
INFUSE Test Management

Gail E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

Dewayne E. Perry
AT &T Bell Laboratories

Computer Systems Research Lab
Murray H iII, NJ 07974

June 1988
(revised December 1988)

CUCS-350-88

Abstract

This technical report consists of the two papers discussing testing technology. INFUSE:
Integration Testing with Crowd Control describes 由e test management facilities provided by the
lNFUSE change management sys也m. lNFUSE partially automates 由e construction of test
harnesses and regression test suites at each level of the integration hierarchy 仕om components
available from lower levels. Adequate Testing and Object-Oriented Programming applies the
axions of adequate testing to 0均ect-oriented prograrnming languages and examines their
implications. Contrary to our original expectations, we discover 由at in the general case classes
must be retested in every con出xt ofreuse.

Prof. Kaiser is supported in pan by grants from A T &T, mM, Siemens and Sun, in part by the
Center of Advanced Technology and by the Center for Telecommunications Research, and in
part by a DEC Faculty Awar吐.

守

INFUSE: Integration Testing
with Crowd Control

G出1 E. Kaiser

Columbia U旧versity

Depanment of Computer Science

New York, NY 1∞27

Dewa归le E. P町ry

A T &T Bell Laboratories

Computer Systems Re览arch Lab

Murray H血， NJ 07974

27 January 1988

Abstract

lNFUSE is a change management system for large sca1e so丘ware projects. In previous papers, we
described its core philoωphy of integra由g strongly connected modules flrst and more weakly
connected sets of modu1es la臼r， Il10叫ng up a hierarchy 仕om singletons to clusters of
interdependent m创ules to tnerging 阳 change 臼tinω 由e baseline. We have previously applied
lNFUSE to static consistency ana1ysis of syntactic 缸1d semantic properties. In由is paper, we
extend our work to d归amic consistency ana1ysis, i.e., testing. Unit tes由19 is done for the
individual modules at the leaves of the hierarchy, in臼gration testing for the intermediate clusters
and acceptance testing at 由er∞t lNFUSE sup严>rtS由is by partia11y automa由g 由e construction
of test hamesses 缸1<1 regression 出st swtes at each level of the hierarchy from components
available from lower levels.

Copyright e 1988 Gail E. Kaiser and Dewayne E. P町η

Kaiser is supported in part by grants from AT&T Foundation, ffiM, Siemens Research and
Technology Laboratories, and New York State Center of Advanced Technology - Computer
and Information Systems, and in part by a Digital Equipment Corporation F饵u1ty Aw缸吐

keywords: change management, integration, programming in the many, regression tes由g，
software development environment, test management

4、

1. Introduction

INFUSE is a ‘city model' software development environment [21]，由at is, it ad由esses 由e

special needs of large scale software projects, where the scale is in terms of programming-in-the­

rnany as well as programming-in-the-large. We believe 由at some seemingly small num民r of

programmers (say, 20) is effectively a ‘口owd\Crowd control inherenüy rnakes change

rnanagernent so complex 由at technological in addition to managerial mechanisms are required to

handle the interactions among the programmers. In previous pa归自 [19， 11], we have presented

our philosophy and the basic mechanisms for isola由19 groups of modules 1 into a hierarchy of

experirnental databases. 咀le goal is to 田inimize 由e implicati.ons and extent of changes 由at 由e

programmers rnust cope wi由 at one time. This paper extends our previous work to suppon

integration tes出g. lNFUSE now supports semi-automati.c constt'Ucti.on of test harnesses and aids

selection of regression test suites, bo由 at each level of the hierarchy.

We propose 由at any ‘city m创el' change management system should assist 由e projωteam

with:

• partitioning 由e changed modules into a hierarchy of sets, for the purpose of
isolating groups of modules during integrati.on;

'由e time sequence of the integrati.on，由at is, the desired ordering of integration with
respect to 由ehi町缸chy - bottom-up, top-down or sandwich;

• syntactic andlor semantic consistency checking within a 臼t;

• construction of test hamesses (drivers and stubs);

• regression testing fi饵 each set of modules at each level of the hierarchy; and

• test management, to keep track of which tests have been passed by which sets of
modules.

lNFUSE provides all these facili ti.es.

η1e core of INFUSE is a change management framework for automatically constructing and

maintaining a h阳archy of expf!T切1e1llal daωbases (EDBs), where each EDB contains a subset

of the change 毗 At each level of the hierarchy , the contents of the EDBs 缸'e disjoint. The

notion of an EDB was initial1y introduced in Smile [12] , a multiple-user programming

environment for C developed 臼 part of 由e Gandalf project [7]. lNFUSE extends 由is notion to

(1) a hierarchy, (2) automati.c partitioning .of the change set into EDBs, and (3) integration

lA moduJe is 阻y separately ∞m灿ble 阴阳也 unit， such as an Ada TW 阳kage， a ~刷u1a-2 m创ule or a C
白山臼 fùe.

2

tesong.

We subscribe to the rarely supported ideal of hierarchical integration of large scale so仕ware

systems. The rationale for 由is is the widely accepted softwar它 engineering rule-of-thumb 由at

interface errors detected early are much less cost1y to repair than errors detected late [3]. There

are two well-known mechanisms for structuring 由e n:时ules of a system into a hierarchy:

managerial and design. The most significant innovation of INFUSE is a new kind of hierarchy,

dependency-order , where strongly interconnected modules 缸'e placed toge由er near the bottom

of the hierarchy and more weakly connected modules are placedωge由er closer to 由e top.

