GAEA Action Equations Paradigm

Gail E. Kaiser
Columbia University
Department of Computer Science
New York, NY 10027

Simon M. Kaplan,
University of Illinois
Department of Computer Science
Urbana, IL 61801

June 1988
(revised December 1988)

CUCS-352-88

Abstract

This technical report consists of two papers describing the GAEA action equations paradigm.
Incremental Dynamic Semantics for Language-based Programming Environments explains why
attribute grammars are not suitable for expressing dynamic semantics and presents action
equations, an extension of attnbute grammars suitable for specifying the static and the dynamic
semantics of programming languages. It describes how action equations can be used to generate
language-based programming environments that incrementally derive static and dynamic
properties as the user modifies and debugs the program. Rapid Prototyping of Concurrent
Programming Languages extends this technology to a concurrent framework. It describes an
(unimplemented) system that generates a parallel interpreter for the language and provides run-
time support for the synchronization primitives and other facilities in the language.

Prof. Kaiser is supported in part by grants from AT&T, IBM, Siemens and Sun, in part by the
Center of Advanced Technology and by the Center for Telecommunications Research, and in
part by a DEC Faculty Award. Prof. Kaplan is supported in part by a grant from AT&T
Corporation,

Incremental Dynamic Semantics for
Language-based Programming Environments

Gail E. Kaiser
Carnegie Mellon University

Abstract

Atutribute grammars are a formal notation for expressing the static semantics of programming
languages — those properties that can be derived from inspection of the program text. Attribute
grammars have become popular as a mechanism for generating language-based programming
environments that incrementally perform symbol resolution, type checking, code generation and
derivation of other static semantic properties as the program is modified. However, attribute
grammars are not suitable for expressing dynamic semantics — those properties that reflect the
history of program execution and/or user interactions with the programming environment. This
article presents action equations, an extension of attribute grammars suitable for specifying the
static and the dynamic semantics of programming languages. It describes how action equations
can be used to generate language-based programming environments that incrementally derive
static and dynamic properties as the user modifies and debugs the program.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding — program
editors; D.2.5 {Software Engineering]: Testing and Debugging — debugging aids; D.2.6
(Software Engineering): Programming Environments; D.3.1 [Programming Languages]:
Formal Definitions and Theory — semantics; D.3.4 [Programming Languages]: Processors —
interpreters, translator writing systems and compiler generators; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Programs — specification
techniques; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages
— operational semantics

General Terms: Algorithms, Design, Experimentation, Languages

Additional Key Words and Phrases: Auribute grammars, dynamic semantics, generation of
language-based environments, interpreters

This research was supported by a Fannie and John Hertz Foundation Fellowship, by the United States
“Army, Software Technology Development Division of CECOM COMM/ADP, Fort Monmouth, NJ and
by ZTI-SOF of Siemens Corporation, Munich, Germany.

Author’s current address: Columbia University, Department of Computer Science, New York, NY
10027.

1. Introduction

This ardcle addresses the processing performed by language-based environments (LBEs).
This processing is performed automatically and incrementally (in the background) as the user
writes and tests his programs. It requires an internal representation that consists of the program
itself plus additional information maintained by the environment during program construction
and execution. This information represents two kinds of semantic properties, static and dynamic.
Static properties are those that can be determined by inspection of the program, while dynamic
properties reflect the interaction between the user and the environment. The implementor of an
LBE describes its processing as derivation and manipulation of these properties. For example,
symbol resolution, type checking and code generation involve static properties, while

interpretation, run-time support and symbolic debugging involve dynamic properties.

Recent research has focused on the generation of LBEs from descriptions. Several
mechanisms have been proposed for specifying the processing performed by the environments,
and the most successful of these have been action routines, attribute grammars and denotational
semantics. Action routines are written as a collection of imperative subroutines. Consequently,
it has proved difficult for an implementor of an environment to anticipate all possible
interactions among these subroutines that may result in adverse behavior. Attribute grammars
are written in a declarative style and the implementor need not be concerned with subtle
interactions because all interactions among semantic equations can be determined automatically.
Attribute grammars have been successfully applied only to the description of static semantics,
and have hitherto seemed unsuited to the description of dynamic semantics. Denotational
semantics is a formal mechanism that provides direct means for defining certain dynamic
properties, notably interpretation. Denotational semantic specifications have not been extended
to other dynamic processing such as interactive debugging nor to incremental detection and

reporting of static semantic errors.

This article proposes an extension to attribute grammars that supports incremental processing
of both static and dynamic semantics. The extended paradigm is called action equations. Action
equations are written in a notation that retains the flavor of attribute grammars but adds an easy
means to express dynamic properties as well as static properties. The extensions to attribute
grammars include attaching particular semantic equations to events that represent user

commands and supporting dependencies among events as well as among attribute values. The

applicative nature of attribute grammars is relaxed, allowing attributes to be treated as variables
and permitting modification in addition to replacement for changing the values of attributes.
Together, these extensions are sufficient to support incremental processing of dynamic

semantics.

2. Generation of Language-Based Environments

LBEs are an alternative to the traditional tools used by programmers to edit, compile and
debug their programs. The key components of an LBE are a standard user interface and a
common program representation. Many programming environments have been built using
structure editing technology, which supports both of these features. The user interface consists
of some mixture of template editing and text editing (supported by incremental
parsing [23, 35, 63]); the program is represented as a parse tree or abstract syntax tree, where
each node may be decorated with attributes. Some of the best known LBEs are Mentor [11],
Interlisp [60], the Program Synthesizer [59], Gandalf [24], Pecan [50], and Rational [2]. Each of
these environments consists of an integrated collection of tools that (1) can be viewed as a single
tool [7] and (2) may be applied incrementally as the programmer writes and tests his programs.
In some cases, the tools are automatically applied without explicit intervention by the
programmer. For example, type checking and symbol resolution may be performed
automatically as the program is created and modified; code generaton and some code

optimization may also be done incrementally.

The early LBEs were hand-coded. Then several environment generators were developed,
including ALOE [45], Metal [12] and the Synthesizer Generator [53]. An environment
generator is a program that combines an environment description with the editor kernel to
produce the desired LBE. The editor kerne! provides the facilities common to all environments,
such as window management and language-independent tree manipulation commands, while the
environmens description includes all the information specific to the desired programming
environment. The person who writes the environment description is called the implementor of

the environment while a person who uses the environment to write his programs is called a user.

An environment description has two components, the syntax description and the semantics
description. The syntax description includes the abstract syntax of the programming language

and the user interface (or concrete syntax) for the language. This information is normally

provided as some form of context-free grammar, A syntax description alone is sufficient as an
environment description if no semantics processing is required. An environment generator can
combine the syntax description with the editor kernel to produce a pure syntax-directed editor

that supports program editing and enforces correct syntax.

2.1. Semantics Description

The semantics description specifies all the processing performed by the environment, i.e.,
everything the environment does that is not among the standard facilities provided by the editor
kernel. Although an LBE is a single tool, the semantics processing of an LBE is performed by
what is conceptually a collection of tools and tool fragments that are knowledgeable about the
particular programming language. The collection can be subdivided into tools that handle static

semantics and tools that handle dynamic semantics.

The static semantics of a program involve those properties that, by definition, cannot change
during its execution. The static properties of a conventional, lexically scoped programming
language include symbol resolution, type identification and the object code generated for the
program. For example, the set of identifiers defined in a particular program, the mapping
between identifier uses and identifier definitions, and the types assigned to particular identifiers

and expressions are all in the realm of static semantics.

Consider the program fragment in figure 2-1. The program states that the variable a is
declared to be of type integer, but the program also states that the variable a constitutes the
conditonal expression of the if statement. The static semantics of this programming language
require that a variable has the same type over its lifetime and that the condition expression of
every if statement is of type boolean. Thus there is a static semantic error in the program. A

programming environment that included a type checking tool would warn the user of this error.

VAR a: integer:;
Ir a THEN

ELSE

Figure 2-1: Type Checking Example

If the tool were incremental, it would warn the user as soon as the error could be detected. If

the user had first entered that the type of a is integer, and later used a as the conditional
expression for the if statement, then the error would be detected and reported immediately after
the user entered the conditional expression. If the user had instead added a to the list of
variables, without indicating its type, then used a as the conditional expression, and finally
returned to the variables list to state that a is an integer, then the error would be caught

immediately after the user entered this type information.

The dynamic semantics of a program involves the derivation and manipulation of those
properties that may change during the execution of the program. The dynamic properties of a
conventional language include the assignment of values to particular storage locations and the
maintenance of the current focus of execution behavior (i.e., the program counter). The area of

dynamic semantics includes run-time support and symbolic debuggers as well as interpreters.

The same programming environment sketched above might include an interpreter as well as
the type checking tool. The job of the interpreter is to directly execute programming language
statements. The interpreter does not need to perform type checking or other static semantics
processing, since these functions are handled by other tools. The interpreter performs the

activities that the program fragment is defined to do according to the dynamic semantics of the
programming language.

Consider the corrected program fragment in figure 2-2. The interpreter would begin execution
of the if statement by getting the current value of the a variable from the store (which binds
variable locations to values). If a does not have a value, this would be reported to the user as an
error (or the environment could ask the user to enter a value). If a does have a value, the
interpreter would then check whether it is ‘true’ or ‘false’. If true, the interpreter would execute

the then statement; if false, it would execute the else statement.

VAR a: boolean:
Ir¥ a THEN

ELSE

Figure 2-2: Interpretation Example

This behavior does not depend on whether the interpreter tool is incremental or non-

incremental. By analogy to the type checking tool, an ‘incremental’ interpreter might follow
along behind the user, executing the program as it is typed, as in VisiProg [25]. Instead, we
think of an ‘incremental’ interpreter as one that permits the user to select, for example, the then
part of the if, the entire if statement, or an arbitrary program unit, and give a command to
interpret that unit. In a non-incremental environment, the user would have no choice but to

commence execution of the program at the beginning.

Specifying static and dynamic semantics is very complex. In contrast to the syntax
description, there is no commonly accepted paradigm for the semantics descripdon of a
programming environment. There are two major schools that support different methods of
specifying the semantics processing of an LBE: action routines and attribute grammars. Both
methods support interactive semantics processing, i.e., the integrated, incremental, non-
sequential, structure-oriented computing style described by Notkin in his thesis [46]. Such
interaction with the user is an essential requirement for modern programming environments. A
third major school — denotational semantics — disagrees with this claim, and supports another
method of specifying semantics processing for non-incremental, sequential programming
environments. These three methods are briefly described here and are explained in detail in the

references.

The first school uses action rousines, which were proposed by Medina-Mora in his thesis [45]
for use in LBEs [18, 24]). Action routines are based on the semantic routines used in compiler
generation systems such as Yacc [31]. The semantics processing is written as a set of routines in
either a conventional programming language or in a special purpose programming language
designed for writing action routines [1]. A set of routines is associated with each production in
the abstract syntax, one for each user command (such as Create, Delete, Enter, Exit, Execute,
etc.) that can be applied to an instance of that production. The corresponding routine is
automatically invoked by the editor kernel when an editing command is applied to a node in the

syntax tree representing the program.

