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Abstract 

This technical repon consists of rwo papers describing the GAEA action equations paradigm. 
Incrementa/ Dynamic Semantics for Language-based Programming Environments explains why 
attribute gr缸nmars 主re not suitable for expressing dynamic semantics and presents action 
equations , an extens lOn of attribute grammars suitable for specifying 由e static and 由edyn缸nic
semantics of programming langt且ges. It describes how action equations can be used to generate 
language-based programming environrr阳1ts 由at incrementally derive static and dynamic 
properties as the user m创ifies and debugs the program. Rapid Prototyping 01 Concurrent 
Programming Languages extends 由is technology to a concurrent 仕amework. It describes an 
(unimplemented) system 由at generates a parallel interpret町 for the language and provides run­
time suppo口 for the synchronization primitives and other facilities in the language. 
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Abstract 

Attribute grammars are a fonnal notation for expressing 由e static semantics of programming 
languages 一由0臼 properties 由at can be derived 仕om inspection of the program text. Attribute 
grammars have 民come popul缸 as a mechanism for generating language-based programming 
environments 由at incrementally perform symbol resolution, type checki吨， code generation and 
derivation of other static semantic properties 皑白e program is m创ified. However, attribute 
grammars are not suitable for expressing dynamic semantics 一由ose properties 由at reflect 由e
history of program execution andlor user interactions wi由由e programming environment. This 
article presents action eqω丘。时， an extension of attribute grammars suitable for sp优证抖ng 由e
static and the dynamic semantics of programming languages. It describes how action equations 
can be used to generate language-based programming environments 由at incrementally derive 
static and dynamic propertiesω 由e user m创ifies and debugs the program. 
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editors; 0 .2.5 [Software Engineering]: Testing and Debugging - debugging aids; 0.2.6 
[如民ware Engineering]: Programming EnvironmenωD.3 .1 [Programming Languages]: 
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1. Introduction 

This article addresses 由e processing perfonned by language-based environments (LBEs). 

η1Ìs processing is performed automarically and incrernentally (in 由e background) 臼 the user 

writes and tests rus programs. It requires an internal repre臼ntation 由at consists of the program 

itself plus additional infonnation maintained by the enVÏIOnment during prograrn construction 

and execution. This 血fo口nation represents two kinds of sernanric properties, static and dynamic. 

Sranc propernes are 由0白白at can be detennined by inspection of the program, while 命namic

properties reflect 由e interaction between the user and the environment. The implementor of an 

LBE describes its pr∞essing as derivation and manipulation of these properties. For ex缸口ple ，

symbol resolution，可pe chec挝ng and code generarion involve static proper世es， while 

interpretation, run-time suppo口 ands严nbolic debugging involve dynamic proper出s.

Recent re臼町ch h挝 focu臼d on 由e generation of LBEs from descriptions. Severa1 

mechanisms have 民en proposed for specifying the pr∞essing 阳rformed by the environments, 

and the most successful of these have been action rou由les ， attribute grammars and denotational 

semanrics. Action rou由les ar穹 written as a collection of imperative subrou由les. Consequen t1y, 

it h臼 proved difficult for an implementor of an environment to anticipate al1 possible 

interactions among these subroutines 由at may result in adverse behavior. Attribute gramrnars 

are written in a declarative style and the implementor need not be concerned with subt1e 

interactions 民cause al1 interactions among semantic equations can be detennined automatica11y. 

Attribute grammars have been successfully applied on1y to the description of static semantics , 

and have hitherto seemed unsuited to 由e description of dynamic semantics. Denotational 

semantics is a formal mechanism 由at provides direct means for defrning certain dynamic 

properties , notably inte甲retation. Denotationa1臼mantic specifications have not been extended 

to other dyn缸回c processing such as interactive debugging nor to incremental detection and 

reporting of static semantic eπors. 

节lÌs article pr可归钝s an extension to a阳ibu四 grammars 由at supports in口ementa1 pr∞essing 

ofbo由 static and dyna国C 臼mantics. The extended paradigm is cal1ed acrion eqωtion.s. Action 

equations are written in a notation 由at retains the flavor of attribute grammars but adds an easy 

means to express d归amic.pro严rties as well as static properties.ηle extensions to attribute 

g皿lIDars include anaching particular 臼mantic equations to evenlS 由at repre回nt u臼r

commands and supporting dependencies among events as well as arnong attribute va1ues. The 
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applicative nature of attribute gramrnars is relaxed, allowing attributes to be treated as variables 

and pennitting mαlification in addition to replacement for changing the values of attributes. 

Together, these extensions are sufficient to suppon in口已口1ental processing of dynamic 

semantlcs. 

2. Generation of Language-Based Environments 

LBEs are an alternative to 由e traditional t∞Is used by programmers to edit, compi1e and 

debug their programs.τbe key components of an LBE are a standard us町 interface and a 

common program repre臼ntation. Many programming environments have been built using 

structure editing techn010gy, which supports bo由 of these features.τbe user interface consists 

of some mixture of temp1ate edi由19 and text edi由g (supported by incremental 

parsing [23 , 35, 63]); 由e program is repre臼n也d as a p缸se tree or abstract syntax tree, where 

each node may be decorated wi由 attributes. Some of the best known LBEs are Mentor [1 1] , 

Interlisp [ω]，由e Program S归由esizer [59] , Gandalf [24], Pecan [50] , and Rational [2]. Each of 

these environments consists of an integrated collection of t∞Is 由at (1) can be viewed as a single 

t001 [7] and (2) may be applied incremen ta11y as 由e programmer writes and tests his programs. 

In some cases，由e t∞Is are automatically applied without explicit intervention by the 

programm町 For example，叩pe check:ing and symbo1 resolution may be performed 

automatically 皑白e program is created and mαiified; code generation and some c创e

optimization may also be done incre口lenta1ly.

ηle ear1y LBEs were hand-coded. Then sever毡1 environment generators were developed, 

including ALOE [4坷， Metal [12] and the Synthesizer Generator [53]. An environmenr 

generator is a program 由at combines an environment description wi由由e editor kerne1 10 

produce 由e desired LBE.τñe editor urnel provides the facilities common to all environments, 

such as window management and language-independent tree manipulation comrnands , while the 

environment duc巾tion includes all 阳 infonnation sp町诅c to 由e desired programming 

environment. The p町son who writes the environment description is called the i1叩lemenωr of 

由e environment while a person who uses the environment to write his programs is called a user. 

An environment description has two ∞mponents，由e syntax description and the semantics 

description. The synrax description inc1udes the abstract syntax of the programming language 

and 由e u臼r interlace (or concπte syntax) for the 1anguage. This information is normally 
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provided as some form of context-仕ee grammar. A syntax description alone is sufficienr 皑白

environmenr description if no semantics processing is required. An environment generator can 

combine the s严lta.x description with the editor kemel to produce a pure syntax-directed editor 

that supports program editing and enforces coπect syntax. 

2.1. Semantics Description 

ηle semantics description specifies all the processing performed by the environmenr, i.e. , 

everything the environment does 由at is not among the standard facilities provided by the editor 

kernel. Al由ough an LBE is a single t∞1，由e semantics processing of an LBE is petformed by 

what is conceptually a collection of tools and t∞l 仕agments 由at are knowledgeable about 由e

particular programming language. The collection can be subdivided into t∞Is 由at handle static 

semantics and t∞Is 由at handle dynamic semantics. 

The static semantics of a program involve tho臼 properties 由町， by definition, cannot change 

during its execution.ηle static properties of a conventional, lexically scoped programming 

language include symbol resolution，可pe identification and the object code generated for the 

prograrn. For example, the 臼t of identifiers defined in a par世cu1ar program，由e mapping 

between identifier uses and identifier de白útions， and 由e types 臼signed to partic时缸 identifiers

and expressions are all in the realm of static semantics. 

Consider the progr虱m 仕agment in figure 2-1. The program states 由at the variable a is 

declared to be of 叩pe integer, but the progra皿 also states 由at the variable a constitutes the 

conditional expression of the if statement The static se皿antics of 由is programming language 

r叫uire that a variable has the same type ov町 its lifetime and 由刨出e condition expression of 

eveηif statement is of 可pe booIean. Thus there is a static semantic error in the program. A 

prograrnming environment 由at inc1uded a 可pe checking t∞1 would warn the user of 由is error. 

VAR .: int~r; 

I J' • THKN 

II:LSJ: 

Figure 2-1: Type Checking Example 

If the t∞1 were incremental, it wou1d warn the user as s∞n as the error could be detected. If 
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由e user had first entered 由at 由e 可pe of a is integer, and later used a 部由e conditional 

expression for the if statement. then the error would be detected and reported immediately after 

the user entered 由e conditional expression. If the user had instead added a to the list of 

variables, without indicating its 可pe， then used a as 由e conditional expression , and finally 

retumed to the variables list to state 由at a is an integer, then the error would be caught 

immediately after the user entered 由is 可pe information. 

ηle 吗mamic semantics of a program involves the derivation and rnanipulation of those 

properties 由at may change during the execution of the program. 币le dynamic properties of a 

conventional language include the assignment of va1ues to particular storage locations and the 

maintenance of the current focus of execution behavior (i.e. ， 由e program counter). 节1而e 缸e臼a of f 

dynamic s臼emantics includes run.吐mesu叩ppo口 and s叮ymb协olic比cd由eb阳ugg醉ers 臼 well as in川t忧e叩陀忧臼.

ηle same programming environment sketched above might include an interpreter as well as 

出e type checking t∞1. τbe job of the interpreter is to directly execute programming language 

statements. The interpreter does not need to perform type checking or other static semantics 

pr∞essing， since 阳臼 functions are handl创 by other t∞Is. The inte叩reter 防rforms 由e

activities that 由e program 仕agment is defined to do according to the dynamic semantics of the 

progr在mming language. 

Consider the corrected program 仕agment in figure 2-2.ηle interpreter would begin execution 

of the if statement by getting 由e current value of 由e a variable 仕om the store (which binds 

variable 1∞ations to values). If a does not have a va1ue，由is would be repo口ed to the user as an 

error (or the environment could ask 由e user to enter a va1ue). If a dωs have a value，由e

inte叩陀ter would then check whe由er it is ‘ true' or ‘ false\ If true, the int町preter would execute 

the then statement;证 fa1se ， it wou1d execute the else statement 

VAR a: boolean: 

Ir a '1'HZN 

KLS& 

Figure 2-2: Interpretation Example 

节lÌs behavior d伺s not depend on whether the interpreter t∞ is incremental or non-
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ìncremental. By analogy to 由e 可pe checking t∞1 ， an ‘ incrernental' interpreter núght follow 

along behind 由e u臼T， execu出唱出e program as it is typed , as in VisiProg [25]. Ins tead , we 

think of an ‘ incrernental' interpreter as one 由at pennits the user to select, for ex缸nple ， the then 

part of the 汀，由e entire if statement, or an arbitrary program unit, and give a command to 

rnte叩陀t 由at unit. In a non-incremental environrnent, the user would have no choice but to 

commence execution of the program at the beginning. 

Specifying static and dynamic semantics is very complex. In contrast to 由e syntax 

description, there is no commonly accepted paradigm for the semantics description of a 

programming environment. There are two major sch∞Is 由at support different methods of 

speci命ing 由e semantics processing of an LBE: action routines and attribute grammars. Both 

me由ods support interactive semantics processing， ι 由e integraterl, incremental, non­

sequential, structure四oriented computing style describc:对 by Notkin in his 由esis [46]. S uch 

interaction wi由 the user is an essential requirement for modern programming environments. A 

third major sch∞1 - denotational semantics - disagrees wi由 this claim, and supports ano由町

method of specifying semantics processing for non-in口-emental ， sequential programming 

environments. The白白ree methωs are briefly described here and 缸-e explained in detail in the 

references. 