INFuSE generates the hierarchy by applying a clustering algorithm [14] to the change set. our
algorithm uses a non-Euclidean similarity metric bωed on 由e dependencies betw臼n pairs of

modules. The similarity metric between two sets of m创ules (M1, .叫Mn) and

(~+l' ..., ~) is defined by any one of several statistical measures applied to 阳 bas比 metric.

A similarity metric based on dependencies is an appro垣mation to the oracle 由at would tell us，国

advance, exact1y how the interfaces of modules w诅1 be changed and how 由is w诅 affect 0由a

modules. The intuition is 由at changes will more likely involve strongly connected modules 由m

we也ly connected modules, according to a simplistic proportionality ar伊ment.

节lere ar冒出ree categories of dependency m创els [20] 由at may be employed - unit, syntactic

and semantic - as well as several subclasses of these n:时els. For example, the strength of

syntactic interdependency between a pair of modules M and N is k, where k is the sum of i，由e

number of facilities exponed by M and imported by N, and j ，由e number of facilities exported

by N and imported by M.η1Îs can be refined, as in Tichy's smart recompilation [28], to consider

only the extemal facilities actually uscd by an im严>rting module. lNFUSE d臼s not presume any

panicular dependency n:时el， but can u臼 any for which a corresponding analysis t∞ is

available.

lNFUSE 臼SWI剧 several external facilities:

• programming-in-由e-small t∞Is: ediω白， ∞mp诅ers ， lir业町noaders， debuggers ,
fonnatters , etc.;

• version management of source and object code, such 部 RCS [27] or Arcadia [261;

• system modelling and configuration management, such as Make [4] 优 Apollo's
Domain Software Engin臼ring Environment [13] (DSEETM);

• am创ification request (MR) system [24];

3

• a consistency analysis t∞1， either syntactic such as Lint [10] , or semantic, such as
Inscape [18];

• a program-based andlor a specification-based test coverage analyzer - bo由 kin也
of analyzer and their relationship with lNFUSE are explained later on.

Al由。ugh not requ让ed for operation，剧FUSE can be augmented by an automaticω仕ware test

世iver [17] 由at provides a standard setup for execu由19 tests and automatic verification of test

results. We intentionally leave vague the notation for describing the tests and their req山red

results. We assume for 由is paper 由at lNFUSE keeps track of which tests are in which test suites,

and which of these have been passed, but a human is actually responsible fl回 execu由19 由e tests.

In the next 臼ction ， we give an overview of 副FUSE and its 出st management fac诅ties. 白le

following two sections discuss construction of test harnesses and regression test suites,

respectively. We conclude by summarizing the contributions of this paμr.

2. Overview of INFUSE

Ficure 2-1: Baseline andαlange Set

节丽的FUSE change management system 句:>>erates as follows for a scheduled change, suchω

for a new release cr a pa比htoapr穹vi∞s release. The change set is 臼lected manuaily by a

system analyst or automatically by an MR system. INFUSE checks out new revisions of 由e

m创ules in this set from 由e versi佣 ωntrol system as shown in figure 2-1 , extracts 由eir

dependency matrix and invokes 由e clustering a1g-侃出mωdetermine a hierarchy 邸∞rding t。

由e strengths of interconnections. The group of m创时臼 assignedω 由e same programmer is

treated 臼 a single m创ule for the pur归甜s of clustering. 副'FUSE 由en builds 由e hierarchy of

EDBs containing the new revisions of 由e appropriate modules, as shown in figure 2-2.

4

Programmers work on 由e让 assigned module(s) in the EDBs at the leaves of the hierarchy. For

simplicity. we assume a leaf EDB consists of a single module M and 由e progra皿皿er is

responsible only for this individual module; thus, we refer to leaf EDBs 部 singlerons.

A. B. ..., Y, Z

Fïgure 2-2: Hierarchy of Ex阿imental Databases

When a programmer 甜ùshes edi由g M, he reques t5 the consistency analysis t∞1， which

detemlÍnes wheU阳 or n.创 M is self-ronsistent Syntactic consistency r吨山res 由at ev町y

identifier defined in M is used wi由inMin 由.e manner prescribed by 由e static 回mantics (i.e. ,

context-sensitive syntax) of 由e programming language. Each use of an identifier defined

extemally (i.e.. not defined in M) must be consistent wi由 all other uses of 阳姐me identifier. In

the case of semantic consistency, every identifier must be u辑d correαly wi由 res院ct to 由e

semantic s阿ification mechanism employed. For simplicity. we assume syntactic consistency

analysis throughout the rest of 由is paper.

5

Once his module M is consistent. the programmer builds a test harness.τbe hamess consists

ofa 由iverO 由出 invokes the module to perform the tests and a set of stubs S 由at perfonn. in an

abstract sense, the functionality of 由。回 external rnodules referenced by M. In P缸ticul缸. stub

SM,N represents all 由e subroutines and data defmed by module N and used in rnodule M. lNFUSE

compiles and links M toge由町 with 0 and S. and then the programmer proceeds wi由 testing and

debug阱g.

AB

⑤
③
②

A 。 B

Figure 2-3: Unit Tes由19 Srubs and Test Suite

η1e program.mer devises a set of 山lÍt tests that toge由er meet some test data adequ饵y

criteria [29], perhaps 明白白e aid of an adaptive 出st generation t∞1 [22]. The stubs and 山咀t test

suite are associated wi由 a singleton EDB a.s shown in figure 2-3. A伽 M has passed all 阳回

tests. 由e programmer enters a commandω deposit it into 由e parent EDB. Deposit mak:es 由e

new versions of 由e a:时u1es in 阳 child EDB visible to 归。由erm创ules in 由e parent EDB.

