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SUMMARY

DOSE is unique among structure editor generators in its interpretive approach. This approach
leads to very fast turn-around time for changes and provides multi-language facilities for no
additional effort or cost. This article compares the interpretive approach to the compilation
approach of other structure editor generators. It describes some of the design and implementation
decisions made and remade during this project and the lessons learned. It emphasizes the
advantages and disadvantages of DOSE with respect to other structure editing systems.

KEY wORDS Language-based editor  Programming environment  Structure editor generation

INTRODUCTION

The Display Oriented Structure Editor system (DOSE) is a structure editor generator.
Like other structure editor generators, DOSE can be instantiated with a programming
language and a corresponding collection of language-based tools. The result is an
integrated programming environment for the desired programming language. Unlike
other structure editors, the instantiation process involves interpretation rather than
translation technology. This approach supports rapid prototyping and multiple language
capabilities.
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Structure’ editors

A structure editor 1s a special kind of editor that i1s different from a text editor. It
has more in common with a forms editor. The basic idea is a fill-in-the-blanks approach
to program construction and modification. A new Pascal program is constructed as
follows. First, the user asks for a new program template. The structure editor creates
a new template and displays it as shown in Figure 1. The editor provides the kevwords,
punctuation and indentation. The user must supply the missing parts — the actual
content of the program.

program $name (input, output);
const
Sconstant;
type
Stype;
var
Svariable ;
Srourine;

begin
3statement
end.

Figure 1. Template for a Pascal program

The missing parts, called metanodes, are initially displayed as fScategory. The
category indicates the set of alternative templates that may replace the metanode. For
example, the §statement metanode can be replaced with a while template, an if template,
a case template, etc. If the user attempts to replace the §statement metanode with a
template that is not a member of the statement category, then the editor displays an
error message and disallows the replacement. It is not possible for the user to replace
$statement with the + template or the = template. The structure editor guarantees
that the program is syntactically correct at all times.

Say the user wished to replace the §name metanode with test, an identifier for the
name of the program. The user moves the cursor to highlight $name, using a mouse
or by entering commands similar to the cursor movement commands of text editors.
The important difference 1s that the cursor always points to a syntactic unit, either a
template or a metanode. It is not possible to position the cursor at an arbitrary
character. Once the cursor is correctly positioned at §name, the user types ‘test’. The
entered text is echoed in the appropriate place on the screen, as in a text editor. The
updated display is shown in Figure 2.

program test (input, output);
const
Sconstant;

type

Soype:
xr

Svariable;
Sroutine;
begin

Sswatement
end.

va

Figure 2. Filling the $name metanode
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To add a type definition, the user moves the cursor to highlight the §type metanode
and types ‘type’ (this might be abbreviated by the unique prefix ‘t’), and the structure
editor adds the type template. The user input is echoed on a command line, as are the
commands in many text editors. Alternatively, the user might select type from a menu
listing only the legal replacements for the current metanode. In either case. the relevant
portion of the updated display is shown in Figure 3. Notice that the editor automatically
adds a new §type metanode, so the user can add more types to the program.

type
Sname = 3Jtype_definition;
Soype;

Figure 3. Filling the §tvpe metanode

Say the user does not want to include any constant definitions in the program. The
user moves the cursor to highlight the $constant metanode and types the Delete
command (this might be abbreviated as (ctrl)-d, as in a text editor, or selected from a
menu listing the commands valid in the current context). This has the effect of deleting
the Sconstant metanode. The relevant portion of the program is then displayed as
shown in Figure 4.

program test (input, output):
<no constants>
type

Sname = 3type_definition;

Soype:

Figure 4. Deleting the Sconstant metanode

The user can change his mind, and add one or more constants by moving the cursor
to highlight (no constants) and selecting constant. The structure editor replaces the
empty list of constants with a constant template, as shown in Figure 5.

program test (input, output):

const
Sname = $value;
Sconstant:

t

Sname = 3type_definition;
Soype:

Figure 5. Creating a constant template

This stvle of program construction and modification is sometimes called template-
based editing. All changes in the program are performed in terms of templates that
represent the structure of the programming language, so the program is always syntact-
ically correct although 1t may be incomplete. Some users familiar with text editing are
uncomfortable with template-based editing, particularly for expressions. These users
complain about the necessity of entering expressions in prefix form and being unable
to move the editing cursor according to the characters shown on the display rather
than conforming to the hierarchical structure of the program. These problems have
been addressed by several editing systems.'™ These systems use incremental parsing
technology*™ to provide a text-oriented user interface, but immediately detect and
report syntax errors.

