
A Practical Course in Software Design 

Jonalhan M. Smilh 

Columbia University Computer Science Departmen4 New York , NY 1∞27 

Technical Report CUCS-357-88 

ABSTRACT 

In practical disciplines , "Those who can, do. Those who can '4 teach." and you "Learn by 
doing.'\Our presentation of an undergraduate semester course in Software Design, "Software 
Design Laboratory'\h豁出e spirit of the second adage and attemptsωrefute the flrst 

In our description of the course , we focus on the relationship between the different prograInnÙng 
assignments, and the role of theseωsignments in developing the student' s capabilities , rather 
由an on management, group structure, or formal techniques. We argue 由at a laboratory course is 
as essential to Computer Science as it is lo Physics or Chemistry. 

Keywords: Software Engineering, Education, Software Design 



A Practical Course in Software Design 

Jonathan M. Smith 

Columbia University Computer Science Department, New York, NY 1∞27 

Technical Report CUCS-357-88 

1. Introduction 

One of the great difficulties in Computer Science 
(CS) education is the integration of material of a prac­
tical nature with the more abstract material. Here, we 
report our approach，出at of a "Software Design 
Laboratory" (abbreviated SDL), where much like the 
Laboratory courses 0仔'ered by other disciplines such 
as Physics and Chemistry, training in the application 
of principles is emphasized over the presentation and 
dissemination of the principles. 1n the terminology 
used by Leventhal and Mynatt [11] , we focus on the 
‘ 'Later-Life-Cycle'\as opposedω 由e "Early-Life­
Cycle" or "ηleoretical-1ssues" approaches; these 
are functions of another course 0仔'ering. We compare 
our approach with related work after a discussion. 
The remainder of the introduction describes the CS 
curriculum at Columbia, the role of the SDL course in 
由is curriculum, and a short history of recent versions 
of the course. 

1.1. Curriculum 

The required courses [15] for a CS major in 由e
School of Engineering and Applied Science at Colum­
bia are as follows: 

Introduction ω Programming 

Discrete Mathematics, 1: Introduction to Combinator­
ics and Graph Theory 
Discrete Mathematics, 11: IntroduClionωDiscrele 

Struclur百S

Applied Mathernatics, 1 
I ntrod uClion ω Probability 

Data StruClures 
Fundamenlal Algorilhms 

~ A vcrsion of 出is 阴阳r has bccn submítted for publication. 
Pleasc conlacllhc aulhor for refercnccs lo 由is work. 
币lis work was supportcd in 严rt by 3n equipmenl granl from 
由e Hc、~'Ieu-Packard Corporation and NSF granl CDR-84-
21402. 

Software Design Laboratory 
Digital Logic 
Compuler Organizalion, I 
Computability and Models of Computation 
Programming Languages and Translators 
Arti lìcial InteIligence 
Scientific Computation, 1 
Computcr Organization, 11 
Operating Systems 
Computer Nelworks and Data Bases 

In addition, students are r叫uired to take several 
technical electives; a large number of advanced 
courses , project courses, and serninars are available ω 
fulfill 由is requirement. 

1.2. SDL Role 

The courses are listed in (approximately) 由a
order they are intended to be taken, although course 
and student scheduling constraints rnay perturb the 
ordering. The material encountered previous to SDL 
is mos tIy abstrω t， and Fundamental Algorithms can 
be taken concurren tIy with SDL.币le stud丘nts are 
exposed to Pascal in the introducωry course. and 由at

language is used in Data Structures and Fundamental 
Algori由ms when programming assignments are 
given. The programrning assignments in these 
courses are typically small, and designed ωexpose 
features of isolated data structures, a1gori由rns ， or pro­
gramming languages. 1n the more advanced software 
courses , such as Programming Languages and Trans­
lators1.. and Operating Systerns, knowledge of the 
UN1X审 operating system and the C programrning 
language [9] are presumed. Almost all of the project 
courses require experience with UNIX. and LISP or C. 

