
A Retrospective on DOSE:
An Interpretive Approach to
Structure Editor Generation

Gail E. Kaiser
Peter H. Feiler*
Fahimeh Jalili+

Johann H. Schlichter

June 1988
(revised December 1988)

CUCS-356-88

Abstract

DOSE is unique among structu.re editor generators in its interpretive appro臼h. This approach
leads to v町y fast turn-around time for changes and provides multi-language facilities for no
additional effort or cost. This article comp缸es the interpretive approach to the comp i1ation
approach of other structu.re editor generators. It describes some of the design and
implementation decisions made and remade during this project and the lessons learned. It
emphasizes 由e advantages and disadvantages of DoSE wi由自S归ct to other structure editing
systems.

Prof. Kaiser is supported in part by grants from AT&T, mM, Siemens and Sun, in part by the
Center of Advanced Technology and by the Center for Telecommunications Re回arch. and in
part by a DEC Faculty Award. The DOSE sys臼m was developed at Siemens Research and
Technology Laboratory in Princeton, NJ. *Carnegie Mellon University, Software Engineering
Institute, 5创)() Forbes Avenue, Pittsburgh, PA 15213. Dr. Feil町 is supported by the Department
of Defense. +AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hil1, NJ 07974. =Xerox
Corporation, Joseph Wi1son Research Center, 8∞ Phillips Road. Webst町， NY 14580.

SOFT飞飞'ARE-PRλCTICE 飞\D EXPERIE :'IJ CE. \'OL 18(8). ï3J-ì48 (:\L'GCS丁 1(188)

A Retrospective on DOSE: An Interpretive
l\pproach to Structure Editor Generation

GAIL E. KAISER
Co/umbia L"ni'l.'ersity , Department 01 ('omputer Scie71ce , 450 Computer Science Rui/di咽，

.飞 ezι:)ork, _飞飞 • J002ï, C.S--\.

PETER H. FEILER
Camegre .\Je/lon L"nit'ersity , 8呐饥:are E71gineen'lIg lnstitute , 5000 For古时 .. h'enue ,

Pittsburgh , P.4. J 521J, C.S--\.

FAHI l\1EH]ALlLI
AT&T Re /l Laboraton'es , 600 .\lou71tain .4.u71ue, .\Jurray Hill, _飞J 07974, CSλ.

AND

]OHANN H. SCHLlCHTER
.飞，'erox Coφοration ，]οseph \\'i/son Research Center, 800 Phi/lips Road, \\￥bster. 入飞 • 14580,

L'.SA.

SU孔但收ARY

DOSE is unique among structure editor generators in its interpretive approach. This approach
leads to very fast turn.around time for changes and provides multi.language facilities for no
additional effort or cost. This article compar臼 the interpretive approach to the compilation
approach of other structure editor generators. It describes some of the design and implementation
decisions made and remade during this proje<:t and the lessons leamed. It emphasiz臼 the
advantages and disadvantages of DOSE with respe<:t to other structure editing systems.

KEY WORDS LJnguagc:-basc:d cditor Programming environment Structure cduor gcncra!lon

INTRODUCTION

The Display Oriented Structure Editor system (DOSE) is a structure editor generator.
Like other structure editor generators , DOSE can be instantiated with a programming
language and a corresponding collection of language.based tools. The result is an
integrated programming environment for the desired programming language. Unlike
other structure editors , the instantiation process involves interpretation rather than
translation technology. This approach supports rapid prototyping and multiple language
capabilities.

0038-0644/88/080733-16$08.00
。 1988 by John Wiley & Sons , Ltd.

Rece Í7.:ed 27 December 1985
Re'Vised 20 .Harch and 10 December 1987

734 G. E. KAISER ET .-\L.

Structure'edütors

:\ stmcture editor is a special kind of editor that is different from a text editor. It
has more in common with a forms editor. The basic idea is a fill-in-the-blanks approach
to program construction and modification. A new Pascal program is constructed as
follows. First , the user asks for a new program template. The structure editor creates
a new template and displays it as shown in Figure 1. The editor provides the keywords ,
punctuation and indentation. The user must supply the missing parts - the actual
content of the program.

program $name
con.t

$constaJú ;
type

$type;
var

$variabk;
$routine ;
beqin

$statemenJ
end.

(input , 趴且tput) ;

Figure J. Template lor a Pascal program

The mlssmg pa口s ， called metanodes , are initially displayed as Scategory. The
categ。可 indicates the set of alternative templates that may replace the metanode. For
example , the Sstatement metanode can be replaced with a while template , an if template ,
a case template , etc. If the user attempts to replace the 6statement metanode with a
template that is not a member of the statement category, then the editor displays an
error message and disallows the replacement. It is not possible for the user to replace
Sstatement with the + template or the template. The structure editor guarantees
that the program is syntactically correct at all times.

Say the user wished to replace the Sname metanode with test , an identi且er for the
name of the program. The user moves the cursor to highlight Sname , using a mouse
or by entering commands similar to the cursor movement commands of text editors.
The important difference is that the cursor always points to a syntactic unit. either a
template or a metanode. It is not possible to position the cursor at an arbitrary
character. Once the cursor is correctly positioned at $name. the user types ‘ test\The
entered text is echoed in the appropriate place on the screen , as in a text editor. The
updated display is shown in Figure 2.

program t..t
con.t

$constaJú ;
type

$type;
var

Sνariabk;

$roun'M;

beqin
$sωJemenJ

end.

