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SU孔但收ARY

DOSE is unique among structure editor generators in its interpretive approach. This approach 
leads to very fast turn.around time for changes and provides multi.language facilities for no 
additional effort or cost. This article compar臼 the interpretive approach to the compilation 
approach of other structure editor generators. It describes some of the design and implementation 
decisions made and remade during this proje<:t and the lessons leamed. It emphasiz臼 the
advantages and disadvantages of DOSE with respe<:t to other structure editing systems. 
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INTRODUCTION 

The Display Oriented Structure Editor system (DOSE) is a structure editor generator. 
Like other structure editor generators , DOSE can be instantiated with a programming 
language and a corresponding collection of language.based tools. The result is an 
integrated programming environment for the desired programming language. Unlike 
other structure editors , the instantiation process involves interpretation rather than 
translation technology. This approach supports rapid prototyping and multiple language 
capabilities. 
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Structure'edütors 

:\ stmcture editor is a special kind of editor that is different from a text editor. It 
has more in common with a forms editor. The basic idea is a fill-in-the-blanks approach 
to program construction and modification. A new Pascal program is constructed as 
follows. First , the user asks for a new program template. The structure editor creates 
a new template and displays it as shown in Figure 1. The editor provides the keywords , 
punctuation and indentation. The user must supply the missing parts - the actual 
content of the program. 

program $name 
con.t 

$constaJú ; 
type 

$type; 
var 

$variabk; 
$routine ; 
beqin 

$statemenJ 
end. 

(input , 趴且tput) ; 

Figure J. Template lor a Pascal program 

The mlssmg pa口s ， called metanodes , are initially displayed as Scategory. The 
categ。可 indicates the set of alternative templates that may replace the metanode. For 
example , the Sstatement metanode can be replaced with a while template , an if template , 
a case template , etc. If the user attempts to replace the 6statement metanode with a 
template that is not a member of the statement category, then the editor displays an 
error message and disallows the replacement. It is not possible for the user to replace 
Sstatement with the + template or the template. The structure editor guarantees 
that the program is syntactically correct at all times. 

Say the user wished to replace the Sname metanode with test , an identi且er for the 
name of the program. The user moves the cursor to highlight Sname , using a mouse 
or by entering commands similar to the cursor movement commands of text editors. 
The important difference is that the cursor always points to a syntactic unit. either a 
template or a metanode. It is not possible to position the cursor at an arbitrary 
character. Once the cursor is correctly positioned at $name. the user types ‘ test\The 
entered text is echoed in the appropriate place on the screen , as in a text editor. The 
updated display is shown in Figure 2. 

program t..t 
con.t 

$constaJú ; 
type 

$type; 
var 

Sνariabk; 

$roun'M; 

beqin 
$sωJemenJ 

end. 

Figure 2. I-刊

(input , 。utput) ; 
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To add a type definition. the user moves the cursor to highlight the $type metanode 
and types 'type' (this might be abbre\'iated by the unique pretìx 't') , and the structure 
editor adds the type template. The user input is echoed on a command line , as are the 
commands in many text editors. .-\Iternatively , the user might select type from a menu 
listing only the legal replacements for the current metanode. 1 n either case. the relevant 
portion of the updated display is shown in Figure 3. ~otice that the editor automatically 
adds a new $lype metanode , so the user can add more types to the program. 

type 
$name "" $type_definition: 
$type: 

Figure J. rν 

5ay the user does not want to inc\ ude any constant definitions in the program. The 
user mo\'es the cursor to highlight the $constanl metanode and types the Delete 
command (this might be abbreviated as (ctrl)-d , as in a text editor , or selected from a 
menu listing the commands valid in the current context). This has the effect of deleting 
the $constanl metanode. The relevant portion of the program is then displayed as 
shown in Figure 4-. 

proqra皿 t..t (input , output): 
<no conatanta> 
tvoe 

- - $name z $type_definition: 
$type: 

Fi~ure -1. Deleting the Sconslllnt mela1/lJde 

The user can change his mind , and add one or more constants by moving the cursor 
to highlight (no constants) and selecting constan t. The structure editor replaces the 
empty list of constants with a constant template , as shown in Figure 5. 