Given this organization, it's clear that at soπle 
point in the curriculum. the student must be prepared 
for the move from the Pascal-instructed isolated pro­
gram mode ωone based on C and UN1X where 

(I!) UN民 is a regíslercd lradcmark of A T & T ßeU Laboratorics 



significant programs are written. The role of the SDL 
course in our curriculum is 由en:

• To expose the student ωtheir second programming 
language, C. 

• To familiarize the student with 由e UNIX operating 
syste肌

• To teach 由e students how the construction of large 
software projects is accomplished. 

• To anchor CS concepts with well-chosen and 
relevant examples. 

The course has successfully accomplished these 
goa\s for many semesters. 

1.3. History 

SDL has been in the currículum for many years. 
and is still evolving. It was originally a more 
advanced course offering, but the more abstract 
aspects of software engineering (the . 'Early-Life­
Cycle" and "Theoretica\-Issues" material) are now 
separated into an elective course ín Software 
Engineering. The author served as a Teaching Assis­
tant in three previous versions of the course before 
instructing the course; the historicaJ data is deríved 
from that experience. 

1. (1982) The course was taught usíng Brooks' 
"Mythical Man-Mon由" [5] as 由e primary 
tex t. ηle in-class lectures were derived from 
this b∞k and Kemighan and Plauger's 
"Software Tools"; there were three assign­
ments. rather loosely connected with the texts 
and in-class presentation. These were a macro 
processor (in the style of M4 [8] ). a simple 
command interpreter based on the UNtX shell 
[4] , and an implementation of the UNlX pipe() 
system caJl which allowed the buffer size to be 
set dynarnicaJly by the ca\ ler. 

The presentation of the solutions was typically 
as a design , ra出er than an implementation, and 
documentation was an íntegraJ part of each 
assignmen t. The implementations were done 
under Amdahl's UTS™ operating on an IBM 
4381™ mainframe. 

2. (1984) The same textbooks. a new instructor. 
and new hardware were combined ín a some­
what different presentaúon of the course. 币le
available hardware running UNIX was a set ()f 
approximately twenty AT&T 382月 10' 间

UTS is a tr百demark of Amdah l. 
4381 is a trademark of IBM. 

- 2 -

supermicrocomputers. with attached AT &T 
DMD5620™ bit-mapped display termina\s. 
The ínstructor's interests were in operating sys­
tems and graphics; a single course project was 
assigned, emulation of the MacDraw TM or 
MacPaint™ programs for the Apple 
MacIntosh TM computer.ηle material covered 
in class was somewhat disjoínt 行om the project 
orientation of the course; the Teaching Assis­
tants were occasiona\ly asked to give short lec­
tures on the interface to the graphics termina\ or 
operating system features. There was a strong 
emphasis put on documentation , and the pro­
grams were graded based on the qua\ity of the 
documentation as wellωthe performance at a 
public demonstration. 

3. (1985)ηlis wωessentia\ly 1984 redux wi山 a

slightly different graphics project. 

2. Description of the Present Course 

The co盯se presentation was designed so 由at

covered material would not become obsolete; the stu­
dent would be constan t1y working towards both the 
development of a proj民t and a general puφose 1001-

box, of both code and techníques , whích would serve 
them well in both this course. and later courses. In 
the next subsections. we present theωsignments 由at
were given and their intended role in the student's 
experience. A11 assignments involving programming 
were specified as a UNIX manua\ page. a clear and 
concise form of specification that the student was ω 
be familiar with. 

2. 1. Associative Memory 

Since the students were not expected to be f创n­
iliar with C. but had experience with another AIgol­
derived language. Pasca\. the flCS t order of business 
was proficiency in C. The students were advised ω 
consult Kemighan and Ritchíe [9] and were given a 
"Style Sheet for C" which suggested a stylistic con­
vention for writing C source and building we l1-
documented multi-module programs. The textbook 
used for the course was Kemighan and Pike [lOJ. 

