A Practical Course in Software Design

Jonathan M. Smith

Columbia University Computer Science Department, New York, NY 10027

Technical Report CUCS-357-88

ABSTRACT

In practical disciplines, ‘‘Those who can, do. Those who can't, teach.”’” and you ‘‘Learn by
doing.”’. Our presentation of an undergraduate semester course in Software Design, ‘‘Software
Design Laboratory’’, has the spirit of the second adage and attempts to refute the first.

In our description of the course, we focus on the relationship between the different programming
assignments, and the role of these assignments in developing the student’s capabilities, rather
than on management, group structure, or formal techniques. We argue that a laboratory course is
as essential to Computer Science as it is to Physics or Chemistry.

Keywords: Software Engineering, Education, Software Design

A Practical Course in Software Design

Jonathan M. Smith

Columbia University Computer Science Department, New York, NY 10027

Technical Report CUCS-357-88

1. Introduction

One of the great difficulties in Computer Science
(CS) education is the integration of material of a prac-
tical nature with the more abstract material. Here, we
report our approach, that of a *‘Software Design
Laboratory’’ (abbreviated SDL), where much like the
Laboratory courses offered by other disciplines such
as Physics and Chemistry, training in the application
of principles is emphasized over the presentation and
dissemination of the principles. In the terminology
used by Leventhal and Mynatt [11], we focus on the
‘“‘Later-Life-Cycle’’, as opposed to the ‘*Early-Life-
Cycle’” or “‘Theoretical-Issues’’ approaches; these
are functions of another course offering. We compare
our approach with related work after a discussion.
The remainder of the introduction describes the CS
curriculum at Columbia, the role of the SDL course in
this curriculum, and a short history of recent versions
of the course.

1.1. Curriculum

The required courses [15) for a CS major in the
School of Engineering and Applied Science at Colum-
bia are as follows:

[ntroduction to Programming

Discrete Mathematics, I: Introduction to Combinalor-
ics and Graph Theory

Discrete Mathematics, [1: Introduction to Discrete
Structures

Applied Mathematics, [

Introduction to Probability

Dala Structures

Fundamental Algorithms

=> A version of this paper has been submitted for publication.
Please contact the author for references to this work.

This work was supported in part by an equipment grant from
the Hewleut-Packard Corporation and NSF grant CDR-84-
21402

Software Design Laboratory

Digital Logic

Computer Organization, |

Computability and Models of Computation
Programming Languages and Translators
Artificial Intelligence

Scientific Computation, [

Computer Organization, 11

Operating Systems

Computer Networks and Data Bases

In addition, students are required to take several
technical electives; a large number of advanced
courses, project courses, and seminars are available o
fulfill this requirement.

1.2. SDL Role

The courses are listed in (approximately) the
order they are intended to be taken, although course
and student scheduling constraints may perturb the
ordering. The material encountered previous to SDL
is mostly abstract, and Fundamental Algorithms can
be taken concurrently with SDL. The students are
exposed to Pascal in the introductory course, and that
language is used in Data Structures and Fundamental
Algorithms when programming assignments are
given, The programming assignments in these
courses are typically small, and designed to expose
features of isolated data structures, algorithms, or pro-
gramming languages. In the more advanced software
courses, such as Programming Languages and Trans-
lators, and Operating Systems, knowledge of the
UNIX® operating system and the C programming
language [9] are presumed. Almost all of the project
courses require experience with UNIX, and LISP or C.

Given this organization, it’s clear that at some
point in the curriculum, the student must be prepared
for the move from the Pascal-instructed isolated pro-
gram mode to one based on C and UNIX where

® - . .
UNix is a registered trademark of AT&T Bell Laboratories

significant programs are written, The role of the SDL
course in our curriculum is then:

¢ To expose the student to their second programming
language, C.

e To familiarize the student with the UNIX operating
system.

o To teach the students how the construction of large
software projects is accomplished.

e To anchor CS concepts with well-chosen and
relevant examples.

The course has successfully accomplished these
goals for many semesters.