ηle flrst sch∞1 uses acrion roUIines, which were propo臼d by M创ina-Mora in his 由esis [45] 

for use in LBEs [18 , 24]. Action routines 缸穹 based on 由e semantic routines used in cornpiler 

generation systems such 臼 Yacc [31]. The semantics pr∞essing is wrinen as a 臼t of routines in 

either a conventional programming language or in a special p山"臼 programming language 

designed for writing action routines [1]. A 臼t of routines is associated wi由 each production in 

the abstract syntax, one for each user command (such as Create, Delete, Enter, Exit, Execute , 

etc.) 由at can be applied 10 an instance of 由at production. 节le corresponding routine is 

autornatically invoked by the editor kernel when an editing command is applied to a node in the 

syntax tree represen由19 由e program. 

The second rnajor group uses attribure grammars , which WeI它 introduced by Knuth [43] for 

speci句ring 由e context-sensitive properties of programming languages. At国bute gr扭lffiars are 

an alternative to sernantic routines in compiler-rompilers [14 ， 20].ηle generation of LBEs frorn 

a盯ibute 伊mmars [32, 53] was proposed by Demers , Reps and Teitelbaum [8]. The semantics 

of the programming language are wrinen as (1) a set of attribute declarations associated wi由
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each symbol; and (2) a collection of semantic equations - each assωiated wi由 a panicul缸

production 一由at defme the values of the attributes of the symbols on 由e pr叫uction' s left and 

right hand sides. The values of the attributes 缸穹 determined by evaluaring all the semantic 

equations as a set of simultaneous equations. During program editing, an incremental 

algorithm [33 , 52] automatically reevaluates 由0臼 attributes whose values may have changed as 

the result of a subtree replacement (editing operation). 

币le 由让d sch∞1 uses denorarional semanrics, originally promoted by Scott and Strachey 

[55] for formal reasoning about programs. The semantics of the programming language are 

written as a set of formal defmitions - assοciated wi由 each production in 由e abstract syntax -

that spec均由e deno削on of each language construct in terms of 由e environment (which bin也

variable identifiers to locations)，由e stor飞 and the denotations of other productions. Several 

re臼町ch groups have applied denotation剖 specifications to generation of compilers [6, 48 , 49] 

and interpreters [坷， but none of these systems are effective in an incremental progr苞mming

environment. However, Johnson has recenùy developed an incremental interpreter/debugger for 

GL [34], an expressionallanguage based on denotational semantics. 

Other methods have been proposed (e.g. , [3 , 10, 13, 51]), but none fulfùl all the requirements 

of an LBE. The basic problems are: 

·ηle design, implementation and debugging of action routines, or any other 
prωedural mechanism, is tedious and eπor-prone compared to the ease wi由 which a 
syntax description can be develo网.

• The capabilities of attribute gr四unars ， denotational s阳cifications and the various 
other declarative methods are generally limited to a relatively small subset of the 
processing performed by modem progra皿ming environments. 

币lis article describes a new π慧出od， acrion eqlωrions ， 由at augments attribute gr缸nm缸swi由

mechanisms taken from action routines. The ‘ action' of action equations comes 仕om association 

of user commands (or actions) with action routines , while the ‘equations' comes 仕om 由e

semantic equations of attribute grammars. Action equations achieve a synthesis with most of the 

advantages of bo也 paradigms but few of their d.isadvantages. Action equations were originally 

presented in the author's thesis [36] , and additional details can be found 由白它.
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2.2. Overview of Action Equations 

Attribute grammars are not suitable for the description of dynamic semantics because of the 

inherently static nature of their attributes. The value of each attribute is equated to a specified 

function of the program text and other attributes. It cannot depend in any way on the history of 

m创ifications to the program text or of the execution of the program. By definition, attribute 

grammars are inappropriate for expressing dynamic semantics. 

The primary contribution of the action equations paradigm is 由at it supports 由e expression of 

history or dynamic properties in a style based on attribute grammars. This is done by ernbedding 

rules similar in form to semantic equations in an event-driven architecture. Events correspond to 

user commands and activate 由e让 anached 叫uations in the same sense 由缸， in the action routines 

paradigm, commands trigger 由e associated action routines.τbe editor kernel orders the 

evaluation of active equations according to the commands invoked by the user and the 

dependencies among attributes and events as defined by the 叫uations. Equations that apply at 

all 由nes are not attached to particul缸 events and these correspond exactly to Ùle semantic 

equations of attribute grammars. 

ηlose action equations attached to events, however, should not be confused wi由 semantic

equations. Attribute grammars are applicative: an attribute is a variable in the sense of algebra's 

sirnultaneous equations but not in the sen臼 of conventional programming languages. An 

attribute is r臼valuated only when the program is m创ified， and then the sernantic equation 

repl缸es the old value wi由 an entirely new value. 

ηlese restrictions are relaxed for action equations，也 follows. First, an equation rnay be 

reevaluated due to 由e selection of an event. ωan attribute may be re挝signed many times even 

由ough 由e progr在m has not changed. Second, an equation is 阿rmined to defme the new value 

of the attribute as a m创ification of its previous value in the case of aggregare (or composite) 

values , suchω 由e symbol table and the run-time stack:.节lis second extension to pure attribute 

g缸nmars has recently appeared in several ‘ attribu回g:rammar' systems [26, 54]. Toge由町，由ese

side -effects and the added dimension of events make it possible for action equations to support 

由e expression of dynamic semantics in a style similar to how attribute grammars support 由e

expression of static semantics. 
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3. Description of Dynamic Semantics 

3.1. Action Equations 

goa1 symbo1 ::= component1 : typel 

componentn : typen 

/* A production consists of a non-tez:mina1 qO&l symbo1 , fo11owed by "..罩，
f。lL。w-d by a list 。1f cosp。neata.A cogpon-nt ia dafin-d by a aaz蝠， followed 
by "." followed by ita type. */ 

Figure 3-1: Production 

Action equations 町'e assωiated with panicular prcxiuctions in the syntax description in the 

same manner as the semantic equations of attribute grammars. The prcxiuctions defme 由e

composition of the non-terminal ncxies in the s归tax tree represen由唱出e program. Figure 3-1 

illustrates 由e context-仕ee grammar notation adopted for action equations. This notation is based 

on 阳Interface Description Language [44, 58] (IDL) developed as part of 由e Ada 

implementation effort. and has 民en used previously in DOSE [39] , an interpretive LBE 

generation system. Only the abstract s泸ltax is shown; the concrete s泸ltax ， or ‘ S泸ltactiC sugar' , 

is omitted throughout 由is article. This syntax description notation is not in any way integral to 

action 叫uations ， and any 0由町 context-fr回gra.mmar notation could be substituted - the only 

difficulty might be a less readable semantics description. 

A non-terminal goal symbol is 邸sociated wi由 a list of components, where each component 

has a name and a 可pe. The same symbol may appear as 由e goal of multiple productions, 

indicating several altemative derivations; for example, a ST A TEMENT may be an if statment. a 

while statement, a compound statement. elC. ηle 可pe of a component may be a non-terrninal 

symbol , a terminal symbol or a s饲uence. Tenninal symbols cor四年ondto 由e primitive types of 

conventional progr苞mming languages. The set of terminal symbols available is specific to the 

implementation of 由e environrr阳u generation system. but would typically include identifi町，

integer，陀al ， bool臼n ， string and 出xt 节le sequence consttuctor is in contrast to the tail recursive 

method of defming lists using non-terminal , terminal and empty symbols. In each case , the 

sequence defmition -includes the element 可pe.

In addition to alternative se臼 of components, a group of attributes and events may be 
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goa1 symbo1 ( attr~ut.l: typel 

attr~uta皿 typem

.vent11 ..., .vantp 

/* Th. attr~utas and .vent. associatad with th. qoa1 symbo1 ara dac1arad 
betwean bracas "(}". */ 

Figure 3-2: Attribute and Event Declarations 

ass∞iated with each go剖 symbol as depicted in figure 3-2. Each node defined by 由is symbol is 

decorated with 由is set of attributes, which represent 由e current values of its properties; 由e

events are attached to action equations 由at manipulate these propenies. Attributes are 可pedin

由e same rnanner 臼 compone邸， where 由e type is given as a non-tennina1 symbol, a t町min础

S严口bol or a 臼quence.

production 

aquatio~ 

aquation口

Figure 3-3: Action Equations 

ηle action 叫uationsωsωiated wi由 a particular production describe the semantics processing 

for each n创e 由at is an instance of the production. A production and its action 叫uations are 

depicted in figure 3-3. As in a盯ibute grammars, the order equationl' ..., equationn shown does 

not imply any sequencing among these equations，但由at 由ey should be eva1uated in 由is or any 

other particular order. 

location ;- f UDCtion(attribut.. and t.~l.) 

Figure 3-4: AssignmentlConstraint Equation 

ηlere are five Iònds of action equations: assignments , conditionals , constraints , delays and 

propagates. The assignment and constraint 叫uations bo由 have the fonn shown in figure 3-4, 

and the distinction is due to whe由町 or not the equation is attached to an event Assignments are , 

by definition , anached to events while co凡strainrs ， by definition , are not; 由is is explained in 由e

next 臼ction. For bo由， the right hand side denotes some function of attribute va1ues and tennina1 
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node values; these values are called the arguments or Ï!ψuts of the equation. The value 

computed by 由is function, called the result or outpur, is placed in the 1∞ation given on the left 

hand side of the equation. The location is typically the name of an attribute, in which ca臼由e

equation is identical in fonn to 由e semantic equation of a町ibute grammars. 

ηle location may also be givenωan address expression applied to an attribute n缸四. 节lis

permits the m创ification of a previously calculated attribute value. This divergence 仕om 由e

attribute grammar paradigm has a significant implication: Attribute rn创ification ， together with 

events , make it possible for an a时ibute to reflect 由e hisω'ry of progr缸nrnωification and/or 

execution. Otherwise, each attribute would of necessity be derived solely 仕orn 由e program text 

as explained previously. 

ηle 由让d altemative is for the location to be an address expression applied to a node in the 

syntax tree. Thus. 由e equation direc t1y m创ifies 由e program 臼白白 by the user, which is not 

possible in the pure attribute grammar p缸ildigm. It might be argued 由at m创ification of the 

program by the enYÌronment should never be possible, on 由e grounds of the ‘ principle of least 

astonishment' . ηllS argument 臼S山口es 由e programmer does not expect 由e programming 

environment to change his program, but exact1y 由e opposite is true in transfonnational 

programming environments, formal [4, 19, 47 , 57] or infonna1 [62]. There is no reaωn 由e

programmer should expect less from an LBE; in particular, tnanipulation of the program text by 

action equations is one mechanism for implernenting ttansformations. 

王主 .xpr.ssion

豆豆主旦 equation(e)
里主主主 equation(8) 

Figure 3-5: Conditional Equation 

节le conditionaJ 饲uation consists of an expression and 阳o sets of equations, as depicted in 

figure 3-5.ηle ∞nditional 吨uation s阴:cifies 由at when the expression is true，由e first set of 

equations must hol也 when the expre臼ion is false，由e (option剖) second 臼t is applicable. All 

conditional equations can be expressed instead by pennitting conditional expressions within 

other kinds of equations, and are thus only convenient syntactic sugar 由at provide no new 

meanmg. 
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3.2. Events 

The propagate and delay equations，臼 well 豁出e distinction between assignrnents and 

constraints, I它quires a discussion of events. Events coπespond roughly to user commands. 

There are two kinds of events, standard events and implementor-defined events. Each standard 

event coincides with a primitive operation accessible to the user, including at least: 

Create Replace 由e current placeholder with a newly created instance of a specified 
language construct. 

Remove 由e subtree r∞ted at 由e current node from the s归tax tr臼 and
replace it with a placeholder. 

Save a copy of the current subtree in a register. 