A program implementing an "associative 
memory" was distributed to the class. in source form. 
The program prompts the user for an input; the input 
is a new-line terminated string of characters. If 由e
input contains a . =' character, the characters to 由e

332 and DMD5620 are trademarlcs of A T &T. 
MacInlosh , MacDraw, and MacPaint are tradema也S of Apple 
Computer. 



left of the ' =' are treated as a name and the characters 
to the right are treated as a value. which is associated 
with 由at name. If there is no '=', and the input con­
tains a 习 I character. the characters to the right of the 
习， are treated as a name; the associated value is 
retrieved and printed if there is one. If neither '=' or 
飞， are present, the program merely prompts for 
another inpu t. It accepts input lines until an end of 
fùe condition is raised. 币le <nal肥 • value> pairs 缸e

stored as singly linked lists of structured records. 

Thus, reading the well-commented source code 
introduces the students to strings, records , terminal 
IJO. simple parsing, subroutines, dynamic memory 
all∞ation， and pointers (always a source of trouble ω 
出e student).ηle assignment is to modify the pro­
gram so that it prese凹es <name. value> pairs across 
invocations, i.e. , it maintains them on disk storage. 
ηlis introduces the student to operations on named 
disk fùes , and forces an understanding of the list 
maintenance code. 

2.2. Env 

Other than the flle.operations required to mani­
pulate 出e <name, value> pairs across invocations, 
the student has seen relatively little of UNIX. The 
second assignment is to implement the env( 1) com­
mand, which is available with System V UNIX, but not 
withUI町ix™， which we use for teaching at Columbia. 
The environment is a set of <name. value> pairs that 
缸穹 made available to subprocesses; it is a subset of 
由e <nωne. value> pairs accessible ωthe shell user. 
It provides a method for users to pass information ω 
subpr∞esses without explicitly specifying options on 
a command line, e.g., my tenηinal is specified with 
TERM=hp2 621; all screen-oriented prograrns exam­
ine this value in order ωdetermine appropriate tennÍ­

nal control sequences. 白le assigned env command 
has the invocation synt缸:

env [-] [name;value]* [command [argumentJ*J 

where containing brackets indicate that the contents 
are optional, and "六" is the usual Kleene star. The 
command argument specifies a UNIX command to 
execute. With no command argumen t, the program 
prints the strings contained in the current environ­
men t, otherwise the command is executed with the 
specified string settings in its environment. The 
narne=value arguments specify new settings, and 
由e "-", ifpresen t, specifies that the current environ­
ment is to be ignored. 

The program contributed the following tools ω 

U1trix is a u丑dcmarlc of Digital Equipmcnt Corporalion 

- 3 -

the students ki t: 

1. Understanding of the UNIX command line argu­
ment handling discipline. Thus, simple parsing 
is covered. 

2. Process management1, since the actual mechan­
ism for setting the environment values is with 
the exec() system call. 

3. Further understanding of the flle system, since 
command lookup required search through 
several directories, specified through the P AT H 
environment variable. 

In addition, the student was able to make use of 
whatever s町ing management utility routines they had 
developed for the first assignmen t. 

2.3. Design Document 

The first two assignments were to be done indi­
vidually; they were exercises ωensure 出at all sω­
dents had sufficient exposureωcontribute in a group 
setting. The students had been assigned readings 
which described the command interpreter which 由ey

were going ωbe constructing a subset of; these were 
Boume [4] and Ritchie and Thompson [13]. Groups 
were formed; students who knew each other were 
allowed ωfo口n 3-4 person groups; groups of the 
remaining individuals were formed at random; the 
ideal size was 3. 

Given their readings, the students were 
r吨uested to subrnit a design document describing 
their approach to designing the program described in 
the literature. This was done both to ensure that 由ey

had read the literature and ωcreate some group cohe­
sion; there was no intention to hold them ω 由e

design. They were expected ωdetail data structures, 
algorithms, and user interface features. At this point, 
they were introduced ωseveral powerful UNIX tools 
for program construction, make, a dependency­
specifying tool for recompilation; lex, a lexical 
analyzer generator; and yacc, a parser generator. 
While they were given appropriate readings, a more 
effective tool was to give them an example. The 
example was the fust assignment redone using the 
tools; experience with the assignment helped the stu­
dents to see the value of these tools. 