Before allowing tbe de防sit， INFUSE req山res 由at M is in fact self-<:onsistent in the static sen臼

of the analysis tool lDd in 臼 dynamic sense of the unit tests. lNFUSE associates wi由 M some

representation of T, the set of 山lÍt tests with their req山red results, along wi由 D andS.

At some point. al1 the sibling EDBs have becn deposited into 由e让 parent EDB, which then

contains several m创ules 一可pically 2 to S 一由at are very strongly inteT由pendent 剖FUSE

invokes 由e static analysis t∞lωcheck 由at 由e臼 modu1es are consistent among themselves. If

not, it infonns the res阴阳ible programmers. who negotia四 among themselves, agree on fur由町

@

<Ð

6

。

AB

Figure 2-4: Automatical1y Selected Stubs and Tests

changes, and notify INFUSE of 由e modules 由at must again be changeι 副FUSE generates

singleton EDBs for these modules and the singleton pr∞ess re院ats as necessary.

A, B,..., V, Z

Fipre 2-.5: Hierarchy Mter Several De归sits

E 由e modules an:. consistent to the extent thal can be de回rmined by a static analysis t∞1，

剧FUSE constructs a 臼t of stubs S for integ:ration testing 仕om 由e 臼臼 SM available from unit

testing. Usual1y some program.a阳 must build the new test 世iv町. lNFUSE 臼sists 由e

7

progra皿mers in selecting 由e regression test suite T 仕om the unit test suites T M' The resulting

stubs and tests are illustrated in figure 2-4. Then the tests are executed and debugging procee也.

If no errors are detected., the current EDB can be deposited into its parent, and 50 on, and the

hierarchy conden臼S 臼 shown in figure 2-5. If errors are detected, the progra.mmers negoåate

and select a subset of the EDB for funher mαiificaåon. lNFUSE 1∞ally repartiåons this subset

into singleton databases, as is done for inconsistencies detected by the ana1ysis t∞1. A possible

result is shown in figure 2-6. After the sub臼t has been m创ified and redeposited, lNFUSE

constructs a new regression test suite in 由e same mann町臼 it constructed 由e original, failed

suite for 由is EDB.

ABC

②
⑤
⑧

A 。
C

Fipre 2-6: Re归rtiåor由g for Funher Changes

Once all the regression tests have been pas臼d. a prog:rammer can issue the deposit command

to move the integrated EDB into its parent When all the siblings have also bcen depos让ed， this

process is repeated at each level using as components 由e modules. stubs and test suites of 由e

previous level in 由e hierarchy. Any inconsistencies result in repar咀tioning 由e subttee below 由e

EDB where 由ein∞nsis随时y was discovered.

At 由e top-level of the hierarchy. 曲回 tasks must be perf4饵古班d First, the entire change set

must be integrated by this mechanism.币en it must be integrated wi由 the unchanged m创u1es

10 由e baseline version of 由e program. 节ús stage is illustrated in figure 2-7. Fina1ly. after

acceptance testing，的FUSE checks in the modules in the top- level databωe to 由e version control

8

A, B, ..., Y , Z

G二D <艺>

Figure 2-7: Acceptance Testing

system.

One limitation of 剧FUSE is 由at it d伺s not provide any sup归口. beyond a standard debugger.

for isolating and rep出ring eπ町'S detected by unit, regression and 也臼ptance testing. Several

advanced debugging t∞Is have been proposed [2坷. but none have yet been applied in 吐血

context of crowd control. We are in the early stages of appl抖ng an existing machine learnin&

algorithm, which integrates explanation-based and similarity-based leaming [匀， to 由e pl'Oblem

of flxing bugs ‘ similar' to previously fixed bugs.

3. Test Harnesses

lNFUSE ai也由e programmers in cons tt'Ucting b。由 the stubs and drivers of test hamesses. First

we explain how. fi时 each EDB , lNFUSE considers 由e collection of stubs ass∞iated wi由 all its

children databases and de町mines which stubs are replaced by modules. which stubs can

continue to be u臼d， and which potentially ∞nflictwi由。由配 stubs. At the end of 由is 臼ction

we sketch how 剖FUSE determines when a 世iver 仕om a descendant database can be usωin an

ancestor database.

3. 1. Stubs

Consider an EDB, E, ∞ntaining 由e set of modules (M l' ..., Mk). E is the parent of a set of

child EDBs. each of which contains a dis灿t non-null subset of 由ese modules. Each ~ has a

臼t of stubs Si from its singleton EDB. lNFUSE opera出s accordingωthe algorithm shown in

figure 3-1 to constt'Uct 由e 臼t of stubs for E.

lNFUSE examines each stub SM,N' constructed to represent absent module N as u臼d by r田地ule

9

Let SE be the set of stubs associated wi由 experimental database E,
M, N and 0 be modules,

h

5M be 由e 回t of stubs associated wi由田地ule M in the current EDB , and

SMpbe 由e stub that represents m创ule N 臼 used by m创ule M in the child EDB
containing M

SE •@
'ifME E do

SM• UN { SMJý }

'if OE E st 0笋Mdo
矿o is complete wrt M then

SM• SM-S
'ifSMJý E SM do

扩{ OE E 10笋MASopE SE };t: 0 then

SE • SEUSM

ask ωer whether to keep , replace or merge
andmod协I S M according Iy

Figure 3-1: Algorithm for Stub Selection

M (iιone of 由e 叫) in one of the child EDBs. A11 such stubs where N is present in 由.e current