1.3. History

SDL has been in the curriculum for many years,
and is still evolving. It was originally a more
advanced course offering, but the more abstract
aspects of software engineering (the ‘'Early-Life-
Cycle’” and ‘‘Theoretical-Issues’’ material) are now
separated into an elective course in Software
Engineering. The author served as a Teaching Assis-
tant in three previous versions of the course before
instructing the course; the historical data is derived
from that experience.

1. (1982) The course was taught using Brooks’
“Mythical Man-Month’’ [5] as the primary
text. The in-class lectures were derived from
this book and Kernighan and Plauger’s
“*Software Tools’'; there were three assign-
ments, rather loosely connected with the texts
and in-class presentation. These were a macro
processor (in the style of M4 [8]), a simple
command interpreter based on the UNIX shell
[4), and an implementation of the UNIX pipe()
system call which allowed the buffer size to be
set dynamically by the caller.

The presentation of the solutions was typically
as a design, rather than an implementation, and
documentation was an integral part of each
assignment. The implementations were done
under Amdahl’s UTS™ operating on an IBM
4381™ mainframe.

2. (1984) The same textbooks, a new instructor,
and new hardware were combined in a some-
what different presentation of the course. The
available hardware running UNIX was a set of
approximately twenty AT&T 3B2/310™

UTS is a trademark of Amdahl.
4381 is a trademark of IBM.

supermicrocomputers, with attached AT&T
DMD5620™ bit-mapped display terminals.
The instructor’s interests were in operating sys-
tems and graphics; a single course project was
assigned, emulation of the MacDraw™ or
MacPaint™ programs for the Apple
MacIntosh™ computer. The material covered
in class was somewhat disjoint from the project
orientation of the course; the Teaching Assis-
tants were occasionally asked to give short lec-
tures on the interface to the graphics terminal or
operating system features, There was a strong
emphasis put on documentation, and the pro-
grams were graded based on the quality of the
documentation as well as the performance at a
public demonstration.

3. (1985) This was essentially 1984 redux with a
slightly different graphics project.

2. Description of the Present Course

The course presentation was designed so that
covered material would not become obsolete; the stu-
dent would be constantly working towards both the
development of a project and a general purpose tool-
box, of both code and techniques, which would serve
them well in both this course, and later courses. In
the next subsections, we present the assignments that
were given and their intended role in the student’s
experience. All assignments involving programming
were specified as a UNIX manual page, a clear and
concise form of specification that the student was to
be familiar with.

2.1. Associative Memory

Since the students were not expected to be fam-
iliar with C, but had experience with another Algol-
derived language, Pascal, the first order of business
was proficiency in C. The students were advised to
consult Kernighan and Ritchie {9] and were given a
**Style Sheet for C'’ which suggested a stylistic con-
vention for writing C source and building well-
documented multi-module programs. The textbook
used for the course was Kernighan and Pike [10].

A program implementing an ‘‘associative
memory’’ was distributed to the class, in source form.
The program prompts the user for an input; the input
is a new-line terminated string of characters. If the
input contains a "=’ character, the characters to the

3B2 and DMD5620 are trademarks of AT&T.
Maclntosh, MacDraw, and MacPaint are trademarks of Apple
Computer. :

left of the *=’ are treated as a name and the characters
to the right are treated as a value, which is associated
with that name. If there is no ’=’, and the input con-
tains a '$’ character, the characters to the right of the
’$’ are treated as a name; the associated value is
retrieved and printed if there is one. If neither '=’ or
’$’ are present, the program merely prompts for
another input. It accepts input lines until an end of
file condition is raised. The <name, value> pairs are
stored as singly linked lists of structured records.

Thus, reading the well-commented source code
introduces the students to strings, records, terminal
/O, simple parsing, subroutines, dynamic memory
allocation, and pointers (always a source of trouble to
the student). The assignment is to modify the pro-
gram so that it preserves <name, value> pairs across
invocations, i.e., it maintains them on disk storage.
This introduces the student to operations on named
disk files, and forces an understanding of the list
maintenance code.