I As can be readily seen，由IS C∞rse requires 由e applicaüon of 
exisling lools whosc lheory of opcraüon is cover叫 in subse­
qucnl courses. 



2.4. Iteration 1 

The flfSt iteration of command inte叩reter

development r吨uired that the student provide an 
interactive facility for executing commands with 
argumen lS and specified 110 redirections. whereby 
commands which operate on the standard ouψut and 
input flles can have these file's va1ues specified on 
the command line. The syntax provides mechanisms 
for reading, writing. and appending to named disk 
il时， as well as the ability to perform these operations 

on previously opened files which are specified by 
number. In addition, there is syntax for files to be 
entered from the terminal immediately previous to 
command execution. 

The assignment allowed the students to use the 
mechanisms developed in the env assignment ω 
create an interactive command interpreter. The new 
learning consisted mainly of the use of the tools , 

which for a first-tirne user is non- trÎvia1. Their under­
standing of file manipulation technique was greatly 
expanded, 

2.5. Iteration 2 

The second version of the command interpreter 
added metacharactersωthe command line syntax. 
Metacharacters, e.g. the wild card character ..食， are 
used to pattem match filenarnes so 由at lisL~ of argu­
men lS can be specified in a compact fashion. For 
example, 

pr '. [ch] 

will print all of the C source files and headers in the 
current directory. These pattems can be arbitrarily 
complicated: see Boume [4] for details. The design 
of these additions involved several components , of 
which the most important were a pattem matcher and 
an interface to the UNlX directory structure. so that 
multi-directory pattems such as 
"/u*/faculty/j??/t [12] *川 could be prop­
erly evaluated. 

Class time was spent on regular expressions , 
which the students do not encounter fo口nally until the 
Computability course. Once the regular expression 
notion was understood, the construction of a pattem 
matcher became an exerCÎse in coding. The students 
were advised to flfst irnplement a single directory pat­
tem expansion routine, which could then be recur­
sively applied to the multiple directory case. Thus, 
the students were exposed to: 

1. Regular expressions (which they had flfSt 
encountered wi由 lex ). and more significantly. 
their implementation. 

- 4 -

2. Pattem matching a1gorithms. 

3. Hierarchical file systems. 

The effect of this exposure is very positive, in 
that the student sees the advantage of such compact 
notations as regular expressions , and the simplicity 
and power of the hierarchical file system in a practi­
caJ setting. 

An important feature of the approach we used is 
the fact that new features must be integrated into the 
existing software framework. Thus , good design 
decisions and engineering practice. e.g. documenta­
tion , pay off in later assignments. Poor decisions 
make integration more difficul t, and may force sub­
stantial redesign. Thus the students were exposedω 
the issues of software maintenance [14] in a most 
practical fashion. 

2.6. Iteration 3 

In the third iteration, there were two essenúally 
disjoint additions to the command interpreter. These 
were 由e addiúon of syntax and functionality for con­
necting proc臼ses via p怡es ， and inclusion of facilities 
for setting and retrieving named string-valued vari­
ables. 

This assignment posed p缸úcular concepωa1 
problems for the students; we attribute itωtheir first 
encounter wi由 concurrency. virtual or 0出erwise.

Use of 由e fork() pri rnÎúve in previous exercises 
helped. but less than it rnÎght have since 由ey were 
given a canonical code segment containing the com­
mon fork()/exec() sequence. The inclusion of facili­
ties for variables drew on their earlier experiences 
wi由 the "associaúve memory"; many groups re-used 
the code. 

2.7. Iteration 4 

The fourth and final addition to the command 
interpreter were the three types of quotaúon marks 
employed by the UN lX Shell, \\and " [4].ηlis 
addition was chosen for the following two (m碍。r)

reasons: 

1. It forced a careful redesign of the lexical 
analysis routines and their interface ω 由e

parser and interpreter. Other than to add "1'\ 
the symbol for separating pipeline components. 
there had been no changes necessaryω 由e lex­
ical analyzer since the initial assignmenL 

2. The irnplementation of the 、 mark， which speci­
fies a string-valued result ωbe obtained by exe­
cuting the contained commands, forced the stu­
dents to glue things together carefully. In par­
ticular. the easiest way of implementing 由is



feature L~ wi出 a copy of the command inter­
preter invoked through a pipeline. 

