x~)l in FMC: 

IIr价)|lhl=.02906745

X<")min = .688887 , 

re1. 五月)min=.703572 ，

11ε(n}||hI=1.248306 ， 

X<1I)n皿= 1.094860, 

沪)叩= 1.121478 , 

RMS8")=.0872281 

After prolongation operation [/2• 3 x" 2] in F如1RA : 

1Ir<1I)1Ih:3 = .02369524 

X<") """ == .717967, 

陀1.沪)ma=.741299.

1je<"~1与 =2.ω4210，

X<")岖= 1.121397, 

x伽)max = 1.1斜437，

RMS~II)=.0731687 

(Con由lUed)

X<II) av1' = .935296 
沪}叫 =.979236

X<") avg = .939824 
五月)avg = .98364 1 



.. 

After prolongation operation [13 -t 4 i3 ] in 即1RA : 

11,(1I)llh4 = .∞991621 

x{")，，山1=.721806，
rel. X<1I)1PÚ1I = .747774 , 

11ε(n)||h4=2.818367 . 

.. 

.. 

• 

After fmal iteration on level 1 : 

n=8 1, 1=1 
1I,(1I)llh1 = .∞191015 

X< II) nún = .728396 , 

re1. X<1I)1PÚ1I = .751891, 

11ε(n)||h1=-950881. 

到n)卢x = 1. 123942. 
X<n)ma:c = 1.151309 , 

~S~II)=.0696286 

到n)mx=1.048217.

xGL皿= 1.085186. 

RMS~II) = .0664448. 
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X<1I )av1' = .939447 
沪)叫 =.983218

XO)mg=.936728 
五九哈 =.980599

UA 1/2(fn) - α)11 = .2465730 

After prolongation operation [x~ + 11 -t 2 (i1 一 12 → 1 x~)] in FMC : 

1I,(1I)llhz = .∞305485 

X<1I)nún = .726623. 
rel. ,ill)nún = .751891. 

Ile(II)1I与= 1.372128 . 

• ‘ 

。• 

• 

After fmal iteration on level 2 : 

n = 87. 1 = 2 
11 ，(11)11与=∞228414

,ill)nún = .726589 , 

rel. x创nún = .751728 , 

11ε(II)II~ = 1. 366596. 

X<")"皿= 1.080351. 
豆叶，四= 1.146863. 
~S~I\)=.0677977 

XO)，回= 1.073957. 
，ill)"皿= 1.141830. 

~S~I\) = .0675243. 

吁
，
呵
'
』

0044 19 2u'-1dnE nyny --= eeeag )
ω
)
m
 

nn ，
，
去
，
好

到飞l' = .938208 
到飞g = .981953 

11.4 1/2(.t<n) 一 α)11 = .19376ω 

After prolongation operation [xh:3 + 12• 3 (x~ 一 13 叶 2Xh:3)] in FMC : 

11 ，(11)11与=∞554816

XO}m=.718667, 

rel. ,ill)nún = .748165. 

lI e(II~Ih:3 = 1.951834 • 

• ‘ 

.‘ 

.‘ 

-

xOL皿= 1.105213. 
xGL皿= 1.1 84ω 1， 

~S~II)=.0681943 

(Con由1Ued)

xouw=9386∞ 
五%=-982到
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After fmal iteraÙon on level 3 : 

n = 93 , 1 = 3 
11州11 11:3 =朋363177

x{n)mm=.714∞2 ， 
rel. X<")min = .748673 , 

IIe<n)1I1I:3 = 1.947783 , 

X<")押回= 1.099287 , 

X<")押回= 1.1 70988 , 

RMSE") = .0680527 , 

X<")av.r = .938572 
沪)叫 =.982313
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11.4 l !2(xCn) - α)11 = .1039976 

After prolongaùon operaùon [X
1l4 + 13• 4 (xll:3 - 14• 3XIl4)] in FMC : 

11 ,-(11)11114 = .∞713094 

X<1I )min = .707536 , 

rel.五n}Mn=.748534.

llee吟||h4=2.767711 ，

After fmal itβraÙon on level 4 : 

n = 99 , 1 = 4 
11卢)Hh4=.∞2斜497

XO)mim=.7例425 ，
rel. X例'min = .748437 , 

11ε(n)||h4=2.765860 . 