proqram t.at (input , output): 
conat 

type 

$ fItlI7Ie • $VaJlU: 
$constanl: 

$ fItlI7Ie • $ ty pe _ <Ujinüiofl : 
$type: 

Fixure 5. ('reatin!( a constant template 

This style of program construction and modification is sometimes called template­
hased editing. .-\11 changes in the program are performed in terms of templates that 
represent the structure of the programming language , so the program is always syntact­
ically correct although it may be incomplete. 50me users familiar \vith text editing are 
uncomfortable with template-based editing , particularly for expressions. These users 
complain about the necessity of entering expressions in prefix form and being unable 
to move the editing cursor according to the characters shown on the display rather 
than conforming to the hierarchical structure of the program. These problems have 
been addressed by several editing systems. I

-
3 These systems use incremental parsing 

technology -l-() to provide a text-oriented user interface , but immediately detect and 
report syntax errors. 

-
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Structure editor generators 
The earliest structure editors, for Lisp , were in active use by l965.7Em1lyy 

developed in 1969 , was the first structure editor for a block-structured language. \Iany 
structure editors for many different languages have been developed in the past ten to 
twelve vears. Some of these structure editors were developed for a specific programming 
language. In this case , the source code of the structure editor inc1 udes templates and 
display information for each construct in the programming language. The Cornell 
Prõgrám Synthesizer9 is probably the best known example of a hand-coded structure 
editor. 

Other structure editors have been generated using a program called a stmcture editor 
generator. The Synthesizer Generator 10 and the GandaU ALOE system 11 are two well­
known structure editor generators. The source code of a generator system does not 
inc1ude any information about any particular programming language. Instead , it 
includes routines that handle the manipulation and display of arbitrary templates. The 
implementor generates a structure editor for a particular programming language by 
writing a description of the language as a form of context-free grammar. For examp\e , 
the imp\ementor specifies the Pasca\ program temp\ate as shown in Figure 6. The 
implementor must describe both the metanodes and the disp\ay of the program template. 
The metanodes are defined by giving a production that specifies the categories for the 
components of the template. The display information is omitted. 

pr句ram a> naz国 Idell咿fer
con.tant.: ..0 of con.tant 
type.: 旦旦豆豆豆 type
vari.abl..: ..0 of variabl. 
routin..: .~routin. 
body: 重重立主! .tat_nt 

Figure 6. Descn"þtion o[ prog日m template 

The program production defines the program template as consisting of six com­
ponents. 飞\"henever the user of the structure editor requests the creation of a program 
template , the editor creates a template with these six components. lf the user moves 
the editing cursor to highlight the entire program template and gives the Delete 
command. the editor destroys the entire template with all its components. 

The first component of each program template is called name. The name component 
is de t1 ned to be an identifier, a built-in production that de t1 nes a termina l. A tenninal 
is a specia\ template that does not have any components: instead. it has a 7.:alue , which 
must be entered by the user as characters. The test identi t1er illustrated in Figure 2 is 
an example of a termina1. \Iost structure editors provide at least integer, rea/ , string 
(single line) and text (multiple lines) as well as identifier (no blanks) as built-in terminal 
productions. 

The remaining five components of a program are sequences. 豆豆豆豆f category' means 
a sequence of one or more templates that are members of the category. where the 
category may be either a production name or a c1 ass name. A class specifies a set of 
alternative productions. For example. the sixth component is a list of instances of 
productions that are members of the statement c1ass , given in Figure i. Any one of 
these alternatives can be chosen to replace a Sstatement metanode. When a class appears 
as the category for a sequence , the elements of the sequence may be the same or may 
be different alternatives. 
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statement ::2 aaaiqn call caa. cαmpound 
for qoto if repeat whil. with 

Figlire ï. /Jescáptio l/ 01 Si. ;ement c/ass 

人 structure editor generator consists of t\\'O separate programs. One program , called 
the kemel , pro飞'ides the language-independent manipulation and display routines. The 
kernel typically includes a command interpreter. a window manager , an interface to 
the file system and the operating system , and so on. The second program is called the 
translator. 1t takes as input the description of the language given by the implementor , 

compiles this description into tables , and then links the tahle-s together with the kerne l. 
The result is a structure editor for the particular programming language. 