2.2. Env

Other than the file operations required to mani-
pulate the <name, value> pairs across invocations,
the student has seen relatively little of UNIX. The
second assignment is to implement the eav(l) com-
mand, which is available with System V UNIX, but not
with Ultrix™, which we use for teaching at Columbia.
The environment is a set of <name, value> pairs that
are made available to subprocesses; it is a subset of
the <name, value> pairs accessible to the shell user.
It provides a method for users to pass information to
subprocesses without explicitly specifying options on
a command line, e.g., my terminal is specified with
TERM=hp2621; all screen-oriented programs exam-
ine this value in order to determine appropriate termi-
nal control sequences., The assigned env command
has the invocation syntax:

env [~]) [name=value]* [command (argument]¥*]

where containing brackets indicate that the contents
are optional, and ““*”’ is the usual Kleene star. The
command argument specifies a UNIX command to
execute, With no command argument, the program
prints the strings contained in the current environ-
ment, otherwise the command is executed with the
specified string settings in its environment. The
name=value arguments specify new settings, and
the **="", if present, specifies that the current environ-
ment is to be ignored.

The program contributed the following tools to

Ultrix is a trademark of Digital Equipment Corporation

the students kit:

1. Understanding of the UNIX command line argu-
ment handling discipline. Thus, simple parsing
is covered,

2. Process management!, since the actual mechan-
ism for setting the environment values is with
the exec() system call,

3. Further understanding of the file system, since
command lookup required search through
several directories, specified through the PATH
environment variable.

In addition, the student was able to make use of
whatever string management utility routines they had
developed for the first assignment,

2.3. Design Document

The first two assignments were to be done indi-
vidually; they were exercises to ensure that all stu-
dents had sufficient exposure to contribute in a group
setting. The students had been assigned readings
which described the command interpreter which they
were going to be constructing a subset of; these were
Boume [4] and Ritchie and Thompson [13]. Groups
were formed; students who knew each other were
allowed to form 3-4 person groups; groups of the
remaining individuals were formed at random; the
ideal size was 3.

Given their readings, the students were
requested to submit a design document describing
their approach to designing the program described in
the literature. This was done both to ensure that they
had read the literature and to create some group cohe-
sion; there was no intention to hold them to the
design. They were expected to detail data structures,
algorithms, and user interface features. At this point,
they were introduced to several powerful UNIX tools
for program construction, make, a dependency-
specifying tool for recompilation; lex, a lexical
analyzer generator; and yace, a parser generator.
While they were given appropriate readings, a more
effective tool was to give them an example. The
example was the first assignment redone using the
tools; experience with the assignment helped the stu-
dents to see the value of these tools.

! As can be readily seen, this course requires the application of
existing tools whose theory of operation is covered in subse-
quent courses.

2.4, Iteration 1

The first iteration of command interpreter
development required that the student provide an
interactive facility for executing commands with
arguments and specified I/O redirections, whereby
commands which operate on the standard output and
input files can have these file's values specified on
the command line. The syntax provides mechanisms
for reading, writing, and appending to named disk
files, as well as the ability to perform these operations
on previously opened files which are specified by
number, In addition, there is syntax for files to be
entered from the terminal immediately previous to
command execution.

The assignment allowed the students to use the
mechanisms developed in the env assignment to
create an interactive command interpreter. The new
learning consisted mainly of the use of the tools,
which for a first-time user is non-trivial, Their under-
standing of file manipulation technique was greatly
expanded.

2.5. Iteration 2

The second version of the command interpreter
added metacharacters to the command line syntax.
Metacharacters, e.g. the wild card character ***'’, are
used to pattern match filenames so that lists of argu-
ments can be specified in a compact fashion. For
example,

pr *.[ch]

will print all of the C source files and headers in the
current directory. These patterns can be arbitrarily
complicated; see Bourne [4] for details. The design
of these additions involved several components, of
which the most important were a pattern matcher and
an interface to the UNIX directory structure, so that
multi-directory patterns such as
“fu*/faculty/322/t[12)*" could be prop-
erly evaluated.