EDB (由at is, N is one of 阳叫d.istinct from M) are replaced by N, as the 甜st part of 由e

integration. 节le idea is to u白白e rea1 module, now 由at it is available, rather than a stub. This

works only when N is conψlere wi由 respect to M. For example, if the design for N calls for it to

expo口 facilities f, g and h, but only 阳出ties f and g are currently implemented, then N is

incomplete. If M actua1ly uses only f and g. then N is ∞mple阳明白 res归口 toM; 证 Mactu副ly

uses f and h, then N is incoa甲lete wi由 respect to M. The臼 two cases are addressed by other

t∞Is ， such as PIC [30] , wher冒出e two modul臼 are ca1led "consistent" and "cond.itiona1ly

consistent" ，郎"创刊ly. INFUSE uses itS analysis t∞1 to detect cases where N d，伺s not provide

all 由e facilities simu1ated by the corresponding set of stubs. In由is c部队 N is treated as 臼 if it

were just as cand挝ate stub available 仕om a child EDB.

Other stubs will also remain. since the cc盯esponding modules will not be integr曰.ed un副

higher levels of the hi町archy. Among these, it is li.kely 由at II且ny stubs Sx,N w山 bedz伊Iicate，

由at is，由ere is more than. one stub represen由19 N in the context of module 0 another in the

context of P, etc. This is represented in Sx.,N by the lowercase varlable x. Note 由at 由e

duplication of a stub do 旦旦出ply 由e duplica臼s are identical. and in fact the content of these

10

stubs may be markably different, due to the different requirements pl缸ed by the context

modules. Thus where there is a duplication , it is rarely acceptable to automatically ch∞se one

among the supposed ‘equivalence class' of stubs to replace all elements of 由at class with respect

to the coming round of compilation，险业ing， testing and debugging.

剧FUSEd∞s not require 由is kind of conflict 一 i息， duplication - to be resolved. Inst国d， it

brings the problem to 由e attention of each programmer whose module M u回s one of the stubs in

a particular 叫由此nce class. The programmer can ch∞seωcontinue usin, his own stub S""u.H

from 由e previous level of the hierarchy, begin using one of the 0由町 stubs S二N from the previous

level, or create a new stub SM.N from scratch or by me唱问 (using an standard text editor) 阳

contents of some sub臼t of the臼 stubs. The superscript "-" refers to a stub available 仕om a child

EDB. If more than one stub remains in the class after all programmers have made their decision,

lNFUSE does 由e nece臼缸y intemal renaming to ensure the d町isions are reflectcd in the

executable image generated. by normal compilation and lir国ng.

3.2. Drivers

The set of drivers for an EDB is of course clo臼ly tied to its test suite. For each EDB , we can

divide 由e members of the test sui出 into two classes:
1. tests 由at originate at 由is EDB and check 由e functionality , performance, etc. of 由e

corresponding subsystem; and

2. tests 由at originated at a descendant EDB 由at are reappliedωregression tests
becau提出e integration makes it possible for 由e results of the tests to be different
now than when previously 归rfom览d at a lower level of the hierarchy.

For tests in the first class, the new set of 创vers must usually be constructed by the

prograrruners, perhaps by merging sev町al existing 世ivers ass∞iated wi由 descendant EDBs.

For carrying out tests in the 臼∞nd class , howev缸， INFUSE can automatically retain 由eoriginal

由lvers.

4. Regression T臼tin&

节le preceding discussion of drivers suggests our approach to integration testing, which follows

the algorithm shown in figur穹4- 1. In the worst case, the 回st suite T E for an ex严rimental

database E is the union of all the test sets 仕om 由e descendent EDBs, plus 由e additional

subsystem tests added at 由is point by one or more of the relevant programmers. In the 可pical

case，剧而SE helps reduce the amount of testing，明白。ut degrading 由e opponunities to detect

11

Let Ei be 由ei由 descendant of experimental d.atabase E in some stand.ard ordering such
as preord町，

In

TE be 由e test suite for E,

Sj be the set of stubs, among tho臼 associated with 出e ith descendent, which were
replaced in E (using the algorithm given previously),

T j be the subset of the test suite，仕om 由e test suite 臼sociated wi由由ei由

descend.ant, which actually exercised Sj

TE• new tests for subsystem E
'VMe E do

TE• TEuTM

Figure 4-1: A1gorithm for Test Selection

errors. It does this by automatically mar挝ng as correctly completed all tests in TE 由at it knows

could not produce different results in the integrated forum than in the descend.ant.

总lFUSE detennines the tests to mark as follows. Any tests applied directly to a module 由at

continues to u臼 (transitively) exactly the same set of stubs as in the relevant descend.ant EDB is

臼sumed to retum the same results for the same inputs. This is of course true only 证 the stubs

guarantee repeatabili凯的FUSE c缸mot automatically reduce T E if the stubs and/or modules

involve nondeterminism (e.g. , values based on 由e system clock, concurrency).

We assume Sj is computed as an extension of 由e previous alg创由m， ma挝ng this algorithm

relatively simple. No臼由e following implication fi町由e driver (actually a set of drivers) Dr:
used for testing E.

DE二 {Djl Tj笋臼}

4.1. Program-bued versus Specif1cation-based Tωting

So f:町， we have ipored 由e questions of how the tes臼 are produced and how a test suite is

determined to be "ad叫wue" according to some standar吐These questions can be answered in

two different ways, following 由e two divergent forms of test case coverage 由at have been

proposed [町， program-based and s归:eification-based. Program-based testing implies ins醉ction

of the source program and sele:e tion of test cases 由at toge由町 cover a1l possib出ties ， where the

possibilities might be statemer邸， branches, control f10w pa由s or d.ata f10w pa郎. In practice,

12

some intermediate measure such 出 essential branch coverage [1] or feasible data flow pa由

coverage [5] is most likely to be used, since the number of possibilities might otherwise be

infmite or at least infeasibly large.