X(II)max = 1.1 13764 , 

XO)mz=1.184069, 

RMSE")=.0683771 

X<")，.皿= 1.1 12690, 
X<")max = 1.185867 , 

RMSE") = .0683314, 

X(II) av.r = .938798 
沪勾 =.982558

沪)av.r = .938812 
沪)叫= .982572 

I\A 1β(xCn) - α)11 = .0562665 

Table 1-3: Trace of Multigrid Algorithm (Conjugate Gradient Method) 

After 683 iteraùons (on leve14) : 

n = 683 , 1 = 4 
11 ,-(11)11114 = .α刀75454

五月)lftÛI = .737制4 ，

rel. X<")1ftÛI = .851758 , 

11ε(n)||h4=2.762807 ， 

X<")max = 1.26532 1, 
X<飞回= 1.268927 , 

RMSE") = .0682560, 

X<") av.r = .953792 
沪}叫= .997791 

11.4 l !2(xCn) - α)11 = .0340234 

Table 1-4: Result of lteraùons on the Finest Level Only (Conjugate Gradient Method) 
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A仇er the initial23 iteraLions on level 1 : 
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x(ll)max = 1.041640, 

x(nu皿= 1.05038 1, 
RMSÐ1\) = .0955011 , 

A白er prolongation opcraLion [11 -+ 2 i1 1 in FMRA : 

111月)II~ = .05456750 

.x<1\)mùt = .705024 , 

rel. .x<1\) mùt = .722250, 

11ε(1\)II~ = 1.925627 , 

.‘ 

A仇er 7 iterations on level 2 : .. 

.. 

n = 30, 1 = 2, ~ = .99 

1111\)II~ = .02926ω1 

.x<")mùt = .701193 , 

rel. .x<1\)müt = .719α兑

11ε(1\)II~ = 1.637754, 

.x<1\) max = 1.041640, 

到飞回= 1.068944 , 

凡，\1SÐ1\) = .0951464 

xfn}ma=1.048129 • 
.x<1\)押回= 1.053860, 

RMSÐ1\) = .0809224, 

到飞fl = .905493 
到飞~ = .948284 

lIò(n)IL.. = .∞753925 
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到飞fl = .916837 
五九哈 =.959766
lIò(n)lloo = .∞564610 

After restriction operation [12-+ 1 x~ and A"l X"1 + 12-+ 1 (g~ - A~ i2)] in FMC : 

||r<n}Hh1=.01965193

.x<")müt = .701193, 

rel. .x例mùt = .719α)6， 

|ldn)||h1=1.16α刀5 ，

After prolongation operation [/2• 3 x~] in FMRA: 

IIr例11与 =.01851928

x<n)m=.745547.
rel. 五月)m=.766526.

I~"~I~ = 1.959972 , 

.. 

.. 

• ‘ 

.. 

• ‘ 

到n}n皿= 1.042649 , 

对飞回= 1.04966 1. 
RMSÐ1\) = .0810578 

x卢n)F皿= 1.03536 1, 
x(n}nMZ=1.049402. 

RMSÐ")=.0684786 

(Continued) 

xGL, =.916537 
五九俨 .959665
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After prolongation operation [/3• 4 x~J in Thll之A:

1\州1\"4 =朋758814

x<n)mhz=.754358 ,

rc1. X<n)min = .779176 , 

1\ε(n)||h4=2529988 ， 

After fmal iteration on level 1 : 

n = 98. 1 = 1. ~1 = .97 

I\ r例||hl=.α)()52839

xG)mn=.752202 , 

而1. X<n) min = .781071, 

1\ε(的||hl=.898158• 

x(n)ma.r = l.040128. 
到吵闹.x = 1.062586. 

凡Mst;Cn) = .0625041 

到n)mz=1.041069，

X<n) "皿= l.047655. 

RMst;Cn) = .0627607. 

五n)avlI = .928839 
沪)句 =.972136

x<n)mg=.928749
沪)叫 =.972245

lI ò(n)1I国 =α)()10293

After prolongation operation [x"2 + 11• zbhl-I2• 1 x"2) ] in FMC : 

II~n)1\与=∞143687

x{n)m=.752202, 

re1. X<n)min = .781071. 

1\ε例11"2 = 1.262605 . 