Class time was spent on regular expressions,
which the students do not encounter formally until the
Computability course. Once the regular expression
notion was understood, the construction of a pattern
matcher became an exercise in coding. The students
were advised to first implement a single directory pat-
tern expansion routine, which could then be recur-
sively applied to the multiple directory case. Thus,
the students were exposed to:

1. Regular expressions (which they had first
encountered with lex), and more significantly,
their implementation.

2. Pattern matching algorithms.
3. Hierarchical file systems.

The effect of this exposure is very positive, in
that the student sees the advantage of such compact
notations as regular expressions, and the simplicity
and power of the hierarchical file system in a practi-
cal setting,

An important feature of the approach we used is
the fact that new features must be integrated into the
existing software framework. Thus, good design
decisions and engineering practice, e.g. documenta-
tion, pay off in later assignments. Poor decisions
make integration more difficult, and may force sub-
stantial redesign. Thus the students were exposed to
the issues of software maintenance [14] in a most
practical fashion.

2.6. Iteration 3

In the third iteration, there were two essentially
disjoint additions to the command interpreter. These
were the addition of syntax and functionality for con-
necting processes via pipes, and inclusion of facilities
for setting and retrieving named string-valued vari-
ables.

This assignment posed particular conceptual
problems for the students; we attribute it to their first
encounter with concurrency, virtual or otherwise.
Use of the fork() primitive in previous exercises
helped, but less than it might have since they were
given a canonical code segment containing the com-
mon fork()lexec() sequence. The inclusion of facili-
ties for variables drew on their earlier experiences
with the ‘‘associative memory’’; many groups re-used
the code.

2.7. Iteration 4

The fourth and final addition to the command
interpreter were the three types of quotation marks
employed by the UNIX Shell, *, *, and " [4]). This
addition was chosen for the following two (major)
reasons:

1. It forced a careful redesign of the lexical
analysis routines and their interface to the
parser and interpreter, Other than to add *'|"",
the symbol for separating pipeline components,
there had been no changes necessary to the lex-
ical analyzer since the initial assignment.

2. The implementation of the * mark, which speci-
fies a string-valued result to be obtained by exe-
cuting the contained commands, forced the stu-
dents to glue things together carefully. In par-
ticular, the easiest way of implementing this

feature is with a copy of the command inter-
preter invoked through a pipeline.

Particular attention was paid here to issues such
as the order of evaluation applied to the various
features, and the demands this made on the imple-
mentation strategy, for example the command string
“‘a=*; echo $a’’.

2.8. Lessons Learned

Personally, we have found that our mistakes are
among the most valuable learning experiences we’'ve
had, and know this is not uncommon. Accordingly,
we required the students to submit a ‘‘Lessons
Learned’’ document, summarizing the positive and
negative experiences they had had with tools and
methodologies. In order that they understand what
such a document was to contain, an example was
given detailing our own problems in constructing the
command interpreter.

3. Discussion

Several other points deserve mention before
comparing our approach with others in an abstract
sense.

First, we used electronic communication exten-
sively; this allowed the student to obtain answers
across the week, rather than a few preset times. An
on-line bulletin board mechanism allowed posting of
sources, interesting questions, interesting answers,
and details of the assignment of environment on
which class time would have been ill-spent.

Second, the choice of an existing software sys-
tem had several positive effects.

1. The students were not forced to carry out the
complete design process before they were capa-
ble. Their design process consisted of analyz-
ing a new feature in the context of their existing
software, designing appropriate data structures
and algorithms, and implementing the feature.

2. The command interpreter they were construct-
ing is completely documented (4], and like any
such command interpreter, interactive, a pro-
gramming language, an an interface to an
underlying virtual machine provided by the
operating system. In addition, it is an exem-
plary piece of software design.

3. The full interpreter they were working towards
is the student’s interface to the system. Thus,
they become familiar with its functioning
through use as well as instruction. Questions
about obscure functional details could be
answered by typing in one or more well-chosen

examples. Experimentation was a very
worthwhile tool, as it should be in a laboratory
course. In fact, several groups of students
corrected the instructor on interpreter details
based on their independent experiments (some-
times success can be embarrassing!).

Third, the instructor completed all assignments,
and generally made the results available on-line. This
served both to provide feedback on the complexity of
the assignments, and to give the instructor the insight
and mastery of detail necessary to aid the student in
all phases of the design process.