Particular attention was paid here to issues such 
as the order of evaluation applied to the various 
features , and the demands 由is made on the imple­
mentation strategy, for example the command string 
"a=*; echo ♀ a" 

2.8. Lessons Learncd 

Personally, we have found that our mistakes are 
among the most valuable leaming experiences we've 
had, and know this is not uncommon. Accordingly, 
we r吨uired the students to submit a "Lessons 
Learned" document, summarizing the positive and 
negative experiences they had had with tools and 
methodologies. In order that they understand what 
such a document was ωcontain ， an example was 
given detailing our own problerns in constructing the 
command interpreter. 

3. Discussion 

Several other points deserve mention before 
comparing our approach with others in an abstract 
sense. 

First, we used electronic communication exten­
sively; this allowed the student to obtain answers 
across the week, rather than a few preset times. An 
on-line bulletin board mechanism aJlowed posting of 
sources , interesting ques t.lons , mterestmg answers , 
and details of the assignment of environment on 
which class time would have been ill-spen t. 

Second, the choice of an existing software sys­
tem had several positive effects. 

1. The students were not forced ωcarry out the 
complete design prωess before they were capa­
ble. 币leir design pr∞ess consisted of analyz­
ing a new feature in the context of their existing 
software, designing appropriate data structures 
and algorithrns, and implementing the feature. 

2. The command interpreter they were construct­
ing is completely documented [4 ], and like any 
such command interpreter, interactive, a pro­
grarnming 1anguage, an an interface to an 
underlying virtual machine provided by the 
operating system. In addition , it is an exem­
p1ary piece of software design. 

3. The full interpreterthey were working towards 
is 由e student's interface to the system. Thus, 
they become familiar with its functioning 
through use as well as instruction. Questions 
about obscure functional detaiIs could be 
answered by typing in one or more well -chosen 

- 5 -

examples. Experimentation was a very 
worthwhile too1 , as it should be in a laboratory 
course. In fac t, several groups of students 
corrected the instructor on interpreter details 
based on their independent expe由nents (some­
times success can be embarrassing!). 

Third, the instructor completed alI assignments , 
and generally made the results available on-line. This 
served both to provide feedback on the complexity of 
the assignments , and to give the instructor the insight 
and mastery of detail necessaryωaid the student in 
aIl phases of the design pr∞ess. 

Fourth, grading of al1 prograrnming assign­
ments previous ωthe project was done on the ba~is of 
an even split between code qu划ity and execution t四­
ing. The execution testing was done based on the 
manual page used to specify the assignment, and the 
evaluation of code quality had bo由 an objective por­
tion , consisting of adherence ωa style sheet, and a 
subjective componen t, based on the grader's judg­
mentηle effect of the subjectivity was reduced by 
dividing the assignments between the ins町uctor and 
the teaching assistants, with the division ∞curring 
randomly on any given assignment. The fmal project 
was graded wholly on the basis of success or failure 
on a set of 30 tests designed ωexercise the features 
specified in the manual pages. Thus, the quality of 
the student's results were reviewed, rather than 由e

effort, methodology, or d∞ument formatting skill. 
This is as it should be. 

3.1. Our approach 

Having presented details of our course in the 
previous section, here we wìll try to abstract the prin­
cipa1 accompIishments. Aside from the 的vial

achievements of introducing the students to C and the 
UNIX programming environmen t, we feel 由at 由e

course structure has several strong points: 

• The student develops a non-trivial toolkil , consist­
ing of bo白 techniques and developed skiIls wi由
software t∞Is which can be used later in the 
Columbia curriculum. The proof of the approach is 
in, for example, the re-worked command inter­
preter syntax which students have used in designing 
database query languages in other course offerings. 

• The focus on one significant pr咿ct brings out the 
point of software engineering , which is only 
apparent with scale and re-use. 