Replace 由e current placeholder wi由 a copy of a previously clip严d subtree. 

Move the editing cursorωa spec出ed child of the current node. 

Move the editing c山-sor to 由ep缸-ent of the current node. 

Delete 

4
1
'
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The same set of standar吐 events may appear in the semantic description of eve可 environment

just as 由e same set of standard commands are available in ev町 environment. In contrast，囚

的ψlementor-defined event is an identifier introduced by the irnplementor for a particular 

environment. An implementor-defmed event coπesponds to a user command available only in 

由es阴cific environment, such as Execute or CrossReference a Pascal program. 

production 

~atio~ 

~atio~ 

event1 --> 

·年且ati。飞， 1

equati。吨，.

-v-atp-->

·中ati=s" 1

叫uatio~， q

/* When ~ation. are attaehed to an eYent , tba eYent name i. qiven first , 
followed by "-->", fol~owed by tba equation. written in arbitrary order. */ 

Figure 3-6: Attaching Equations to Events 
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Each action equation associated wi由 a particular production rnay or may not be attached (0 a 

particular event Some action equations associated with a particular production may be attached 

to one particu1ar event, 0由町 action equations associated with the same production may be 

attached to a different event, and still other equations may not be attached to any event at all. 

Figure 3-6 illustrates a number of 饲uations ass∞iated wi由由e same production: equation
1 

through equation n are not attached to any event, equation l,l through equationl ,m are attached to 

eventl' and SO on，由ough 吨uatio'ì>， l 巾。ugh equatio'ì>,q attached to even~. 

9'0&1 symb。工. . = component1 : type 

componentn : type 

呼
川

山
川

/ * 1fhen the "空空" lteyword .ppe.r. , tbe iJ1herited .vent i. ..sociated with tha 
named component; otherwi.. , tbe aynth..ized .vent i. ...ociated with th. 9'0&1 
symbo1 ot the production. * / 

Figure 3-7: Inherited Events and Equations 

节le 臼mantic equations of a盯ibu出 grammars may define the value of an attribute 臼sociated

either with a component of 由e production (阳 corresponding attribute is inherite的 or wi由 its

go剖 symbol (由e attribu四 is synthesized). Events are similarly inherited or s归由esi~ω. 币e

events shown in figure 3-6 are assωiated wi由由e goal of the production, and thus ~yn由esized.

An inherited event, with its anacbed 吨ua∞ns ， is 臼汉x;iated wi由 a component name as shown in 

figure 3-7. In tbis case, the event name must be d缸lared for each go创 symbol 由at is a legal 

可pe for the component Unlik:e the attributes of attribute grammars, the same event may appe缸

in bo由 pr创uctions defining a node and 由us may be bo由 inherited and synthesized. Further, the 

sarne event may be inherited mu1 tiply wi由 m叩ect to the same production, due to multiple 

associations of the same event with incidentally the same element of a 臼quence (for exarnple, 

"even与 on componen~[i] 一>" and "even1a on componen~UJ -->" wh阴阳 i由 element is 剖so
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the jth).ηle rnultiple sets of equations attached to the event are concatenated, as 江由ey had not 

been ass∞iated wi由d.ifferent productions andlor different component descriptions. 

Action equations 由at are not attached to a particular event fill the same role 臼由e semantic 

equations of attribute grammars in the sense 由at 由ey may be reevaluated when the program 

changes. lt does not matter which particular user command caused the program rnodification , 

since all are treated as subtree replacements.ηlese equations are said to be pennanently active. 

In contrast, the collection of action equations attached to a particular event are active only when 

the event is explicitly selected by a user command or explicitly propagated by a propagate 

equation, explained shortly. These equations are passive at all other times. Only active 

equations rnay be evaluated, and an equation activiated by an event immediately 民comes

passive again after its eva1uation.τbe collection of action equations attached to an event 

describe 由e 臼mantics processing, or t∞1 operation. for the user command 由at corre叩onds to 

the event. 

An assignment 叫uation is attached to an event. When activated by selection of the event, it 

computes the value denoted by its right hand side and assigns 由1S ou甲ut to 由e 1∞ation on its 

left hand side. A constraint equation cannot be attached to an event. Whenever an input to its 

right hand side changes in va1ue. it updates 由e location on its left hand side to rnaintain the 

equali叩·ηle d.is由lction is necessary because constraints must always hold, as invariants. while 

assignments are evaluated exactly once when activat创. Constraints are typically r臼valuated in 

response to subtr民 replacements， but may also be reevaluated when an assignment changes the 

value of an input to a constt在int.

propaqat. .vent To ðe8t1natiOll 

Figure 3-8: Propagate Equation 

The user explicitly 臼lects an event by moving 由e editing cursor to 由e node and entering the 

command corresponding to 由e desired event. Propagation of events 仕om one node to ano由町 is

done with a propagare equation. as depicted in figure 3-8. When activated，由e equation 

propagates the given event to the indicated destination node.η1Ís has the effect of activating 

cenain equations associated wi由由e production 由at defines 由e destination n创e， in particul缸，

all those 饲uations attached to 由e named event; if 由is set is empty, then no new equations are 
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activated. As wi由 the arguments of semantic equations in attribute grammars, the destination is 

norma11y restricted to the children , siblings, parent and other ancestors (reached through uplevel 

addressing [42]). However, it is a1so possibleωpropagate 仕om an identifier definition to its 

use(s) or from a use to its defmition(吟， as described in the next section. 

E主坦Z 旦旦主主 event 主t receiver 

Figure 3-9: Delay Equation 

ηle fin a1 kind of action equation is the delay equation , which has the form shown in figure 

3-9. When activated, a delay equation suspends a11 currenùy active equations until the named 

event is selected for the indicated receiver node. Like the destination node of the propagate 

equation，由e receiver node is restricted to 由e pare时， ancestors, siblings and children of the 

current node. When the event is selected wi由 respect to the receiver node，由e previously 

suspended equations are reactivated. The event rnay be selected either by a user command or by 

a propagate equation resulting from a user comrnand. In the latter case, the previously 

suspended and now activated equations are in addition to any equations 由at may be active at 由e

time of the even t. The receiver node of a delay equation is optional; 江 omitted， then the delay 

equation refers to 由e selection of the named event when the 创iting cursor is at any node. 

When a group of equations are attached to the same event, both as synthesized and inherited , 

there is a specific ordering among the different kinds of equations. In particular, any delay 

equations are eva1 uated f1I"St and , in effect, simultaneously. Thus all other equations attached to 

the same event are suspended by the delay equation(s); if there are multiple delays , then all the 

narned events must be selected for their receivers to reactivate 由e suspended equations. If there 

are no delay equations, then any assignments and conditionals attached to the event are eva1uated 

in any order (except as noted below) consistent with the dependencies arnong inputs and ou甲uts

of the assignrnents and the inputs of the expression pans of the conditionals. Any constraints , 

and condirionals not attached to the event, whose inputs are among the ou甲uts of these 

assignments are also evaluated if and only if 由e ou甲uts are di仔erent than their previous va1ues. 

Any propagate equations are evaluated last; any equations activated by these equations 缸e ， in 

effect. acrivated simultaneously. 

Th is ordering arnong action equations is complicated by the conditional equation. Neither the 
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then pan nor the else part equations are themselves activated until after the expression has been 

evaluated, as s∞n as possible consistent with the panial ordering described above; an alternative 

semantics would evaluate these expressions as late as possible, but some such restriction is 

necessary to avoid non-deterministic behavior. After the value of the expression has been 

determined , then the appropriate set of equations are simultaneously activated , and the above 

rule applies regarding the previously active equations as well as the newly activated equations. 

The main components of action equations paradigm have now been introduced. Section 4 

describes the application of action equations to the description of programming language control 

constructs such as conditional statements, loops and pr∞edure calls. Section 5 considers 

interactive execution of programs, including stream input/output and some typical features of 

symbolic debuggers. Section 6 discusses 由e translation and run-time suppo口 algorithms for 

generation of LB Es 仕om action equations. 

4. Description of Control Structures 

4.1. Flow of Control 

if { Ezecute , Continu. 

if ::2 condition: EXPRESSION 
thenpart: STATZMKNT 

Ezecute --> 
p ropaqate &xacut. To condition 

Continue on condition --> 
If condition.9alue 
旦旦旦 Propaqat. &zecut. 主旦 th.npart

Else P ropaqat. Continu. To ø.lt 

/* The if øymbol declare. two ...ntø , &zecute and Continu.. The if production 
defineø two component. , condition and thenpart. EXPRESSION and STATEMZNT are 
each dafined by ....ral .ltern.tive productions , not shown. 
"Component. .ttribut." .cc..... the ~ attribut. ot th. naJMd component. 
5elt alwayø indic.t.. the node repreaentinq th. qo.l ot the usociated 
production , in thia c.a. the it node , aa oppoaed to on. ot its components or 
attributes. * / 

Figure 4-1: If Statement Syntax and Semantics 

Figure 4-1 demonstrates 由e use of implementor-defined events and propagation of events in a 

simple description of interpretation. The implementor deAnes the Execute event to specify the 
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execution of an if statement. When the Execute event is applied to an instance of the if 

production，由e propagate equation selects the Execute event for the conctition child of the if 

node. After any semantics processing involving the condition node 缸-e completed (inclucting for 

ex缸口ple 由e setting of its value attribute) , then the conctition child propagates 由e Continue event 

to itself (the conctition child). This Continue event activates the conctitional equation. If the 

value of the value attribute is true , the Execute event is propagated to 由e thenpan child. If not , 

the if statement has completed execution , and the Continue event is propagated to itself (the if 

statement).ηlUS，由e implementor-defined Continue event fills the role of the continuation of 

denotational semantics. 

= { value: boolean 
Executa , Cont1nue 

= :: = operandl: lI:XPRESSION 
。perand2: lI:XPRESSION 

Execute --> 
Propaqat! ~cute T旦。perandl

Cont1nue 空空。perand.l --> 
propaqat! Zltecute T旦。perand2

Cont1n晴空旦。E抽rand2一〉
p ropaqate Continue To se1t 

Continue --> 
va1ue := (operand.l .value =- operand2 .valua) 

/* Va1ue 18 an attribute ot the • aymbo1 - a8 ..11 aa evary othar EXPRESSION 
symbo1. TeaUna1 symbo1a auch aa boolean ara 9'1 van in ilalics. * / 

Fi伊re 4-2: Action Equations for = Production 

Events and equations for one conditional expression，由e = production , are shown in figure 4-2. 

When the Execute event is propagated to 由e = operator , the two operands are computed in order 

and then the va1ue attribute of the = node is set to 由e result of comparing the two operands. 

Calculation of expression va1ues does not, however, necessarily requ让e 由is rather cumbersome 

action equations appara阳s. Pure ly applicative expressions are handled in a natural way by pure 

attribute gr缸回到ars、 as demonstrated by Reps' and Teitelbaum's desk calculator [53] , so this is 

not ctiscussed further in 由is anicle. Expressions involving (potentially recursive) function calls 

and (multiple assignment) variables 陀qu让e a run-time stack , as discussed later in 由is section. 
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compound ::,. body: sequence 0/ STATEMENT 

Exacute --> 
propaqat~ Ezecuta T旦 bOdy[l]

Continue 空空 body[主旦~] --> 
propaqat~ Executa T旦 body(旦旦主呈]

Continua 豆豆 body(.!旦旦一〉
Propagata Continua To self 

/* The event daclarations ara omitted , aa they are in further examples. The 
sequence type i5 ind.icatad in italics. "Cαmponent[N]" rafers to the Nth elament 
。f tha saquence componant: "Componant (主旦~]" rafars to any alemant of tha 
sequenca. 旦旦旦 accassas the alemant followinq tha current ona , if any , while 
主旦主 refers to tha last alament of the saquanca. */ 

Fi阴阳 4-3: Compound Statement Syntax. and Semantics 

Figure 4-3 illustrates how event propagation works for a compound statement (i .e. , a 

sequencer). The basic idea is 由at the Execute event propagates 仕om 由e compound statement ω 

the flrst statement in the b<划y of the compound statement, from the flrst statement to the next 

statement in the body , etc. 1n the case of the last statement where multiple inherited events 

"Continue 0旦 body国卫]" and "Continue on body也到， both apply, both attached equations are 

executed. But "Propagate Execute 卫 body[旦旦!.1" has no effect since b创y[nextl eva1uates to 

nil. 

c。哗。und .. = body: sequence 01 STATD田T

Exacute --> 
主主 body. 旦主主
Then Propaqat~ Continue T旦旦旦旦
E坦主 Propaqat~ &xecute To body[l] 

Continue on body[旦到一〉
propaqat. &xecute 主旦 body 【旦旦主]

Continue on body[~旦旦旦一〉
Propaqat. Cont!nue To .el! 