DOSE 

1n addition to those structure editors that were hand-coded and those that were 
generated in the manner described abo、飞 there are also structure editors that have 
been developed by instantiating DOSE. DOSE is an ‘ interpreter' structure editor 
generator: the generators described above are ‘ compilers\80th require the implementor 
to provide a description of the desired programming language. The most important 
distinction is that DOSE interprets the description , whereas other structure editor 
generators translate the description into some other form. .\ secondarv difference is 
that DOSE is a single program , the interpreter (kernel) , whereas other generators 
consist of two separate programs: the compiler or translator and the run-time environ­
ment (kernel). 80th differences are illustrated by Figures 8 and 9. The first shows the 
compiled approach of a typical structure editor generator 飞，vhen applied to multiple 
programming languages: the second illustrates the analogous operatio'n of DOSE. 

DOSE is used in a different fashion to other structure editor generators. In the latter 
case , the programming language description is de\'eloped in some manner , often using 
a special structure editor 叭'here the ‘ programming language' is actually the notation for 
descriptions. The description is then input to the translator. The translator t1 rst analyses 
the description. checking for static semantic errors such as a production name that is 
used but not de t1 ned. If there are no errors , the translator generates tables representing 
the description. compiles these tables and links the resulting object code together with 
由e kerne l. The output is a structure editor for the desired language. This manufactur­
ing process takes from a few minutes to a few hours , depending on the size and 
complexity of the description. If the user wants to change languages. he must exit the 
generated structure editor for the t1 rst language and enter the editor for the second 
language. or change \vindows on a workstation; there is a separate program for each 
language. 

1n the case of DOSE. the programming language description is written using 
DOSE itself ，飞vhere the 'programming language' is the description notation. The ne飞V
description can then be selected immediately as the current description. resulting in 
an editor for the speci t1 ed programming language. .\Iternati\'ely , the new description 
can be stored in a t1 1 
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Figure 8. Compiled structure editor generation 

Figure 9. lnterpreted structure editor generation 

If the user is currently editing a program and wants to modify its description , the 
Grammar command returns to editing the description. The user may edit the descrip­
tion arbitrarily , and then select the Program command to return to editing the program. 
If the description is still compatible with the program - for example , no productions 
actually used in the program have been deleted - the user can continue editing the 
program. The user can switch back and forth between program and description editing 
as desired. 

If the user wants to change languages , the LoadGrammar command loads the 
description for the second language from secondary storage. A few seconds are req山red
for the actual file 110 and for checking for static semantic errors (since DOSE perrnits 
users to.store incorrect descriptions). The user can switch back and forth between 
editing programs in any of the loaded languages without ever leaving the structure 
editor. Up to ten languages , and twenty-five programs in any subset of these languages , 
may be loaded simultaneously , where ten and twenty-five are arbitrarily chosen 
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implementation limits. Since the user must select a specific description when beginning 
a new program and every existing program keeps an indication of its description , there 
is no ambig山ty if the same name ìs used ìn multiple descriptions. For example , there 
may be several descriptions loaded simultaneously that all have an expression class. 
The only restriction is that each of the descriptions themselves must have a unique 
name , such as Pascal and C. 

Rapid prototyping and multi-language capabilities are the primary advantages of 
DOSE over structure editor generators. These are discussed in more detail 
elsewhere. 12

-
1+ The rest of this article concentrates on the implementation of DOSE 

in comparison to other structure editor generators. 

STRUCTURE EDITOR IMPLE;\IENTATION 

In DOSE , as well as in most other structure editors , the program is represented 
internally in the form of a tree , either an abstract syntax tree or a parse tree. An 
abstract syntax tree is preferred , since it is more compact; in particular,‘syntactic 
sugar' such as keywords and punctuation are not represented explicitly in the tree. 15 

Each node in the program tree is implemented by a pointer to a record similar to the 
one shown in Figure 10. This pa口icular record is for a non-tenninal node , meaning 
that the node has one or more children. The optype (operator type) field refers through 
some mechanism to the production that defines the node; this is explained below. The 
parent field is a pointer back to the node's parent and the children field is an array of 
pointers to its children. 