Figure 2. I-刊

(input , 。utput) ;

.-\ RETROSPECTI\'E ON DOSE 735

To add a type definition. the user moves the cursor to highlight the $type metanode
and types 'type' (this might be abbre\'iated by the unique pretìx 't') , and the structure
editor adds the type template. The user input is echoed on a command line , as are the
commands in many text editors. .-\Iternatively , the user might select type from a menu
listing only the legal replacements for the current metanode. 1 n either case. the relevant
portion of the updated display is shown in Figure 3. ~otice that the editor automatically
adds a new $lype metanode , so the user can add more types to the program.

type
$name "" $type_definition:
$type:

Figure J. rν

5ay the user does not want to inc\ ude any constant definitions in the program. The
user mo\'es the cursor to highlight the $constanl metanode and types the Delete
command (this might be abbreviated as (ctrl)-d , as in a text editor , or selected from a
menu listing the commands valid in the current context). This has the effect of deleting
the $constanl metanode. The relevant portion of the program is then displayed as
shown in Figure 4-.

proqra皿 t..t (input , output):
<no conatanta>
tvoe

- - $name z $type_definition:
$type:

Fi~ure -1. Deleting the Sconslllnt mela1/lJde

The user can change his mind , and add one or more constants by moving the cursor
to highlight (no constants) and selecting constan t. The structure editor replaces the
empty list of constants with a constant template , as shown in Figure 5.

proqram t.at (input , output):
conat

type

$ fItlI7Ie • $VaJlU:
$constanl:

$ fItlI7Ie • $ ty pe _ <Ujinüiofl :
$type:

Fixure 5. ('reatin!(a constant template

This style of program construction and modification is sometimes called template­
hased editing. .-\11 changes in the program are performed in terms of templates that
represent the structure of the programming language , so the program is always syntact­
ically correct although it may be incomplete. 50me users familiar \vith text editing are
uncomfortable with template-based editing , particularly for expressions. These users
complain about the necessity of entering expressions in prefix form and being unable
to move the editing cursor according to the characters shown on the display rather
than conforming to the hierarchical structure of the program. These problems have
been addressed by several editing systems. I

-
3 These systems use incremental parsing

technology -l-() to provide a text-oriented user interface , but immediately detect and
report syntax errors.

-

ï36 G. E. KAISER ET .1L.

Structure editor generators
The earliest structure editors, for Lisp , were in active use by l965.7Em1lyy

developed in 1969 , was the first structure editor for a block-structured language. \Iany
structure editors for many different languages have been developed in the past ten to
twelve vears. Some of these structure editors were developed for a specific programming
language. In this case , the source code of the structure editor inc1 udes templates and
display information for each construct in the programming language. The Cornell
Prõgrám Synthesizer9 is probably the best known example of a hand-coded structure
editor.

Other structure editors have been generated using a program called a stmcture editor
generator. The Synthesizer Generator 10 and the GandaU ALOE system 11 are two well­
known structure editor generators. The source code of a generator system does not
inc1ude any information about any particular programming language. Instead , it
includes routines that handle the manipulation and display of arbitrary templates. The
implementor generates a structure editor for a particular programming language by
writing a description of the language as a form of context-free grammar. For examp\e ,
the imp\ementor specifies the Pasca\ program temp\ate as shown in Figure 6. The
implementor must describe both the metanodes and the disp\ay of the program template.
The metanodes are defined by giving a production that specifies the categories for the
components of the template. The display information is omitted.

pr句ram a> naz国 Idell咿fer
con.tant.: ..0 of con.tant
type.: 旦旦豆豆豆 type
vari.abl..: ..0 of variabl.
routin..: .~routin.
body: 重重立主! .tat_nt

Figure 6. Descn"þtion o[prog日m template

The program production defines the program template as consisting of six com­
ponents. 飞\"henever the user of the structure editor requests the creation of a program
template , the editor creates a template with these six components. lf the user moves
the editing cursor to highlight the entire program template and gives the Delete
command. the editor destroys the entire template with all its components.

The first component of each program template is called name. The name component
is de t1 ned to be an identifier, a built-in production that de t1 nes a termina l. A tenninal
is a specia\ template that does not have any components: instead. it has a 7.:alue , which
must be entered by the user as characters. The test identi t1er illustrated in Figure 2 is
an example of a termina1. \Iost structure editors provide at least integer, rea/ , string
(single line) and text (multiple lines) as well as identifier (no blanks) as built-in terminal
productions.

The remaining five components of a program are sequences. 豆豆豆豆f category' means
a sequence of one or more templates that are members of the category. where the
category may be either a production name or a c1 ass name. A class specifies a set of
alternative productions. For example. the sixth component is a list of instances of
productions that are members of the statement c1ass , given in Figure i. Any one of
these alternatives can be chosen to replace a Sstatement metanode. When a class appears
as the category for a sequence , the elements of the sequence may be the same or may
be different alternatives.

.-\ RETROSPECTIVE 0 :-.1 DOSE ï3 7

statement ::2 aaaiqn call caa. cαmpound
for qoto if repeat whil. with

Figlire ï. /Jescáptio l/ 01 Si. ;ement c/ass

人 structure editor generator consists of t\\'O separate programs. One program , called
the kemel , pro飞'ides the language-independent manipulation and display routines. The
kernel typically includes a command interpreter. a window manager , an interface to
the file system and the operating system , and so on. The second program is called the
translator. 1t takes as input the description of the language given by the implementor ,

compiles this description into tables , and then links the tahle-s together with the kerne l.
The result is a structure editor for the particular programming language.