Figure 4-4: Compound Statement Syntax. and Semantics , Revised 

白1Îs discussion of the compound statement, and the previous ex缸nple involving the 

conditiona1 statement and = operator, have been simplified in 由at 由ey do not consider the 

possibility 由at 由elx划y of the compound statement is empty，由e condition andlor the thenpan 



18 

of the cond.itional statement is missing, or one or both operands of the == operator 缸e meerly 

placeholders，而spectively. The analogous issue arises in the semantic equations of attribute 

grammars , and is solved there by requiring the implementor to provide comp/eting productions , 

which defme the value of the attributes for every potential placeholder. Action equations also 

take this approach, and the irnplementor must explicitly treat the possibility of empty sequences 

and missing components. The compound statement ex缸口ple is revised accordingly in figure 4-4 , 

where nil denotes an empty sequence; 由e rest of the examples in 由is anicle could be completed 

similarly, but 由is is not done to keep the examples sirnple. 

goto :: = label: identifier 

Execute --> 
propaqate Execute To @label.dafsite 

labeled ..::: label: iden明er

body: STATEMENT 

Execute --> 
prop&aat~ Execute To body 

/* The "8" operator dereterence. the detllite attribute of the l a.bel component 
to acce.8 the actual definition node elsewhere in the lIyntax tr... */ 

Figure 4-5: Ooto Statement Syn ta.x and Semantics 

1n order to describe 由e semantics of branch statements, some mechanism is needed to fmd 由e

destination of the branch. Th is is done through identifier definition-use links. Several 

extensions to attribute grammars have been propo臼d [9 , 27 , 28] 由at improve the efficiency of 

incremental attribute evaluation by linking the definitions and uses for each identifier. A change 

in an attribute value at a definition site is propagated along the links to dependent a町ibutes at its 

use sites. Any one of the臼 schemes can be used as the basis for propagating an event from the 

goto statement to 由e corresponding labeled statement as depicted in figure 4-5. 

Figure 4-6 shows how the operation of a general 1∞p statement is described using action 

equations. In由is example，由e initialization is perfo口ηed fust. Then the condition is tested. If 

true. the body of the 1∞p is executed. Now reinitialization , condition testing and the body are 

repeated unti-l the condition becomes false. 

Notice 由at the propagate equations in 由is example denote a circular dependency. The 



loop ::= initialization: STAT豆MENT
condition: EXPRKSSION 
body: STATEMENT 
reinitialization: STATEHENT 

Execute --> 

19 

propaaat~ Execute To initialization 

Continue 空旦 initialization ， reinitialization --> 
Propaaate Executa To condition 

Continua on condition --> 
If condition.valua 
主豆豆豆 Propaaat~ B!xacute .!空 body 
Elsa P ropaaate Continua To self 

Execute 空空 body --> 
Propaqata Execute To rainitialization 

/* Multiple componanta (initialization and reinitialization) for inharited 
eventa ia introduced aa ahorth&nd , meaninq th. avent ia aalectad at aither 
node.*/ 

Figure 4-6: L∞p Statement Syntax and Semantics 

condition propagates to 由e lx对y，由e body propagates to 由e reinitialization and the 

reinitialization propagates to 由e condition. Although circular attribute gramm缸s are 

problematical for non-incremental evaluation [15] and rarely hand1ed by incremental evaluators 

(work by Walz and Johnson is a notable exception [61]), circularities among propagate equations 

pose no difficulties. If the user of a generated environment writes an infinite 1∞p ， then the 

propagation never tenninates, to preserve correct dynamic semantics processing; if 由e 1∞P does 

tenninate , then the propagation terminates accordingly. 

~.2. Procedure Call and Return 

A likely syntax description for a proced山穹 definition ， wi由 its fonnal par缸neters and local 

variables , is shown in figure 4-7.ηle Execute event and anached equations for the procedure 

production are omitted, since they 缸'e essentially identical to those for the compound statement. 

The pr∞edure symbol has an AR attribute that acts as a template for the procedure 's activarion 

record during execurion. Frame is a non-terminal symbol , where the details of any particular 

frarne node are computed by constraints just 臼 is done by attribute grammars. For ex缸口ple ， the 

size (in bits, bytes or words) of each fonnal and 1ωal might be computed from its type and then 

its offset within the activation 陀co时 detennined by 由e cumulative size (and required 



procedure { AR: frame } 

procedure :: == na.me: identifier 
fortl:础工s: sequence o[ vardaf 
locals: sequence o[ vardaf 
body: sequence o[ STATJr.阻NT

vardef ( offset: inreger 
SiZ8: inreger 

vardef .. = id: iden币。

type: TYP Jr. 
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/* STATEMENT and TYP Jr. ar8 each defined by s.varal alternativa productions , not 
ShOW1l. */ 

Figure 4-7: Proced盯e Definition Syntax 

alignments). This would requ让e each implementor to define a suitable representation for each 

datatype in his language [56]. One altemative would be to represent each data item as a node; 

this is much less efficient at execution time but much more expedient at environment description 

tl口le.

proqram { atack: St!Q~"ct o[ frame } 

call ::. name: id.enr明er

actuala: seQ~nce o[ EXPUSSION 

Execute --> 
proqram.atack :-王旦旦旦旦 (Qname.dafaite).AR • proqram.atack 
propaqate &xecute To actuala[l] 

Continu. 空空 actuala[旦旦~] 一〉
<atoraqe for parameter in t二。p atack frame> :­

actuala[垦旦~] . value 
propaqat. &xecute To actuala[旦室主]

Continue Qa actual.[~旦旦旦 …>

<atoraqe for pr句ram counter in top atack frame> :=旦旦主主
propaqate &zacute To 8name.dafaite 

/* Stack ia an attribute of proqram. The parentheaea cauae the hiqher 
precedence ". AR" attribu乞e acce.. to apply to the reault of the "Q" operator. 
"It" adda a ne. elemant to a .equence. The d.ete rtl:l.ination of <atorag. for 
in top atack frame> dapenda on the daacription of framea , not ahown. */ 

Fi阴re 4-8: Call Statement Syntax and Semantics 

The synt缸 and semantics of 由e procedure call statement are given in figure 4-8.ηle run-time 
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stack is repre臼nred as a sequence of 仕ame nodes maintained as an attribute of the program node. 

Execution begins by applying the intemal version of the user-Ievel Insert comrnand to insert a 

copy of the pr∞edure's activation record at the top of the stack. The actual parameter 

expressions are then executed, and their resulting values stored in the corresponding slots in the 

activation record. After the last par缸neter is available , a reference to the call statement is saved 

as the program counter and then execution propagates to the pr∞edure definition. 

Remernber 由at the apparent circularity of program.stack on both sides of the equation is not a 

problem, since it occurs in an assignment rather than a constraint. Such ‘ circularities' are 

necessary for rnaintaining history inforrnation, where the new value of an attribute is computed 

by directly modifying its old value. Potential circular dependencies among constraints are 

handled as in attribute grammars, by separating into in and out attributes where the synthesized 

out attribute is 由e appropriate function of the inherited in attribute. 

raturn ::= 

Exacute --> 
proqram.stack :8 Q室主重主皇 proqram.stack(l]

Propagate Continue 主旦 <proqram counter in top stack frame> 

/* The return production h&s no componants. For a function rather than a 
procadure , the corrasponding return would hava an EXPRESSION componant. Access 
to <proqra皿 counter in top stack frame> dapenda on the frame machanism. */ 

Figure 4-9: Return Statement Syntax and Semantics 

Fig町的 gives 由e equations for execution of a retum statemen t. The top stack 仕ame is 

removed from the stack using the Delete command, and the continuation propagates to the 

original call statemen t. 

5. Interactive Execution and Debugging 

5. 1. User InputJOutput 

Figure 5-1 illustrates one mechanism for representing sequential UQ , for either the terrninal 

display and keyboard or ASCII files. For simplicity , each channel consists of bo由 an input 

srream and an ou甲ut stream, where each stream is a sequence of buffered text lines. Standard 

input and standar吐 ou甲ut are combined in the first channe l. 



program ::= 
工。 sequence 01 channe1 

channe1 :: = n&me: identifier 
input: sequence ollexl 
。utput: sequence ollext 
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/* The other components of a program are omitted. */ 

Figure 5-1: Input and Ou甲ut Streams 

write ..= expr: EXPRESSION 

Execute --> 
propaqat~ Elt8cute T旦 expr

Continue on expr --> 
progr&m->IO[l]->Output := progra皿->工。 [l]->Output j expr.value 
propaqate Continue To se1f 

/* "Node->component" accesses the named component of the named node , where the 
node is either the goa1 symbo1 of the production or an ancastor. */ 

Figure 5-2: Write Statement Syntax and Semantics 

Figure 5-2 gives 由e syntax and semantics of a simple write statement. When the Execute 

event is applied to an instance of 由e write production，由e Execute event is propagated to 

compute the value of the expression. On the continuation，由e text representation of 由is value 

(as determined by the implementation of the underlying environment generation system) is 

concatenated to the end of the ou甲ut stream. The ou甲ut stre缸口 is automatically red.isplayed on 

the screen after every update. Various kinds of unparse schemes have been proposed for 

defining the concrete syntax necessary for displaying the program [24 , 29 , 53] or distinct views 

of the program [21 , 50]. The action equations paradigm assumes the availability of one of these 

mechanisms for display purposes. 

节le read statement is slightly more difficult and requir肘 a delay equation. 节le first equation 

attached to the Execute event for the read production , given in figure 5-3, r叫uests the user to 

select the Create event to add a new last element to the input stream. The delay equation has the 

effect of suspending program execution until the user has enter它d a new line of input by 

appending to 由e sequence of text lines 由at represents the standard inpu t. Only then is the last 

(new) element of the input sequence stored as the value of the variable given in the read 
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read :: = variable: identi万。

Executa --> 
旦旦主主7i. Un主主主 Create 坐 program->IO[l]->input[last] 
<storage for variable> := program->IO[l]->input[主豆豆主]
p ropaqate Continue To self 

/* <storage for variable> uses whatever mapping the i.mplementor defines for 
the environment and store , such as a stack of frames as described in the 
previous section. */ 

Figure 5-3: Read Statement Syntax and Semantics 

statemen t. 

5.2. Program Suspension and Continuation 

break ..= 

Execute --> 
坠坦7i. g盟主主 Continue 旦旦旦旦

Figure 5-4: Break Statement Syntax and Semantics 

ηle delay equation is also instrumental in specifying debugging facilities such as breakpoints 

and singlestepping. Figur它 5-4 shows hows a breakpoint might be described. 节1Ís example 

follows the precedent set by Feiler in his 由esis [17] (and elsewhere [16]) as to how the user 

specifies a bre也point before or after a particular statement It assumes 由at 由e programming 

language has been extended by a special break statemen t. The user designates a bre政point by 

insening a break statement at 由e des让ed position in the program tex t. The inte叩reter suspends 

program execution when the Execute event is propagated to the break node , presumably by an 

equation for some other node. 