TYPE NodeRaf - PODn"D TO Noda; 

TYPE Node -
RKCORD 

optype: ...; 
par.nt: 宵。debf;
children: ARRAY [1. .arity] or Nodallef; 

BND RJ:CORD; 

FI~ure 10. Implementat/οn o[ a non-temúnal node 

The program tree is maintained by the structure editing kerne l. The kernel provides 
the primitive capabilities for manipulating and traversing the tree , including routines 
to create a new node , destroy a node , insert a copy of an existing node as a particular 
child of another node , etc. The kernel also includes routines to move the cursor from 
one node to another , following parent-child and child-parent links. The kernel typically 
provides powerful travers"al and manipulation routines to support search operations and 
program transformations. 

Compiløtion 

The kernel as described so far is more-or-less the same for both traditional structure 
editor generators (compiled) and for DOSE (interpreted). The difference lies in how 
the system tailors its kernel to a specific programming language. For compilation , some 
description of the programming language is processed by a translator into a table in 
the implementation language of the system. Each entry in the table represents all the 
information specific to a particular kind of node. 
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For example , the table might be represented by an array of records. One possible 
set of fields 'for the entry record is shown in Fígure 11. Here each entry has a stríng 
field that gives the name of the production or c1 ass. The other fields are deterrníned 
by the appropriate variant , whether the entry represents a c1ass , a terrnínal production , 

a' non-terminal production or a sequence. :\. c1 ass has a number of members , each 
described by another entry in the table. A terminal has a value of a particular type , 
such as integer , string or identifier. :\. non-terminal has a fixed number of children , 

where the type of each child is described by another entry; a sequence has an arbitrary 
number of elements of the same type , which is represented by another entry. 1 n 
addition to these fields , each entry also includes display and semantic information , not 
shown here. The table is compiled and linked with the kernel to produce a language­
specific editor. 

'1'Y1'K Off..t - 1. .Max'1'ab~.; 
'1'Y1'K 'f'ah~. - ARRAY [Off.et] ar Kntry; 
'1'Y1'K Kntry -

UCORD 
nam. : S'.l'R.DfG ; 
CASK taq: 宵。deC&t.qory 01' 

Cl....: (~ra: ARRAY [1. • MaxMembe:] 0 1' Off..t): 
'f'.z:minal.: (val.u.: Val.u.'1'ype); 
Hon'1'.~~: (a:ity: Po.lnt; 

COI丐桐on.nt.: ARRAY [l.. a:ity] 惯。tt..t) ; 
Sequence: (.~…nt.: Off..t); 

军富D CASZ: 
IND UCORD; 

Figure 11. Possible record fonnat for a language table 

Consider a generated structure editor for Pascal. Say the user requests that the kernel 
createa a new if node as the first child of a particular + node. The kernel responds as 
follows. It accesses the optype field of the + node. :\.S shown in Figure 12 , this field 
is of type Offset , and gives the table index for the + entry. The kernel accesses this 
ent叮， finds that + is a non-terminal node , and obtains the offset for the descríptor of 
its first child. This offset happens to point to the expression c1ass. The kernel proceeds 
by checking the entry for each offset in its members array until it discovers that none 
of these offsets points to an entry whose name is if. Then the kernel prints an error 
message and does not actually perform the creation. 

'1'YPK .oda -
U CQm) 

optype: Off.et; 
pannt: .odebf: 
chlld.nn: AUAY [1. .a:ity) or 宵。但bf;

DD UCORD; 

Figure 12. Compi/ed imp/ementation of a non-tennina/ node 

Calling this scenario ‘compilation' may seem incorrect , since the tables are in some 
sense interpreted by the kerne l. :\. true compilation system would not generate tables: 
instead , it would generate a language-specific kerne l. There would then be a distinct 
type for each kind of node; examples for the program production and statement class 
are illustrated in Figure 13. 1 n practice. a language-specific kernel could be implemented 
only in a language that supports some form of dynamíc typíng. Otherwíse , it would 
not be possíble to write generic routines for manipulating arbitrary program trees 
containing nodes of many types. 