DOSE

1n addition to those structure editors that were hand-coded and those that were
generated in the manner described abo、飞 there are also structure editors that have
been developed by instantiating DOSE. DOSE is an ‘ interpreter' structure editor
generator: the generators described above are ‘ compilers\80th require the implementor
to provide a description of the desired programming language. The most important
distinction is that DOSE interprets the description , whereas other structure editor
generators translate the description into some other form. .\ secondarv difference is
that DOSE is a single program , the interpreter (kernel) , whereas other generators
consist of two separate programs: the compiler or translator and the run-time environ­
ment (kernel). 80th differences are illustrated by Figures 8 and 9. The first shows the
compiled approach of a typical structure editor generator 飞，vhen applied to multiple
programming languages: the second illustrates the analogous operatio'n of DOSE.

DOSE is used in a different fashion to other structure editor generators. In the latter
case , the programming language description is de\'eloped in some manner , often using
a special structure editor 叭'here the ‘ programming language' is actually the notation for
descriptions. The description is then input to the translator. The translator t1 rst analyses
the description. checking for static semantic errors such as a production name that is
used but not de t1 ned. If there are no errors , the translator generates tables representing
the description. compiles these tables and links the resulting object code together with
由e kerne l. The output is a structure editor for the desired language. This manufactur­
ing process takes from a few minutes to a few hours , depending on the size and
complexity of the description. If the user wants to change languages. he must exit the
generated structure editor for the t1 rst language and enter the editor for the second
language. or change \vindows on a workstation; there is a separate program for each
language.

1n the case of DOSE. the programming language description is written using
DOSE itself ，飞vhere the 'programming language' is the description notation. The ne飞V
description can then be selected immediately as the current description. resulting in
an editor for the speci t1 ed programming language. .\Iternati\'ely , the new description
can be stored in a t1 1

ï3 8 G. E. KAISER ET .~L.

Figure 8. Compiled structure editor generation

Figure 9. lnterpreted structure editor generation

If the user is currently editing a program and wants to modify its description , the
Grammar command returns to editing the description. The user may edit the descrip­
tion arbitrarily , and then select the Program command to return to editing the program.
If the description is still compatible with the program - for example , no productions
actually used in the program have been deleted - the user can continue editing the
program. The user can switch back and forth between program and description editing
as desired.

If the user wants to change languages , the LoadGrammar command loads the
description for the second language from secondary storage. A few seconds are req山red
for the actual file 110 and for checking for static semantic errors (since DOSE perrnits
users to.store incorrect descriptions). The user can switch back and forth between
editing programs in any of the loaded languages without ever leaving the structure
editor. Up to ten languages , and twenty-five programs in any subset of these languages ,
may be loaded simultaneously , where ten and twenty-five are arbitrarily chosen

A RETROSPECTIVE ON DOSE 739

implementation limits. Since the user must select a specific description when beginning
a new program and every existing program keeps an indication of its description , there
is no ambig山ty if the same name ìs used ìn multiple descriptions. For example , there
may be several descriptions loaded simultaneously that all have an expression class.
The only restriction is that each of the descriptions themselves must have a unique
name , such as Pascal and C.

Rapid prototyping and multi-language capabilities are the primary advantages of
DOSE over structure editor generators. These are discussed in more detail
elsewhere. 12

-
1+ The rest of this article concentrates on the implementation of DOSE

in comparison to other structure editor generators.

STRUCTURE EDITOR IMPLE;\IENTATION

In DOSE , as well as in most other structure editors , the program is represented
internally in the form of a tree , either an abstract syntax tree or a parse tree. An
abstract syntax tree is preferred , since it is more compact; in particular,‘syntactic
sugar' such as keywords and punctuation are not represented explicitly in the tree. 15

Each node in the program tree is implemented by a pointer to a record similar to the
one shown in Figure 10. This pa口icular record is for a non-tenninal node , meaning
that the node has one or more children. The optype (operator type) field refers through
some mechanism to the production that defines the node; this is explained below. The
parent field is a pointer back to the node's parent and the children field is an array of
pointers to its children.

TYPE NodeRaf - PODn"D TO Noda;

TYPE Node -
RKCORD

optype: ...;
par.nt: 宵。debf;
children: ARRAY [1. .arity] or Nodallef;

BND RJ:CORD;

FI~ure 10. Implementat/οn o[a non-temúnal node

The program tree is maintained by the structure editing kerne l. The kernel provides
the primitive capabilities for manipulating and traversing the tree , including routines
to create a new node , destroy a node , insert a copy of an existing node as a particular
child of another node , etc. The kernel also includes routines to move the cursor from
one node to another , following parent-child and child-parent links. The kernel typically
provides powerful travers"al and manipulation routines to support search operations and
program transformations.

Compiløtion

The kernel as described so far is more-or-less the same for both traditional structure
editor generators (compiled) and for DOSE (interpreted). The difference lies in how
the system tailors its kernel to a specific programming language. For compilation , some
description of the programming language is processed by a translator into a table in
the implementation language of the system. Each entry in the table represents all the
information specific to a particular kind of node.

ï40 G. E. KAISER ET .-\L.