After final iteration on level 2 : 

n = 105 , 1 = 2. ~ =.99 

II~n)1I与 =α刀89367

xO}m=.752694 , 

陀1.沪)m=.780554.

lIè)1I与= 1.264350, 

xfnu皿= 1.041069. 
xO)nuz=1.056168 , 

RMst;Cn) = .0623860 

X(II) ma.x = 1.041820. 
对吟，皿= l.058650. 

RA1S8") = .0624723. 

xOLE=.929075 
五九世 =.972389

x(n) aVII = .928960 
到nLF=-972272

lIò(n)lI... = .仅归 17401

Afte r prolongation operation [x~ + 12 -+ 3 (x"2 - 13 → 2X~)] in FMC : 

11卢斗I~=.∞285338
x仇)Mm=.749737.

re1. X<")müt = .777687 , 

lIén)1I句= 1.783643 . 

xCn)础.x = 1.041820. 
x(RL皿= 1.0658ω， 

RMS8n) = .0623179 

(Continued) 

x(n)avlI = .928822 

五九哈= .972111 
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After fmal iteration on level 3 : 
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国.

x(吟，皿= 1.042553 , 

x例，因= 1.069988 , 

RMSÐ1I) = .0621976. 
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X<1I )avg = .928938 
五nhvg=.972230

118(n)1I帽 =.0∞28079

After prolongation operation [i4 + 13• 4 (x与一 14-+3Xh4)] in FMC : 

11ρ)川h4=.∞526873

X<1I )min = .747597 , 

rel.沪)m=.779067 ，

11ε(n)||h4=2514787 ， 

.‘ 

After fmal iteration on level 4 : .. 

• ‘ 

n=1以 1 = 4 , ~4 = .99995 

11 ,.(11)11"4 = .∞436349 

X<")min = .747721. 
rel. X<")"...,. = .778485. 

11ε(n)||h4=2511991 ， 

五1I)max = 1.042562 , 

x(1I)max = 1.072773 , 

RMSÐ1I) = .0621286 

X<")max = 1.042188 , 

x(飞回= 1.073646 , 

RMSÐ1I) = .0620595 , 

n
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oeoe uvu
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X<1I )avg = .928940 
到1I)avg = .972240 

||8(n)|」=血泪64709

• 

Table 1-5: Trace of Multigrid Algorithm (Adaptive Chebyshev Acceleration Method) 

After 1174 iterations (on leve14) : 

.. n=lml=4， M;4= 仰995

11"<")11"4 = .α)()11623 
x{n)m=.734298. 

rel. X<")""" = .847392 , 

||dq|h4=2510787 • .. 
X<吟，皿= 1.197495. 
xOU皿= 1.206766 , 

RMSÐ") = .0620297 , 

X<1I) aVR = .938368 
五飞; = .981669 

lIò(n)lI
oo 

= .α)()()1307 

Table 1-6: Result of Iterations on the Finest Level Qnly (Adaptive Chebyshev Accel. Method) 

• 

.. 
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After the initial47 iterations on level 1 : 

n = 47. l = 1. WU = .734375 
IIr例||hl=.02969730

X<1I) min = .690886. 
re1. X<1I )min = .753693. 

11ε(n)||hl=1384535 ， 

X<1I )max = .999192. 
X<1I)刷x = 1.035565. 

R~S~II)=.0967473 

After prolongation operation [11 --.2 il ] 旭日仅A:

1Ir<1I)11~ = .05760785 

X<1I )min = .690886, 

re1. X<1I )min = .753693. 

11ε(1I)1I~ = 1.948891. 

A仇er 8 iterations on level 2 : 

n = 55. l = 2. WU = 1.234375 
IIr例川~ =.01570253 

X<1I) min = .693834. 
re1. X<1I )min = .753563. 

11ε(1I)1I~ = 1.734804. 

xGL皿= .999192. 
X<1I)厅皿= 1.054821 , 

RMS~II) = .0962959 

x拘押回=1.∞1389.
;i1l)"四= 1.04∞87. 
RMS~II) = .0857177 

X<1I) avp = .882249 
到气斗 =.923816

X<1I )avp = .883024 
五九斗 =.924535

X<1I )av" = .893808 
到飞S=-9357ω

After restriction operation [/2• l xhand Ah1xh1+Iz• 1 (g~ - A~x~)] in FMC: 

Ilr例||hl=.01 137371 

X<1I )min = .693834. 
陀1.沪)min=.753563，

||E(n)||hl=1231326 . 

x{n)n皿=1.∞1389，

;i飞回= 1.035467. 