_.卧~
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TYPB ProqramNode -
RlI:CORD 

par.nt: 阂。deRa~;
name: ldent1~1.rRef; 
conatanta: ARltAy [1. .Ka.x] or Conatantwode: 
t ype a: ARltAy [ 1. . Ka.x ] a. 'l'ypeJIIode: 
var1ab1.a: ARRAY <1. .Ka.x] a. Var1ab1eHode: 
rout1n.a: ARltAY [l.. Ka.x] or Rout1n"ode: 
body: ARltAY [1.. Ka.x] or Stat.aaent翩。de;

END RlI:CORD; 

TYPK Stat_ntHode -
UHIOH 
C~ode， I flIrode , 1fh11..ode , GotoNod. , 

Z自D UHIOH: 

Figure lJ. .飞'ode types for a language-spec扩ìc kemel 

741 

DOSE tailors a language-independent kernel by interpreting the original form of the 
language description. In this case , no translator is needed. Instead , the kernel under­
stands the format used for the language description; this involves slightiy more advanced 
capabilities than understanding the format of tables , but these capabilities are required 
anyway in the translator in order to produce the tables. The difficulty is not one of 
capability , but of performance. 

Interpretation would be intolerably slow if the language description was maintained 
in textual form. The kernel would have to parse the description each time it needed 
to find the relevant information for an editing operation. The alternative is to maintain 
the description in some internal representation that can be speedily accessed. Of course , 
the obvious internal representation is a table , as used in compilation. However , there 
is another original form for language descriptions other than text - an abstract syntax 
tree - and this form does not need to be parsed. :\s already noted , several structure 
editor generators combine their translator with a structure editor specific to the descrip­
tion notation. The user edits descriptions as well as programs in terms of templates , 
and the descriptions are maintained in the same internal representation as are programs. 
In the compilation approach , the translator then translates from this internal represen­
tation to a table. 

In contrast , the DOSE kernel interprets the description directly. Since the descrip­
tion is in the same form as the programs , the kernel already contains all the appropriate 
facilities for traversing and accessing the description. :\ node in the program tree is 
implemented by a pointer to the record shown in Figure 14; this particular record is 
similar to the nonterminal node illustrated in Figure 12 for the compilation approach. 
The only difference is that the type of the optype field is Offset in the compilation case 
whereas NodeRef provides an appropriate internal representation for interpretation. 
This tield points to the record for the production that de t1 nes the node. 

Consider the case where the record in Figure 14 represents a Pascal program template , 
as depicted in Figure 1. Then the optype tield points to the internal representation of 
the program description , whose logical representation is shown in Figure 6. Since the 
program production is i 
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TYPK Node • 
RB:CORD 

optype: 筒。daltaf;
pår~~t: N~~; 
ëhi~dran: ARltAy [1. .arity] or NodeRaf; 

KND UCORD 

Fis;ure /4. lnterpreted implementatioll o[ a 1I0n-tenninal node 

description to determine how it should be used. In the case of a production node , the 
kerne( would know that its first child is the name of the production , the second is the 
aritv and the third child is the list of component descriptions; in the case of a class 
node, the kernel would know the6rst child is the name of the class and the second is 
the list of member descriptions. 

DOSE takes an alternative approach: the optype of every node points to a node , 
whether or not the node is in a program tree or in a description tree. In the case of a 
program tree, the optype points to a node in the corresponding description tree; that 
is, the program template node points to the program production node. In the case of a 
description tree , the optype points to a node in a distinguished description tree , 
which defines the description for descriptions. This description is called the ‘grammar 
grammar'. Thus every tree has a description , including description trees; the grammar 
grammar tree acts as its own description. 