The second major group uses attribute grammars, which were introduced by Knuth [43] for
specifying the context-sensitive properties of programming languages. Attribute grammars are
an alternative to semantic routines in compiler-compilers [14, 20]. The generation of LBEs from
attribute grammars [32, 53] was proposed by Demers, Reps and Teitelbaum [8]. The semantics

of the programming language are written as (1) a set of attribute declarations associated with

each symbol; and (2) a collection of semantic equations — each associated with a particular
production — that define the values of the attributes of the symbols on the productdon’s left and
right hand sides. The values of the attributes are determined by evaluating all the semantic
equations as a set of simultaneous equations. During program editing, an incremental
algorithm (33, 52] automatically reevaluates those attributes whose values may have changed as

the result of a subtree replacement (editing operation).

The third school uses denorarional semantics, originally promoted by Scott and Strachey
[55] for formal reasoning about programs. The semantics of the programming language are
written as a set of formal definitions — associated with each production in the abstract syntax —
that specify the denotation of each language construct in terms of the environment (which binds
variable identifiers to locations), the store, and the denotations of other productions. Several
research groups have applied denotational specifications to generation of compilers [6, 48, 49)
and interpreters [5], but none of these systems are effective in an incremental programming
environment. However, Johnson has recently developed an incremental interpreter/debugger for

GL [34], an expressional language based on denotational semantics.

Other methods have been proposed (e.g., [3, 10, 13, 51]), but none fulfill all the requirements

of an LBE. The basic problems are:

e The design, implementation and debugging of action routines, or any other
procedural mechanism, is tedious and error-prone compared to the ease with which a

syntax description can be developed.

e The capabilites of attribute grammars, denotational specifications and the various
other declarative methods are generally limited to a relatively small subset of the
processing performed by modern programming environments.

This article describes a new method, action equations, that augments attribute grammars with
mechanisms taken from action routines. The ‘action’ of action equations comes from association
of user commands (or actions) with action routines, while the ‘equations’ comes from the
semantic equations of attribute grammars. Action equations achieve a synthesis with most of the
advantages of both paradigms but few of their disadvantages. Action equations were originally
presented in the author’s thesis (36], and additional details can be found there.

2.2. Overview of Action Equations

Attribute grammars are not suitable for the description of dynamic semantics because of the
inherently static nature of their attributes. The value of each artribute is equated to a specified
function of the program text and other attributes. It cannot depend in any way on the history of
modifications to the program text or of the execution of the program. By definition, attribute

grammars are inappropriate for expressing dynamic semantics.

The primary contribution of the action equations paradigm is that it supports the expression of
history or dynamic properties in a style based on attribute grammars. This is done by embedding
rules similar in form to semantic equations in an event-driven architecture. Events correspond to
user commands and activate their attached equations in the same sense that, in the action routines
paradigm, commands trigger the associated action routines. The editor kemnel orders the
evaluation of active equations according to the commands invoked by the user and the
dependencies among attributes and events as defined by the equations. Equations that apply at

all tmes are not attached to particular events and these correspond exactly to the semantic

equations of attribute grammars.

Those action equations attached to events, however, should not be confused with semantic
equations. Attribute grammars are applicative: an attribute is a variable in the sense of algebra’s
simultaneous equations but not in the sense of conventonal programming languages. An
attribute is reevaluated only when the program is modified, and then the semantic equation

replaces the old value with an entirely new value.

These restrictions are relaxed for action equadons, as follows. First, an equation may be
reevaluated due to the selection of an event, so an attribute may be reassigned many times even
though the program has not changed. Second, an equation is permitted to define the new value
of the attribute as a modification of its previous value in the case of aggregate (or composite)
values, such as the symbol table and the run-time stack. This second extension to pure attribute
grammars has recently appeared in several ‘attribute grammar’ systems [26, 54]. Together, these
side-effects and the added dimension of events make it possible for action equations to support
the expression of dynamic semantics in a style similar to how attribute grammars support the

expression of static semantics.

3. Description of Dynamic Semantics

3.1. Action Equations

goal symbol ::= component, : type,
component : type,
/* A production consists of a non-terminal goal symbol, followed by "::=",

followed by a list of components. A component is defined by a name, followed
by ":", followed by its type. */

Figure 3-1: Production

Action equations are associated with particular productions in the syntax description in the
same manner as the semantic equations of attribute grammars. The productions define the
composition of the non-terminal nodes in the syntax tree representing the program. Figure 3-1
illustrates the context-free grammar notation adopted for action equations. This notation is based
on the Interface Description Language {44, 58] (IDL) developed as part of the Ada
implementation effort, and has been used previously in DOSE [39], an interpretive LBE
generation system. Only the abstract syntax is shown; the concrete syntax, or ‘syntactc sugar’,
is omitted throughout this article. This syntax description notation is not in any way integral to
action equations, and any other context-free grammar notation could be substituted — the only

difficulty might be a less readable semantics description.

A non-terminal goal symbol is associated with a list of components, where each component
has a name and a type. The same symbol may appear as the goal of multiple productons,
indicating several alternative derivatons; for example, a STATEMENT may be an if statment, a
while statement, a compound statement, etc. The type of a component may be a non-terminal
symbol, a terminal symbol or a sequence. Terminal symbols correspond to the primitive types of
conventional programming languages. The set of terminal symbols available is specific to the
implementation of the environment generation system, but would typically include identfier,
integer, real, boolean, string and text. The sequence constructor is in contrast to the tail recursive
method of defining lists using non-terminal, terminal and empty symbols. In each case, the

sequence definition-includes the element type.

In additdon to alternative sets of components, a group of attributes and events may be

goal symbol ({ lttributclz type,;

attributem: type
event,, ..., evantp }

/* Tha attributes and events associated with the goal symbol are declared
between braces "(}". */

Figure 3-2: Atribute and Event Declarations
associated with each goal symbol as depicted in figure 3-2. Each node defined by this symbol is
decorated with this set of attributes, which represent the current values of its properties; the
events are attached to action equations that manipulate these properties. Attributes are typed in
the same manner as components, where the type is given as a non-terminal symbol, a terminal

symbol or a sequence.

production
equation,

equation

Figure 3-3: Acton Equations

The action equations associated with a particular production describe the semantics processing
for each node that is an instance of the production. A production and its action equations are
depicted in figure 3-3. As in attribute grammars, the order equation,, ..., equation, shown does
not imply any sequencing among these equations, or that they should be evaluated in this or any

other particular order.

location := function(attributes and terminals)

Figure 3-4: Assignment/Constraint Equation

There are five kinds of action equations: assignments, conditionals, constraints, delays and
propagates. The assignment and constraint equations both have the form shown in figure 3-4,
and the distinction is due to whether or not the equation is attached to an event. Assignments are,
by definition, attached to events while constraints, by definiton, are not; this is explained in the

next section. For both, the right hand side denotes some function of attribute values and terminal

10

node values; these values are called the arguments or inputs of the equation. The value
computed by this function, called the result or outpur, is placed in the location given on the left
hand side of the equation. The location is typically the name of an attribute, in which case the

equation is identical in form to the semantic equation of attribute grammars.

The location may also be given as an address expression applied to an attribute name. This
permits the modification of a previously calculated atiribute value. This divergence from the
attribute grammar paradigm has a significant implication: Attribute modification, together with
events, make it possible for an attribute to reflect the history of program modification and/or
execution. Otherwise, each attribute would of necessity be derived solely from the program text

as explained previously.

The third alternative is for the location to be an address expression applied to a node in the
syntax tree. Thus, the equation directly modifies the program as seen by the user, which is not
possible in the pure attribute grammar paradigm. It might be argued that modification of the
program by the environment should never be possible, on the grounds of the ‘principle of least
astonishment’. This argument assumes the programmer does not expect the programming
environment to change his program, but exactly the opposite is true in transformational
programming environments, formal [4, 19, 47, 57] or informal [62]. There is no reason the
programmer should expect less from an LBE; in particular, manipulation of the program text by

action equations is one mechanism for implementing transformations.

If expression
Then equation(s)
Else equation(s)

Figure 3-§: Conditional Equation

The conditional equation consists of an expression and two sets of equations, as depicted in
figure 3-5. The conditional equation specifies that when the expression is true, the first set of
equations must hold; when the expression is false, the (optional) second set is applicable. All

'conditional equations can be expressed instead by permitting conditional expressions within
other kinds of equations, and are thus only convenient syntactic sugar that provide no new

meaning.

11

3.2. Events

The propagate and delay equations, as well as the distinction between assignments and
constraints, requires a discussion of events. Events correspond roughly to user commands.
There are two kinds of events, standard events and implementor-defined events. Each standard

evenr coincides with a primitive operation accessible to the user, including at least:

Create Replace the current placeholder with a newly created instance of a specified
language construct.

Delete Remove the subtree rooted at the current node from the syntax tree and
replace it with a placeholder.

Clip Save a copy of the current subtree in a register.

Insert Replace the current placeholder with a copy of a previously clipped subtree.

Enter Move the editing cursor to a specified child of the current node.

Exit Move the editing cursor to the parent of the current node.

The same set of standard events may appear in the semantic description of every environment
just as the same set of standard commands are available in every environment. In contrast, an
implementor-defined event is an identifier introduced by the implementor for a particular
environment. An implementor-defined event corresponds to a user command available only in

the specific environment, such as Execute or CrossReference a Pascal program.

production
equation,
;éixntionn
event, -->
equation, ,

.q\'utionl'_

event_ -->
oquationp’ 1
oquationpl q

/* When equations are attached to an event, the event name is given first,
followed by "-->", followed by the equations written in arbitrary order. */

Figure 3-6: Attaching Equations to Events

12

Each action equation associated with a particular production may or may not be attached 1o a
particular event. Some action equations associated with a particular production may be attached
to one particular event, other action equations associated with the same production may be
artached to a different event, and still other equations may not be attached to any event at all.
Figure 3-6 illustrates a number of equations associated with the same production: equation;
through equation , are not attached to any event, equation,; ; through equation, m are attached to

event,, and so on, through equationp'I through equationp'q attached to event,,

goal symbol ::= componant,: type
component : type

event, On component, -->
equations

event, On component, -->
equations

event,K On component -->
equations

/* When the "On" keyword appears, the inherited event is associated with the
named componant; otherwise, the synthesized event is associated with the goal
symbol of the production. */

Figure 3-7: Inherited Events and Equations

The semantic equations of attribute grammars may define the value of an attribute associated
either with a component of the production (the corresponding attribute is inherited) or with its
goal symbol (the attribute is synthesized). Events are similarly inherited or synthesized. The
events shown in figure 3-6 are associated with the goal of the production, and thus synthesized.
An inherited event, with its attached equations, is associated with a component name as shown in
figure 3-7. In this case, the event name must be declared for each goal symbol that is a legal
type for the component. Unlike the attributes of attribute grammars, the same event may appear
in both productions defining a node and thus may be both inherited and synthesized. Further, the
same event may be inherited multiply with respect to the same production, due to multiple
associations of the same event with incidentally the same clement of a sequence (for example,

"event, On component,[i] -->" and "event, On component[j] -->" where the ith element is also

13

the jth). The multple sets of equations attached to the event are concatenated, as if they had not

been associated with different productions and/or different component descriptions.