—ur
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Structure editor generators

The earliest structure editors, for Lisp, were in active use by 1965.7 Emily,?*
developed in 1969, was the first structure editor for a block-structured language. Many
structure editors for many different languages have been developed in the past ten to
twelve vears. Some of these structure editors were developed for a specific programming
languaée. In this case, the source code of the structure editor includes templates and
display information for each construct in the programming language. The Cornell
Program Synthesizer” is probably the best known example of a hand-coded structure
editor.

Other structure editors have been generated using a program called a structure editor
generator. The Synthesizer Generator'® and the Gandalf ALOE system!! are two well-
known structure editor generators. The source code of a generator system does not
include any information about any particular programming language. Instead, it
includes routines that handle the manipulation and display of arbitrary templates. The
implementor generates a structure editor for a particular programming language by
writing a description of the language as a form of context-free grammar. For example,
the implementor specifies the Pascal program template as shown in Figure 6. The
implementor must describe both the metanodes and the display of the program template.
The metanodes are defined by giving a production that specifies the categories for the
components of the template. The display information is omitted.

program => name: identifler
constants: seq of constant
types: seq of type
variables: seq of variable
o

routines: s routine
body: seq o; statemant

Figure 6. Description of program template

The program production defines the program template as consisting of six com-
ponents. Whenever the user of the structure editor requests the creation of a program
template, the editor creates a template with these six components. If the user moves
the editing cursor to highlight the entire program template and gives the Delete
command, the editor destroys the entire template with all its components.

The first component of each program template is called name. The name component
is defined to be an identifier, a built-in production that defines a terminal. A terminal
1s a special template that does not have any components; instead, it has a value, which
must be entered by the user as characters. The test identifier illustrated in Figure 2 is
an example of a terminal. Most structure editors provide at least integer, real, string
(single line) and text (multiple lines) as well as identifier (no blanks) as built-in terminal
productions,

The remaining five components of a program are sequences. ‘seq of category’ means
a sequence of one or more templates that are members of the category, where the
category may be either a production name or a class name. A class. specifies a set of
alternative productions. For example, the sixth component is a list of instances of
productions that are members of the statement class, given in Figure 7. Any one of
these alternatives can be chosen to replace a §statement metanode. When a class appears
as the category for a sequence, the elements of the sequence may be the same or may
be different alternatives.




-~
oI
~1

A RETROSPECTIVE ON DOSE

statement ::= assign call case compound
for goto if repeat while with

Figure 7. Description of stiiement class

A structure editor generator consists of two separate programs. One program, called
the kernel, provides the language-independent manipulation and display routines. The
kernel typically includes a command interpreter, a window manager, an interface to
the file system and the operating system, and so on. The second program is called the
translator. It takes as input the descrlpnon of the language given by the implementor,
compiles this description into tables, and then links the tables together with the kernel.
The result is a structure editor for the particular programming language.

DOSE

In addition to those structure editors that were hand-coded and those that were
generated in the manner described above, there are also structure editors that have
been developed by instantiating DOSE. DOSE is an ‘interpreter’ structure editor
generator the generators described above are ‘compilers’ Both require the implementor
to provide a description of the desired programming language. The most important
distinction is that DOSE interprets the description, whereas other structure editor
generators translate the description into some other form. A secondary difference is
that DOSE is a single program, the interpreter (kernel), whereas other generators
consist of two separate programs: the compiler or translator and the run-time environ-
ment (kernel). Both differences are illustrated by Figures 8 and 9. The first shows the
compiled approach of a typical structure editor generator when applied to multipie
programming languages; the second illustrates the analogous operation of DOSE.

DOSE 1s used in a different fashion to other structure editor generators. In the latter
case, the programming language description is developed in some manner, often using
a special structure editor where the ‘programming language’ is actually the notation for
descriptions. The description is then input to the translator. The translator first analvses
the description, checking for static semantic errors such as a production name that 1s
used but not defined. If there are no errors, the translator generates tables representing
the description, compiles these tables and links the resulting object code together with
the kernel. The output 1s a structure editor for the desired language. This manufactur-
ing process takes from a few minutes to a few hours, depending on the size and
complexity of the description. If the user wants to change languages, he must exit the
generated structure editor for the first language and enter the editor for the second
language, or change windows on a workstation; there is a separate program for each
language.