The portion of the grammar grammar for productions and classes is illustrated in 
Figure 15. The production production defines a production node as having three 
children: its name is an identifier , its arity is an integer and its components are a 
sequence of component nodes. Each production node in a language description , such 
as the program production node above , points to the node in the grammar grammar 
tree that represents the production production. 

pr。但cti∞->~: úu叫fkr
arity: ÚI~，.， 

C帽iipOZlant. :旦旦卫星 C钮aponent

co哼onant -> ~abe~: úu叫fkr
.equance: bøolall 
t ype : úU1IlIJkr cl... -> n.-.: úUlI椒'kr

.~-=.:旦旦卫星盼'1UJ，Jfø

Figure 15. Portion o[ the ‘'grammar grammar' 

Since the grammar grammar is its own description , the optype 且elds of the production 
production , the component production , etc. point into their own tree. The production 
production node points to itself , and all the other production nodes point to it as well. 
:\ny classes in the grammar grammar point to the class production node , which in 
turn points to the production production node. Thus , DOSE has three !eve\s of 
interpretation. The kernel manipulates a program node by interpreting the program 
production node; it manipulates the program production node by interpreting the 
production production node; and finally , it manipulates the production production node 
by interpreting the production production node itsel f. 

There seems to be a Aaw here somewhere: an infinite circularity in interpretation. 
It looks as if the kernel would never get any useful work done. DOSE solves this 
problem by hard-coding certain portions of the grammar grammar in order to break 
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the circularit\'. Howe\'er , the full grammar grammar is in fact represented internall飞'
a5 a tree along with all the descriptions and programs. and this rep陀sentation 二
interpreted for most operations. 

\rhen anv ‘ program' tree , including a description , is stored on secondary storage , 

the tree is linearized in the obviolls manner. :\t the beginning of the file is the naine 
and version nllmber of the description for this tree. The optype of each node is stored 
as the name of a prodllction in this description. 叭'hen a program tree is loaded , DOSE 
tìrst looks at the name and version number of its description. 1 f this description tree 
is not already loaded. DOSE invokes the loading routine recursivel\' to load it. For 
eftìciency 、 the grammar grammar tree is automatically reconstructed , rather than 
loaded , each time DOSE begins execution.λs the nodes in the program tree are 且nallv
read from the file. each prodllction name is looked lIP in the description tree and the 
optype field of the program tree node linked to the appropriate description tree node. 

Discussion 

The ad\'antages of interpretation are many , and the disadvantages are few. The 
obvious potential disadvantage is performance , since it seems that interpretation wOllld 
be significantly slo叭'er than compilation. However , this is not necessarily the case. In 
performance comparisons between the langllage description editor compiled using 
:\LOE I6 and the language description editor interpreted by DOSE , there were no 
slgnl且cant differences in response time. Profiles of the two systems showed that both 
spent the majority of their time updating the display after changes and executing the 
routines that perform semantics processing. 

The primary ad\'antage of interpretation is the fast turn-around time \vhile de\'eloping 
an editor. Usin日 DOSE ， the implementor can switch back and forth between editing 
a test program in the target language and editing its langllage description with one or 
two keystrokes. Switching from editing a program to editing a language description is 
apparently instantaneous ，飞vhereas switching in the opposite direction results in a brief 
dela\' for static semantic analvsis. 1 n practice. the delay has rlln from ten seconds to 
thirty seconds. In contrast , the compilation and linking req u. ired by editor generators 
lIsing compilation technology is often a matter of minutes , not seconds. and the 
irnplernentor mllst lea\'e the langllage description editor to in\'oke the prodllced lan­
gllage-叩ecitìc editor. The single DOSE program supports mllltiple editors , whereas 
other l:l1\.ironment generators prodllce separate programs for each editor. 

I\IPLE\IE\TλTIO~ CO~SIDER.\TIO川S

St' n:ral implementation a\'enlles distingllish DOSE from other structure editing pro­
]t'cts. The most signitìcant departure 飞vas the interpreti\'e approach , but se\'eral interest­
ing alternatives were considered for both the formal description and the internal 
representation of program information. 

Syntax description 

DOSE uses an unusllal notation for language description. \lost other systems use a 
form ()f context-free grammar where each production and class, respectively , have 
forms similar to those shown in Figure 16. Each type, indicates the name of another 
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production or class. This style of notation makes it a飞.vkward to detìne optional children 
and sequences , as illustrated by Figure 1 ï. 

product.ionn.me -> typel type2 … type,. 

c1...name -> typel I type2 I ... I typem 

丰Fi1?lIre J 6. Producliωon I川11 Cωιo忖川nle巳.川-/r，俘'ee grα mmar 

product.ionname -> typel type2 option&.lch.i1d .eqt且.nc.name

productionname => typel type2 ..quenc.name 

"⑤且enc.name => .1ementtype .e⑤且.ncename

sequencename => qmpty> 

Figure 17. Sequences and oþlional components 

DOSE extended the typical syntax description to a notation based on IDL , the 
Interface Description Language. 17