Action equations that are not attached to a particular event fill the same role as the semantic
equations of attribute grammars in the sense that they may be reevaluated when the program
changes. It does not matter which particular user command caused the program modification,
since all are treated as subtree replacements. These equations are said to be permanently active.
In contrast, the collection of action equations attached to a particular event are active only when
the event is explicitly selected by a user command or explicitly propagated by a propagate
equation, explained shortly. These equations are passive at all other times. Only active
equations may be evaluated, and an equation activiated by an event immediately becomes
passive again after its evaluation. The collection of action equations attached to an event
describe the semantics processing, or tool operation, for the user command that corresponds to

the event.

An assignment equation is attached to an event. When activated by selection of the event, it
computes the value denoted by its right hand side and assigns this output to the location on its
left hand side. A constraint equation cannot be attached to an event. Whenever an input to its
right hand side changes in value, it updates the location on its left hand side to maintain the
equality. The distinction is necessary because constraints must always hold, as invariants, while
assignments are evaluated exactly once when activated. Constraints are typically reevaluated in
response to subtree replacements, but may also be reevaluated when an assignment changes the

value of an input to a constraint.

Propagate event To destination

Figure 3-8: Propagate Equation

The user explicitly selects an event by moving the editing cursor to the node and entering the
command corresponding to the desired event. Propagation of events from one node to another is
done with a propagate equation, as depicted in figure 3-8. When activated, the equation
propagates the given event to the indicated destination node. This has the effect of activating
certain equations as-sociated with the production that defines the destination node, in particular,

all those equations attached to the named event; if this set is empty, then no new equations are

14

activated. As with the arguments of semantic equations in attribute grammars, the destination is
normally restricted to the children, siblings, parent and other ancestors (reached through uplevel
addressing (42]). However, it is also possible to propagate from an identifier definition to its

use(s) or from a use to its definition(s), as described in the next section.

Delay Until event At receiver

Figure 3-9: Delay Equation

The final kind of action equation is the delay equation, which has the form shown in figure
3-9. When activated, a delay equation suspends all currently active equations until the named
event is selected for the indicated receiver node. Like the destinaton node of the propagate
equation, the receiver node is restricted to the parent, ancestors, siblings and children of the
current node. When the event is selected with respect to the receiver node, the previously
suspended equations are reactivated. The event may be selected either by a user command or by
a propagate equation resulting from a user command. In the latter case, the previously
suspended and now activated equations are in addition to any equations that may be active at the
time of the event. The receiver node of a delay equation is optional; if omitted, then the delay

equation refers to the selection of the named event when the editing cursor is at any node.

When a group of equations are attached to the same event, both as synthesized and inherited,
there is a specific ordering among the different kinds of equations. In particular, any delay
equations are evaluated first and, in effect, simultaneously. Thus all other equations attached to
the same event are suspended by the delay equation(s); if there are multiple delays, then all the
named events must be selected for their receivers to reactivate the suspended equations. If there
are no delay equations, then any assignments and conditionals attached to the event are evaluated
in any order (except as noted below) consistent with the dependencies among inputs and outputs
of the assignments and the inputs of the expression parts of the conditionals. Any constraints,
and conditonals not attached to the event, whose inputs are among the outputs of these
assignments are also evaluated if and only if the outputs are different than their previous values.
Any propagate equations are evaluated last; any equations activated by these equations are, in

effect, activated simultaneously.

This ordering among action equations is complicated by the conditional equation. Neither the

15

then part nor the else part equations are themselves activated until after the expression has been
evaluated, as soon as possible consistent with the partial ordering described above: an alternative
semantics would evaluate these expressions as late as possible, but some such restriction is
necessary to avoid non-deterministic behavior. After the value of the expression has been
determined, then the appropriate set of equations are simultaneously activated, and the above

rule applies regarding the previously active equations as well as the newly activated equations.

The main components of action equations paradigm have now been introduced. Section 4
describes the application of action equations to the description of programming language control
constructs such as conditional statements, loops and procedure calls. Section S considers
interactive execution of programs, including stream input/output and some typical features of
symbolic debuggers. Section 6 discusses the translation and run-time support algorithms for

generation of LBEs from action equations.
4. Description of Control Structures

4.1. Flow of Control

if { Executae, Continue)}

if ::= condition: EXPRESSION
thenpart: STATEMENT

Exacute -->
Propagate Exacute To condition

Continue On condition -->
If condition.value
Then Propagate Execute To thenpart
Else Propagate Continue To self

/* The if symbol declares two events, Execute and Continue. The if production
defines two components, condition and thenpart. EXPRESSION and STATEMENT are
each dafined by several alternative productions, not shown.
"Component .attribute’ accesses the named attribute of the named component.
Self always indicates the node representing the goal of the associated
production, in this case the if node, as opposed to one of its components or
attributes. */

"Figure 4-1: If Statement Syntax and Semantics
Figure 4-1 demonstrates the use of implementor-defined events and propagation of events in a

simple description of interpretation. The implementor defines the Execute event to specify the

16

execution of an if statement. When the Execute event is applied to an instance of the if
production, the propagate equation selects the Execute event for the condition child of the if
node. After any semantics processing involving the condition node are completed (including for
example the setting of its value attribute), then the condition child propagates the Continue event
to itself (the condition child). This Continue event activates the conditional equation. If the
value of the value atribute is true, the Execute event is propagated to the thenpart child. If not,
the if statement has completed execution, and the Continue event is propagated to itself (the if
statement). Thus, the implementor-defined Continue event fills the role of the continuation of

denotational semantics.

{ value: boolean
Execute, Continue }

= ::= operandl: EXPRESSION
operand2: EXPRESSION

Exacute -->
Propagate Execute To operandl

Continue On operandl -->
Propagate Execute To operand2

Continue On operand2 -->
Propagate Continue To self

Continue -->
value := (operandl.value == operand2.value)

/* Value is an attribute of the = symbol — as well as every othaer EXPRESSION
symbol. Terminal symbols such as boolean are given in itlics. */

Figure 4-2: Action Equations for = Production

Events and equations for one conditional expression, the = production, are shown in figure 4-2.
When the Execute event is propagated to the = operator, the two operands are computed in order
and then the value attribute of the = node is set to the result of comparing the two operands.
Calculation of expression values does not, however, necessarily require this rather cumbersome
action equations apparatus. Purely applicative expressions are handled in a natural way by pure
attribute grammars, as demonstrated by Reps’ and Teitelbaum’s desk calculator [53], so this is
not discussed further in this article. Expressions involving (potentally recursive) function calls

and (multiple assignment) variables require a run-time stack, as discussed later in this section.

17

compound ::= body: sequence of STATEMENT

Exacute -->
Propagate Execute To body[l]

Continue On body[any] -->
Propagate Execute To body[next]

Continue On body(last] -->
Propagate Continue To self

/* The event declarations are omitted, as they are in further examples. The
sequence type is indicated in ilalics. "Component[N]" refers to the Nth element
of the sequence component; "Component([any]" refers to any element of the
sequence. Next accesses the alemant following the current one, if any, while
last refers to the last element of the sequence. */

Figure 4-3: Compound Statement Syntax and Semantics

Figure 4-3 illustrates how event propagation works for a compound statement (i.e., a
sequencer). The basic idea is that the Execute event propagates from the compound statement to
the first statement in the body of the compound statement, from the first statement to the next
statement in the body, efc. In the case of the last statement where multiple inherited events
"Continue On body[any]" and "Continue On body[last]" both apply, both attached equations are
executed. But "Propagate Execute To body[next]" has no effect since body[next] evaluates to

nil.

compound ::= body: sequence of STATEMENT

Exacute -->
If body = nil
Then Propagate Continue To self
Else Propagate Execute To body(l)

Continue On body(any) -->
Propagate Execute To body(next]

Continue On body(last] -->
Propagate Continue To self

Figure 4-4: Compound Statement Syntax and Semantics, Revised

This discussion of the compound statement, and the previous example involving the
conditional statement and = operator, have been simplified in that they do not consider the

possibility that the body of the compound statement is empty, the conditon and/or the thenpart

18

of the conditional statement is missing, or one or both operands of the = operator are meerly
placeholders, respectively. The analogous issue arises in the semantic equations of attribute
grammars, and is solved there by requiring the implementor to provide completing productions,
which define the value of the attributes for every potential placeholder. Action equations also
take this approach, and the implementor must explicitly treat the possibility of empty sequences
and missing components. The compound statement example is revised accordingly in figure 4-4,
where nil denotes an empty sequence; the rest of the examples in this article could be completed

similarly, but this is not done to keep the examples simple.

goto ::= label: identifier

Execute -->
Propagate Execute To €label.dafsite

labeled ::= label: identifier
body: STATEMENT

Execute -->
Propagate Execute To body

/* The "Q" operator dareferences the defsite attribute of the label component
to access the actual definition node elsewhere in the syntax tree. */

Figure 4-5: Goto Statement Syntax and Semantics

In order to describe the semantics of branch statements, some mechanism is needed to find the
destination of the branch. This is done through identifier definition-use links. Several
extensions to attribute grammars have been proposed (9, 27, 28] that improve the 7efﬁcicncy of
incremental attribute evaluation by linking the definitions and uses for each identifier. A change
in an attribute value at a definition site is propagated along the links to dependent attributes at its
use sites. Any one of these schemes can be used as the basis for propagating an event from the

goto statement to the corresponding labeled statement as depicted in figure 4-5.

Figure 4-6 shows how the operaton of a general loop statement is described using action
equations. In this example, the initalizaton is performed first. Then the condition is tested. If
true, the body of the loop is executed. Now reinitializaton, condition testing and the body are

repeated until the condition becomes false.

Notice that the propagate equations in this example denote a circular dependency. The

19

loop ::= initialization: STATEZMENT
condition: EXPRESSION
body: STATEMENT
reinitialization: STATEMENT

Execute -->
Propagate Execute To initialization

Continue On initialization, reinitialization -->
Propagate Execute To condition

Continue On condition -->
If condition.value
Then Propagate Execute To body
Else Propagate Continue To self

Execute On body -->
Propagate Execute To reinitialization

/* Multiple components (initialiration and reinitialization) for inherited
events is introduced as shorthand, meaning the event is selacted at either
noda.*/

Figure 4-6: Loop Statement Syntax and Semantics
condition propagates to the body, the body propagates to the reinitialization and the
reinitialization propagates to the conditon. Although circular attribute grammars are
problematical for non-incremental evaluation [15] and rarely handled by incremental evaluators
(work by Walz and Johnson is a notable exception [61]), circularities among propagate equations
pose no difficulties. If the user of a generated environment writes an infinite loop, then the
propagation never terminates, to preserve correct dynamic semantics processing; if the loop does

terminate, then the propagation terminates accordingly.