In the case of DOSE, the programming language description i1s wntten using
DOSE itself, where the ‘programming language’ 1s the description notation. The new
description can then be selected immediately as the current description, resulting in
an editor for the specified programming language. Alternatively, the new description
can be stored in a file and loaded during a separate execution of DOSE. In either case,
DOSE first checks for static semantic errors, which may take from a few seconds to a
few minutes depending on the size and complexity of the language. If no errors are
detected, DOSE then behaves as a structure editor for the desired language. No
translation or additional processing time 1s required.
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— structure
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Figure 8. Compiled structure editor generation

description kernel description
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1
structure
editor for
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Figure 9. Interpreted structure editor generation

[f the user is currently editing a program and wants to modify its description, the
Grammar command returns to editing the description. The user may edit the descrip-
tion arbitrarily, and then select the Program command to return to editing the program.
If the description is still compatible with the program — for example, no productions
actually used in the program have been deleted — the user can continue editing the
program. The user can switch back and forth between program and description editing
as desired.

If the user wants to change languages, the LoadGrammar command loads the
description for the second language from secondary storage. A few seconds are required
for the actual file I/O and for checking for static semantic errors (since DOSE permits
users to store incorrect descriptions). The user can switch back and forth between
editing programs in any of the loaded languages without ever leaving the structure
editor. Up to ten languages, and twenty-five programs in any subset of these languages,
may be loaded simultaneously, where ten and twenty-five are arbitrarily chosen
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implementation limits. Since the user must select a specific description when beginning
a new program and every existing program keeps an indication of its description, there
is no ambiguity if the same name is used in multiple descriptions. For example, there
may be several descriptions loaded simultaneously that all have an expression class.
The only restriction is that each of the descriptiéns themselves must have a unique
name, such as Pascal and C.

Rapid prototyping and multi-language capabilities are the primary advantages of
DOSE over structure editor generators. These are discussed in more detail
elsewhere.'>!* The rest of this article concentrates on the implementation of DOSE
in comparison to other structure editor generators.

STRUCTURE EDITOR IMPLEMENTATION

In DOSE, as well as in most other structure editors, the program is represented
internally in the form of a tree, either an abstract syntax tree or a parse tree. An
abstract syntax tree is preferred, since it is more compact; in particular, ‘syntactic
sugar’ such as keywords and punctuation are not represented explicitly in the tree.'®
Each node in the program tree is implemented by a pointer to a record similar to the
one shown in Figure 10. This particular record is for a non-terminal node, meaning
that the node has one or more children. The optype (operator type) field refers through
some mechanism to the production that defines the node; this is explained below. The
parent field is a pointer back to the node’s parent and the children field is an array of
pointers to its children.

TYPE NodeRef = POINTER TO Noda;

TYPE Node =
RECORD
optype: ...;
parent: NodsRef;
children: ARRAY [l..arity] OF NodaRef;
END RECORD;

Figure 10. Implementation of a non-terminal node

The program tree is maintained by the structure editing kernel. The kernel provides
the primitive capabilities for manipulating and traversing the tree, including routines
to create a new node, destroy a node, insert a copy of an existing node as a particular
child of another node, etc. The kernel also includes routines to move the cursor from
one node to another, following parent—child and child-parent links. The kernel typically
provides powerful traversal and manipulation routines to support search operations and
program transformations.

Compilation

The kernel as described so far is more-or-less the same for both traditional structure
editor generators (compiled) and for DOSE (interpreted). The difference lies in how
the svstem tailors its kernel to a specific programming language. For compilation, some
description of the programming language is processed by a translator into a table in
the implementation language of the system. Each entry in the table represents all the
information specific to a particular kind of node.

- gy
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For example, the table might be represented by an array of records. One possible
set of fields for the entry record is shown in Figure 11. Here each entry has a string
field that gives the name of the production or class. The other tields are determined
by the appropriate variant, whether the entry represents a class, a terminal production,
a non-terminal production or a sequence. A class has a number of members, each
described by another entry in the table. A terminal has a value of a particular type,
such as integer, string or identifier. A non-terminal has a fixed number of children,
where the type of each child is described by another entry; a sequence has an arbitrary
number of elements of the same type, which is represented by another entry. In
addition to these fields, each entry also includes display and semantic information, not
shown here. The table is compiled and linked with the kernel to produce a language-
specific editor.