In the case of program-based testing，出e test suite for each EDB would consist of the new tests

for the m创ule(s) introduced by the EDB , plus additional tests to deal wi由由e combinatorics

between 由e 阴阳出rough 由e臼 modules and the pa由s through the modules at the next lower

level of the program. The lNFUSE notion of dependency-order hierarchy 由us fits well with

progr乱m-b臼ed testi吨， since the massively connected modu1es are tested early. However,

particul缸 program-based tes由19 t∞Is (such as Asset [6]) might require a different ordering.

Unlike program-based tes由毡， specification-based ('black-box') tes由19 does not consider the

source program. It ins阻adad由esses 由e (functional and non.扣nctiona1 - for instance,

performance) specü5cation of 由e system, and hopefully 由e 平ecifications of its subsystems and

individua1 modules. The current state of the art 严nm15 autoII温tic test case generation and/ar

test ad吨uacy determination for on1y a few special cases - for example, mathematical

subrou白白 [23]. In the gener副 case，由e best 由at can be done beyond audi由19 is 10 cross­

reference tests wi由 portions of the design document [16].

The INFuSE dependency-order hierarchy may not be 阳 best for s阿ification-based tes由g.

四ere is lypically a design hierarchy developed from 由e spec诅cation， where 由e sμc诅cation­

b出ed tests are ass∞iated wi由由e 山u15 of this design. Even 由ough 由e design hi町archy often

implies the initia1 interdependencies among II时ules， and thus the 油itia1 dependency-order

hierarchy，由e two may not be very sim且町 after a 回quence of changes. But 剧FUSE d∞s not

~旦坠 a dependency-or甘er hierarchy; the clustering component of the system can be replaced

with ωmeo由町 mechanism 伽 partitioning 阳 change set.的FUSE still uses 由e same rules to

detenrune whether or n创 to 叩ply regression 出s15 at each level of 由e hierarchy, independent of

how the hierarchy is deriv民i

S. Conclusions

We have previously reponed 由ep缸titioning of a change set into a hierarchy of 饵perimental

databωes according to 由e strengths of interdependencies among modules. We have a1so

descri民d a suitable clustering algorithm and described how 10 do consistency check:ing in this

context.节us paper pre臼n臼 our more recent work on extending lNFUSE from compile-time to

13

execuòon-time crowd control，由at is, to integraòon testing for large scale software projects. 节le

new contributions of this pa严r 缸e:

• A formalization of integration tes由19.

.A 仕amework for integration testing management.

• Semi-automated suppo口 for test hamess construction.

• Semi-automated suppo口 for test suite selection.

τbere has been much previous research on tes由g strategies and t∞Is as 由ey relate to

programming-in-削-small [3 月， and some work on integration of subroutines [8]. 剧FUSE is to

our knowledge the only system 由at applies the results of such re臼arch to large sca1e software

systems.

Acknowledgements

Y伺lle Maarek developed the clustering algorithm used by INFUSE. Travis Win丘町， Ben Fried

and Pierre Nicoli, under 由e direction of Bulent Yen町， completed 由e implementation of an

earlier version of INFUSE wi由 syntactic consistency analysis and without tes由g suppon. Peggy

Quinn participated in discussions 由at led to the development of our city model of so仕ware

development environments. We would like to 由缸lk Yoelle Maarek, Michael van Biema and

Bulent Yener for their useful comments on an earlier version of this paper.

References

[1] Takeshi Chusho.
Test Data Selection and Quality Estimation Based on the Concept of Es臼ntia1 Branches

for Path Testing.
1 EEE Transacrion.s Ofl Soft协we Eflgineeriflg SE-13(5):509-517, May, 1987.

[2] 灿由臼Pohoreckyj Danyluk.
ηle Use of Explanati∞s for Similarity-Bωed Leaming.
In Telllhlltlernational Joinl COI价rence on Ani万cial lntelligence, pages 274-276. Milan,

Italy, 1987.

[3] Rich缸咀 F回rley.
s。如侃re Eflgineering Concepts.
McGraw-Hill B∞，Jc Co., New York, 1985.

[4] S.1. Feldman.
Make _. A Program for Maint.a.ining Comput町阶ogr缸DS.

s。如侃re - Practice &: Experience 9(4):255-265, April, 1979.

14

[5] Phyllis G. Frankel and Elaine 1. Weyucker.
Data F10w Testing in the Presence of Unexecutable Pa由s.
In Workshop on S，。如vare Testing , pages 4-13. IEEE Computer S∞iety ， Bar证， Can挝a，

July, 1986.

[6] Phyllis G. Frankl and Elaine J. Weyucker.
A Data F10w Testing T∞1.
In SoftF air 11 A Second C01矿erence on Soft.ωre Developmenr Tools , TechnÚ[ues, and

Alrernatives, pages 46-53. San Francisco, CA, December, 1985.

[7] A.N. Habennann and D. No剧n.
Gandalf: Software Development Environ皿ents.
IEEE Transactions on S。如ωre Engineering SE-12(1 2):1117-1127 , December, 1986.

[8] Al1en Haley and Stuart Zweben.
Module Integr四on Testing.
ConψUler Program Testing.
North-Holland Publishing Co. , New York, 198 1.