-
19 The resulting notation supports names for the 

children of non-terminal nodes , optional children , children that are sequences , and 
enumerated sets of terminals. 1 D L syntax descriptions are more readable and support 
a more concise semantics description , since sibling components with the same type can 
be distinguished by name. The optional children and sequence examples are shown in 
Figure 18 in the notation adopted for DOSE , which was also used for all the earlier 
examples in this paper. This same style of notation was later adopted for the l\lacGnome 
structure editor generator. 20 

product.ionn.me -> name1 : typel 
name2 : type2 
name3 : type3 (option刻)

name.: 皇室立卫星 .1缸Denttyp.

Figure 18. DOSE þrodllctions 

Intemal representation 

.气s eXplained above , the most commonly used internal representation for a structure 
editing environment is the abstract syntax tree. In those systems such as DOSE that 
go beyond basic syntax-directed editing. the tree is augmented with information related 
to semantics processing. This is typically done in one of two ways: at/n"butes or 
im:isible comþonents. 

:\n attribute is simply a name/value pair. Each node has a property list containing 
an arbitrary number of attributes , where each attribute has a unique name. Each 
attnbute is itself an attributed syntax tree described by a syntax description and 
(sometimes) a semantic description. :\ttributes are used by all structure editors whose 
semantics processing is generated from attribute grammars ,2 I for example the Synthes­
izer Generator. and also by some structure editors whose semantics processing are 
hand-coded as special routines. In DOSE , both the allocation of attributes and the 
semantics processing are hand-coded , so attributes are not specified as pa口 of the 
language description as is done for attribute grammars. 

Invisible components work as follows.λs discussed above , each non-terminal node 
has a fixed number of components. :\Iost of these are displayed , in a particular order , 

' 
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叫…t巾h a s叩Pμecωc concrete represen川on. In general , all cornponents that rep时sent the 
abstract syntax of the language are displayed 50 that they rnay be rnanipulated b飞， user 
commands. However , there may be other cornponents 'that are 时\'er displa~叫. The 
user IS not norrnall \' a叭'are of these components，飞vhich usually contain semantic 
IOtormatlon. 

~ver:-~ component , \'isible or invisible. represents a parent-child link between two 
nodes. In a tree. each node is the child in at most one parent-child link. However , 

im'isible components may represent parent-c hild links td nodes that are the child in 
more than one parent-child link. Such línks are called graph links. For example , each 
identifier might ha\'e an invísible component that is the ~ de Ìì. nition site of the identifier. 
This is not a copy of the definition site. but the actual definition site that was 
cons~ructed elsew~ere in the syntax tree. Graph links transform the tree into a general 
graph structu:~._ ~~~h node may ha\'e multipÌe parents and it is possible to construct 
cycles. The IPSE~ p叫ect22 took 川 appro时， where the graph structures are 
specl且~? ?y graph grammars. 23 Graph grammars permit the user t~ e~plicitly construct 
graph links. 

DOSE initia l1 y provided limited support for general graph structures. l'nlike IPSE~ ， 
the graph links in DOSEwere manipulated only during semantics processing and could 
not be directly constructed or deleted by the user.The goal was to support applications 
Other than programming environments , where the application-speci且cinternal represen­
tation was conceptually a net\\'ork rather than purely hierarchica l. The role of display 
information was expanded from simply pro\'iding the concrete syntax and formatting 
information for the display to specifying the subset of the components of a node that 
could be viewed. The new extended ‘ display' formats were used to select subsets of 
the internal representation for semantics processing as 飞vell as for external display. 
Since multiple display formats could be written for each production of the abstract 
syntax , it was possible to detìne different vie 飞，\，s of the graph structure. The processing 
5upport assumed that each 飞 le\v 飞\'as hierarchical , and DOSE did not detect cvclic 
\'ieW5. (\Iore recently , a general theorv of vie飞\'s that 5upports both display and 
5emantics processing has heen Je\'e1 oped.!斗.25)

λctual experience with the graph \'ersion of DOSE demonstrated that the number 
()f graph links \\'a 
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The tìnal ìssue is physical. Separation of attribute information from the basic node 
permits the two kinds of information to be stored independently on disk. This permits , 

for example , the basic abstract syntax tree to be loaded for display without loading all 
of the semantic information stored in attributes. 