RMS~II)=.0860415 

After prolongation operation [/2→ 3 卢 ] in f}.仅A:

IIr例11句 =.01824689

x{n)mn=.708452. 
rel. 沪)müt = .775397. 

lIe(lI)1I句= 2.082891 . 

x扣}n皿=1.∞8463.
XO}n皿= 1.038347. 

RMS~II)=.0727732 

(Con由lUed)

X<1I)剧p = .893065 

沪」S=-935051

X<1I)剧p=.906173
沪}叫=则537
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After prolongation operation [/3 → 4X~] in Hvn之A:

11 ,.(11)11"4 =朋733104

x{n)m=.711046 , 

rel. X<11) min = .779310. 

11ε{n)||h4=2.764502 . 

.. 

.. 
After fmal iteration on level 1 : 

.. 
n= 137.1= 1, WU= 17.5 15625 
11 ,.(11)11 ,,) = .α)()10632 

XO),,m=.712825 , 

rel. x五〈轨例n吟'"叩t

11ε{价ωn功)斗|H|uh1=.977956'

X<11) ma.z: = 1.∞9373. 
X(I1) ma.z: = 1.038696. 

RMSÐI1) = .0682978 

X<n) ma.z: = 1.∞9376 ， 
10)mx=1.025581 , 

RMSÐ") = .0683368 

X<")町11 = .912234 
x(")叫 =.954825

X<")町11 = .912414 
五飞.~ = .955122 

Afte rprolongation operation [x~ + 1) ~2 (x") - 12→ )x~)] inFMC: 

1Ir<")II~ = .α)()22244 

x{n)m=.712825 , 

rel. X<")""" = .781922. 

11ε(11)1I~ = 1.379051 , 

.. 

.. 
After fmal iteration on level 2 : 

.. 
n = 145 , 1 = 2 , wu = 18.015625 
IIr川II~=.α)()15623

.x<")""" = .712866. 
陀1. .x<")""" = .782089. 

1Ie<")1I与= 1.377252. 

X<") maz = 1.α>9376. 
五吵闹x = 1.029144. 

RMSÐI1) = .0681397 

x{n)"四=1.α)944 1 ，

i吟，四= 1.029073. 

RMSÐII) = .0680508 

x{n)aVE=.912975 

沪与 =.955559

到nhve=.913078
.x<")all~ = .955665 

After prolongation operation [x~ + 12• 3 (x~ - 13 →沪、] in FMC: 

1Ir<")11与 =αX治4137

xμ)""" = .711539, 

rel. 沪)""" = .78∞50. 
lIéll )1I与= 1.943675 . 

• ‘ 

.. 

• ‘ 

.. 

x〈nh皿=1.∞9441.
i ll ) maz = 1.033644. 

Rft1SÐ")=.0679092 

(Con由1Ued)
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.. 

.. 

.. 

• ‘ 

.‘ 

After final iteration on level 3 : 

n = 153 , 1 = 3, WU = 20.015625 
11卢)11与 =α阳∞12

.x<n)min = .711450 , 

rel. x(n) min = .78∞49 ， 

||E(n}||h3=1.941612 . 

.x<吵闹.x = 1.009423 . 

.x<n)ma.x = 1.033614 , 

RMS8n) = .0678371 

x(n)aVlI = .913260 
沪)叫= .955860 

After prolongation operation [i4 + 13 • 4 (xh:3 - 14• 3Xh4)] in FMC : 

II ,.<n)llh4 = .∞186325 

x〈n)mm=.711ω5 ，
rel. .x<n) min = .7796归，

11ε(n)||h4=2.743285 ， 

After final iteration on leve14 : 

.x<1I) ma.x = 1.∞9423 ， 

.x<1I) "皿= 1.0385ω. 

凡\1S8n) = .0677737 

n = 161 , 1 = 4 , WU = 28.015625 

11"<吟IIh4 =.∞105797 
封闭)min = .71ω92 ， 

rel. .x<n)min = .7796 l3, 

11ε(n}||h4=2.740650， 

x{nL皿=1.∞9429 ，
x机)厅皿.x = 1.038426 , 

~S8n)=.0677086 

五月)剧1I = .9 l3338 
沪)avg = .9559制

五月)aVlI = .913534 
沪)叫 =.956166

Table 1-7: Trace of Multigrid Algorithm (Gauss-Seidel Method) 
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