[9] William E. Howden.
So.作ware Engineering and Technology: Functional Program Testing & Analysis.
McGraw-Hill B∞k Co., New York, 1987.

[10] S.C. Johnωn.
Lint, a C Program Checker.
Unix Programmer' s Manual.
A T &T Bell Laboratories, 1978.

[11] Gail E. Kaiser and Dewayne E. Perry.
Workspaces and Experimental Databases: Automated Support for Software Maintenance

and Evolution.
ln C01防rence on So.斤ware Maintenance , pages 108-114. Aus白， τ叉， September, 1987.

[12] Gail E. Kaiser and Peter H. Fei1町.
Intelligent Assistance wi由out Anificial Intelligence.
In Thiny-Second IEEE Conψωer Sociery 1 nrernational C01价rence， pages 236-241. San

Franci民0， CA, February, 1987.

[13] David B. Leblang and Robert P. Chase, Jr.
Comput町-Aided Software Engineering in a Distributed Workstation Environment.
ln SIGSOFTISJGPLAN S。如ωre Engineering Syr叩osium on Practical So卢ware

Developmelll Environme邸， pages 104- 112. Pittsburgh, P A, April, 1984.
proc臼dinp publishedω SIGPLAN Notices , 19(匀，May 1984.

[14] Yoelle S. Maarek and G缸1 E. Kaiser.
Change Management for Very Large Software SYStems.
In Sevelllh AnnuaJ InrernalÍonaJ P~nix C01庐rence on ConψUlers and

Communicar阳时. Scottsdale, AZ, March, 1988.
Toap归缸

[15] Edward Miller and William E. Howden.
TUfORlAL: Software Tes lÍng &: VaJi句lÍOn Techniques.
IEEE Comput町 Society Press, Washingron, DC, 1981.

15

[16] Thomas 1. Ostrand, Ron Sigal and Elaine J. We严Jcker.
Design for a T∞1 to Manage Specification-Based Testing.
In Workshop on Software Testing , pages 41-50. IEEE Cornputer S∞iety ， Ban匠， Canada,

July, 1986.

[17] David 1. Panzl.
Automatic Software Test Drivers.
Corrψuter :44-50, April, 1978.
Reprinted in [15].

[18] Dewa归le E. Peπy.
Programmer Productivity in the Inscape Environment.
In 1 EEE Global Telecommunications Conference , pages 428-434. December, 1986.

[19] Dewayne E. Peπy and Gail E. Kai臼r.
lnfuse: A T∞1 for Autornarically Managing and C∞rdinaring Source Changes in Large

Systems.
In ACM Fifteenth Annuai COl叩uter Science Conference , pages 292-299. S1. Louis , MO,

Febru缸y， 1987.

[20] Dewayne E. Peπy.
So仕W缸e Interconnecrion Models.
In 9th lnternationai Conference on S。如ilare Engineering , pages 61-69. Monterey, CA,

March , 1987.

[21] Dewa归le E. Perry and Gail E. Kaiser.
Models of Software Development Environments.
In Tenth lnternationai Co收rence on Software Engineering. Raffles City, Singapore,

April, 1988.
To appear.

[22] Ronald E. Prather and J. Paul Myers , Jr.
The Path Prefix Software Tesring Strategy.
IEEE Transactions on S。如ilare Engineering SE-13(7):761-766, July , 1987.

[23] Robe口 P.R∞ and John H. Rowland.
Some Theory Conceming Certificarion of Mathemarica1 Subroutines by Black Box

Tesring.
IEEE Transactions on Software Engineering SE-13(6):677-682, June , 1987.

[24] B.R. Rowland and R.J. Welsch.
The 3B20D 阶ocess。可 &DMERTO归raring System: Software Development System.
The Beli Systml Technicai Journai 62(1):275-289, January , 1983.

[25] Rudolph E. Sevi时乱
Knowledge-Based Program Debugging Systems.
IEEE So.斤ware :2ι32 ， May, 1987.

[26] 阳ch缸d N. Taylor, Lori C1a.rke, Leon J. Osterwei1, Jack C. Wiledon and Michal Young.
Aπadia: A Software Development Environment Research Project.
In 2nd lnrernationai C01庐rence on Ada Applications and Environments. IEEE

Computer Society, Mi缸ni Beach , FL, April, 1986.

16

[27] Walter F. Tichy.
RCS - A System for Version Control.
Software - Practice and Experience 15(7):637-654, July , 1985.

[28] Walter F. Tichy.
Srnart Recompilation.
ACM Transactions on Programming Languages and Systems 8(3):273-291 , July, 1986.

[29] Elaine 1. Weyucker.
Axiomatizing Software Test Data Adequacy.
IEEE Transactions on S。如~are Engineering SE-12(1 2): 1128-1138 , Decernber, 1986.

[30] Alexander L. Wolf, Lori A. Clarke and Jack C. Wileden.
Ada-Based Suppon for Programming-in-the也arge.
IEEE Soβware 2(2):58-71 , Mar饨， 1985.

[31] ACM/SIGSoft and IEEElCS Software Engineering Technical Committee.
Workshop on Software Testing , IEEE Computer Society, Banff, Canada, 1986.

Adequate Testing and Object-Oriented Programming

Dewayne E. Perry
A T &T Bell Laboratories
Murray Hill, NJ 07974

Gail E. Kaiser*
Columbia U niversity

Department of Computer Science
New York, NY 10027

October 1988

Abstract

Ooe of the prim町 advantages fr吨uent1y cit创 for object-oriented programming is 幽幽eritance of
陀usable code from superclasses. It is commonly 部sumed 也at properly constructed reusable units sucb
as abstract dara types and classes can be tested ooce in ìsolation 祖ld reused witbout 陀testing ìn a wide
variety of contexts. Al也ougb 也is is intuitively apt:如ealing ， it tums out to be a false assumption for
certain widely acce阴edt臼ting criteria.