·节le process of building the project is used both ω 
get across the introductory material (in 由e indivi­
dual a~signments) and to bring in classical software 
engineering issues , such as documentation , tool 



usage , maintenance, reusability , et cetera. In par­
ticular, forcing integration of new features with 
previous work demands that attention be paid to 
design. Of co旧忧， building on previous work 
shows the va1ue of re-use , as was i1lustrated by the 
exarnple of <name, value> string va1ues. 

.η1e course is a lab course, and 由us is exceedingly 
practical in orientation; discussion of issues such 
as the communication problems and soIutions of 
Brooks [5] are postponed until the student has 
encountered them, and can appreciate the solutions. 

Private discussions with other faculty reinforce 
our belief 由at the toolkit approach has va1ue in our 
setting; a discussion of lexical analysis and parsing 
certainly makes more sense when the student has 
already encountered these things; with some practica1 
exposure, the theory not only becomes more accessi­
ble, but more relevant. 

3.2. Related 飞，Vork

Ideally, software engin巳ering would be the 
focus of the curriculum, as it was with the Wang 
Institute [2, 12] Master of Software Engineering 
(MSE) program. Then , a certain level of pre- and 
cφrequisites and background could be expected. and 
sufficient attention paid to all aspecωof the software 
lifecycle. Such graduate courses 币， 16] presumably 
have the advantage of prior exposure to CS on the 
p红t of the students, and thus can direct more energy 
towards software engineering, and lessωwards 由e

"glue" connecting software design to other areas of 
CS. An interesting observation is that in the 1987 
article on the Toronto course, Wortman states: 

"We now feel 由at the emphasis on buy­
ing and seIIing software in the origina1 
software hut project gave the whole pr。
ject the wrong orientation.η1e course 
we teach is about the design and imple­
mentation of software, not about software 
marketing." 

Kant' s [7] course was more balanced than ours, both 
in the selection of students (ranging from freshmen to 
graduate students) and in the coverage of different 
portions of the life cycle. Her article actualIy pro­
vides a course ou t1 ine, with interjected textu a1 com­
ments. The feedback from the students was similar to 
our own; that is，由e course r吨uired too much work 
for the number of credits. Her group size of 5, versus 
our 3. 

Our course offering agrees quite we lI with the 
survey results gathered by Leventh a1 and Mynatt [11] 
in 出at it is offered ωjunior and senior-level students, 

- 6 -

focuses on "Later-Life-Cycle" issues , is project­
oriented, the grade is heavily based on success with 
the project, and the substantia1 project is intended for 
actu a1 use. We differ in 出at the requirements for 
written reports are minima1 (由is stems partiy from the 
project, an existing welI-documented piece of 
software) and no ora1 reports or exan1inations are 
r吨uired.

Benùey and DalIen's [3] se创ng is quite sirnilar 
to ours, a1 though their course offering appearsωbe 
slighùy Iater in the West Point curriculum than ours is 
in Columbia's. It is interesting to note that 由ey t∞k 

the approach of using many sma11er exercises ωteach 
software engineering principles. 币1is contrasts some­
what with our approach of using a single large pro­
ject, partitioned into development stages. Our focus 
was on developing a t∞lbox 由e student could c缸叮
with them into industry or further academic forays; 
while Benùey and Dallen make a strong argument for 
their use of A WK [1] , we are not sure that an A WK 
toolkit would be as usefu l. We are convinced. how­
ever，由at our approach is integrated well with other 
portions of our CS curriculum, which it both builds 
upon and reinforces. 

4. Conclusions 

We believe 由at the construction of significant 
software systems is a necessary part of an undergra­
duate education in CS. There is a transition in our 
computer science curriculum between introducωry 

and more advanced courses which requires fac iIity 
Wl由 a set of software tools. 币1e SDL course 
described in this report meets our educationa1 and cur­
ricular goals (as stated in 由e in町创uction); th is 
approach has proven itself, as our graduates succeed 
in both academic and industrial settings. 