丁ne user con由lues from a breakpoint by entering the Continue command when the editing 

cursor is pointing to the break statemen t. Selecting 由e Continue event at some other position in 

由e program would activate the equations attached to 由e Continue event for the corresponding 

production , effectively starting up a separate execution thread at 由at position. A conditional 

breakpoint might be defmed by add.ing an expression to the break statement and enclosing the 

delay equation inside a cond.i tional 叫uation.



program { sinqlestep: boolean } 

program ::= 

Singlestep --> 
singlestep :=旦旦旦 sinqlestep 

STATEMENT 

Execute --> 
E主 program.singlestep

旦旦旦旦坦z 旦旦主主Resw国
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/* Singlestep is an attribute of the program symbol. Associating a collection 
。f action equations with the STATEMENT symbol is introduced as a shorthand for 
separately associating the collection with each of th. alternative STATEMENT 
productions. */ 

Figure 5-5: SingleStepping 

η1e description of singlestepping is sim且ar. Figure 5-5 depicts Singlestep as an implernentor­

defrned event that toggles singlestepping on and 0仔， by changing the value of the singlestep 

attribute. The delay equation is assωiated wi由 every ST A TE~伍NTpr创uction. If singlestep 

mode is on , then the inte叩πter suspends before the execution of each statement, until the 

Resurne event. Since no receiver is specified in the delay equation , it does not rnatter where the 

editing cursor is when the user enters the Resurne command. When the user selects the Resume 

event, the interpreter awakens and continues execution wi由由e current staternent. 

trace .. = vari&bl.: identi[ier 

EX8cut. --> 
proqram->IO[2]->Output :­

proqram->I。【2]->output

• variabl. , .. - " • <valu. of variabl.> , 1AM' 
p ropaqat. Continue To ..lf 

/* The second 1/0 channel i. designated by the implementor for tracinq 
varia.bles. <value of "ariabl.> u... what.".r mappinq th. implementor defines 
for the environment and atore. 1AN' r.preaenta a carriage-r.turn. 禽/

Figure 5-6: Trace Statement Syntax and Semanùcs 

Tracing is another debugging facility 由at can be descri民d by extending the target 

programming language wi由 a special statement. As illustrated in figure 5-6 , a variable might be 

rraced hy insening a rrace statement wi由 the variable name at every point where display of the 
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variable's value is desired. The trace statement is executed similarly to the write statement: the 

variable's current value is appended to 由e ou甲ut stream of a designated 1/0 channel and 

displayed using the standard unparse mechanism. Altematively, the explicit trace statement can 

be avoided by attaching a conditional equation to the Execute event for the assignment 

statement , to perfonn 由e trace when any variable in some list (given by an input channel) is 

assigned. 

6. Implementation AIgorithms 

ηle implementation of action equations consists of two parts, translation and run-time suppon. 

Bo由 parts involve an adaptation of the Reps , Teitelbaum and Demers algorithms [52] for 

generation of LBEs 仕om attribute gr缸nmars. Reps' algorithms work roughly as follows. The 

translator takes as input the environment description and produces as ou甲ut (1) various tables 

reflecting 由e syntax description; (2) a local dependency graph for each pr创uction representing 

the dependencies among the attributes 由at appear in its semantic equations; and (3) a pr∞edure 

for each semantic equation, which carries out the actual evaluation of the equation. 

After each subtree replacement, Reps' run-time suppon constrncts a scheduling graph by 

grafting toge由er 阳o projections of the 1ωal dependency graph for the r∞t of the replacement 

subtree , one deno由g 由e transitive dependencies among the attributes of the node v臼 its parent 

and siblings , and the other the transitive dependencies among the attributes of the node via the 

subtree.ηle at甘ibutes 陀presented in the scheduling graph are reevaluated in the order given by 

a topologicalωn of the graph. The attributes represented by independent vertices (i.e. , those 

叫nices wi由 no incoming edges) are reevaluated first. 

If the execution of a semantic equation 陀sults in a value di仔erent from the previous va1ue of 

the attribute , then the scheduling graph is expanded to include the projected 1ωa1 dependency 

graphs for all attributes 由at depend direcùy on the changed attribute. 节le expansion involves 

adding edges representing transitive dependencies for all of these attributes 由at were not 

previously part of the scheduling graph. Whe由町 or not the attribute changed in value, it and all 

its outgoing edges are now removed 仕om 由e graph and evaluation continues wi由由0臼

attributes now represented by independent vertices. 节1is process continues until 由e scheduling 

graph becomes empty, which is guaranteed to happen evenrually if the attribute grammar is non­

circular. (Algorithms to detect ciπularity in an attribute gr缸nmar are exponentia1 [30] , so 
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whether or not a given attribute grammar is non-circular is often determined by inspection.) 白lis

evaluation algorithm is asymptotically optirnal in the sense 由at the number of attribute 

evaluations is proponional to the number of attributes that are necessarily reevaluated. (节1e

efficiency may be irnproved by maintaining additional data structures, rnaking it possible to 

avoid all unnecessary evaluations.) 

The adapted setof algorithms operate 臼 follows. During translation of action equations , 

syntax tables and procedures are generated similarly to attribute grammars. The imponant 

distinction is that a local dependency graph is constructed for each event , whether synthesized or 

inherited, associated with each production. The graph represents 由e dependencies among the 

equations anached to the event rather than the attributes 由at appear in these equations; 由is is 

necessary becau臼由e ou甲uts of action equations may be placed in locations within an at因bute

or within the syntax tree and these 1∞ations may be computed during action equation evaluation. 

In each graph, there are no incoming edges for each delay equation (to ensure 由at they are 

evaluated flrst). an outgoing edge 丘。m every delay equa总on to every other k.ind of equation, and 

an incoming edge 仕om every other k.ind of equation to every propagate equation. There is also a 

l∞al dependency graph for the set of equations 一 constraints and conditionals - not attached to 

anyeven t. 

After each subtree replacement, a scheduling graph is constructed frorn the projected local 

dependency gr叩hs for the equations not attached to any event and 剖ω 由e two 1ωal dependency 

graphs (synthesized and inherited) for the equations attached to the standard event corresponding 

to the user cornrnand 由at caused 由e subtree replacernen t. In response to each user cornrnand 

corr盯ponding to a cursor rnovement or an irnplernentor-defined event, a scheduling gr叩h is 

constructed frorn 由e two 1∞al dependency graphs for the 叫uations attached to 由at even t. In 

either case , the run-time suppon then follows the topological sortlgr叩h expansion pr∞ess 

described above. 

As explained previously, the evaluation of several delay equations is treated as simultaneous 

and results in saving the scheduling graph together wi由 a representation of the requ让ed

eventlreceiver p但rs. Once the full set of events has been selected, in any order and spread out 

over any peri创 of time , the saved scheduling graph is gr材ted toge由町 Wl由 the then current 

scheduling graph. 节le evaluation of several propagate equations is also treated as simultaneous, 

and results in a new scheduling graph (by definition , the previous graph is emp叩 except for the 
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propagate equations) , which includes the two local dependency graphs for all the propagated 

eventldestination pairs. 

η1e incrernental action equation evaluation algorithm is asymptotically op由nal in the same 

sense as the base incremental attribute grammar evaluation algorithm. In the case of a subtree 

replacement, constraints 町e treated as if they were semantic equations and evaluated via the 

identical mechanisrn. 1n the case of equations attached to an event , each equation is evaluated 

exactly once for each selection of the event as required by the semantics of action equations , and 

the number of constraint evaluations is proportion剖 to the number of constraints 由at must be 

reevaluated. 

7. Conclusions 

The purpo臼 of 由is 缸ticle is to demonstrate 由at attribute grammars can be easily extended to 

specifying d归m咀c sernantics in addition to static semantics. The action equations paradigm 

does this by rnaking 由e attribute grammar itself dynamic , where sorne semantic equations are 

active and others are passive. Equations are changed from passive to active to passive again 

according to external user commands and internal computations involving the propagate and 

delay equations. Action equations also augment attribute grammars with limited side-effects 、

which make it possible to maintain the state of program execution and the history of user 

interactions with the environment. 

This extension of attribute grammars w臼 develo阴d to pennit generation of LBEs 由atsuppo口

both static and dynamic semantics. Attribute grammars previously pen卫itted generation of 

environments 由at suppo口 only static semantics. Action equations can alωbe applied outside 

LBEs to generate inte叩reters and debuggers. just 出 attribute grarnmars have been used to 

generate compilers. 
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ABSTRACT 

We propose a new technology for rapid prototyping of concur­
rent programming languages. The designer of a r￥ew language 
specifies its syntax and semantics in a form aJ notation. Our system 
genc rates a par挝lel intcrp陀ter for-吐le languagc and provides run­
timc suppon for the s归lC恼。nization prir01tives and 0山er facilities 
In 山c 1anguagc. 

Introduction 

节、e allu~ of distnbuted ∞mputing System5 IWI led to the 
development of many concum:nt programming 1angua~臼. one 
prob1em IS 山31 design pro~sscs much more quiαly lh.an im­
plementau∞. and u胃陀 has bcen líale opportunityωexpenment 
\11 1山 many of 山ese new 1anguages. 节宵 surch for the right com­
munic3úon and s归lchronizaúon primiúvcs would be aided by 
mecharusms for rapld prototypmg of concurπnt prognmming lan-
guJges 

We propose .1 new techno10gy for automatic generation of con. 
current mte巾陀白内 from form aJ specift~ons of the 仰。~U1I
languages. Our technology consisu of fonnal nol且∞ M回"问)Ort­
mg algori山rns. 节le formal nowi佣 is called acrÎOll I!qlMllÙ}lU. 

w hlch are attri bu也 grammV1 cneOOed by 阳∞m饵:U of I!vl!lf# 

and wujicaríoll_ The钊pportina alsori thms uld \血( 1) prepnxeu­
mg algon山rn5 to gcnerue 归 interpreten and (2) C'V alu血∞ al­

gon山ms embeddωm the aenerated interpr鸭t'I.

Ths paper ovecvlC削 aaribut.e iJ"IØ1ID&ß. expllins the CXlenslon 
10 the lcuon 叩ations pat1digm. 时间!efU3阳 syruhcsis 0 f ac­
lion equauons Wl山 1 u.niflcation sl1'lt.egy U our muns for specìty­
Ing and implemenung synchroruution pnmltives. We tllUSU"l1e创U

Jpproach by gmng 1 speciða.a∞ of CSP. We dlscusa our support­
Ing algon山rns and 阳n describe 阳 concum:ru mterpl'回也佣 of an 
e~ample CSP program. 节le paper conc1U(阳 m山 1 bnefα)IJl­

panson tO ~latωWo"'-

Attribute Grammars 

Actlon equations are a strict 5Upenet of anrlbuu 6rlJlNftiV$. 

whlch we~ inu回uccd by Knulh (16) for 写lCdtylng 臼∞ntexl­

scnsLUve propertl臼 of programmina 1an思础au An lanbute Jf1lD­
mar augrnents each pr回ucti∞ ìn I co(uX1-free gr础nmar wilh 
U mDlIlIC 叫ualiOIU. wtUch de阳、e tlle ∞侃.ext-阳lSi tive ru1es u-

CH2541-1/881α)()()/0250S0 1.∞。 1988IEEE

sociated wilh the pr回uction. Each 饲uation defines 阳咄ue o( an 
attribUle as a funcúon of lerminaJ grarnrnar symbo1s and 0阳r 31-

tribules. These olher anributes ar芭 define划 in rum by equations 山at

augment the sarne or a differenl pr回uction. S归阳sized anri bu te3 
are Ihose associated wi山山e nonterminaJ grarnrnar symbo1 on the 
le仇 hand side of Ihe production and inherited anribules are lhose for 
NωrminaJ and nonterminal symbo1s on 阳 n酬 har叫 sìde. A 
program 15 陀P陀sented as a parse utt where cach !l(刘e is d伐。rated

by 阳 ωrresponding attribu lCS. 