Fourth, grading of all programming assign-
ments previous to the project was done on the basis of
an even split between code quality and execution test-
ing. The execution testing was done based on the
manual page used to specify the assignment, and the
evaluation of code quality had both an objective por-
tion, consisting of adherence to a style sheet, and a
subjective component, based on the grader's judg-
ment. The effect of the subjectivity was reduced by
dividing the assignments between the instructor and
the teaching assistants, with the division occurring
randomly on any given assignment. The final project
was graded wholly on the basis of success or failure
on a set of 30 tests designed to exercise the features
specified in the manual pages. Thus, the quality of
the student’s results were reviewed, rather than the
effort, methodology, or document formatting skill.
This is as it should be.

3.1. Our approach

Having presented details of our course in the
previous section, here we will try to abstract the prin-
cipal accomplishments. Aside from the frivial
achievements of introducing the students to C and the
UNIX programming environment, we feel that the
course structure has several strong points:

o The student develops a non-trivial toolkit, consist-
ing of both techniques and developed skills with
software tools which can be used later in the
Columbia curriculum. The proof of the approach is
in, for example, the re-worked command inter-
preter syntax which students have used in designing
database query languages in other course offerings.

e The focus on one significant project brings out the
point of software engineering, which is only
apparent with scale and re-use.

o The process of building the project is used both to
get across the introductory material (in the indivi-
dual assignments) and to bring in classical software
engineering issues, such as documentation, tool

usage, maintenance, reusability, et cetera. In par-
ticular, forcing integration of new features with
previous work demands that attention be paid to
design. Of course, building on previous work
shows the value of re-use, as was illustrated by the
example of <name, value> string values.

e The course is a lab course, and thus is exceedingly
practical in orientation; discussion of issues such
as the communication problems and solutions of
Brooks [5] are postponed until the student has
encountered them, and can appreciate the solutions.

Private discussions with other faculty reinforce
our belief that the toolkit approach has value in our
setting; a discussion of lexical analysis and parsing
certainly makes more sense when the student has
already encountered these things; with some practical
exposure, the theory not only becomes more accessi-
ble, but more relevant.

3.2, Related Work

Ideally, software engineering would be the
focus of the curriculum, as it was with the Wang
Institute [2, 12] Master of Software Engineering
{MSE) program. Then, a certain level of pre- and
co-requisites and background could be expected, and
sufficient attention paid to all aspects of the software
lifecycle. Such graduate courses {6, 16] presumably
have the advantage of prior exposure to CS on the
part of the students, and thus can direct more energy
towards software engineering, and less towards the
“‘glue’’ connecting software design to other areas of
CS. An interesting observation is that in the 1987
article on the Toronto course, Wortman states:

"We now feel that the emphasis on buy-
ing and selling software in the original
software hut project gave the whole pro-
ject the wrong orientation. The course
we teach is about the design and imple-
mentation of software, not about software
marketing."

Kant’s [7] course was more balanced than ours, both
in the selection of students (ranging from freshmen to
graduate students) and in the coverage of different
portions of the life cycle. Her article actually pro-
vides a course outline, with interjected textual com-
ments. The feedback from the students was similar to
our own; that is, the course required too much work
for the number of credits. Her group size of 5, versus
our 3.

Our course offering agrees quite well with the
survey results gathered by Leventhal and Mynatt [11]
in that it is offered to junior and senior-level students,

focuses on ‘‘Later-Life-Cycle’’ issues, is project-
oriented, the grade is heavily based on success with
the project, and the substantial project is intended for
actual use., We differ in that the requirements for
written reports are minimal (this stems partly from the
project, an existing well-documented piece of
software) and no oral reports or examinations are
required.

Bentley and Dallen’s (3] setting is quite similar
to ours, although their course offering appears to be
slightly later in the West Point curriculum than ours is
in Columbia’s. It is interesting to note that they took
the approach of using many smaller exercises to teach
software engineering principles. This contrasts some-
what with our approach of using a single large pro-
ject, partitioned into development stages. Our focus
was on developing a toolbox the student could carmry
with them into industry or further academic forays;
while Bentley and Dallen make a strong argument for
their use of AWK [1], we are not sure that an AWK
toolkit would be as useful. We are convinced, how-
ever, that our approach is integrated well with other
portions of our CS curriculum, which it both builds
upon and reinforces.