TYPE Offset = 1. . MaxTable:
TYPE Table = ARRAY [Offset] OF Entry;
TYPE Entry =
RECORD
name: STRINGS
CASE tag: NodeCataegory OF

Class: (members: ARRAY [1..MaxMembexr] OF Offset):
Terminal: (value: ValueType):
NonTerminal: (axrity: PosiInt;
components: ARRAY [1..arity] OF Offset):
Sequencs: (elemants: Offset);
ERD CASEK;
END RECORD:

Figure [1. Possible record format for a language table

Consider a generated structure editor for Pascal. Say the user requests that the kernel
createa a new if node as the first child of a particular + node. The kernel responds as
follows. It accesses the optype field of the + node. As shown in Figure 12, this field
is of type Offset, and gives the table index for the + entry. The kernel accesses this
entry, finds that + is a non-terminal node, and obtains the offset for the descriptor of
its first child. This offset happens to point to the expression class. The kernel proceeds
by checking the entry for each offset in its members array until it discovers that none
of these offsets points to an entry whose name is if. Then the kernel prints an error
message and does not actually perform the creation.

TYPE Node =
RECORD

optype: Offset’

parent: NodeRef:

children: ARRAY [1..arity] OF NodaRaf;
END RECORD:

Figure 12. Compiled implementation of a non-terminal node

Calling this scenario ‘compilation’ may seem incorrect, since the tables are in some
sense interpreted by the kernel. A true compilation system would not generate tables;
instead, it would generate a language-specific kernel. There would then be a distinct
type for each kind of node; examples for the program production and statement class
are illustrated in Figure 13. In practice, a language-specific kernel could be implemented
only in a language that supports some form of dynamic typing. Otherwise, it would
not be possible to write generic routines for manipulating arbitrary program trees
containing nodes of many types.

—— i Ao
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TYPE ProgramNode =

RECORD
parent: NodeRef:
name: IdentifierRef;
constants: ARRAY [l1. .Max]) OF CoanstantNode:
types: ARRAY [l..Max] OF TypeNods:
variables: ARRAY (l1l. .Max] OF VariableNodas:
routines: ARRAY [1l..Max] OF RoutineNMode:;
body: ARRAY [1l..Max] OF StatementNode:

END RECORD;

TYPE StatementNode =
UNION
Compoundioda, IfNods, WhileNode, GotoNode,
END UNION;

Figure 13. Node tvpes for a language-specific kernel

Interpretation

DOSE tailors a language-independent kernel by interpreting the original form of the
language description. In this case, no translator is needed. Instead, the kernel under-
stands the format used for the language description; this involves slightly more advanced
capabilities than understanding the format of tables, but these capabilities are required
anyway 1in the translator in order to produce the tables. The difficulty is not one of
capability, but of performance.

Interpretation would be intolerably slow if the language description was maintained
in textual form. The kernel would have to parse the description each time it needed
to find the relevant information for an editing operation. The alternative is to maintain
the description in some internal representation that can be speedily accessed. Of course,
the obvious internal representation is a table, as used in compilation. However, there
1s another original form for language descriptions other than text — an abstract syntax
tree — and this form does not need to be parsed. As already noted, several structure
editor generators combine their translator with a structure editor specific to the descrip-
tion notation. The user edits descriptions as well as programs in terms of templates,
and the descriptions are maintained in the same internal representation as are programs.
[n the compilation approach, the translator then translates from this internal represen-
tation to a table.

In contrast, the DOSE kernel interprets the description directly. Since the descrip-
tion 15 in the same form as the programs, the kernel alreadv contains all the appropriate
facilities for traversing and accessing the description. A node in the program tree is
implemented by a pointer to the record shown in Figure 14; this particular record is
similar to the nonterminal node illustrated in Figure 12 for the compilation approach.
The onlyv difference is that the tvpe of the optype field i1s Offset in the compilation case
whereas NodeRef provides an appropriate internal representation for interpretation.
This tield points to the record for the production that defines the node.