主C ::2 q飞lard: EXPRESSION 
body: STATEHItN't' 
error: snτ111 

c~: Iln 

旦 guard. type …bool.~" 
旦旦 error : - "<-- type- .rror" 
11:.1... error :-

c~ :- "it (" quard.co&. ") " body.co&. 

op唱rand.l: CCPRZSSIα" 
。perancl2: EXPRZSSION 
type: TYÞ& 
cod.e: I I%J 

21 。阳rand.l. . t ype .。阳rand2. type 
Th皇豆 type : - "bool..且"
E主旦旦 type …und.etined" 

c~ …(" oper‘且d.l .co&. ") - (" 
。perand2 . co&. "),, 

FiiU陀 1: Ponion of Aaribute Grammar 

The fi~t production in ftgure 1 shows 阳 CSP i1皿也d ∞m­
mand (7). u5ed for the do and if stalement!. our aaribule gram.mar 
notauon foUows the lnterface Description Langulie (IDL) 
[:!6) convenoon o( narning the ∞mponeru o( pr回uCtiolU甸Ull咀

and body) and lísúngωge tller wí Ih the ∞mponenu the name理 and
t ypcs of the syntllesiz.ed and II1herited anrirutes of the gram.mlf 

symbol on the 1eft hand side (error 副 cod.e are 5ynthesiz.ed 
lltnbuleS). The ftm equwon for the GC pr回uction defu回 the

v剖 ue of tl、e error attribu四 o( the GC symbo1 as a function of the 
Iype annbut.e o( the guard symbo1.节'Ie type aari ru忧 is defined 
始parate1y for ~h EXPRESSION produ∞侃 For exarnple. the ,. 
producti佣 shown defu田 ilJ type aUribule aa a function o( 归 type

attribuleS of the twO operand symbo1s. GC's 臼cond 呵UlOon

defmes IU cod.e aaribute 臼 a funcoon of 阳出~ attribu国 of 阳

胆M司 and body symbols. 

Aari bute gramrn an luve long been us.ed ωrrapidproωtyping of 
compJ1en for 臼quential 1anil且ies [6. S). 节leαm阴阳<OOIptJcr
I战臼 U Ifl归t an attri bu t.e iJ'UIUI1lf for 幽幽ired pro~ina 

1anguage 四 produιes I compiler for 阳 1anlllaae. The tnnalJlOr 
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ωm归nent of 山.e compiler-compiler typ比ally produαs language­
specific tables 行口m 由e anribute grammar. which are ωεd by a 
language-independent anri以Jte evaluation algo时thm

115. 2J included as pan of 由e generat国∞mpiler. onα 由e paJ古e
lree is constructed. 由e aroibute evaluator decorates i 臼 nodes wi山 a

~onsistcnt set of atlIibule values. 霄咀s is generally possible only if 
山盯 a陀 no (nonconverging) c泣口J..larities among 山e equauons­
e g • "a := f(b)" and 、:= g(a)". Anribute evaluation has 山e effi缸叉

口 f aetecong any static seman口c (∞mext咽nsitive) errors as weU as 
producing object code. .-\fter evaluation lerminares. the compiler 
mlght 陀归rt crrors by traversing 山e parse tree in p陀fix order. print­
Ing non-nulJ error a且nbules (wi山 surrounding context) as It 阳1<1s

:hem. 1 f no elTO r messages are found. 由en it miglu write 阳 code

J((nbute at lhe root of lhe progr百m to a sεpara出自le.

AtlIibutc grammars are 吨ually applicableω ∞mpilation of se­
叶ucnti aJ and ∞ncurrent languages. but unforrunately equ础ly in­
Jpplicable to intc f1lretation of el山er lcind of language. 丁ñe pro刨em

IS 山al anributes 缸'e by defmition derived 50lely 行。m 山e program 
川. glven lhe set of semamic equations. 节、e values of altributes. 

unα ∞mpuled. 陀mam 吐1e same; attribute values 陀P陀sem sraflc 
propeC'Jes of programs. lmerpretation 陀q凶陀s maintenance of 
ι今rtanIic propertics. such as lhe run-time staCk and the ∞n出n凶。f
memory. Attribute grammars are not suitable for expressing such 
properues. 

However. it is exactly 阳 dynamic properties of concUJTent pr。
gramming languages 山at are 10te陀sting. Concum:m languages are 
narurally more ∞mplex 山an s呵uential languag臼 becaωεlhey

combi~ all 山e problems of 5eQUential programming with the ad­
di 口onal problems of synchrortization. Concurπnt interp陀臼 rs are 
useful for !Csting and debugging sequential behavior within 矗

proαss. but are mo陀 important for following the flow of ∞m­

munication among processes. As more aJld more ~w language fea­
lU陀5 are propo妃d. rapid prototyping be∞mes more aJld more 
jcsirable. lt is necessary to develop a formal notation for specif严ng
seman lÌcs of concurrent languages lhat is sufficiently expπssiveω 
♀uppoπau!Omauc generauon of concum:m in忧。陀ters. We foUow 
an operauon挝 approach in order tO produce relatively efficient in­
tC f1l陀 ters

Action E<J uations 

We have p陀vlouslyp陀sented actìOTl tqωMIU a.s an e xte l1Slon 
of .mnbu比 grammars 川 suppolU rapid prototyp lOg o( 10te币tet.eß

(or sequenu aJ programm 1Og languages [11 J. ln 山is paper we sketιh 
山S support. and 山en e~出nd action equ.alionsω ∞阳町、mcy.

Acuon cqua口ons as p陀viously defined are sunply Jllnbute 
旷ammlrj Jugrnented wi山 the notion o( ~tlllS. An evem cor­
r肘pondsωan e.\temally initiated activity. such as 1OvokJng an 10-
tcrp陀tc r. CelUJn 叫uati创u a.r哩 anached ω 阳mαJ..lat evenl!. mcan-
Ing 山ese cquauons def1Ile the dynamic 览maJ回αof the evem for 
t.'1e particular production. Equatioru are an刷刷 ωevenu III 阳O
!"onns: .. <CoI t的斗 <tqlMJJlOfI(s)>' aJ划 "<tvt1ll> on 
<COf1ψOfltlll> .-> <lquarwfl(si>". n.e first i.s arW.og队皿 ωthe

nouon of a syntheslzed annbute. 部SOCl a.ting tl百e evenl and iLS equ. 
IIOns \11 1山 the grammar symbol on 也 left hand 剖de of 阳伊叫uc-

1I0n; lhe nght follows 阳 notion of an inheriled awibute. a.ssocílt­
IOg the event and i臼 equauOf\S w1山 a gnUnlIW' symbol ∞ the rigt嘘

hand slde. Actìon 饲uaoons IIltr回uce a new ltind of 町ua.u佣圳由

the form "Pro旦旦主 <~t1ll> To <CÚSrutQlW凋扩 where

<dtSll flil/lOIl> IS a grammar symboI. 1、iJ peπni!S the 提maJ回CS of 
an event (or one symbolωbe defu四din 出πJ1J of (I) the same ev~ 
for a di民renl symbol. (2) a diffemll event for aωfferem symbol. 
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andlor (3) a di仔erem evem for the same symbol 

IF .:= body: ~equence 。tGC

RUN --> 
E互旦旦旦旦旦旦旦 RUN 1:2 body[l] 

CONTINUl!: on body(~l --> 
旦旦旦豆旦 RÜN二To body[旦旦]

CONTINUZ 0四 body(laatl :> 
E旦旦豆豆豆 CON贯而. !旦旦旦

GC ::= guard: EXPRJ!:SSION 
body: STATEMZN'l' 

RUN --> 
E豆豆豆豆豆豆豆豆 RUN !旦 guard

CONTINUZ 空空 guard --> 
It quard.value 旦旦旦旦旦因旦旦旦凯JN !2 body 
豆豆豆豆豆豆旦旦旦旦面前Z黯Jll To !且主

CONTINUl!: on body --> 
旦旦豆豆旦 CÕNTIN'CJ"B !旦旦旦

Figure 2: Portion of Action 问uations

The equations in figure 1 define static propemes - stanc 
法mantic analysis and C(也 generation - aJ回 are 由us not anached 
10 any event.节1e equations in figure 2 define the dynamic seman­
lics of in!C rp陀1.1tion. 5O山ey are anached to events represenong 10-
tcrpretation_η1ese equations specify the interpretation of the CSP 
if slatement and ilS guar司ed cornmand list. where the RUN event 
corres阳nds 10 阳 invocation of也 interpreter on 阳 p剧cular lan­
guage construct (essentially. a high-Ievel program ∞unter) aJ回阳
CON1Th'ù'E evcnt correspondsω 山e continuation introduced by 
denotational semanócs [27].1 笠![ always 陀fers !O阳 symbol on the 
left hand side of 山e produαi∞ and value is an anribute of eaιh 
EXPRESsrON producùon. 

The first evem for the IF producóon defines lhe RUN event for 
lhe IF symbol in tenns of the RUN event for lhe first elemem of the 
body symbo l. The second defines 阳 CONTINUE event for any 
element of 山e body ln terms of the RlJN event for 由e next element. 
lf any 节1e 山ìrd defines the ∞nunuation of lhe last element of lhe 
body ;LS lhe same as 山e continuation of the IF symbol.而e even tS 

for lhe GC produc口on are similar. Here 由e CON11N1.Æ event on 
山eguar吐 lS defined in lerms of its value aroibute as well as in lerms 
of olher even tS. 

Acuon 吨uations as expl血ned above can be used for rapid 
prolO!yp lOg of interp陀ters for 臼quential languages. 节'Ie lOterp陀ter
)!enera !Or takes as in阳t tI、e action 吨uations for the desired pro­
grammmg language aJ飞d produαs an lOterp陀比r for 山e language. 
The U'ansla !Or component of the generator 仰。duces language­
♀ peci lic lables for a language-independent evaluation algori山m.

Smce Jction equations inciude anribute grammars as a proper sub­
s<!!.山e evaluator decorates 吐1e nodes of tI览 parse tree wi山 a COIlSlS­
lent set of aruibute values. Static semantics errors may be detected 
Jnd 陀ported as previou.sly descrí民d.

Interpretation is initiated by a user activity. such as sεlecting a 
node in 吐'Ie parse tree and giving a command com:s阳ndingωm
evem assoc1ated wi山山e productíon 阳t defines 阳 node. 节us has 
lhe effecI of actiwuing 山e equations an.ached 10 由at evem. Each of 
山esε 叫uations is evaluated exactJy once. in the order implied by 
山e1r 10阳t/ou tpul de p赔ndenci臼. Any propagate 叫UanoM among 

i !"'lo恒出"四时由sena &lly..町 prod回国nset也. COr-rt1N1.JE everll 10 i旧lf.
巾'叫凶盹回回叫dbe 缸凶ed IWO何晒cally by 1hB tranlWIx (，伺alI u臼p q:町1&1
ζ画也 wluch 嗣uld 曲回国 tndicud in 吐圃rpectñc&oona.



山e 瓦tivated 叫\WiOns have 吐Ie effect of activating additional equa­
tions atUlchedω Lhe nam创 evenlS for 阳 U回iωted s归nbols. 丁、u
process may or may ∞t tenninate. depending ∞阳出ms of cir. 
cularities among 阳呵回tions -"X -->巳旦组坐 y To 笠!['and
'Y →旦旦挫 XI旦旦!f' is a pa阳logic aJ case. In comrast lD 

Jmibute grammars. circuJariùes are someùmes necessary. for ex­
ample. tO model .....hile true do ...... 