4.2. Procedure Call and Return

A likely syntax description for a procedure definiton, with its formal parameters and local
variables, 1s shown in figure 4-7. The Execute event and attached equations for the procedure
production are omitted, since they are essentially identical to those for the compound statement.
The procedure symbol has an AR artribute that acts as a template for the procedure’s activation
record during execution. Frame is a non-terminal symbol, where the details of any particular
frame node are computed by constraints just as is done by attribute grammars. For example, the
size (in bits, bytes or words) of each formal and local might be computed from its type and then

its offset within the activadon record determined by the cumulative size (and required

20

procedure (AR: frame)}

procedure ::= name: identifier
formals: sequence of vardef
locals: sequence of vardef
body: sequence of STATEMENT

vardef { offset: imeger
size: integer }

vardef ::= 1id: ideniifier
type: TYPE

/* STATEMENT and TYPE are each defined by several alternative productions, not
shown. */

Figure 4-7: Procedure Definition Syntax
alignments). This would require each implementor to define a suitable representation for each
datatype in his language [56]. One alternative would be to represent each data item as a node;
this is much less efficient at execution time but much more expedient at environment description

time.

program { stack: sequence of frame)}

call ::= name: idendfier
actuals: sequence of EXPRESSION

Execute -->
program.stack := Insert (@name.defsite).AR #§ program.stack

Propagate Execute To actuals{l]

Continue On actuals(any] -->
<storage for parameter in top stack frame> :=
actuals(any].value
Propagate Execute To actuals(next]

Continue On actuals([last] -->
<storage for program counter in top stack frame> := self

Propagate Execute To fname.defsite

/* Stack is an attribute of program. The parentheses cause the higher
precadence ".AR" attribute access to apply to the result of the "8" operator.
“#" adds a new element to a sequence. The determination of <storage for

in top stack frama> depends on the description of frames, not shown. */

Figure 4-8: Call Statement Syntax and Semantics

The syntax and semantics of the procedure call statement are given in figure 4-8. The run-time

21

stack is represented as a sequence of frame nodes maintained as an attribute of the program node.
Execution begins by applying the internal version of the user-level Insert command to insert a
copy of the procedure’s activation record at the top of the stack. The actual parameter
expressions are then executed, and their resulting values stored in the corresponding slots in the
activation record. After the last parameter is available, a reference to the call statement is saved

as the program counter and then execution propagates to the procedure definition.

Remember that the apparent circularity of program.stack on both sides of the equation is not a
problem, since it occurs in an assignment rather than a constraint. Such ‘circularities’ are
necessary for maintaining history information, where the new value of an attribute is computed
by directly modifying its old value. Potential circular dependencies among constraints are
handled as in attribute grammars, by separating into in and out attributes where the synthesized

out attribute is the appropriate function of the inherited in attribute.

raturn :!:=

Exacute -->
program.stack := Delete program.stack{l]
Propagate Continue To <program counter in top stack frame>

/* The return production has no components. For a function rather than a
procedure, the corresponding return would have an EXPRESSION component. Access
to <program counter in top stack frame> depends on the frame machaniam. */

Figure 4-9: Return Statement Syntax and Semantics

Figure 4-9 gives the equations for execution of a return statement. The top stack frame is
removed from the stack using the Delete command, and the continuation propagates to the

orniginal call statement.
5. Interactive Execution and Debugging

5.1. User Input/Output

Figure 5-1 illustrates one mechanism for representing sequential [/O, for either the terminal
display and keyboard or ASCII files. For simplicity, each channel consists of both an input
stream and an output stream, where each stream is a sequence of buffered text lines. Standard

input and standard output are combined in the first channel.

22

program ::= ..,
I0: sequence of channel
channel ::= name: identifier
input: sequence of text
output: sequence of text

/* The other components of a program are omitted. */

Figure 5-1: Input and Output Streams

write ::= expr: EXPRESSION

Executa -->
Propagate Execute To expr

Continue On expr -->
program->I0O[l] ->output := program->IO[l]->output # expr.value
Propagate Continue To self

/* "Node->component" accesses the named component of the named node, where the
node is either the goal symbol of the production or an ancestor. */

Figure 5-2: Write Statement Syntax and Semantics

Figure 5-2 gives the syntax and semantics of a simple write statement. When the Execute
event is applied to an instance of the write production, the Execute event is propagated to
compute the value of the expression. On the continuation, the text representation of this value
(as determined by the implementation of the underlying environment generation system) is
concatenated to the end of the output seam. The output stream is automatically redisplayed on
the screen after every update. Various kinds of unparse schemes have been proposed for
defining the concrete syntax necessary for displaying the program (24, 29, 53] or distinct views
of the program (21, 50]. The action equations paradigm assumes the availability of one of these

mechanisms for display purposes.

The read statement is slightly more difficult and requires a delay equaton. The first equation
attached to the Execute event for the read production, given in figure 5-3, requests the user to
select the Create event to add a new last element to the input stream. The delay equation has the
effect of suspending program execution until the user has entered a new line of input by
appending to the sequence of text lines that represents the standard input. Only then is the last

(new) element of the input sequence stored as the value of the variable given in the read

23

read ::= variable: identifier

Execute -->
Delay Until Create At program->IO[1l]->input[last]
<storage for variable> := program->IO(1l]->input[last]
Propagate Continue To smelf

/* <storage for variable> usas whatever mapping the implementor defines for
the environment and store, such as a stack of frames as described in the
previous section. */

Figure 5-3: Read Statement Syntax and Semantics

statement.

5.2. Program Suspension and Continuation

break ::=

Execute ~->
Delay Until Continue At self

Figure 5-4: Break Statement Syntax and Semantics

The delay equation is also instrumental in specifying debugging facilities such as breakpoints
and singlestepping. Figure 5-4 shows hows a breakpoint might be described. This example
follows the precedent set by Feiler in his thesis (17] (and elsewhere [16]) as to how the user
specifies a breakpoint before or after a particular statement. It assumes that the programming
language has been extended by a special break statement. The user designates a breakpoint by
inserting a break statement at the desired position in the program text. The interpreter suspends
program execution when the Execute event is propagated to the break node, presumably by an

equation for some other node.

The user continues from a breakpoint by entering the Continue command when the editing
cursor is pointing to the break statement. Selecting the Continue event at some other position in
the program would activate the equations attached to the Continue event for the corresponding
production, effectively starting up a separate execution thread at that position. A conditional
breakpoint might be defined by adding an expression to the break statement and enclosing the

delay equation inside a conditional equaton.

24

program { singlestep: boolean }
program ::= .,

Singlestep -->
singlastep := not singlestep

STATEMENT
Execute -->

If program.singlestep
Then Delay Until Resume

/* Singlestep is an attribute of the program symbol. Associating a collection
of action equations with the STATEMENT symbol is introduced as a shorthand for
separately associating the collection with each of the alternative STATEMENT

productions. */

Figure 5-5: SingleStepping

The description of singlestepping is similar. Figure 5-5 depicts Singlestep as an implementor-
defined event that toggles singlestepping on and off, by changing the value of the singlestep
attribute. The delay equation is associated with every STATEMENT production. If singlestep
mode is on, then the interpreter suspends before the execution of each statement, until the
Resume event. Since no receiver is specified in the delay equation, it does not matter where the
editing cursor is when the user enters the Resume command. When the user selects the Resume

event, the interpreter awakens and continues execution with the current statement.

trace ::= variable: identifier

Execute -->
program->IO0([2] ->output :=
program->IO([2] ->output
variable # " = " § <value of variable> # ’'*M’
Propagate Continue To self

/* The second I/O channel is designated by the implementor for tracing
variables. <valua of variable> uses whatever mapping the implemantor defines
for the environmant and store. '“M’ represents a carriage-return. */

Figure 5-6: Trace Statement Syntax and Semantics

Tracing is another debugging facility that can be described by extending the target
programming language with a special statement. As illustrated in figure 5-6, a vaniable might be

raced by inserting a trace statement with the variable name at every point where display of the

25

variable’s value is desired. The trace statement is executed similarly to the write statement: the
variable’s current value is appended to the output stream of a designated I/O channel and
displayed using the standard unparse mechanism. Alternatively, the explicit trace statement can
be avoided by attaching a conditional equation to the Execute event for the assignment
statement, to perform the trace when any variable in some list (given by an input channel) is

assigned.

6. Implementation Algorithms

The implementation of action equations consists of two parts, translation and run-time support.
Both parts involve an adaptation of the Reps, Teitelbaum and Demers algorithms [52] for
generation of LBEs from attribute grammars. Reps’ algorithms work roughly as follows. The
translator takes as input the environment description and produces as output (1) various tables
reflecting the syntax description; (2) a local dependency graph for each production representing
the dependencies among the attributes that appear in its semantic equations; and (3) a procedure

for each semantic equation, which carries out the actual evaluation of the equation.

After each subtree replacement, Reps’ run-time support constructs a scheduling graph by
grafting together two projections of the local dependency graph for the root of the replacement
subtree, one denoting the transitive dependencies among the attributes of the node via its parent
and siblings, and the other the transitive dependencies among the attributes of the node via the
subtree. The attributes represented in the scheduling graph are reevaluated in the order given by
a topological sort of the graph. The attributes represented by independent vertices (i.e., those

vertices with no incoming edges) are reevaluated first.

If the execution of a semantic equation results in a value different from the previous value of
the artribute, then the scheduling graph is expanded to include the projected local dependency
graphs for all attributes that depend directly on the changed attribute. The expansion involves
adding edges representing transitive dependencies for all of these atmibutes that were not
previously part of the scheduling graph. Whether or not the attribute changed in value, it and all
its outgoing edges are now removed from the graph and evaluation continues with those
attributes now represented by independent vertices. This process continues until the scheduling
graph becomes empty, which is guaranteed to happen eventually if the attribute grammar is non-

circular. (Algorithms to detect circularity in an attribute grammar are exponential [30], so

26

whether or not a given attribute grammar is non-circular is often determined by inspection.) This
evaluation algorithm is asymptotically optimal in the sense that the number of attribute
evaluations is proportional to the number of attributes that are necessarily reevaluated. (The
efficiency may be improved by maintaining additional data structures, making it possible to

avoid all unnecessary evaluations.)

The adapted set of algorithms operate as follows. During translation of action equations,
syntax tables and procedures are generated similarly to atmibute grammars. The important
distinction is that a local dependency graph is constructed for each event, whether synthesized or
inherited, associated with each production. The graph represents the dependencies among the
equations attached to the event rather than the attributes that appear in these equations; this is
necessary because the outputs of action equations may be placed in locations within an attribute
or within the syntax tree and these locations may be computed during action equation evaluation.
In each graph, there are no incoming edges for each delay equation (to ensure that they are
evaluated first), an outgoing edge from every delay equation to every other kind of equation, and
an incoming edge from every other kind of equation to every propagate equation. There is also a
local dependency graph for the set of equations — constraints and conditionals — not attached to

any event.

After each subtree replacement, a scheduling graph is constructed from the projected local
dependency graphs for the equations not attached to any event and also the two local dependency
graphs (synthesized and inherited) for the equations attached to the standard event corresponding
to the user command that caused the subtree replacement. In response to each user command
corresponding to a cursor movement or an implementor-defined event, a scheduling graph is
constructed from the two local dependency graphs for the equations attached to that event. In
either case, the run-time support then follows the topological sort/graph expansion process
described above.

As explained previously, the evaluation of several delay equations is treated as simultaneous
and results in saving the scheduling graph together with a representation of the required
evenureceiver pairs. Once the full set of events has been selected, in any order and spread out
over any period of time, the saved scheduling graph is grafted together with the then current
scheduling graph. The evaluation of several propagate equations is also treated as simultaneous,

and results in a new scheduling graph (by definition, the previous graph is empty except for the

27

propagate equations), which includes the two local dependency graphs for all the propagated

event/destination pairs.

The incremental action equation evaluation algorithm is asymptotically optimal in the same
sense as the base incremental attribute grammar evaluation algorithm. In the case of a subtree
replacement, constraints are treated as if they were semantic equations and evaluated via fhe
identical mechanism. In the case of equations attached to an event, each equation is evaluated
exactly once for each selection of the event as required by the semantics of action equations, and
the number of constraint evaluations is proportional to the number of constraints that must be

reevaluated.