In 出1S article , we consider tbe ad~qωte usting of programs written in 0时ect-orieoted languages. We
explain the :woms of 3(始quate testing developed in tbe testing community , discuss their applicatioo to
specificatioo-b笛ed aod progr四l-b笛ed testing , and examine tbeir implicati∞s for object-oriented
programming. 臼DU缸y to one's intuiù佣. we discover 由剑，山 the general case. inberited code must be
陀tested in m帽t contexts of reuse. We il1 ustrate 由is by applying tbe adequacy axioms to e田apsulaùon

and single inherita血埠. overriding of metbωs， and mu1tiple inberitance. respectively.

• Supp啊1æd in 阳rt by National Sc ience Found~non gr~ CCR-8858029 and CCR-8802741. in part by gtanta from AT&T.
DEC, ffi M. Sieme盹 Sun. and Xero Jt. ín part by the Cenlcr for Adv ancε.:1 Technology and by 11回Cenlcr 阳
Telccommunican饵lSRc皿arcb.

- 1 -

l. Introduction

Brooks, in his paper "No Silver Bullet: Essence and Accidents of Software

Enginee由鸣.. [坷， states:

Many students 01 the an hold out more hope for object-oriented programming than

for any of the other technical fads of the day. 1 am among them.

We are among them as well. However, we have uncovered a flaw in the general

wisdom 油out object-oriented languages 一由at •• proven" (由at is , well-understood,

well-tested and well-used) classes can be reused as superclasses without retesting 由e

inherited code. on the contrary , inherited rnethods must be retested in most contexts

of reuse in order to rneet the standards of adequate testing. In也is paper, we prove 由is

resu1 t by applying test adequacy axioms to certain major features of 0时ect-oriented

languages - in particular, encapsulation in classes , overriding of inherited methods ,

and multiple inheritance po臼 various difftculties for adequately testing a program.

Note that our results do not indicate 由at there is a flaw in the general wisdom that

classes promote reuse (which they in fact d时， but 由at some of the attendant

ass山口ptions about reuse are mistaken (that is , those conceming testing)

Our past work in object-oriented languages has been concerned with mu1tiple

inheritance and issues of granul缸i可 as 由ey suppo口 reuse [10 , 11]. Independently , we

have developed severa1 technologies for change management in large systems

[12 ,14 ,20] and recently have been investigating the problems of testing as a component

of the change process [1 剖， espec凶ly the issues of integration and regression testing.

When we began to apply our testing approach to object-oriented programs , we

expected 由at retesting object-oriented programs after changes wou1d be easier than

retesting equivalent programs written in conventional languages. Our results , however ,

have brought 由is thesis into doubt. Testing object-oriented prograrns may st山 tum out

to be easier than testing conventional-Ianguage programs , but there are certain pitfalls

由at must be avoided.

First we explain the concepts of speci且cation- and program-based testing , and describe

criteria for adequate resn'ng. Next , we list a set ofaxioms for test data adequacy

developed in the testing community for program-based testing. We then apply 由e

adeQuacy axioms to three features common to many object-oriented programming

- 2 -

languages , and show why the axioms may require inherited code to be retested.

2. Testing

By definition , a program is deemed to be adequately tested 迁 it has been covered

according to 由e selected criteria. The principle choice is between two divergent fonns

of test case coverage repo口ed by Howden [9]: speci且cation-b出ed and program-based

testmg.

Spec~卢cation-based (or "black-box ") testing is what most prograrruners have in mind

when they set out to test their programs. The goal is to detennine whether the program

meets its functional and non-functional (for example , performance) specifications. The

current state of the practice is informal speci且cation ， and 由us informal determination

of coverage of the specification is the norm. For example , tests can be cross­

referenced wi由 portions of the design document [1 例， and a test management tool can

make sure 由at all parts of the design doc山nent are covered. Test adequacy

determination has been formalized for on1y a few special cases of speci且cation-based

testing - most notably , mathematical subroutines [23].

In contrast to speci且cation-bωed testing , program-based (or "white-box") testing

implies inspection of the source code of the program and selection of test cases that

together cover the program, as opposed to its specification. Various criteria have been

proposed for detennining whether the program has been covered - for ex句古ple ，

whether all statements , branches , control ftow pa由s or data ftow paths have been

executed. In pr剧ice ， some intermediate measure such as essential branch coverage [4]

or feasible data ftow path coverage [5] is most likely to be used , since the number of

possibilities might otherwise be infinite or at least infeasibly large. The rationale here

is that we should not be confident about the correctness of a program if (reachable)

P缸15 of it have never been executed.

ηle 阳o approaches are orthogonal and compliment缸y. Specification-based testing is

weak with respe口 to formal adequacy criteria. while program-based testing has been

extensively studied [6]. on the one hand , spec凶cation-based testing tells us how weU

it meets the specification. but tells us nothing about what part of the program is

executed to meet each part of the specification. on the other hand. program-based

testing tells us nothing 油out whether the program meets its intended functionaliry.

- 3 -

ηlUS. if bo由叩proaches 缸e used, program-based testing provides a level of

confidence derived 仕om 由e adequacy criteria that the program has been well tested

whereas speci且cation-b臼ed testing determines whether in fact the program does what

it is suppo臼d to do.