For example , the table might be represented by an array of records. One possible
set of fields 'for the entry record is shown in Fígure 11. Here each entry has a stríng
field that gives the name of the production or c1 ass. The other fields are deterrníned
by the appropriate variant , whether the entry represents a c1ass , a terrnínal production ,

a' non-terminal production or a sequence. :\. c1 ass has a number of members , each
described by another entry in the table. A terminal has a value of a particular type ,
such as integer , string or identifier. :\. non-terminal has a fixed number of children ,

where the type of each child is described by another entry; a sequence has an arbitrary
number of elements of the same type , which is represented by another entry. 1 n
addition to these fields , each entry also includes display and semantic information , not
shown here. The table is compiled and linked with the kernel to produce a language­
specific editor.

'1'Y1'K Off..t - 1. .Max'1'ab~.;
'1'Y1'K 'f'ah~. - ARRAY [Off.et] ar Kntry;
'1'Y1'K Kntry -

UCORD
nam. : S'.l'R.DfG ;
CASK taq: 宵。deC&t.qory 01'

Cl....: (~ra: ARRAY [1. • MaxMembe:] 0 1' Off..t):
'f'.z:minal.: (val.u.: Val.u.'1'ype);
Hon'1'.~~: (a:ity: Po.lnt;

COI丐桐on.nt.: ARRAY [l.. a:ity] 惯。tt..t) ;
Sequence: (.~…nt.: Off..t);

军富D CASZ:
IND UCORD;

Figure 11. Possible record fonnat for a language table

Consider a generated structure editor for Pascal. Say the user requests that the kernel
createa a new if node as the first child of a particular + node. The kernel responds as
follows. It accesses the optype field of the + node. :\.S shown in Figure 12 , this field
is of type Offset , and gives the table index for the + entry. The kernel accesses this
ent叮， finds that + is a non-terminal node , and obtains the offset for the descríptor of
its first child. This offset happens to point to the expression c1ass. The kernel proceeds
by checking the entry for each offset in its members array until it discovers that none
of these offsets points to an entry whose name is if. Then the kernel prints an error
message and does not actually perform the creation.

'1'YPK .oda -
U CQm)

optype: Off.et;
pannt: .odebf:
chlld.nn: AUAY [1. .a:ity) or 宵。但bf;

DD UCORD;

Figure 12. Compi/ed imp/ementation of a non-tennina/ node

Calling this scenario ‘compilation' may seem incorrect , since the tables are in some
sense interpreted by the kerne l. :\. true compilation system would not generate tables:
instead , it would generate a language-specific kerne l. There would then be a distinct
type for each kind of node; examples for the program production and statement class
are illustrated in Figure 13. 1 n practice. a language-specific kernel could be implemented
only in a language that supports some form of dynamíc typíng. Otherwíse , it would
not be possíble to write generic routines for manipulating arbitrary program trees
containing nodes of many types.

_.卧~

Interpretation

A RETROSPECTIVE ON DOSE

TYPB ProqramNode -
RlI:CORD

par.nt: 阂。deRa~;
name: ldent1~1.rRef;
conatanta: ARltAy [1. .Ka.x] or Conatantwode:
t ype a: ARltAy [1. . Ka.x] a. 'l'ypeJIIode:
var1ab1.a: ARRAY <1. .Ka.x] a. Var1ab1eHode:
rout1n.a: ARltAY [l.. Ka.x] or Rout1n"ode:
body: ARltAY [1.. Ka.x] or Stat.aaent翩。de;

END RlI:CORD;

TYPK Stat_ntHode -
UHIOH
C~ode， I flIrode , 1fh11..ode , GotoNod. ,

Z自D UHIOH:

Figure lJ. .飞'ode types for a language-spec扩ìc kemel

741

DOSE tailors a language-independent kernel by interpreting the original form of the
language description. In this case , no translator is needed. Instead , the kernel under­
stands the format used for the language description; this involves slightiy more advanced
capabilities than understanding the format of tables , but these capabilities are required
anyway in the translator in order to produce the tables. The difficulty is not one of
capability , but of performance.

Interpretation would be intolerably slow if the language description was maintained
in textual form. The kernel would have to parse the description each time it needed
to find the relevant information for an editing operation. The alternative is to maintain
the description in some internal representation that can be speedily accessed. Of course ,
the obvious internal representation is a table , as used in compilation. However , there
is another original form for language descriptions other than text - an abstract syntax
tree - and this form does not need to be parsed. :\s already noted , several structure
editor generators combine their translator with a structure editor specific to the descrip­
tion notation. The user edits descriptions as well as programs in terms of templates ,
and the descriptions are maintained in the same internal representation as are programs.
In the compilation approach , the translator then translates from this internal represen­
tation to a table.

In contrast , the DOSE kernel interprets the description directly. Since the descrip­
tion is in the same form as the programs , the kernel already contains all the appropriate
facilities for traversing and accessing the description. :\ node in the program tree is
implemented by a pointer to the record shown in Figure 14; this particular record is
similar to the nonterminal node illustrated in Figure 12 for the compilation approach.
The only difference is that the type of the optype field is Offset in the compilation case
whereas NodeRef provides an appropriate internal representation for interpretation.
This tield points to the record for the production that de t1 nes the node.