7. Conclusions

The purpose of this article is to demonstrate that attribute grammars can be easily extended to
specifying dynamic semantics in addition to static semantics. The action equations paradigm
does this by making the attribute grammar itself dynamic, where some semantic equations are
active and others are passive. Equations are changed from passive to active to passive again
according to external user commands and internal computations involving the propagate and
delay equations. Acton equations also augment attribute grammars with limited side-effects,
which make it possible to maintain the state of program execution and the history of user

interactions with the environment.

This extension of attribute grammars was developed to permit generation of LBEs that support
both static and dynamic semantics. Attribute grammars previously permitted generation of
environments that support only static semantics. Action equations can also be applied outside
LBEs to generate interpreters and debuggers, just as attribute grammars have been used to

generate compilers.

Acknowledgements

The bulk of this research was conducted as part of my PhD thesis [36] at Camegie Mellon
University. [would like to thank my advisor, Nico Habermann, for his advice and support
throughout my graduate student career. [would also like to thank the other members of my
committee, Scott Fahlman, Elaine Kant and Bill Riddle, for their contributions. Discussions with
David Garlan helped me work out the details of the action equations paradigm. [have more
recently collaborated with David to develop Meld [37], an experimental language combining

28

object-oriented and dataflow programming paradigms; Meld’s syntax and semantics are loosely
based on action equations and on the views David proposed in his thesis [22]. Simon Kaplan
pointed out an error in one of the examples given in my dissertation, which is corrected here:
Simon has also worked with me on parallel and distributed incremental evaluation algorithms for
attribute grammars [38]. We have recently applied this work to a concurrent extension of action
equations [40]. Finally, I would like to thank Dave Ackley, Nico Habermann, Josephine
Micallef and the anonymous referees for their critical comments on earlier versions of this
article; the comments of one of the referees were particularly useful and led to vast

improvements in the form and content of the article.

A parallel/distributed implementation of Meld [41] has been completed by Nicholas
Christopher, Seth Strumph and Shyhtsun (Felix) Wu under the direction of Wenwey Hseush and
later Steve Popovich. Gaea, a rapid prototyping system for interpreter/debuggers based on the
action equations paradigm, is currently being implemented by Travis Winfrey with the
participation of Kok-Yung Tan, Matsuki Yoshino and Semyon Dukach. Both Meld and Gaea are
being developed at Columbia University. Gail Kaiser is now supported by National Science
Foundation grants CCR-8858029 and CCR-8802741, by grants from AT&T, DEC, IBM,
Siemens and Sun, by the Center of Advanced Technology and by the Center for

Telecommunications Research.

References
u

1. Ambriola, Vincenzo, Kaiser, Gail E. and Ellison, Robert J. An action routine model for
ALOE. Tech. Rept. CMU-CS-84-156, Carnegie Mellon University, Department of Computer
Science, August, 1984.

2. Archer, James E. Jr. and Devlin, Michael T. Rational’s experience using Ada for very large
systems. First International Conference on Ada Programming Language Applications for the
NASA Space Station, June, 1986, pp. B.2.5.1-B.2.5.11.

3. Bahlke, Rolf and Snelting, Gregor. “The PSG system: from formal language definitions to
interactive programming environments”. ACM Transactions on Programming Languages and
Systems 8, 4 (October 1986), 547-576.

4. Balzer, Robert. "A 15 year perspective on automatic programming”. /EEE Transactions on
Software Engineering SE-11, 11 (November 1985), 1257-1268.

5. Barbuti, R., Bellia, M., Degano, P., Levi, G., Dameri, E., Simonelli, C. and Martelli, A.
Programming environment generation based on denotational semantics. In Theory and Practice
of Software Technology, North-Holland Pub. Co., New York, 1983.

29

6. Bodwin, James, Bradley, Laurette, Kanda, Kohji, Litle, Diane and Pleban, Uwe. Experience
with an experimental compiler generator based on denotational semantics. SIGPlan '82
Symposium on Compiler Construction, June, 1982, pp. 216-229.

7. Delisle, Norman M., Menicosy, David E. and Schwartz, Mayer D. Viewing a programming
environment as a single tool. SIGSoft/SIGPlan Software Engineering Symposium on Practical
Software Development Environments, April, 1984, pp. 49-56.

8. Demers, Alan, Reps, Thomas and Teitelbaum, Tim. Incremental evaluation for attribute
grammars with applications to syntax-directed editors. 8th Annual ACM Symposium on
Principles of Programming Languages, January, 1981, pp. 105-116.

9. Demers, Alan, Rogers, Anne and Zadeck, Frank Kenneth. Attribute propagation by message
passing. SIGPlan '85 Symposium on Language Issues in Programming Environments, June,
1985, pp. 48-59.

10. Despeyroux, Thierry. Executable specification of static semantics. Semantics of Data
Types International Symposium, New York, June, 1984, pp. 215-233.

11. Donzeau-Gouge, Veronique, Huet, Gerard, Kahn, Gilles, and Lang, Bernard. Programming
environments based on structured editors: the Mentor experience. In Barstow, David R., Shrobe,
Howard E. and Sandewall, Erik, Ed., Interactive Programming Environments, McGraw-Hill
Book Co., New York, 1984, pp. 128-140.

12, Donzeau-Gouge, Veronique, Kahn, Gilles, Lang, Bernard and Melese, B. Documents
structure and modularity in Mentor. SIGSoft/SIGPlan Software Engineering Symposium on
Practical Software Development Environments, April, 1984, pp. 141-148.

13. Engels, G,, Gall, R., Nagl, M. and Schafer, W. "Software specification using graph
grammars”. Computing 31 (1983), 317-346.

14. Farrow, Rodney. "Generating a production compiler from an attribute grammar”. /EEE
Software 1, 4 (October 1984).

15. Farrow, Rodney. Automatic generation of fixed-point-finding evaluators for circular, but
well-defined, attribute grammars. SIGPlan '86 Symposium on Compiler Construction, June,
1986, pp. 85-98.

16. Feiler, Peter H. and Medina-Mora, Raul. "An incremental programming environment".
[EEE Transacrions on Software Engineering SE-7, 5 (September 1981), 472-482.

17. Feiler, Peter H. LOIPE a language-oriented interactive programming environment based on
compilation technology. Ph.D. Th., Carnegie Mellon University, May 1982, CMU-CS-82-117..

18. Feiler, Peter H., Jalili, Fahimeh and Schlichter, Johann H. An interactive prototyping
environment for language design. 19th Hawaii International Conference on System Sciences,

January, 1986, pp. 106-116.

19. Freeman, Peter. "A conceptual analysis of the Draco approach to constructing software
systems". IEEE Transactions on Software Engineering SE-13,7 (July 1987), 830-844.

20. Ganzinger, Harald, Ripken, Knut and Wilhelm, Reinhard. Automatic generation of
optimizing multipass compilers. Information Processing 77, New York, 1977, pp. 535-540.

30

21. Garlan, David. Flexible unparsing in a structure editing environment. Tech. Rept. CMU-
CS-85-129, Carnegie Mellon University, Department of Computer Science, April, 1985.

22. Garlan, David. Views for tools in integrated environments. Ph.D. Th., Carnegie Mellon
University, May 1987. CMU-CS-87-147..

23. Ghezzi, Carlo and Mandrioli, Dino. "Augmenting parsers to support incrementality”.
Journal of the ACM 27, 3 (July 1980), 564-579.

24. Habermann, A. N. and Notkin, D. "Gandalf: software development environments”. [EEE
Transactions on Software Engineering SE-12, 12 (December 1986), 1117-1127.

25. Henderson, Peter and Weiser, Mark. Continuous execution: the VisiProg environment. 8th
International Conference on Software Engineering, August, 1985, pp. 68-74.

26. Hoover, Roger and Teitelbaum, Tim. Efficient incremental evaluation of aggregate values
in attribute grammars. SIGPlan '86 Symposium on Compiler Construction, June, 1986, pp.
39-50.

27. Hoover, Roger. Dynamically bypassing copy rule chains in attribute grammars. 13th
Annual ACM Symposium on Principles of Programming Languages, January, 1986, pp. 14-25.

28. Horwitz, Susan and Teitelbaum, Tim. "Generating editing environments based on relations
and attributes”. ACM Transactions on Programming Languages and Systems 8, 4 (October
1986), 577-608.

29, Hudson, Scott E. and King, Roger. Implementing a user interface as a system of attributes.
SIGSoft/SIGPlan Software Engineering Symposium on Practical Software Development
Environments, December, 1986, pp. 143-149.

30. Jazayeri, M., Ogden, W. F. and Rounds, W. C. "The intrinsically exponential complexity of
the circularity problem for attribute grammars”. Communications of the ACM 18, 12 (December
1975).

31. Johnson, S. C. and Lesk, M. E. "Language development tools". The Bell System Technical
Journal 57, 6 (July-August 1978), 2155-217S.

32. Johnson, Gregory F. and Fischer, Charles N. Non-syntactic attribute flow in language based
editors. 9th Annual ACM Symposium on Principles of Programming Languages, January, 1982,
pp. 185-195.

33. Johnson, Gregory F. and Fischer, C. N. A meta-language and system for nonlocal
incremental attribute evaluation in language-based editors. 12th Annual ACM Symposium on

Principles of Programming Languages, January, 1985, pp. 141-151.

34. Johnson, Gregory F. GL — a denotational testbed with continuations and partial
continuations as first-class objects. SIGPlan '87 Symposium on Interpreters and Interpretive
Techniques, June, 1987, pp. 165-176.

35. Gail E. Kaiser and Elaine Kant. "Incremental Parsing Without A Parser". The Journal of
Systems and Software 5, 2 (May 1985), 121-144,

36. Kaiser, Gail E. Semantics of structure editing environments. Ph.D. Th., Carnegie Mellon
University, May 1985. CMU-CS-85-131..

31

37. Kaiser, Gail E. and Garlan, David. "Melding software systems from reusable building
blocks". IEEE Software (July 1987), 17-24.

38. Kaiser, Gail E., Kaplan, Simon M. and Micallef, Josephine. "Multiuser, distributed
language-based environments". [EEE Software (November 1987), 58-67.

39. Gail E. Kaiser, Peter H. Feiler, Fahimeh Jalili and Johann H. Schlichter. "A Retrospective
on DOSE: An Interpretive Approach to Structure Editor Generation". Software — Practice &
Experience 18, 8 (August 1988), 733-748.

40. Kaiser, Gail E. and Kaplan, Simon M. Rapid prototyping of concurrent programming
languages. 8th International Conference on Distributed Computing Systems, June, 1988, pp.
250-255.

41. Kaiser, Gail E. Concurrent Meld. Workshop on Object-Based Concurrent Programming,
.. :ptember, 1988. To appear.

42. Kastens, U., Hutt, B. and Zimmermann, E.. Lecture Notes in Computer Science. Volume
141:GAG: A Practical Compiler Generator. Springer-Verlag, Heidelberg, 1982.

43. Knuth, Donald E. "Semantics of context-free languages”. Mathematical Systems Theory 2,
2 (June 1968), 127-145.

44. Lamb, David Alex . "IDL: sharing intermediate representations”. ACM Transactions on
Programming Languages and Systems 9, 3 (July 1987), 297-318.