Action equations for 由c imerprctaòon of s呵uencing. 1∞ping. 

brancrung. polentiaJly rccursive subrou口ne call and subroutine 
陀阳m arc given else...herc ( 10J. 节1ere we demonstr四山at action 
叫uations arc a simple means (nonc of the speci.fications is longer 
山an 3 page') for specifying 山e dynamic semantics of sequential 
programmíng languages. 

Svnchronization via Cnitication 

7、iaivcly ， il might appear 山at a simple cxtensioo of evenlS would 
be sufficlcnt lO specify 山e s归E恼。而且ùon primítives required for 
ζoncurrent languages. For example. it mJght 比em that we could 
add argwnents 10 cvcnts. and 山en specify a send-ar回-conDnue Stale­
ment w1山..旦旦旦旦 SEN四mωsage) To 陀αive_statemem" 四
川∞rresponding rcαIve statement wi由 'S卧ID(message) --> 
cquations". Unfortunately. 山is dωs not wo rk.. 

Consider a concurrent program wi山 p民lCeSSeS P and Q. where P 
∞nwns several send statem enlS and Q ∞n tain.s several r民eive
stalements. Sinα P and Q e ，，;ecu阳山 paralJel. it is not possible for 
pr民εS5 P 10 know a prωri which of thc 究veral 阴孤sible receive 
P01nts shoωdbe 山e destination of a particul.ar田x1.臼lTing dif­
fcrcm e ,,;ecu lÍons of the same program. 由le same send mighl be 
malched WI山 di仔erent 陀臼IV臼缸x1 the same receive wi由 di仔erent

sends. Thcrefo陀， il ís 1m阴阳ble 10 fill in the "r民eivesutemeru­

ponion of the pro阳sed propagate equation: similarly. it wouJd be 
1m阴阳ble 10 detcmuIlC in advance all rIeα:ssa.ηinfonna.d∞ for 

any similar cÄlension of cvenu. 节le matchlng betwecn 阳回 SULe­

ment and 陀臼Ive stalcmem can 0时y be resolved when boúl c。但­
murucaung pr民Z岱cs are ready. 

Th s problem 15 v的 S皿阳 ω 阳 wvffclllÍDf\ (19) mecharusm 
'" Prolog [3J. For 山IS rea:缸)0 we tum 10 a wul1ca.don-bued 
mecharusm for spec1{)1ng alangu.aae's s严瓦hroruuo∞ primitives.

Wc as皿la出\IIlth ~ch pane tree a <atabase o( lUpks. which ~ 
shared among aJl processes. We defirle 阳0 时"w kinds o( 呵uarior回

山al ope r.l!e on Û官 dau.bω.e: asstn and 1>缸)C.t. 8αJ'l operatior四lÙ.e

lS Jfgumcn lS a ruplc of c ,,; press lOflS. where an ex阴回.s10l'1 may be I 

grammar symbol. 10 attnbute. or a function o( Ihese. Each gr租nmar
归国1 0 r attJ'I bu臼tNtaJ:胆m u an elcmc:nl ot 吐le IUple may be 
su f(hed WI山川 c ，，;clama.don po in1 ("!")山. marb it u rtad.-o呻
iO the sense 0 f 阳 read-only vari剧es of COOI:WTeft pro问 [24J. l

\1arung vanablωread司副Y it归bì tJ the dm:ctioO of uni flcatI∞. 
S iOce 山ese valucs C5lIIOl be chanied 11 a result of wulic lUoo. Un­
Itke Prolog as回 C饵览山鸭u Proloa. variab缸.s nccd DO( beiin w1由 E
uppeπ甜 le n.er. cver挡回割I ~ a vari abI.e unlesa m.a血国 rud-or均

lç国~四~oal，皿ly- 归申皿回回..tr.ï阳隘'庐，庐-圃­
find Ihu∞nfua鸣怡。回"""恼。(!he霉国且&.Daa.
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节le semanùcs of t.t旨se 呵uaoω11 are 11 follows. 

主豆豆旦 节写 assen 饲uaIion aaem回aωwùfy ilJ ar­
部皿CllJ: lUplc WÍ由 10 eru:ry cur市ltJy in the 
datab笛e using concumm 阶'O\og'$ style of 
川ficaIioo. If wùfiαtion succeed.s. cenain 
∞m萨)(leOIS and anrioules of ÛIe participating 
parse tree nc地回町 i n..CWlIialedω 阳resul15 of 
由e 山lÌ负cauon as回Lhe oû回r ruplc 山at par­
ticipa恒d in the 旧úfica口on is automaùca且y
rctraαed (i. t:.. removed from Lhe daubue). If 
由e uniiicaòon fails. Lhe ruple is insened inωthe 
database as飞d ex民uùon ∞nun四s normaJly as 
defined by the a∞∞饲uaIions.

旦监 The block叩aùon is euctly ÛIe same as a.ssen. 
e ，，;cept 由at if wùfication f;缸Js. e ,,;ecution \11创u
WUil 100ther ruple arrives wi山\llhich lhe ar­
部lI1leru ruple can urufy. 

(* Send and Ma~t *1 

SEND ::'" r.c.~"..r: idl1JIUs. 
g凶….qe: I:XPQSSION 

RUN --> 
Bloclt( .. ….qe! , ..lf!. rec.iTer!) 
Pr<亘王军旦旦旦 CON'rINOK !旦旦旦

(* Sand and Ccnti且ue *) 

SENO ::. ~.i""r: 臼.."翩翩
国….fie: ICCPUS8IOII 

IWH --> 
些皇堕些主主{…aaqe! ， ..lf!. ~Ter! 1 
旦旦旦旦旦 CON'rINtm !旦旦旦

(* ~c.~..... *) 

R.ECZIW ::…nde r: idl lIIlU. 
....riabl.: idI"ω$. 

RUN --> 
Bloclt (....riabl.. l....lu.. .andar'. ..lf!l 
pri军虽旦旦 C倒'l'INtm旦旦旦

(* Anonymoua ~c.i".. * 1 

RJ:CJ!In…且d.8 r : 1M lIlIUI 
....riabl.: 1M.施"

RUN --> 
Bloc~(....r1abl..l....lue. .andar. ..lf ' ) 
Prop.旦旦 CON'l'INtm !旦旦旦

Fì iure 3: Action Equaùons {or Synchronization 阳miòv臼

Augmennng 1Ctl0l'1 e甲ations with 阳a.saen and bi饵i且呵UaDOnS

1 S sufficie '"ωImplem削 alllcnown (ωus) 叩lChroníz.ation prim i­
uves. 节lCSC inc lude scnd.挝、d-wait， send-and-c∞tinue. receive iII'回
mon归"。ω 陀a: ive. Figun: 3 gives 吐le action equa.d创U 山arde仙le
lhc dynamic semmics oC tt稳se four primitives; we omit the equa­
lIonsω aJloc割I! vanablcs and evaluate cltpressi倒胃.

Thc RUN eVenl (or the 回回-1Ild-wai! sac.emer回 is defin创 asa

blα;k on the lUpIe∞nsistin& o( itl me剧院. some identiftcati∞ ot 
l田U(UUIUJlU 陀pruenl:l ID identifter UJe IÍLe.凶".吃f an idemifer 
def1llÍtion slte). and Ihe name o( the desired receiver. whm ú旨
阳PIe uruf田. boch 111冽e. an: retrICIed回归田凶吨归田eø coo­
tinues. 1be RUN evem Cor 也键时-Uld<Ol'回DUe SWI:D:田骂 it
defu盲目 i甸回叫1)'. ex.cept thal aaen ~ lUbItit现ed for bioc立1be
R UN evml L. de ftDed as 111 aøert o(曲"曲"四皿吨。(iø mea­
sa，e.1幽幽caôon md r以到ver name. lIld imm副血lyαlIlIinUa.
ηle RUN evClX ror Ibe m:eive ..'..klW it dedDed • a bioc束。n
U随叫aαlOIIIl吨 of tbe ~ (1vllue) of. vlria凰归 name

of the 但由国民啤r. lDI1民me Idc皿.ðC:aIiC皿WbaJ也缸"
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ω1i fies. 出e e仔èct isωtrar四mit lhe message 齿。m 让始回lderωthe
variable locaúon of lhe r回e1ver. 丁lle RUN event for the 
anon归nous 陀ceive is defined as a bloclc on 山e tuple consisúng of 
由e location of a variable. the name of any sender. and its identifica­
:lOn 

CALL ;:= ~ac.iv.r: 且必fllUSt
a:gumant: EXPRESSION 
re t:urn: idtnluSt 

RL'N --> 
Assert (arqul%圃nt! ， 8.1f'. 
i? rooaq旦旦 WAIT 旦旦旦

rec.iv.r' ) 

WAI '1' --> 
B~oc~(return.1va1u.. 8.1f' , 
Propa旦旦旦 CONTINUB 旦旦且

:.c.1"..r! ) 

RUN 匈->

B10ck(ar~且t.lva1ue ， aender. 
PrõD'iqat呈阳N '1'旦出dy

CONTlNUlI: on bodv --> 

..1f! ) 

AlI ser乞ìr.ault.rva1ue!. 8endar! , 8e1f') 
Prõj?ãCja豆豆 CONTINUJ: !旦旦且

Fïgure 4: 

Remo1e procωure ca1l. broadcast to a lcnown set of 陀ce1Ve l!.

and 陀仅Ipt from a known set of sendel! can be lIDplementcd using 
cX1cnsions of 山ese pnml盯臼. For eT; ample. ñgu陀 4 defines a 
slmplifi创陀mo臼 procedure calJ. whe陀址、e local srub th.al de创S

'.11 1山 a name server 缸ld the netwo~ 缸ldthe 陀motestub 由~t issues 
the RU~ event 10 山e select国陀mote procedure are su b:s umed into 
our run.ume SUppo l1 (山e other om i tted details are the 组me as for 
10cJ.l suorouune ca1ls [1 : 1).行lC RUN event for the CALL pr回uc­

é10n lruua1es 山e 陀mote call 明白 lhe assen equa口on. ar回 then ISSUes 
a WA lT evem to acu....a1e the 呵ua口OlU that wall ior U官陀rumfrom

~ne remo !e pn:x注dure Semapho陀s and motutors can be imple­
r丁1~n1ed ωng these tcchniques and tne 'enc却sulated 陀soun;e' ap­
prtllch 1$ descn民ιtn ， 8;. 占∞n归nous broadc笛t !'broad日slωm

JnknO \lo n 口时ntxr of rece1vers: 吃qω陀5 pers lSu fIJ asseruoru (00 

Jutom jUC rctracUon on uru fic J1lon) aI回 the 3ddi口on of umesumps 
:0 ~ach tuple 50 tha1 rece1ver古 can detennme w llJch message they 
、 hould read. Vi l1Ual clOCLs [17) are sufficiern for lhe umestamps. 
because ∞mpanson 15 always among messages from u四 same

轧:nder

(. ~rop.qace EquatioD 01 

PROPAGA '1'E .• eorent: KVD'l' 
daatιAatiOD: NOO& 

主旦旦旦旦(....血t!. ðeet iAatioD ,) 

l 禽 Attachinq Equati~ to &D &..nt 01 

AT'1'AC且:'" ....且t; EVmft' 
aquatioAa: !·咽地nc:e 0f &QCa.n c:w 

Persi.t.ntBloek 俑...ct'. ...ll!) 一> .申atiolUl

FiiUre 5: S阴阳al c.ues of U ruficati∞ 

As an aside. ∞te 出a1阳 propagau:明\WÎ∞ and anaching equa-
110ns to events 一阳 origiJW exlenSions from anribute grammarsω 
JCOon 吨uati创15 - can bo也 be U1:ated as sp白刮钝.ses of unifica­
uon with persist自uωples. wh阴 阳 evcnt name 悦∞mes an ele. 
ment of the ruple. see fi部.ITe S. 
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CSP Soecification 

PROGRAH :: = body: .!!ecru.nc. 。 t PROC%SS 

RUN --> 
旦旦旦旦旦旦旦旦旦 RUN 主旦 body(旦丛1

PRQCESS ::" namoa; idtflω矿
1ocala; a.c:ru.nc. 。t idt ，.ωtf 
body: .!!ecruenc. 。 t. S '1'A T'DIEN'r 

RUN --> 
E三旦旦旦旦旦旦旦 RUN '1'0 body(l] 

CONTINUJ: on body [旦旦:l l --> 
旦旦旦亘旦 RùN""'rO body (旦旦]

Figure 6: Ponion of Action Equations for CSP 

CSP's send-and-wait and receive statements wer宅 defined in 山e
prcvious section. F悟出 ó shows theωp-level programtprocess 
speC11ìclUOns. 