Consider the case where the record in Figure 14 represents a Pascal program template ,
as depicted in Figure 1. Then the optype tield points to the internal representation of
the program description , whose logical representation is shown in Figure 6. Since the
program production is i

742 G. E. KAISER ET ,4L.

TYPK Node •
RB:CORD

optype: 筒。daltaf;
pår~~t: N~~;
ëhi~dran: ARltAy [1. .arity] or NodeRaf;

KND UCORD

Fis;ure /4. lnterpreted implementatioll o[a 1I0n-tenninal node

description to determine how it should be used. In the case of a production node , the
kerne(would know that its first child is the name of the production , the second is the
aritv and the third child is the list of component descriptions; in the case of a class
node, the kernel would know the6rst child is the name of the class and the second is
the list of member descriptions.

DOSE takes an alternative approach: the optype of every node points to a node ,
whether or not the node is in a program tree or in a description tree. In the case of a
program tree, the optype points to a node in the corresponding description tree; that
is, the program template node points to the program production node. In the case of a
description tree , the optype points to a node in a distinguished description tree ,
which defines the description for descriptions. This description is called the ‘grammar
grammar'. Thus every tree has a description , including description trees; the grammar
grammar tree acts as its own description.

The portion of the grammar grammar for productions and classes is illustrated in
Figure 15. The production production defines a production node as having three
children: its name is an identifier , its arity is an integer and its components are a
sequence of component nodes. Each production node in a language description , such
as the program production node above , points to the node in the grammar grammar
tree that represents the production production.

pr。但cti∞->~: úu叫fkr
arity: ÚI~，.，

C帽iipOZlant. :旦旦卫星 C钮aponent

co哼onant -> ~abe~: úu叫fkr
.equance: bøolall
t ype : úU1IlIJkr cl... -> n.-.: úUlI椒'kr

.~-=.:旦旦卫星盼'1UJ，Jfø

Figure 15. Portion o[the ‘'grammar grammar'

Since the grammar grammar is its own description , the optype 且elds of the production
production , the component production , etc. point into their own tree. The production
production node points to itself , and all the other production nodes point to it as well.
:\ny classes in the grammar grammar point to the class production node , which in
turn points to the production production node. Thus , DOSE has three !eve\s of
interpretation. The kernel manipulates a program node by interpreting the program
production node; it manipulates the program production node by interpreting the
production production node; and finally , it manipulates the production production node
by interpreting the production production node itsel f.

There seems to be a Aaw here somewhere: an infinite circularity in interpretation.
It looks as if the kernel would never get any useful work done. DOSE solves this
problem by hard-coding certain portions of the grammar grammar in order to break

λRETROSPECTI\'E ON DOSE 7+3

the circularit\'. Howe\'er , the full grammar grammar is in fact represented internall飞'
a5 a tree along with all the descriptions and programs. and this rep陀sentation 二
interpreted for most operations.

\rhen anv ‘ program' tree , including a description , is stored on secondary storage ,

the tree is linearized in the obviolls manner. :\t the beginning of the file is the naine
and version nllmber of the description for this tree. The optype of each node is stored
as the name of a prodllction in this description. 叭'hen a program tree is loaded , DOSE
tìrst looks at the name and version number of its description. 1 f this description tree
is not already loaded. DOSE invokes the loading routine recursivel\' to load it. For
eftìciency 、 the grammar grammar tree is automatically reconstructed , rather than
loaded , each time DOSE begins execution.λs the nodes in the program tree are 且nallv
read from the file. each prodllction name is looked lIP in the description tree and the
optype field of the program tree node linked to the appropriate description tree node.

Discussion

The ad\'antages of interpretation are many , and the disadvantages are few. The
obvious potential disadvantage is performance , since it seems that interpretation wOllld
be significantly slo叭'er than compilation. However , this is not necessarily the case. In
performance comparisons between the langllage description editor compiled using
:\LOE I6 and the language description editor interpreted by DOSE , there were no
slgnl且cant differences in response time. Profiles of the two systems showed that both
spent the majority of their time updating the display after changes and executing the
routines that perform semantics processing.

The primary ad\'antage of interpretation is the fast turn-around time \vhile de\'eloping
an editor. Usin日 DOSE ， the implementor can switch back and forth between editing
a test program in the target language and editing its langllage description with one or
two keystrokes. Switching from editing a program to editing a language description is
apparently instantaneous ，飞vhereas switching in the opposite direction results in a brief
dela\' for static semantic analvsis. 1 n practice. the delay has rlln from ten seconds to
thirty seconds. In contrast , the compilation and linking req u. ired by editor generators
lIsing compilation technology is often a matter of minutes , not seconds. and the
irnplernentor mllst lea\'e the langllage description editor to in\'oke the prodllced lan­
gllage-叩ecitìc editor. The single DOSE program supports mllltiple editors , whereas
other l:l1\.ironment generators prodllce separate programs for each editor.

I\IPLE\IE\TλTIO~ CO~SIDER.\TIO川S

St' n:ral implementation a\'enlles distingllish DOSE from other structure editing pro­
]t'cts. The most signitìcant departure 飞vas the interpreti\'e approach , but se\'eral interest­
ing alternatives were considered for both the formal description and the internal
representation of program information.