45. Medina-Mora, Raul. Synrax-directed editing: towards integrated programming
environments. Ph.D. Th., Camegie Mellon University, March 1982. CMU-CS-82-113..

46. Notkin, David S. Interacrive structure-oriented computing. Ph.D. Th., Carnegie Mellon
University, February 1984. CMU-CS-84-103..

47. Partsch, H. and Steinbruggen, R. "Program transformation systems". Computing Surveys
15, 3 (September 1983), 199-236.

48. Paulson, Lawrence. A semantics-directed compiler generator. 9th Annual ACM
Symposium on Principles of Programming Languages, January, 1982, pp. 224-233.

49. Raskovsky, Martin R. Denotational semantics as a specification of code generators.
SIGPlan '82 Symposium on Compiler Construction, June, 1982, pp. 230-244.

50. Reiss, Steven P. Graphical program development with PECAN program development
systems. SIGSoft/SIGPlan Software Engineering Symposium on Practical Software
Development Environments, April, 1984, pp. 30-41.

51. Reiss, Steven P. An approach to incremental compilatdon. SIGPlan '84 Symposium on
Compiler Construction, June, 1984, pp. 144-156.

52. Reps, Thomas, Teitelbaum, Tim and Demers, Alan. "Incremental context-dependent
analysis for language-based editors". ACM Transacrions on Programming Languages and
Systems 5, 3 (July 1983), 449-477.

53. Reps, Thomas and Teitelbaum, Tim. The Synthesizer Generator. SIGSoft/SIGPlan
Software Engineering Symposium on Practical Software Development Environments, April,
1984, pp. 41-48.

32

54. Reps, Thomas, Marceau, Carla and Teitelbaumn, Tim. Remote attribute updating for
language-based editors. 13th Annual ACM Symposium on Principles of Programming
Languages, January, 1986, pp. 1-13.

55. Scott, Dana and Strachey, Christopher. Toward a mathematical semantics for computer
languages. Tech. Rept. Technical Monograph PRG-6, Oxford University Computing
Laboratory, August, 1971.

56. Shebs, Stan and Kessler, Robert. Automatic design and implementation of language
datatypes. SIGPlan 87 Symposium on Interpreters and Interpretive Techniques, June, 1987, pp.
26-37.

57. Smith, Douglas R., Kotik, Gordon B. and Westfold, Stephen J. "Research on knowledge-
based software environments at Kestrel Institute". JEEE Transactions on Software Engineering
SE-11, 11 (November 1985), 1278-1295.

58. Snodgrass, Richard and Shannon, Karen. Lecture Notes in Computer Science. Volume 244:
Supporting flexible and efficient tool integration. In Advanced Programming Environments,
Conradi, Reidar, Didriksen, Tor M. and Wanvik, Dag H., Eds., Springer-Verlag, Berlin, 1986,
pp. 290-313.

59. Teitelbaum, Tim and Reps, Thomas. "The Cornell Program Synthesizer: a syntax-directed
programming environment". Communications of the ACM 24, 9 (September 1981), 563-573.

60. Teitelman, Warren and Masinter, Larry. "The Interlisp programming environment'. /EEE
Computer 14, 4 (April 1981), 25-34.

61. Walz, Janet A. and Johnson, Gregory F. Incremental evaluation for a general class of
circular attribute grammars. SIGPlan '88 Conference on Programming Language Design and
Implementation, June, 1988, pp. 209-221.

62. Waters, Richard C. "KBEmacs: where’s the AI?". The Al Magazine VII, 1 (Spring 1986),
47-56.

63. Wegman, Mark N. Parsing for structural editors. 21st Annual Symposium on Foundations
of Computer Science, October, 1980, pp. 320-327.

Rapid Prototyping of
Concurrent Programming Languages

Gail E. Kaiser
Columbia University
Department of Computer Science
New York, NY 10027

ABSTRACT

We propose 1 new technology for rapid prototyping of concur-
rent programming languages. The designer of a new language
specifies its syntax and semantics in a formal notation. Our system
gencrates a parallel interpreter for-the language and provides run-
time support for the synchronization primidves and other facilities
in the language.

Introduction

The allure of distnbuted computing sysiems has led 10 the
development of many concurrent programming languages. One
problem 1s that design progresses much more quickly than im-
plementation, and there has been litie opportunity to experiment
with many of these new languages. The search for the right com-
munication and synchronization primitives would be aided by
mechanisms (or rapid prototyping of concurrent programming lan-
guages.

We propose a new technology for automatic generation of con-
current interpreters from formal specifications of the programming
languages. Our technology consists of {ormal notation and support-
ing algorithms. The formal notation is called acnom equanons,
which are atribute grammars exiended by the concepts of evensy
and umficanion. The supporting algorithms include (1) preprocess-
ing algonthms 0 generate the interpreters and (2) evaluation al-
gonthms embedded in the generated interpreters.

This paper overviews atibute grammars, explains the extension
10 the acuon equatons paradigm, and presents the synthesis of ac-
uon equauons with a unification strategy as our means for specify-
ing and implemenung synchroruzation pnmitives. We illustrate our
approach by miving a specification of CSP. We discuss our support-
ing dgonthms and then describe the concurrent interpretation of an
example CSP program. The paper concludes with a bnef com-
panson to related work.

Attribute Grammars

Aclion equadons are a srict superset of anribute grammars,
which were intoduced by Knuth [16) for specifying the contexi-
sensiive propernes of programming languages. An aunbute gram-
mar augments each production in a context-free grammar with
semantic equations, which define the conitext-sensitive rules as-

CH2541-1/88/0000/0250$01.00 © 1988 IEEE

Simon M. Kaplan
University of Illinois
Department of Computer Science
Urbana, IL 61801

sociated with the production. Each equation defines the value of an
aunibute as a function of terminal grammar symbols and other at-
tributes. These other attributes are defined in tum by equations that
augment the same or a different production. Synthesized arributes
are those associated with the nonterminal grammar symbol on the
left hand side of the production and inherited attributes are those for
the terminal and nonterminal symbols on the right hand side. A
program is represented as a parse tree where each node is decorated
by the corresponding attributes.

3C ::= guard: EXPRESSION
body: STATEMENT
erxor: sring

coda: lext
%é guard.type = “boolean”

80 earror := "<-- type error"
Else earror := "¢

coda = "if (" guard.coda ") "
= = operandl: EXPRESSION
cperand2: EXPRRSSION
type: TYPE
coda: lext

body . coda

If operandl.t = operand2.type
Then type := “"boolean"
Else type := "undafined"

coda := " (" operandl.code ") ms ("
operand2.code)"

Figure 1: Portion of Aaribute Grammar

The first production in figure | shows the CSP guarded com-
mand (7], used for the do and if statements. Our atribute grammar
notauon follows the Interface Descripion Language (IDL)
{26] convenuon of naming the components of productions (guard
and body) and listing together with the components the names and
types of the synthesized and inherited aitributes of the grammar
symbol on the left hand side (error and code are synthesized
aunbutes). The first equation for the GC production defines the
value of the error atnbute of the GC symbol as a function of the
lype aunbute of the guard symbol. The type attribute is defined
separately for each EXPRESSION production. For example, the =
production shown defines its type atribute as a function of the type
attributes of the two operand symbols. GC's second equation
defines its code atribute as a functon of the code antributes of the
guard and body symbols.

Atnbute grammars have long been used for rapid prototyping of
compilers for sequental languages (6, S). The compuer<compuer
takes as input an auribute grammar for the desired prognmming
language and produces a compiler for the language. The anslator

component of the compiler-corpiler typically produces language-
specific tables from the attribute grammar, which are used by a
language-independent atribute evaluation algorithm
{15. 2] included as part of the generated compiler. Once the parse
tree is constructed, the atribute evaluator decorates its nodes with a
consistent set of attribute values, This is generally possible only if
there are no (nonconverging) circularities among the equations —
eg."a:= ()" and "b := g(a)". Arribute evaluation has the effect
of detecting any static semandc (context-sensitive) errors as well as
producing object code. After evaluation terminates, the compiler
might report errors by traversing the parse ree in prefix order, print-
ing non-null error atributes (with surrounding context) as it finds
them. I no error messages are found, then it might write the code
attribute at the root of the program 1o a separate file.

Altribute grammars are equally applicable o compilation of se-
Juential and concurrent languages, but unfortunately equally in-
applicable to interpretation of either kind of language. The problem
1s that artributes are by definition derived solely from the program
"oxd. given the set of semantc equations. The values of attributes,

once computed, remain the same. attribute values represent stasic
properdes of programs. Interpretation requires maintenance of
dyramic properties, such as the run-time stack and the contents of
memory. Auribute grammars are not suitable for expressing such
properties.

However, it is exactly the dynamic properties of concurrent pro-
gramming languages that are interesting. Concurrent languages are
naturally more complex than sequential languages because they
combine all the problems of sequential programming with the ad-
digonal problems of synchronizatdon. Concurtent interpreters are
useful for testing and debugging sequential behavior within a
process, but are more imponant for following the flow of com-
munication among processes. As more and more new language fea-

tures are proposed. rapid prototyping becomes more and more

desirable. [t is necessary to develop a formal notation for specifying
semantics of concurrent languages that is sufficiently expressive w
support automatic generation of concurrent interpreters. We follow
an operauonal approach in order to produce reladvely efficient in-
terprelers.

Action Equations

We have previously presented acfion equations as an exiension
of artnbute grammars that supports rapid prototyping of interpreters
for sequential programming languages [11]. In this paper we sketch
this support, and then extend action equauions W concurrency.

Action cquanons as previously defined are sumply amnbute
grammars sugmenied with the noton of eveass. An event cor-
responds t0 an externally initiated activity, such as invoking an in-
terpreter. Cenun equations are astached to particular events, mean-
1ng these equauons define the dynamic semandcs of the event for
the particular production. Equadons are anached (o events in two
forms: “<evenr> --> <equanon(s)>" and “<evear> On
<componenr> .-> <equanon(s)>". The first is analogous 10 the
nouon of a synthestzed attnbute, associating the event and ils equa-
tons with the grammar symbol on the left hand side of the produc-
ton; the right folows the notion of an inherited attribute, associat-
ing the event and its equations with a grammar symbol on the right
hand side. Action equatons introduce a new kind of equation with
the form “Propagaie <evear> To <desnnation>", where
<destination> 1s 8 grammar symbol. This permits the semantics of
an event for one symbol to be defined in terms of (1) the same evert
for a different symbol, (2) a different event for a differems symbol,

and/or (3) a different event for the same symbol.

IF ;:= body: sequance of GC

RUN -=->
Propagate RUN To body(1)

CONTINUE On body(any] =-->
Propagate RUN To body([next]

CONTINUE On body(last} ->
Propagate CO! To self

GC ::= guard: EXPRESSION
body: STATEMENT

RUN -->
Propagate RUN To guard

CONTINUE On guard -->
If guard.value Then Propagate RUN To body
Else Propagate CONTINUE To self

CONTINUE On body -->
Propagate CONTINUE To self

Figure 2: Portion of Action Equations

The equations in figure 1 define static propertics — static
semantic analysis and code generation — and are thus not attached
1o any event. The equations in figure 2 define the dynamic seman-
tics of interpretation, so they are attached to events representing in-
terpretation. These equations specify the interpretation of the CSP
if statement and its guarded command list, where the RUN event
corresponds to the invocation of the interpreter on the particular lan-
guage construct (essendally, a high-level program counter) and the
CONTINUE event corresponds to the continuation introduced by
denotational semantics [27].}! self always refers 1o the symbol on the
left hand side of the production and value is an attribute of each
EXPRESSION production.