Unfortunately , there were some cases in DOSE where attributes could not provide 
all the functionality of the earlier graph links. These links were replaced with symbolic 
references. .-\ symbolic ，旷erence is a relatively fast mechanism for locating a node 
elsewhere in the tree. For example , a symbolic reference might be implemented as a 
key into a table that contains entries for each referenced node. Symbolic references are 
similar in function to the non-Iocal productions of the PoeGen system. 27 

The change from graph links to attributes and symbolic references drastically 
improved the performance and decreased the complexity of many parts of the DOSE 
kernel , including display , tree traversal and the size of the representation for secondary 
storage. It also simplified the job of the implementor of semantic processing routines , 
who no longer had to consider views onto the graph structure. There are only a few 
potential locations for symbolic references , and those are specified as such in the syntax 
description , so checking is handled by the editor kerne l. Attributed trees with symbolic 
references are sufficient for structure editor-based programming environments , but a 
general graph structure may be more appropriate for other applications. ThlS style of 
attributes and symbolic references was later adopted for the ALOE system. 

Termina1 node representation 

Several other changes to the internal representation supported by DOSE are not 
visible to either the user or the implementor of a particular editor. For example , it 
seemed possible to reduce the run-time memory requirements by representing meta­
nodes and terminal nodes in an unusual manner; in most other structure editors, they 
are represented in the same way as non-terminal nodes , as pointers to records. The 
original DOSE implementation instead represented metanodes by nil pointers and 
terminal nodes by their actual values. For example , a terminal node that represented 
an integer was represented by the integer itself rather than bv a record with optype 
and value fields. Since not all components carried their own optype tìelds , it was 
necessa叮 to examine the parent's production to determine 自 rst whether each component 
was a terminal or non-terminal node and secondly , in the case of terminal node , what 
type of terminal node (integer , boolean , string , and so on). This complicated virtually 
everv kernel routine because non-terminal nodes and terminal nodes had to be handled 
differently even when the distinction was not relevant to the normal processing perfor­
med by the routine. Returning to the more common representation of both metanodes 
and terminal nodes as records resulted in a uniform representation of nodes , reduced 
the size of the DOSE kernel substantially , and signi且cantly improved performance. 

ST.-\TUS 

The DOSE System was developed at Siemens Research and Technology Laboratories 
in Princeton , :'\1J beginning in early 1981 and ending in early 1985. Several DOSE 
em甘onments have been developed , including the editor/interpreter for the grammar 
grammar , language-based editors with type checking for C and Pascal , a forms editor, 
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a small database entry/query interface , and an editor/interpreter/debugger for T:\IL , a 
tree manipulation language for wrtt lOg semantics routines for DOSE environments. 
DOSE has been in production use outside the development group since λugust 1985 
to support rapid prototyping of contìguration management languages and tools. DOSE 
has also been used at Carnegie :\Iellon U niversity to de\'elop an environment for 
module interface checking and \'ersion contro l. 28 

DOSE 叭'as originally 叭'fitten in Perq Pascal for the Perq 飞，\'orkstation ‘ tìrst under 
POS (Perq Operating System) and later under 主ccent using two successive window 
managers , Canvas and Sapphire. DOSE was the first structure-editing system to take 
advantage of a bit-mapped dìsplay on a powerful \vorkstation. The Accent/Sapphire 
version consists of approximately 60 ,000 lines of source code. DOSE was ported in 
1986 to C for the Sun workstation under Sun 3.0 . 

. -\CK :-.r O飞，VLEDG E:\IE :-.rTS

In addition to the authors , Larry Engholm , Peter ;'\l' euss , Steve Popovich and Bill 
Smith participated in DOSE's developmen t. DOSE was ported to C/Sun by l\like 
Edge , :\Iikè Platoff and Scott \' orthmann under the supervision of Bob Schwanke. 
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