Consider the case where the record in Figure 14 represents a Pascal program template,
as depicted in Figure 1. Then the optype field points to the internal representation of
the program description, whose logical representation is shown in Figure 6. Since the
program production is itself a non-terminal node, its internal form is another record of
exactly the same tyvpe as the program template node.

The question arises as to the meaning of the optype field of the program production
node. If the notions of production node, class node, etc. were hard-coded into the
kernel, then the optype could be some special value that indicates the kind of node.
This value would be used by the kernel when it interprets a node in the language
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END RECORD
Figure 14. Interpreted implementation of a non-terminal node

description to determine how it should be used. In the case of a production node, the
kernel would know that its first child is the name of the production, the second is the
arity and the third child is the list of component descriptions; in the case of a class
node, the kernel would know the first child is the name of the class and the second is
the list of member descriptions.

DOSE takes an alternative approach: the optype of every node points to a node,
whether or not the node is in a program tree or in a description tree. In the case of a
program tree, the optype points to a node in the corresponding description tree; that
is, the program template node points to the program production node. In the case of a
description tree, the optype points to a node in a distinguished description tree,
which defines the description for descriptions. This description is called the ‘grammar
grammar’. Thus every tree has a description, including description trees; the grammar
grammar tree acts as its own description.

The portion of the grammar grammar for productions and classes is illustrated in
Figure 15. The production production defines a production node as having three
children: its name is an identifier, its arity is an integer and its components are a
sequence of component nodes. Each production node in a language description, such
as the program production node above, points to the node in the grammar grammar
tree that represents the production production.

production => name: identfler
arity: inreger

components: seq of component
component => label: identifler

sequence: boolean
type: identifier

class => name: [dentifler
elemants: seq of identifler

Figure 13. Portion of the ‘grammar grammar’

Since the grammar grammar is its own description, the optype fields of the production
production, the component production, etc. point into their own tree. The production
production node points to itself, and all the other production nodes point to it as well.
Any classes in the grammar grammar point to the class production node, which in
turn points to the production production node. Thus, DOSE has three levels of
interpretation. The kernel manipulates a program node by interpreting the program
production node; it manipulates the program production node by interpreting the
production production node; and finally, it manipulates the production production node
by interpreting the production production node itself.

There seems to be a flaw here somewhere: an infinite circularity in interpretation.
It looks as if the kernel would never get any useful work done. DOSE solves this
problem by hard-coding certain portions of the grammar grammar in order to break
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the circulanty. Howe\ er, the full grammar grammar is in fact represented internally
as a tree along with all the descripuions and programs, and this representation is
interpreted for most operatlons

When anv program tree, including a description, Is stored on secondary storage,
the tree is linearized in the obvious manner. At the beginning of the file is the name
and version number of the descnptlon for this tree. The optype of each node is stored
as the name of a production in this description. When a program tree is loaded, DOSE
hirst looks at the name and version number of its description. If this description tree
is not already loaded, DOSE invokes the loading routine recursively to load it. For
efficiency, the grammar grammar tree is automatically reconstructed, rather than
loaded, each time DOSE begins execution. As the nodes in the program tree are finally
read from the file, each production name is looked up in the description tree and the
optype field of the program tree node linked to the appropriate description tree node.

Discussion

The advantages of interpretation are many, and the disadvantages are few. The
obvious potential disadvantage 1s performance, since it seems that interpretation would
be significantly slower than compilation. However, this is not necessarily the case. In
performance comparisons between the language description editor compiled using
ALOE'® and the language description editor interpreted by DOSE, there were no
significant differences in response time. Profiles of the two systems showed that both
spent the majority of their time updating the display after changes and executing the
routines that perform semantics processing.

The primary advantage of interpretation is the fast turn-around time while developing
an editor. Using DOSE, the implementor can switch back and forth between editing
a test program in the target language and editing its language description with one or
two kevstrokes. Switching from editing a program to editing a language description is
apparently instantaneous, whereas switching in the opposite direction results in a brief
delav for static semantic analvsis. In practice, the delay has run from ten seconds to
thirty seconds. In contrast, the compilation and linking required by editor generators
using compilation technology is often a matter of minutes, not seconds. and the
implementor must leave the language description editor to invoke the produced lan-
guage-specific editor. The single DOSE program supports multiple editors, whereas
other environment generators produce separate programs for each editor.