The first event for the [F production defines the RUN event for
the [F symbot in terms of the RUN event for the first element of the
body symbol. The second defines the CONTINUE event for any
element of the body in terms of the RUN event for the next element,
if any. The third defines the conunuaton of the last element of the
body as the same as the continuation of the [F symbol. The events
for the GC production are similar. Here the CONTINUE event on
the guard is defined in terms of its value attribute as well as in terms
of other events.

Action equations as explained above can be used for rapid
prototyping of interpreters for sequential languages. The interpreter
generator takes as input the action equations for the desired pro-
gramming language and produces an interpreter for the language.
The translator component of the generator produces language-
specific tables for a language-independent evaluation algorithm.
Since action equations include aftribute grammars as a proper sub-
set. the evaluator decorates the nodes of the parse Uree with a consis-
tent set of attribute values. Static semantics errors may be detected
and reported as previously described.

[nterpretation is initiated by a user activity, such as selecting a
node in the parse tree and giving a command cofresponding 10 an
event assoctated with the production that defines the node. This has
the effect of activating the equations antached to that event. Each of
these equations is evaluated exacuy once, in the order implied by
their input/output dependencies. Any propagate equations among

INote that smce essentially every production sends s CONTINUE event w iusell.
thus equaton could be added jcaily by the qanslaior for all excepe spectal
cases, wiuch would then be indicated M the specificadons.

the activated equations have the effect of activating additional equa-
tions attached to the named events for the indicated symbols. This
process may Or may not terminate, depending on patterns of cir-
cularities among the equations — "X --> Propagate Y To self” and
"y --> Propagate X To self” is a pathological case. In contrast w
auribute grammars, circularities are sometimes necessary, for ex-
ample, to mode! "while true do ...".

Action equations for the interpretarion of sequencing, looping,
branching, potentally recursive subroutne call and subroutine
return are given elsewhere {10). There we demonstrate that action
equations are a simple means (none of the specifications is longer
than a page!) for specifying the dynamic semantics of sequenual
programming languages.

Svnchronization via Unification

Naively, it might appear that a simple extension of events would
be sufficient to specify the synchronization primitives required for
concurrent languages. For example, it might seem that we could
add arguments to cvents, and then specify a send-and-continue state-
ment with "Propagate SEND(message) To receive_statement” and
the corresponding receive statement with "SEND(message) -->
equations”. Unfortunately, this does not work.

Consider a concurrent program with processes P and Q, where P
contains several send statements and Q contains several receive
statements. Since P and Q execute in parallel. it is not possible for
process P 10 know a priori which of the several possible receive
points should be the destination of a particular send. During dif-
ferent executions of the same program, the same send might be
matched with different receives and the same receive with different
sends. Therefore, it is impossible to fill in the “receivestatement”
portion of the proposed propagate equation; similarly, it would be
impossible 10 determine in advance all necessary information for
any similar extension of events. The matchung between send state-
ment and receive stalement can only be resolved when both com-
murucalng processes are ready.

Thus probiem 1s very similar to the unificanion {19} mechanism
in Prolog [3]. For Uus reason we wm to a unfication-based
mechamusm for specifying a language's synchronization primitves.

We associate with each parse tree a database of tuples, which is
shared among all processes. We define two new kinds of equations
that operate on the database: assert and block. Both operstions ke
as arguments a tuple of expressions, where an expression may be a
grammar symbol, an aanbute, or a function of these. Each grammar
symbol or attnbute that appears as an element of the wpie may be
suffixed with an exclamation point (*!") that marks it as read-oaly
in the sense of the read-only variables of Concurrent Prolog [24).2
Marking vanables read-only inhibits the direction of unification,
since these values cannot be changed as a result of unufication. Un-
like Prolog and Concurrent Prolog, variables need not begin with an
uppercase letier: everything is a variable unless marked read-only.

*Concurrent Proiog actually uses the quastion mark () for this purpose, bt we
find this confusing for the reader of the specification.

252

The semantics of these equations are as follows.

Assert The assert equation atempts to unify its ar-
gument tuple with an entry currently in the
database using Concurremt Prolog's style of
unification. If unification succeeds, certain
components and attributes of the participating
parse tree nodes are instantiated (o the results of
the unification and the other tuple that par-
ticipated in the unification is automatically
retracted (i.e., removed from the database). [f
the unification fails, the wple is insented into the
database and execution continues normally as
defined by the action equations.

The block equation is exactly the same as assert,
except that if unification fails, execution waits
unfil another tpie arrives with which the ar-
gument tuple can unify.

®
]

{* Send and Wait *)

SEND ::= receiver: identuse
massage: EXPRESSION
RUN -->

Block (message!, self!, receiver!)
Propagate CONTINUE To self

{* Seand and Continua *}

SEND :@:= receiver: idenruse
massage: EXPRESSIOM
RON -->

Assert (message!, self!, receiver!)
Propagate CONTINUE To self

{* Racelve *)

= sendar: identuss
variable: identuse

RECEIVE :

RUN -->
Block(variable.lvalue, sendar’', selg!)

Propagate CONTINUE To self
{(* Anonymous Raceive *}

;.= sendaer: ideatuss
variabla: Idemtuss

RECEIVE

RUN -->
Block(variabla.lvalue, sender, self!)

Propagate CONTINUR To seltf

Figure 3: Action Equations for Synchronization Primitives

Augmenting action equations with the assert and block equations
is sufficient o implement all known (1o us) synchronization primi-
uves. These include send-and-wait, send-and-continue, receive and
anonymous receive. Figure 3 gives the action equations that define
the dynamic semantics of these four primitives; we omit the equa-
tons o allocate variables and evaluate expressions.

The RUN event for the send-and-wait statement is defined 23 2
block on the tuple consisting of its message, some identification of
iself (ldennuse represents an identifier use site, idenadef an idertifer
definition site), and the name of the desired receiver. When the
tuple unifies, both tples are retracied and the sending process con-
tinues. The RUN event for the send-and-continue statement is
defined identicaily, except that assert is substituted for block. The
RUN event is defined as an assert of the tuple consisting of its mes-
sage, identification and receiver name, and immediately continues.
The RUN event for the receive statement is defined as a biock on
the tuple consisting of the location (lvalue) of a varisbie, the name
of the desired sender, and some identificaton. When the tuple

unifies, the effect is to ransmit the message from the sender (o the
vanable location of the receiverr The RUN event for the
anonymous receive is defined as a block on the tuple consisting of
the location of a variable, the name of any sender, and its identifica-
uon.

CALL ::= racelver: identuse
argumant: EXPRESSION
raturn: identuse

RUN -->
Assert (argumant!, self',
Procagate WAIT To sself

receiver!')

WAIT ~-->
Block (return.lvalua. salf!, recaiver!)
Propagate CONTINUE To self

PROCEDURE

1:= sender: Ideniuse

result: idenidef

RUN -->
Block (argumant . lvalue., sender,
Propagate RUN To body

self!)

CONTINUE On body -->
Assert(result.rvalue!. sender!. self!)
Propagate CONTINUE To self

Figure 4: Action Equations for Remote Procedure Call

Remote procedure call, broadcast to a known set of receivers,
and receipt from a known set of senders can be implemented using
extensions of these primitves. For example, figure 4 defines a
simplified remote procedure call, where the local swb that deals
with 3 name server and the network and the remote stub that issues
the RUN event 1o the selected remote procedure are subsumed into
our run-time support (the other omitted details are the same as for
jocal supbroyune calls [11]). The RUN event for the CALL produc-
uon inuuates the remote call with the assert equanon, and then issues
a WAIT event to acuvate the equanons that wait for the requm from
ine remote procedure. Semaphores and monitors can be imple-
mented using these techniques and the ‘encapsulated resource’ ap-
pmach as descnbed in 8, Anonymous broadcast (broadcast (o an
snknown number of receivers: requires persisteas asseruons (no
automauc retracuon on urufication) and the additon of umestamps
:0 cach tuple so that receivers can determine whuch message they
should read. Virtual clocks {17} are sufficiert for the umestamps,
because companson s always among messages from the same
sender

{* Propagate Equation *)

PROPAGATE . :w evant: EVENT

dastination: NODE
Assert (event!, destination!’)

(* Attaching Equations to an Event *}

ATTACH : .= event: EVENT
equations: sequence of EQUATION
PersistentBlock(eveant', self!) --> equations

Figure §: Special Cases of Unification

As an aside, note that the propagate equation and attaching equa-
ons to events — the original extensions from attribute grammars
action equations — can both be treated as special cases of unifica-
tion with persistent tuples, where the event name becomes an cle-
ment of the tuple. See figure 5.

253

CSP Specification

::= body: sequence of PROCESS

RUN =-->
Propagate RUN To bodyf{all}

PROGRAM

PROCESS ::= name; identdef
locals: sequence of identdef
body: sequence o TATEMENT
RUN -->

Propagate RUN To body(l]

CONTINUE On body[%xx] -->
Propagate RUN To body(next]

Figure 6: Portion of Action Equations for CSP

CSP's send-and-wait and receive statements were defined in the
previous section. Figure 6 shows the top-level program/process
specifications.

Supporting Algorithms

The implementation of sequential action equations involves an
adapwation of Reps' algorithm for incremental auribute grammar
cvaluagon (21, 22), This algorithm restores consistency among at-
tnbute values after a subtree replacement in the parse tree represent-
ing the program. It re-evaluates only those attributes whose values
may have oeen affected by the subiree replacement, retaining the
old values of all other artributes. This is achieved using a schedul-
1ng graph. called the mode!, that represents the direct and ransiave
dependencies among the attributes of the parse tree. The equations
that define the armbutes are re-evaluated in an order consistent with
1 topological sort of the model, starting with an atiribute at the point
o the subtree replacement and avoiding re-evaluatng those at-
tnbutes that could not have changed in value because none of the
sinbutes on the nght hand side of its defirung equation have
vhanged. Reps applied this algorithm 1o static semantc analysis
withun ianguage-based cditors (231,

Our adaptation does not assume language-based editing, or any
form of editing: wt 15 instead a basis for interpretadon. During
preprocessing of acuon equauons, a local dependency graph 15 con-
structed for each event associated with each production. The graph
represents the dependencies among the equations attached to the
event. In particular, there 1s a venex for each attribute; an equation
15 reflected in the graph by an arc leaving each atribute on the right
hand side of the equation and entering the auribute on the left hand
side.

When an event arrives at run-ime — i.¢., during interpretation
— a model is constructed to represent the transitive dependencies
among the equations attached to the event. Initiaily, the model is a
copy of the local dependency graph for the event with respect to the
production that defines the current node in the parse tree. For se-
quential execuuon, the equations are evaluated in an order consis-
tent with a topological sort of the model. If 2 new event is
propagated, the model is expanded — by adding the corresponding
local dependency graph — 1o reflect the equations attached to the
event This process repeats until the model becomes empty.