S. Acknowledgments 

We must thank the students of SDL; previous 
instructors of the course, Drs. Rodney Farrow and 
Gera1d Leitner; Peter Sweeney, John Ioannidis, Peπy 
Merzger, Lowell Kaufman , Ben Fried, Nick Chris to­
pher, S巳由 S町umph， 肌d Chris Maio; Drs. Steven 
Feiner and Gera1d Q. Maguire, Jr. , whose ideas 
helped develop and refine SDL; and Boeing 
Aerospace Corporation , AT &T Bell Laboratories, and 
Bell Communications Research , for their contribu­
tions to my practica1 expenise in software develop­
men t. AT&T should a1so be thanked for the donation 
of many copies of the "UNIX" Issue (July-Augus l. 

1978) of the Bell Systβm Technical J oumal used in 
the course. 



6. References 

[1] Alfred V. Aho, Brian W. Kemighan , and Peter 1. 
Weinberger, The AWK Programming Language, 
Addison-Wesley, Reading , MA (1 988). 

[2] M. A. Ardis,‘'The Evolution of Wang Institute's 
Master of Software Engineering Program," lEEE 
Transactions on Software Engineering S E-13( 11), 
pp. 1149-1155, Special Issue on Software Engineer­
ing Education (November 1987). 

[3] J. L. Bentley and J. A. Dallen, .‘Exercises in 
Software Design ," lEEE Transactions on Software 
Engineering SE-13(II) , pp.1164-1169 , Special 
Issue on Software Engineering Education 
(November 1987). 

[4] S.R. Boume. ..丁ne UNIX Shell," The Bell Sys­
tem Technica/ Journa/ 57(6, Part 匀， pp. 1971-1990 
(J uly-August 1978). 

[5] F. P. Brooks. Jr. , The Mythica/ Man-Month , 
Addison-Wesley, Reading , Mass. (1 975). 

[6] J. J. Homing and D. B. Wortman，‘ 'SoftwaI毛 Hut

A computer program engineering project in the form 
of a game," lEEE Transactions on Soj阳'are

Engineering SE-3, pp. 325-330 (July 1977). 

[7] E. Kan t, "A Semester Course in Software 
Engineering," ACM SIGSOFT Software Engineer­
ing Notes 6(4) , pp. 52-76 (August, 198 1). 

[8] Brian W. Kemighan and Dennis M. Ritchie, 
"节le M4 Macro Prα:essor，" in Unix Programmer' s 
Manua/ , Bell Telephone Laboratories (July , 1977). 

[9] B.W. Kemighan and D.M. Ritchie , The C Pro­
gramming Language , Prentice-Hall (1978). 

[10] B. W. Kemighan and R. Pike, The UNJX Pro­
gramming Environmenr , Prentice-Hall (1984). 

[11] L. M. Leventh a1 and B. T. Mynatt,‘ 'Com­
ponents of Typical Undergraduate Software 
Engineering Courses: Results from a Survey ," lEEE 
Transactions on Software Engineering SE-13(1 1), 
pp. 1193-1198, Special Issue on Software Engineer­
ing Education (November 1987). 

口2] W. M. McKeeman,‘ 'Experience with a 
Software Engineering Project Course," IEEE Tran­
sactions on Soflware Engineering SE-13( 11), 
pp. 1182-1192, Special Issue on Software Engineer­
ing Education (November 1987). 

[13] D.M. Ritchie and K.L. Thompson , '‘The UNIX 
Time-Sharing System," Bell System Technica/ Jour­
na/ 57(6), pp. 1905-1930 (J uly-August 1978). 

[14] N. F. Schneidewind. "The State of Software 
Maintenance," lEEE Transactions on So.卢ware

Engineering SE-13(3), pp. 303-310, Special Section 

- 7 -

on Software Maintenance (March, 1987). 

[15] School of Engineering and Applied Science, 
Co/umbia University Bulletin , 1986-1987. 

[16] D. B. Wortman , "Software Projects in an 
Academic Environment," lEEE Transactions on 
Software Engineering SE-13(11), pp.I176-1181 , 
Special Issue on Software Engine培ring Education 
(November 1987). 