IMPLEMENTATION CONSIDERATIONS

Several implementation avenues distinguish DOSE from other structure editing pro-
jects. The most significant departure was the interpretive approach, but several interest-
ing alternatives were considered for both the formal description and the internal
representation of program information.

Syntax description

DOSE uses an unusual notation for language description. Most other systems use a
form of context-free grammar where each production and class, respectively, have
forms similar to those shown in Figure 16. Each type, indicates the name of another
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production or class. This stvle of notation makes it awkward to define optional children
and sequences, as illustrated by Figure 17.

productionname => type, type, ... type,
Classname => type; | type, | ... | type,

Figure 16. Production in context-free grammar

productionname => type; type, optionalchild sequencenams ...
productionname => type; type, sequencenams

saquencename => elementtype ssquencenames

sequencenama => <emply>

Figure 17. Sequences and optional components

DOSE extended the typical syntax description to a notation based on IDL, the
Interface Description Language.'”'® The resulting notation supports names for the
children of non-terminal nodes, optional children, children that are sequences, and
enumerated sets of terminals. IDL syntax descriptions are more readable and support
a more concise semantics description, since sibling components with the same type can
be distinguished by name. The optional children and sequence examples are shown in
Figure 18 in the notation adopted for DOSE, which was also used for all the earlier
examples in this paper. This same style of notation was later adopted for the MacGnome
structure editor generator.?°

productionname => name,: type;
nams,: type,
name,: type, (optional)
name,: seq of elementtype

Figure 18. DOSE productions

Internal representation

As explained above, the most commonly used internal representation for a structure
editing environment is the abstract syntax tree. In those systems such as DOSE that
go bevond basic syntax-directed editing, the tree is augmented with information related
to semantics processing. This is typically done in one of two ways: attributes or
invisible components.

An attribute is simply a name/value pair. Each node has a property list containing
an arbitrary number of attributes, where each attribute has a unique name. Each
attribute is itself an attributed syntax tree described by a syntax description and
(sometimes) a semantic description. Attributes are used by all structure editors whose
semantics processing is generated from attribute grammars,*' for example the Synthes-
izer Generator, and also by some structure editors whose semantics processing are
hand-coded as special routines. In DOSE, both the allocation of attributes and the
semantics processing are hand-coded, so attributes are not specified as part of the
language description as 1s done for attribute grammars.

Invisible components work as follows. As discussed above, each non-terminal node
has a fixed number of components. Most of these are displayed, in a particular order,
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with a specific concrete representation. In general, all components that represent the
abstract svntax of the language are displaved so that they may be manipulated by user
commands. However, there may be other components that are never displaved. The
user 18 not normally aware of these components, which usually contain semantic
information.

Every component, visible or invisible. represents a parent—child link between two
nodes. In a tree. each node is the child in at most one parent—hild link. However,
invisible components may represent parent—child links to nodes that are the child in
more than one parent—child link. Such links are called graph links. For example, each
identifier might have an invisible component that is the definition site of the identifier.
This is not a copy of the definition site, but the actual definition site that was
constructed elsewhere in the syntax tree. Graph links transform the tree into a general
graph structure. Each node may have multiple parents and it is possible to construct
cycles. The IPSEN project®? took this approach, where the graph structures are
specified by graph grammars.?* Graph grammars permit the user to explicitly construct
graph links.

DOSE initially provided limited support for general graph structures. Unlike IPSEN,
the graph links in DOSE were manipulated only during semantics processing and could
not be directly constructed or deleted by the user. The goal was to support applications
other than programming environments, where the application-specific internal represen-
tation was conceptually a network rather than purely hierarchical. The role of display
information was expanded from simply providing the concrete syntax and formatting
information for the display to specifying the subset of the components of a node that
could be viewed. The new extended ‘display’ formats were used to select subsets of
the internal representation for semantics processing as well as for external display.
Since multiple display formats could be written for each production of the abstract
syntax, it was possible to define different views of the graph structure. The processing
support assumed that each view was hierarchical, and DOSE did not detect cvclic
views. (More recently, a general theory of views that supports both display and
semantics processing has been developed.?* *%)