Syntax description

DOSE uses an unusllal notation for language description. \lost other systems use a
form ()f context-free grammar where each production and class, respectively , have
forms similar to those shown in Figure 16. Each type, indicates the name of another

744 G. E. KAISER ET A.L.

production or class. This style of notation makes it a飞.vkward to detìne optional children
and sequences , as illustrated by Figure 1 ï.

product.ionn.me -> typel type2 … type,.

c1...name -> typel I type2 I ... I typem

丰Fi1?lIre J 6. Producliωon I川11 Cωιo忖川nle巳.川-/r，俘'ee grα mmar

product.ionname -> typel type2 option&.lch.i1d .eqt且.nc.name

productionname => typel type2 ..quenc.name

"⑤且enc.name => .1ementtype .e⑤且.ncename

sequencename => qmpty>

Figure 17. Sequences and oþlional components

DOSE extended the typical syntax description to a notation based on IDL , the
Interface Description Language. 17

-
19 The resulting notation supports names for the

children of non-terminal nodes , optional children , children that are sequences , and
enumerated sets of terminals. 1 D L syntax descriptions are more readable and support
a more concise semantics description , since sibling components with the same type can
be distinguished by name. The optional children and sequence examples are shown in
Figure 18 in the notation adopted for DOSE , which was also used for all the earlier
examples in this paper. This same style of notation was later adopted for the l\lacGnome
structure editor generator. 20

product.ionn.me -> name1 : typel
name2 : type2
name3 : type3 (option刻)

name.: 皇室立卫星 .1缸Denttyp.

Figure 18. DOSE þrodllctions

Intemal representation

.气s eXplained above , the most commonly used internal representation for a structure
editing environment is the abstract syntax tree. In those systems such as DOSE that
go beyond basic syntax-directed editing. the tree is augmented with information related
to semantics processing. This is typically done in one of two ways: at/n"butes or
im:isible comþonents.

:\n attribute is simply a name/value pair. Each node has a property list containing
an arbitrary number of attributes , where each attribute has a unique name. Each
attnbute is itself an attributed syntax tree described by a syntax description and
(sometimes) a semantic description. :\ttributes are used by all structure editors whose
semantics processing is generated from attribute grammars ,2 I for example the Synthes­
izer Generator. and also by some structure editors whose semantics processing are
hand-coded as special routines. In DOSE , both the allocation of attributes and the
semantics processing are hand-coded , so attributes are not specified as pa口 of the
language description as is done for attribute grammars.

Invisible components work as follows.λs discussed above , each non-terminal node
has a fixed number of components. :\Iost of these are displayed , in a particular order ,

'

..\ RETROSPECTI\'E 0:-; DOSE ï~5

叫…t巾h a s叩Pμecωc concrete represen川on. In general , all cornponents that rep时sent the
abstract syntax of the language are displayed 50 that they rnay be rnanipulated b飞， user
commands. However , there may be other cornponents 'that are 时\'er displa~叫. The
user IS not norrnall \' a叭'are of these components，飞vhich usually contain semantic
IOtormatlon.

~ver:-~ component , \'isible or invisible. represents a parent-child link between two
nodes. In a tree. each node is the child in at most one parent-child link. However ,

im'isible components may represent parent-c hild links td nodes that are the child in
more than one parent-child link. Such línks are called graph links. For example , each
identifier might ha\'e an invísible component that is the ~ de Ìì. nition site of the identifier.
This is not a copy of the definition site. but the actual definition site that was
cons~ructed elsew~ere in the syntax tree. Graph links transform the tree into a general
graph structu:~._ ~~~h node may ha\'e multipÌe parents and it is possible to construct
cycles. The IPSE~ p叫ect22 took 川 appro时， where the graph structures are
specl且~? ?y graph grammars. 23 Graph grammars permit the user t~ e~plicitly construct
graph links.

DOSE initia l1 y provided limited support for general graph structures. l'nlike IPSE~ ，
the graph links in DOSEwere manipulated only during semantics processing and could
not be directly constructed or deleted by the user.The goal was to support applications
Other than programming environments , where the application-speci且cinternal represen­
tation was conceptually a net\\'ork rather than purely hierarchica l. The role of display
information was expanded from simply pro\'iding the concrete syntax and formatting
information for the display to specifying the subset of the components of a node that
could be viewed. The new extended ‘ display' formats were used to select subsets of
the internal representation for semantics processing as 飞vell as for external display.
Since multiple display formats could be written for each production of the abstract
syntax , it was possible to detìne different vie 飞，\，s of the graph structure. The processing
5upport assumed that each 飞 le\v 飞\'as hierarchical , and DOSE did not detect cvclic
\'ieW5. (\Iore recently , a general theorv of vie飞\'s that 5upports both display and
5emantics processing has heen Je\'e1 oped.!斗.25)

λctual experience with the graph \'ersion of DOSE demonstrated that the number
()f graph links \\'a

746 G. E. ~\ISER ET .-\L.

The tìnal ìssue is physical. Separation of attribute information from the basic node
permits the two kinds of information to be stored independently on disk. This permits ,

for example , the basic abstract syntax tree to be loaded for display without loading all
of the semantic information stored in attributes.

Unfortunately , there were some cases in DOSE where attributes could not provide
all the functionality of the earlier graph links. These links were replaced with symbolic
references. .-\ symbolic ，旷erence is a relatively fast mechanism for locating a node
elsewhere in the tree. For example , a symbolic reference might be implemented as a
key into a table that contains entries for each referenced node. Symbolic references are
similar in function to the non-Iocal productions of the PoeGen system. 27

The change from graph links to attributes and symbolic references drastically
improved the performance and decreased the complexity of many parts of the DOSE
kernel , including display , tree traversal and the size of the representation for secondary
storage. It also simplified the job of the implementor of semantic processing routines ,
who no longer had to consider views onto the graph structure. There are only a few
potential locations for symbolic references , and those are specified as such in the syntax
description , so checking is handled by the editor kerne l. Attributed trees with symbolic
references are sufficient for structure editor-based programming environments , but a
general graph structure may be more appropriate for other applications. ThlS style of
attributes and symbolic references was later adopted for the ALOE system.