Supoortin2 Al e.orithms 

The implementation of s伺uential action equations involves an 
Jdaplauon of Reps' a1gorilhm for ìncremental aaribute grammar 
<!valuaoon (21. 22]. 节tis algorithm resωres consistency among at. 
lI1bu!e values after a subcr臼陀pl缸ement in lhe parse tree represent­
.ng 山e program. [t re.evaluates only those anributes whose values 
may have oeen affccted by 山e subtree 陀placement. retaining 山e
old values of all other a口刀bules. 节tis is achieved US lOg a schedul­
tng graph. called the mo<Úl. 山at 陀P陀sents 山e di陀ct and r:rans itive 
dcpendencies JJllong the aruibu!es of the parse u四.节1e equ ations 
山Jt detìne 山e arn1 bUleS ar哩 f哩~valuatro in an order ronsistent wl由
llO阳logical 5011 of 由e model. Slarting Wl th an anribu!e at 山e 阴阳

0:' 山c suouee r哩 placement and lV01ding 陀-evaluaong 由ose at. 
lnbules 山a1 .:ould not have changed in value beιause none of 山e

Jl:nbutes on 山e n ght hand side of its deflIU!1g equaúon have 
-:hangcd. Reps applied 山is algori山m 10 static semantic analy引S

"'1山n language.based cdltOIτ(~31. 
Our adaplation does not assume language.b画~ editi吨， or .ll1y 

(onr. of ediung: II IS mstead a basis for lrue币陀laúon. Du ring 
preprocesslng of acuon equauons. a local depertdency grap Îl is ~n­
stnJ以巳d for each evem assocla1ed '.wi山 each production. 节le graph 
rep陀sents 山e dependencies among the equations a田ch时 to 山e

evenL ln particular. the陀 IS a veneT; for each anribu1e; an equation 
lS re t1ecled in 山e graph by an arc leaving each aaribute on 阳 right

hand 豆Ide of 山e equation and eruering 山e aaribute on 由e le仇 hand

slde. 

When an event arrives at run-time - i.e.. during inte叩rela口on
- a model is ∞nsuuctedω 陀presenl the tr茵茵1目ve dependenci臼

among the equations anachedωlhe event lniti础ly. 归 model is a 
∞py of u班 local dependency gra肉 for the event with respeαωthe 
production 山at deñnes 阳 cum:nt node in the parse tree. For se­
quential eT;ccution. the 饲uations are evaluated in an order consis-
1ent WI山 a topologica1 son of the model. If a new event is 
propagated. the model is txpantkd - by adding 归∞πesponding

肌al dependerκygr叩b 一 ω 陀tlect the e年latioru aaact回 ωthe

event 11tis pr曰ess 陀pealS山回1 the m叫el 民comes empty. 

To support ∞ncUITent evaluaIion of 缸uon 叫uations. we adapl 
our parallel/distributed a1gorithm for inc陀mental evaluaIion of at­
uibute grammars (14.12] in the same manner that we ada阴ed Reps' 
a1gonthm for the s明uential case. Concumncy 旦旦旦 a process IS 

supported a3 follows. Each úme a vertex in 臼 mαjd berom臼

…. 



independent (í.t.. has no incoming arcs) during the lopological 50Ft. 
a separa!e procesa is spawn国u) 11m evaluate the ∞rresponding 
equation and 由en expand 山em例如I i( necωlIary. when lhere are 
muJùple independeru vertices. 才回∞rresponding 饲uatioru can be 
ev aJuated conωπentJy by sep缸司出 processes. Modificatio!lll ω Ihe 
model are treated aI c!Í úcal secåons. 

T!ùs means 山at 1II!e巾retation can even proceed c臼\Currently for 
a seque fIljallanguage. 明白 the cruciaJ exception 阳E 阳 evaluation
aJ gori山m fo比es inlerdependent language constructsωbe executed 
In由e coπ胃口 dataflow order. [n partiClalar. if Orle language state­
mem depends on a side-e ffect o( a previoωlanguage 目atem四d
then this w训 be rellected in the dependencies among üle ∞F 

res阳nding aαon 叫ua∞ns.so 吐'le ωpologi臼1 50rt w让1 result in 
Inteφreung 由e statements in the com到 order. Othe rwise. we a.ch­
ieve maximum parallelism provided Ihe陀 are sufficient proαS50ß 
10 simultaneously exeωte 山e ∞ncun回t processes. 

Concurrency 旦旦旦 pr曰esses. whelher OD Ihe same orωπen:nt 
machines. is sup回πed by associa1ing a separate m创el wi山 e每h

. distributable unit\such as Ihe PROCESS production in figure 6. 
The synchronization among processes is handled by unification. 
which operates in the obvious way except for 创1f auωmatic 陀trIC­

tion and how we treat multiple unification. We assume an imμkit 
.cut" foUowing every asse币。n. 50 only Ihe fim fow回回咀ftc3Ùon is 
nα院副 (and 陀回α.ed). Unfoπunately. Ihe daublse used for 
urufic汕on is currently a ceruralized ~urcε. We are woOOng on 
extending the high avaílability川liability algori由m[13) 明

develo院d for d.i slributed 四Ii bute ev创uationωpermlt 佬。自由划iz.a­

ùon by 陀plication.

P:: [ inteqer i 
i • 5 
Q'1; 

11 Q:: [ 1nteqer j 
P'?j: 
j. j +1 

CSP ExamDle 

Fi iW"e 7: CSP E且ample

We IUUSO'ate how the generued in1e rpreter w。但 for CSP with 
the slmple exar叩le program in tigtm 7. Ex.ecuti∞ 0' Ihe two 
processes w。但却 foUows: when Ihe P'ROGRAM IX刘e (15 deðned 
In ligure 6) 陀. =Ives 阳 RUN ever葛 from the I血:1".归ICtiv回国
J,úon equa口。n propaaates Ihe R UN evenl ID 吐k:nI州1) PROζ卫ss
1ωes. P and Q 节山 10 tum creaæs two 剑.sjoinl moc比lJ..侃lefor
each process. 有le 叫Z巾n:1U theD优Jecta all inI比pendenl 缸lUI'l(Q

10 el山er model and ev血ues the:m. ln 山iJ QIe.，阳on1y 呻皿ÍOQI

m阳 two propaalll8呻翩翩lS， which an: si皿Wancoualy eUCUlled. 
They propagaIe RUN 10 佳擅自周民~enl in ea:b proc;eu. iniWl­
IOg 山e 以对y 0 f the PIOCIII啕也

fn出 rpreting P involves propaptina I RUN eva1l ω 阳UliJP­
menl "i :=γ Thi s sets jω.S四 and 况Jecu CON1τNUE ∞ ilXlf. 

tndicatingωthc 问1\I!l1 PR OCESS node tNI il '-α黯粤缸ted iu 
c Jtecuuon.节咀s propagates R UN IX) the next st剖emer虱位leCSP
send stalemer虱霄le R UN event for 也 S到Dnocl比例pæ3-

Send.and-W缸t) instruas the it阳阴阳 ω 也lay Ul皿 I UDiJbble 

>w. de litmUnl .lIth 也阳畸配7 白山'句~-啕回&ÜM吨'
因出m皿幅aJ Iy WID1Un I m Ll U1I睛，、庐lU命归 alilÁl粤
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luple com l'.8 aJong (if Q IWI ex民uted mon: quic且ly. 由iJ may alreNy 
be 阳刚.节le messagc (1).就lf (P) and receiver (Q) are all read­
only. ít.. 阳y cannot change as a result o(阳 unification. lf Q is 
running a.he ad o( P. 缸ldhas n:回也d ilS r也eive SW.etI比nt.1he
uni /icaùon succeeds. the cuples are n:tt在ted. and CONTINUE is 
propagatedω Ihe PROCESS node once again. AJ u宵"缸哩∞ moæ
stalements in Ihe body. Ihe model for P beα班施'但lpty and Ihus 
execuùon o( P halts. 

Process Q executes simultaneously wi由 P (tlguæ 6). when u旨
R UN event is selec时. it propagaæs RUN ω 阳 RECEIVE nc也­
which blocks unω P P恤串串Ihe lIWChin& n刷e in Ihe datmase 
m胆陀 3). 节、e self ar回归回归ram础ß in the 阳内 are n:ad。ωy.
so urufication can succec划 in Ü\Íl c组晴创ùy ∞ an cuct match.节le
山ird 阳rameler. variableJvalue. is oot reld~y and getS mau:hcd 
WI山 the message o( 吐le 妃:nder. t.bereby !1anSmÍ皿ng the value o( Ihe 
variable j in prt也ess P. 节由 is Ihe desi l'ed behavior for CSP; in 
o山er languages we can be mon: flexible wheæ needed once 
uni l1cation is ∞mplete. Ihe RECEIVE nc幽 propagaIeS CON­
T卧几尼 to itself. which propagates RUN ω 吐leassignm臼tt 沉ate­
ment. when the assi gnm.enl is ∞mplete. a CONTINUE is 
propagated once moæ. tenn Îßating the inte叩陀tation 0 f Q since Ihe 
mα挺1 becomes e:mpty. 

lnterpætation of P and Q can proceed în any reaI-time 01也r per­
mitted by Ihe action equations evalua1ion algorithm.η11lS. P can 
execule (，笛tJ:r 由an Q. or 剑。明r. Either way. u旨，配esses

m瓦阳'OllÌze ∞ the scnd aJ'回『四:cive stuements. as 倒、e~四∞n-
This example is o( ∞urse 匀>ecificωCSP. but our nocaåon and 

aJ gonu.ru can beωed for rapid pr。ωq萨鸣。f arbitruy 倒在urrent
languag臼. Experimentation is (ad且tated by spe切cifying aJtemati ve 
COnstruCIS as action equatiαu 缸ld using our generaåon and support­
ing aJgorithms ωφ1ickly try u比mouL

Conclusions 

The primary coruribuúon of 由is resean:h is 让le generation o( 
parallel interpreters - for bo由 S叫uential and concun哇地 lan胆ages

- from fonnal langu略es院ctficaåol1.!J. We use a unification-based 
approach 10 Ihe s阴:cification of s归lChroruzation pr田itives.

Several other ∞皿urrent debuøi吨 systems have been 
developed [18.1.4. 却.2.5 J. 霄ley 也M琶创r i侃1 of alloWÌJll Ihe 
use.r ωfocus 佣 the interacti∞ between processe:a. A1l of Û旨se
s Y ste lllJ a.re tmauaae-勾;，ecific. alû剧院 [9J 侃:scribes a genen.\. 
dau-oriented style o( debugi吨 a酬i咱也 ωa ranre of concurren1 

ob jea -orient.ed lmgu鸣es. our wort Îs unique in 白血1 it allows the 
gtllUalWl'I o( in1erp穹饵rs for COnC:UJ"mll凶咯u~s. 队lllowover­

head implemenwion mechani皿 permits ex防rimentation with new 
∞阴山市lCy primitive3 ωkcep PI(:C with 幽ian.
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