Actual experience with the graph version of DOSE demonstrated that the number
of graph links was tiny relative to the number of normal parent—child links representing
the basic abstract syntax tree. The performance and complexity overhead of the full
graph mechanism was not justified, so DOSE'’s support for general graphs was eventu-
ally abandoned in favour of attributed abstract svntax trees. This decision was made
after consideration of several factors. One issue 1s space efficiencv. A component 1s
alwavs represented whether or not it has been hlled in: a metanode must be present
when the component has no value. In contrast, an attribute need not be represented
at all 1f it has no value, or the default value. Another issue is flexibility. Components
are hard-wired at the ume the language description i1s written. Attributes are usually
detined at the same time, but this is not necessarily the case. Attributes may also be
introduced on the fly during execution.="

The third 1ssue 1s conceptual. Certain information 1s conceptually part of the abstract
svntax of the programming language, whereas other information is not. The conceptu-
allv separate information mayv be redundant but in a format that i1s more suitable for
some specific processing. Or it may include information temporarily maintained during
program execution. Different notation and realization should be used for the infor-
mation that i1s conceptually distinct from the node than for the information that is an
integral part of the node.
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The final ‘issue is physical. Separation of attribute information from the basic node
permits the two kinds of information to be stored independently on disk. This permits,
for example, the basic abstract syntax tree to be loaded for display without loading all
of the semantic information stored in attributes.

Unfortunately, there were some cases in DOSE where attributes could not provide
all the functionality of the earlier graph links. These links were replaced with symbolic
references. A symbolic reference is a relatively fast mechanism for locating a node
elsewhere in the tree. For example, a symbolic reference might be implemented as a
key into a table that contains entries for each referenced node. Symbolic references are
similar in function to the non-local productions of the PoeGen system.?’

The change from graph links to attributes and symbolic references drastically
improved the performance and decreased the complexity of many parts of the DOSE
kernel, including display, tree traversal and the size of the representation for secondary
storage. It also simplified the job of the implementor of semantic processing routines,
who no longer had to consider views onto the graph structure. There are only a few
potential locations for symbolic references, and those are specified as such in the syntax
description, so checking is handled by the editor kernel. Attributed trees with symbolic
references are sufficient for structure editor-based programming environments, but a
general graph structure may be more appropriate for other applications. This style of
attributes and symbolic references was later adopted for the ALOE system.

Terminal node representation

Several other changes to the internal representation supported by DOSE are not
visible to either the user or the implementor of a particular editor. For example, 1t
seemed possible to reduce the run-time memory requirements by representing meta-
nodes and terminal nodes in an unusual manner; in most other structure editors, they
are represented in the same way as non-terminal nodes, as pointers to records. The
original DOSE implementation instead represented metanodes by nil pointers and
terminal nodes by their actual values. For example, a terminal node that represented
an integer was represented by the integer itself rather than by a record with optype
and value fields. Since not all components carried their own optype fields, it was
necessary to examine the parent's production to determine first whether each component
was a terminal or non-terminal node and secondly, in the case of terminal node, what
tvpe of terminal node (integer, boolean, string, and so on). This complicated virtually
every kernel routine because non-terminal nodes and terminal nodes had to be handled
differently even when the distinction was not relevant to the normal processing perfor-
med by the routine. Returning to the more common representation of both metanodes
and terminal nodes as records resulted in a uniform representation of nodes, reduced
the size of the DOSE kernel substantially, and significantly improved performance.

STATUS

The DOSE System was developed at Siemens Research and Technology Laboratories
in Princeton, NJ beginning in early 1981 and ending in early 1985. Several DOSE
environments have been developed, including the editor/interpreter for the grammar
grammar, language-based editors with type checking for C and Pascal, a forms editor,
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a small database entry/query interface, and an editor/interpreter/debugger for TML, a
tree manipulation language for writing semantics routines for DOSE environments.
DOSE has been in production use outside the development group since August 1985
to support rapid prototyping of configuration management languages and tools. DOSE
has also been used at Carnegie Mellon University to develop an environment for
module interface checking and version control.?

DOSE was originally written in Perq Pascal for the Perq workstation, first under
POS (Perq Operating System) and later under Accent using two successive window
managers, Canvas and Sapphire. DOSE was the first structure-editing system to take
advantage of a bit-mapped display on a powerful workstation. The Accent/Sapphire
version consists of approximately 60,000 lines of source code. DOSE was ported in
1986 to C for the Sun workstation under Sun 3.0.
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