Termina1 node representation

Several other changes to the internal representation supported by DOSE are not
visible to either the user or the implementor of a particular editor. For example , it
seemed possible to reduce the run-time memory requirements by representing meta­
nodes and terminal nodes in an unusual manner; in most other structure editors, they
are represented in the same way as non-terminal nodes , as pointers to records. The
original DOSE implementation instead represented metanodes by nil pointers and
terminal nodes by their actual values. For example , a terminal node that represented
an integer was represented by the integer itself rather than bv a record with optype
and value fields. Since not all components carried their own optype tìelds , it was
necessa叮 to examine the parent's production to determine 自 rst whether each component
was a terminal or non-terminal node and secondly , in the case of terminal node , what
type of terminal node (integer , boolean , string , and so on). This complicated virtually
everv kernel routine because non-terminal nodes and terminal nodes had to be handled
differently even when the distinction was not relevant to the normal processing perfor­
med by the routine. Returning to the more common representation of both metanodes
and terminal nodes as records resulted in a uniform representation of nodes , reduced
the size of the DOSE kernel substantially , and signi且cantly improved performance.

ST.-\TUS

The DOSE System was developed at Siemens Research and Technology Laboratories
in Princeton , :'\1J beginning in early 1981 and ending in early 1985. Several DOSE
em甘onments have been developed , including the editor/interpreter for the grammar
grammar , language-based editors with type checking for C and Pascal , a forms editor,

A RETROSPECTIVE O !'l DOSE ì+ ì

a small database entry/query interface , and an editor/interpreter/debugger for T:\IL , a
tree manipulation language for wrtt lOg semantics routines for DOSE environments.
DOSE has been in production use outside the development group since λugust 1985
to support rapid prototyping of contìguration management languages and tools. DOSE
has also been used at Carnegie :\Iellon U niversity to de\'elop an environment for
module interface checking and \'ersion contro l. 28

DOSE 叭'as originally 叭'fitten in Perq Pascal for the Perq 飞，\'orkstation ‘ tìrst under
POS (Perq Operating System) and later under 主ccent using two successive window
managers , Canvas and Sapphire. DOSE was the first structure-editing system to take
advantage of a bit-mapped dìsplay on a powerful \vorkstation. The Accent/Sapphire
version consists of approximately 60 ,000 lines of source code. DOSE was ported in
1986 to C for the Sun workstation under Sun 3.0 .

. -\CK :-.r O飞，VLEDG E:\IE :-.rTS

In addition to the authors , Larry Engholm , Peter ;'\l' euss , Steve Popovich and Bill
Smith participated in DOSE's developmen t. DOSE was ported to C/Sun by l\like
Edge , :\Iikè Platoff and Scott \' orthmann under the supervision of Bob Schwanke.

REFERE r\ CES

1. \Iark:\. \\'egman , 'Parsing for structura1 editors' , 21st .4 Tl llllal 马'mposium 011 FoulldatÎolls ofComþuter
Sáence , October 1980 , pp. 320--327.

2. J oseph \1. \Iorris and \ !ayer D. Schwartz , 'The design of a 1anguage-oriented editor for b10ck.
structured 1angua日es' ， SIGPI.L飞• SIGo.-\ 乓~'mposÎum 1J1I Texl .\Ialliþlllatio l1, Port1and , OR , June 1981 ,

pp. 28-33.
3. Peter B. Henderson , '\!ore on expression trt:e transformations' , 16仇的ùlcelO Il COI阶rellce OTl !t功r­

ma lÌol/ Sciences (/I/C/ .'ì\'S tems. 1982.
~.巳IrlO Ghezzi and Dino \!andrioh ，‘人lJ日menting parsers to suppon incremcnta1ity' ,]oun!al of the

\('.\1.27 , (3) , 56+-5ï<J (\980).
5. \\'df R. LaLonde and Jim ues Ri \'leres , 'Handling operator preceuence In arithmetic expressio l1s with

tree transformatiom;\.\('.\1 T l'a l1sa('{uJIIS 011 Pmf!rtl 1I/1I/inf! ÚlII.f(IUlges ωId 污μtems. 3 , (1) , 83- 1O~
(\981).

ó. G,lil E. Kalscr anu Elainc Kant , .\ ncremental parsing wi!hou! a parser' , Th t']IJun!lI l (~r Syste川s aml
入:o/fzwre. 3, (2) , 121-1 H (\985).

i. I'c!cr Dcutsch , Pri 、 ate communica!ion , J lI ly 1 明5.
~.飞\dfreu J. 1lansen , 'L'~er engmecnng pnnclples for In!eracti\'e sys!ems' , F lI ll]oml ('IJ川þuter ('UI件r.