4. Conclusions

We believe that the construction of significant
software systems is a necessary part of an undergra-
duate education in CS. There is a transition in our
computer science curriculum between introductory
and more advanced courses which requires facility
with a set of software tools. The SDL course
described in this report meets our educational and cur-
ricular goals (as stated in the introduction); this
approach has proven itself, as our graduates succeed
in both academic and industrial settings.

5. Acknowledgments

We must thank the students of SDL; previous
instructors of the course, Drs. Rodney Farrow and
Gerald Leitner; Peter Sweeney, John Ioannidis, Perry
Metzger, Lowell Kaufman, Ben Fried, Nick Christo-
pher, Seth Strumph, and Chris Maio; Drs. Steven
Feiner and Gerald Q. Maguire, Jr., whose ideas
helped develop and refine SDL; and Boeing
Aerospace Corporation, AT&T Bell Laboratories, and
Bell Communications Research, for their contribu-
tions to my practical expertise in software develop-
ment. AT&T should also be thanked for the donation
of many copies of the “‘UNIX"" Issue (July-August,
1978) of the Bell System Technical Journal used in
the course.

6. References

[1] Alfred V. Aho, Brian W, Kernighan, and Peter J.
Weinberger, The AWK Programming Language,
Addison-Wesley, Reading, MA (1988).

[2] M. A. Ardis, ‘' The Evolution of Wang Institute’s
Master of Software Engineering Program,”’ IEEE
Transactions on Software Engineering SE-13(11),
pp- 1149-1155, Special Issue on Software Engineer-
ing Education (November 1987).

(3] I. L. Bentley and J. A. Dallen, “*Exercises in
Software Design,”” IEEE Transactions on Software
Engineering SE-13(11), pp. 1164-1169, Special
Issue on Software Engineering Education
(November 1987).

{4] S.R. Bourne, “‘The UNIX Shell,”’ The Bell Sys-
tem Technical Journal 57(6, Part 2), pp. 1971-1990
{(July-August 1978).

(5] F. P. Brooks, Jr., The Mythical Man-Month,
Addison-Wesley, Reading, Mass. (1975).

(6] J.J. Horning and D. B. Wortman, '*Software Hut
A computer program engineering project in the form
of a game,”” IEEE Transactions on Software
Engineering SE-3, pp. 325-330 (July 1977).

[71 E. Kant, ““A Semester Course in Software
Engineering,”” ACM SIGSOFT Software Engineer-
ing Notes 6(4), pp. 52-76 (August, 1981),

(8] Brian W. Kernighan and Dennis M. Ritchie,
‘*“The M4 Macro Processor,”’ in Unix Programmer’s
Manual, Bell Telephone Laboratories (July, 1977).

[9] B.W. Kemighan and D.M. Ritchie, The C Pro-
gramming Language, Prentice-Hall (1978).

(10] B. W. Kemighan and R. Pike, The UNIX Pro-
gramming Environment, Prentice-Hall (1984).

[11] L. M. Leventhal and B. T. Mynatt, ‘‘Com-
ponents of Typical Undergraduate Software
Engineering Courses: Results from a Survey,”” IEEE
Transactions on Software Engineering SE-13(11),
pp. 1193-1198, Special Issue on Software Engineer-
ing Education (November 1987).

[12]) W. M. McKeeman, ‘‘Experience with a
Software Engineering Project Course,”” [EEE Tran-
sactions on Software Engineering SE-13(11),
pp. 1182-1192, Special Issue on Software Engineer-
ing Education (November 1987).

[13] D.M. Ritchie and K.L. Thompson, ‘‘The UNIX
Time-Sharing System,”” Bell System Technical Jour-
nal 57(6), pp. 1905-1930 (July-August 1978).

[14] N. F. Schneidewind, ‘‘The State of Software
Maintenance,”” /EEE Transactions on Software
Engineering SE-13(3), pp. 303-310, Special Section

on Software Maintenance (March, 1987).

[15] School of Engineering and Applied Science,
Columbia University Bulletin, 1986-1987.

(16] D. B. Wortman, ‘‘Software Projects in an
Academic Environment,”’ [/EEE Transactions on
Software Engineering SE-13(11), pp.1176-1181,
Special Issue on Software Engineering Education
(November 1987).