To support concurrent evaluation of action equations, we adapt
our parallel/distributed algorithm for incremental evaluation of at-
tnbute grammars [14, 12] in the same manner that we adapted Reps’
algonthm for the sequential case. Concurrency within a process is
supported as follows. Each time a vertex in the model becomes

independent (i.¢.. has no incoming arcs) during the topological sort,
a separale Process is spawmed o first evaluate the corresponding
equation and then expand the model if necessary. When there are
multiple independent verices. the corresponding equations can be
evaluated concurrently by separate processes. Modifications o the
model are treated as critical sections.

This means that interpretation can even proceed concurrently for
a sequential language, with the crucial exception that the evaluaton
algorithm forces interdependent language constructs o be executed
in the comrect dataflow order. In particular, if one language state-
ment depends on a side-effect of a previous language statement,
then this will be reflected in the dependencies among the cor-
responding action equations, s0 the topological sort will result in
interpreting the statements in the correct order. Otherwise, we ach-
ieve maximum parallelism provided there are sufficient processors
to simultaneously execute the concurrent processes.

Concurrency among processes, whether on the same or different
machines. is supported by associating a separate model with each
"distributable unit’, such as the PROCESS production in figure 6.
The synchronizaton among processes is handled by unification,
which operates in the obvious way except for our automatic retrac-
tion and how we treat multiple unificarion. We assume an implicit
‘cut’ following every assertion, so only the first found unification is
accepted (and retracted). Unfortunately, the database used for
unification is currently a centralized resource. We are working on
extending the high availability/freliability algorithm [13] we
developed for distributed attribute evaluation to permit decentraliza-
tion by replication.

CSP Example

P:: [integer i:
i =5 ;

Q!i:
]

[integer j -
P2y

3 Te 441
]

1 Q::

Figure 7: CSP Exampie

We illustrate how the generated interpreter works for CSP with
the simple example program in figure 7. Execution of the two
processes works as follows: When the PROGRAM node (as defined
in figure 6) re-=ives the RUN evert from the user, the activated
Jction equation propagates the RUN event © the two PROCESS
aodes, P and Q. This in tum creates two disjoint models, one for
each process. The interpreter then selects all independent equations
in etther model and svaluates them. |n this case, the only equations
are the two propagate equations, which are simultaneously execused.
They propagate RUN 10 the first statement in each process, initia-
ing the body of the process.

Inierpreting P involves propagating a RUN event 10 the assign-
ment "i ;= 5". This sets i 10 *S" and selects CONTINUE on itself,
indicating to the parert PROCESS node that it has compieted its
execution. This propagates RUN w the next statement, the CSP
send statement. The RUN event for the SEND node (figure 3 —
Send-and-Wait) instructs the interpreter 10 delay until a unifisbie

'We dewrming such dependency cithar opumistically

ing 1o Alissing or
pessumusticaily assummg maximum possible alissing.

tuple comes along (if Q has executed more quickly, this may already
be there). The message (i), self (P) and receiver (Q) are all read-
only, i.e.. they cannot change as a result of the unification. If Q is
running ahead of P, and has reached its receive statement, the
unification succeeds, the tuples are retracted, and CONTINUE is
propagated to the PROCESS node once again. As there are no more
statements in the body, the model for P becomes empty and thus
execution of P halts,

Process Q executes simultaneously with P (figure 6). When the
RUN event is selected, it propagates RUN (o the RECEIVE node.
which blocks until P places the maiching tuple in the database
(figure 3). The self and send parameters in the tuple are read-only,
so unification can succeed in this case only on an exact match. The
third parameter, variable lvalue, is not read-only and gets matched
with the message of the sender, thereby transmitting the value of the
variable i in process P. This is the desired behavior for CSP; in
other languages we can be more flexible where needed. Once
unification is complete, the RECEIVE node propagates CON-
TINUE to itself, which propagates RUN to the assignment state-
ment. When the assignmen: is complete, a CONTINUE is
propagated once more, lerminating the interpretation of Q since the
model becomes empty.

Interpretation of P and Q can proceed in any real-time order per-
mitted by the action equations evaluation algorithm. Thus, P can
execute faster than Q, or slower. Either way, the processes
synchronize on the send and receive statements, as one cannot con-

Thus example is of course specific to CSP, but our notation and
algorithms can be used for rapid prototyping of arbitrary concurrent
languages. Experimentation is facilitated by specifying altemative
COnsLructs as action equations and using our generation and support-
ing algorithms to quickly try them out.

Conclusions

The primary contribution of this research is the generation of
parallel interpreters — for both sequential and concurrent languages
— from formal language specifications. We use a unification-based
approach 1o the specification of synchronization primitives.

Several other concurrent debugging systems have been
developed (18, 1, 4, 20, 25}. They share our goal of allowing the
user o focus on the interaction between processes. All of these
systems are language-specific, although (9] describes a general,
data-oriented style of debugging applicable to a range of concurrent
object-oriented languages. Our work is unique in that it allows the
generasion of interpreters for concurrent languages. Our low over-
head impiementation mechaniem permits experimentation with new
concurrency primitives (o keep pace with design.

Acknowledgements

Travis Winfrey is working with us on an implementation of ac-
tion equations called GAEA. We'd like to thank Yael Cycowicz,
Dan Yellin and the referees for their useful comments on eardier
versions of this paper.

Kaiser is supporsed in part by grants from AT&T Foundation,
[BM, Siemens Research and Technology Lahoratories, and the New
York State Center of Advanced Technology — Computer & Infor-
mation Systems, in part by the Columbia University Center for
Telecommunications Research, and in pert by 2 Digital Equipment
Corporation Facuity Award. Kaplan is supported in part by 2 grant
from the AT&T Corporation.

03]

(4]

(51

(6]

{7

(8]

(9]

-10]

A1

(12]

(3]

(14]

References

P. Bates and J. Wileden.

H rgh-L{veI Debugging of Distributed Systems: The Be-
hayxoural Abstraction Approach.

Technical Report COINS 83-29, University of Massachu-
setts, 1983,

Gregor V. Bochmann.
Semantic Evaluation from Left to Right.
Communications of the ACM 19(2):55-62, February, 1976.

W.F. Clocksin and C.S. Mellish,
Programming in Prolog.
Springer-Verlag, Berin, 1987.

R.S. Curtis and L. D. Wittie.
BUGNEI': A Debugging System for Parallel Programming
Environments.
In 3rd International Conference on Distribused Compuring
Systems, pages 394-399, October, 1982,
Rodney Farrow.
Generating a Production Compiler from an Attribute Gram-

mar.
|EEE Software 1(4), October, 1984,

Harald Ganzinger, Knut Ripken and Reinhard Wilheim.

Automatic Generation of Optimizing Multipass Compilers.

In Information Processing 77, pages 535-540. North-
Hotland Pub. Co., New York, 1977.

C.A.R. Hoare.
Communicaring Sequential Processes.
Communications of the ACM 21(8):666-677, August, 1978,

C.AR. Hoare.
Communicaring Sequential Processes.
Prentice-Hall, Inc., Englewood Qliffs, NJ, 1985,

Wenwey Hseush and Gail E. Kaiser.

Data Path Debugging: Data-Oniented Debugging for a Con-
current Programming Language.

In ACM SIGPlaniSIGOps Workshop on Parallel and Dis-
tributed Debugging. Madison, W1, May, 1988.

To appear.

Gail E. Kaiser.

Semanacs of Structure Editing Environments.

PhD thesis, Camegie-Mellon University, May, 198S.
Techrucal Report CMU-CS-85-131.

Gal E. Kaiser.

Generation of Run-Time Environments.

In SIGPLAN 86 Sympasium on Compiler Construction,
pages 51-57. Palo Alto, CA, June, 1986.

Special issue of SIGPLAN Norices, 21(T), July 1986.

Gail E. Kaiser, Simon M. Kaplan and Josephine Micallef.
Muiuuser, Distnbuted Language-Based Environments.
1EEE Software :58-67, November, 1987,

Gal E. Kaiser and Simon M. Kaplan.

Reliability in Distnbuted Programming Environments.

In Sixth Symposium on Reliability in Distributed Software
and Database Systems, pages 45-55.
Kingsmill—Williamsburg, VA, March, 1987.

Simon M. Kaplan and Gail E. Kaiser.

Incremental Amnbute Evaluation in Distributed Language-
Based Environments.

In 5th ACM SIGACT-SIGOPS Sympasium on Principles of
Distnbused Computing, pages 121-130. Calgary, Al-
berta. Canada, August, 1986.

255

[15]

(16]

(7]

18}

(19

(20]

21

{22

[23)

(4]

i25)

26)

Uwe Kastens.
Ordered Awribute Grammars.
Acta Informarnica 13:229-256, 1980.

Donald E. Knuth.
Semantics of Context-Free Languages.
Mathemarnical Systems Theory 2(2):127-145, June, 1968,

Leslie Lamport.

Time, Clocks and the Ordering Events in a Distributed Sys-
tem.

Communicarions of the ACM 21(7).558-565, July, 1978.

Thomas J LeBlanc and John M. Mellor-Crumley.

Debugging Parallel Programs with Instant Replay.

Technical Report. University of Rochester, September,
1986.

Alberto Martelli and Ugo Montenan.

An Efficient Unification Algorithm.

ACM Transactions on Programming Languages and
Systems 4(2):258-282, April, 1982.

B.P. Miller and J.D. Choi.

Breakpoints and Halting in Distributed Programs.

Technical Report, University of Wisconsin-Madison, July,
1986.

Thomas Reps, Tim Teitelbaum and Alan Demers.

Incremental Context-Dependent Analysis for Language-
Based Editors.

ACM Transactions on Programming Languages and
Systems 5(3):449-477, July, 1983,

Thomas Reps.
Generating Language-Based Environments.
The MIT Press, Cambridge, MA, 1984,

Thomas Reps and Tim Teiteibaum.

The Synthesizer Generator.

In SIGSOFT!SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages
4148, Pinsburgh, PA, April, 1984,

Special issue of SIGPLAN Norices, 19(5), May 1984,

Ehud Y. Shapiro.

A Subset of Concurrens Prolog and Its [ruerpreter.

Technical Report TR-003, Institute for New Generation
Computer Technology, February, 1983,

E.T. Smith

Debugging Tools for Message-Based, Communicating
Processes.

In 4th International Conference on Distributed Compuring
Systems, pages 303-310. May, 1984.

Richard Snodgrass and Karen Shannon

Supporung Flexible and Efficient Tool Integraton.

In Rerdar Conradi, Tor M. Didnksen and Dag H. Wanvik
(editors), Lecrure Notes in Computer Science. Volume
244: Advanced Progranuning Environments, pages
290-313. Springer-Veriag, Berdin, 1986,

Joseph E. Stoy.

Denotarional Semantics: The Scon-Strachey Approach w
Programming Language Theory.

The MIT Press, Cambridge, MA, 1977.

The 8th International
Conference on

Distributed
Computing
Systems

San Jose, California
June 13-17, 1988

SPONSORED BY

@ THE COMPUTER SOCIETY

Technical Committee
on Distributed Processing

THE INSTITUTE OF ELECTRICAL
" AND ELECTRONICS ENGINEERS. INC

IEEE

Computer Society Order Number 865
Library of Congress Number 87-83544
IEEE Catalog Number 88CH2541-1
ISBN 0-8 186-0865-X

COMPUTER
SQCIETY
L AND ELECTRONICS ENGINEERS INC PRESS