1'1/1'1' !'/1Il'1't'dlll f!S, 1 tJï 1.
'1. Tlm T l'\!clbaum Jnu Thomas Reps , 'The Cornell Program S\'ntheS IZt!f: J syntax-JlrecteJ program­

门llng Cll \'l rOnmcnt' , ('WII II/ IIIIICllliIJIIS υ((ht' .\('.\1, 24 , (')), 56J-5ï3 (19地 1).
I(). Th lJmμRcps ,mu Tim Teitelbaum , 'The synth口Izer generator' , ,'ìU ;Sf扩i.SU;/JLL\ 汕J/Ì1 t'll re I:'t 11;111-

('('11 川H 斤\'lI/þoúulII fJlI !'rllclI('lI/ '0ρ ZCllH' [Jt'1 ,t'llJþll/t' 11 (1-.'1I1'/ /1)l/lI/t'l1 (S , Plttsburgh , P人，气 pril \()8~ ，

pp , 41-41l.
门. .\.\, Ilabermann Jnu D ，丁、;otkln ， '(J，lI1ualf: 川ft 飞、'are ue、 elopmcnt en\'ironments' , 11.:r:r: TIω15.

入:u/i!mre 1-:1lf!lIIt't'l1I/f!. SE-12 , (\2) , lI \ï-\\ 2ï (\91l6) ,

12. Pctcr IL Fcdl'r Jnu Gad E , Kal讯~r ， '[)Isplay-urlented s!rllct lJ rc rnanip lJ la!ion in a multi.purposc
心，;!em' ， 11-.'.止~'I-: ('o ll/þ U/t' r 、:OOt' (\.'s "、:t' 1 t'l/ lh !l1 len lCl(/lJl/lI l ('omþuler 均功H'llre ll l/ cl AþρIicatllJl/S (切府r­
t'I/Ct' , Chlcago , 1 L，\川 cmber \ ')Il J , pp. .H~8.

\3. GJd E. Kai比r anJ Peter 11. F cder , 'Gencra!lon of language-unenteu euitors' , Pmf!,ra ll/lI/ it'l1intJ?eblwl!,e l/

II l/d (ìJll/ þiler , B. (J. TC lJ bner , Stuttgart ，气 pnl 191H , pp. 3\-斗5.

14. Petcr H. Feiler , Fahimeh Jallll and Johann H. Sch1ichter , '.气 n interactl\'e prototyping em'ironment
{ υ r language dcsign' , _入\ 川川，川t川tt'el川IIh Ifcυ川J门1饥t'c

VFlift--:11

G. E. KAISER ET .-\L.

ments based on structured editors: the l\1 entor experience\in David R, Barstow , Howard E. Shrobe
and Erik Sandewall (eds) , Interactit'e Programming Ent'ironments , i\lcGraw-Hill Book Co"λI e\\'
York, 1984, pp. 12~140.

16. David .、';otkin ， 'The GA""D:\LF project' , The JOllrnal o[句'stems and So.β'U'are， 5, (巧， 91-105
(1985).

17 , David :\Iex Lamb,‘10 L: 5haring intermediate representations' , .-\c.\1 Transaclio l/s on Pro.f!ramming
Languages and Syslems. 9 , (3). 297-318 (1987).

18. Richard Snodgrass and Karen Shannon,‘Supporting flexible and efficient tool integration\in Reidar
Conradi , Tor ì\1. Didriksen and Dag H. 飞\'anvik (eds) , Lectllre .飞'otes in Compllter Science , \'olume
244: .4dt:anced Programming Em:ironments. Springer- Verlag , Berlin , 1986. pp. 290-313.

19. Peter H. Feiler , 'Relationship between IDL and structure editor technolo酌.'， SIGPL-t.\飞'otices ， 22 ,
(11).87-94 (1987).

20. Ravinder Chandhok , David B. Garlan , Dennis Goldenson , Philip L. :'0，川 ler and :'o,lark Tucker ,
‘Programming environments based on structure editing: the GN01\lE approach' , in :\nthony S.
Wojcik (ed.) , 1985 入'ational Comþuter Con[erence , :\FIPS , Chicago , IL , July 1985. pp. 359-370.

21. Donald E. Knuth , 'Semantics of context-free languages'. .\Iathematical Systems Theory , 2, (2) 127-145
(1968).

22. G. Engels , R. Gall , 1\1. 1\;ag1 and W. Schafer , 'Software specification using graph grammars' ,
Compllting. (31). 317-346 (1983).

23. Hartmut Ehrig. Manfred Nag1 and Grzegorz Rozenberg (eds) , Lecture .飞'otes in Computer Scie nce ,
Vo剖òlωumηle I5J: Graþh Grammars and t仇he创ir .4þpli.比!caωtj，ωon tωo Comþuter Scα1
1984.

24. David Garlan , 'Views for too1s in integrated environments'. PhD Thesis , Carnegie ì\ lellon Cniversity ,
:\Iay 1987 , C1\I C -CS-87 -14 7.

25. David Garlan ，‘飞ïews for too1s in integrated environments', in Reidar Conradi , Tor :\1. Didriksen
and Dag H. \Vanvik (eds). Lecture 入'otes in Comþuter Science, \ 'olume 2 -14: A.dvanced Programming
Ent:ironments , Springer- \'erlag, Berlin 1986 , pp. 31 4-343.

26. A1an Demers , :\nne Rogers and Frank Kenneth Zadeck,‘.-\ttribute propagation by message passing' ,
SIGPL-t.\. '85 Sympasium on Language Issues in Programming 凸It'ironments. Seattle , W,-\, J une
1985 , pp. 4~59.

27. Gregory F. Johnson and Charles !\i. Fischer. ‘l\ion-syntactic attribute flow in language based editors' ,
.\'inth .4nnllal.-\C.\1 Sympasium on Pri时iples o[Programming Lan伊ages ， J anuary 1982 , pp. 1

748