3. Axioms of Test Data Adequacy

Weyuker in .. Axiomatizing Software Test Data Adequacy" [29] developed a general

axiomatic 由.eory of test data adequacy and considers various adequacy criteria in the

light of these axiorns. Recently. in ‘'The Evaluation of Program-Based Software Test

Data Adequacy Criteria" [30] , Weyuker revises and expands the original set of eight

axioms to eleven. The goa1 of 由e first paper w臼 to demonstrate 由at the original

axioms are useful in exposing weaknesses in several well-known program-based

adequacy criteria. The point of the second paper is to demonstrate 由e insufficiency of

由e current set ofaxiorns，由at is. there are adequacy criteria that meet ail eleven

axioms but clearly are irrelevant to detecting errors in programs. The contribution of

our paper is that. by applying these axiorns to object-oriented prograrruning. we expose

weaknesses in the common intuition 由at prograrns using inherited code requ让e less

testing than those wrinen using other paradigms.

The ftrst four axioms state:

• Applicability. For every program. there exists an adequate test set.

• Non-Exhaustive Applicability. There is a program P and test set T such that

P is adequate抄 rested by T. and T is not an exhaustive test set.

• Monotonicity. 扩 T is adequare for P. and T is a subset of T then T is

adeqωte for P

• Inadequate Empty Set. The empη ser is nor an adequate test set for any

program.

节lese (intuitively obvious) axioms apply to all prograrns independent of which

programming language or paradigm is used for implementation, and apply equaily to

program-based and specifi.cation-b臼ed testing.

- 4 -

Weyuker's three new axioms are also intuitively obvious.

• Renaming. Let P be a renaming of Q; then T is adequate for P if and only 旷

T is adequate for Q.

• Complexity. For eveηI n. there is a program P , such that P is adequately

tested by a size n test set, but not by any size n-l test set.

• Statement Coverage. 扩 T is adequate for P , then T causes eveη executable

statement of P ω be executed.

A program P is a renaming of Q 证 P is identical to Q ex臼pt 由at all instances of an

identifier x of Q have been replaced in P by an identifier y, where y does not appear in

Q， or 迁出ere is a set of such renamed identifiers.ηle first two axioms are applicable

to bo由 forms of testing; the third applies only to program-based testing. The concepts

of renaming , size of test set , and statement depend on the language paradigm, but 血is

is outside the scope of 也is anicle.

4. Antiextensionality, General Mu 1tiple Change, Antidecomposition, and

Anticomposition Axioms

We are interested in the four remaining (not so obvious) axioms: the

antiextensionality , general multiple change , antidecomposition and anticomposition

axioms. These axioms are concemed wi由 testing various parts of a program in

relationship to the whole and vice versa , and cenain of them apply only to program­

based and not to specification-bωed adequacy criteria. 币ley 缸穹， in some sense ,

negative axioms in 由at they expose inadequacy rather than guarantee adequacy.

Antiextensionality. If two programs compute the same fu.nction (that is，由ey 缸e

semantically c!ose) , a test set adequate for one is not necessarily adequate for the

。由er.

There are programs P and Q such that P 三 Q ， [test set] T is adequate for P. but T

is not adequate for Q.

η泣s is probably the most surpnsmg of the axioms , panly because our intuition of

what it means to adequately test a program is rooted in specification-bωed testing. In

- 5 -

speci且cation-b出ed testing , adequate testing is a function of covering 由.e specifìcation.

Since equivalent programs have , by defìnition，由e s缸ne speci且cation [22] , any test set

that is adequate for one must be adequate for the other. However, in program-based

testing, adequate testing is a function of covering the source code. Since equivalent

programs may have radically different irnplementations , there is no re出on to expect a

test set that , for example, executes all the statements of one irnplementation will

execute all the statements of another irnplementation.

General "lultiple Change. When two programs are syntactically similar (由at is，由ey

have the same shape) ， 由ey usually require different test sets.

There are programs P and Q which are the same shape. and a test set T such that

T is adequate for P. but T is not adequate for Q.

Weyuker states: ‘ 'Two programs are of the same shape if one can be transformed into

the other by applying the following rules any nurnber of tirnes: (a) Replace relational

operator rl in a predicate with relational operator r2. (b) Replace constant c1 in a

predicate or assigrunent statement with constant c2. (c) Replace arithrnetic operator al

in an assignment statement with arithmetic operator a2." Since an adequate test set

for prograrn-based testing may be selected , for exar口ple ， to force execution of bo由

branches of each conditional stateme时， new relational operators and/or constants in the

predicates may requ让e a different test set to maintain branch coverage. A1though this

axiom ís clearly concemed with the irnplementation , not the speci且cation ， of a

prograrn , we could postulate a sirnilar axiom about the syntactic similarity of

specifìcations，槌 opposed to source code.

Antidecomposition. Testing a program component in the context of an enclosing

program may be adequa出 with respect to 由at enclosing prograrn but not necessar诅y

adequate for other uses of the component.

There exists a program P and component Q such that T is adequate for P. T' is

the ser of vectors of \-'alues thar variables can assume on entrance (0 Q for some (

01 T, arui T is not adequate for Q.

节us axiom characterizes a property of adequacy 臼 well as an interesting property of

testing - that is , a program can be adequately tested even though it contains

- 6 -

unreachable code. But 出e urueachable code reπlatnS untested, or adequately

The degenerate ex缸nple is 由at in which Q is urueachable in P and T' is

the null set. By the Inadequate Empty Set axiom of the previous section, T' cannot be

adequate for Q. In the more typical case, some part of Q is not reachable in P but is

reachable in other contexts; hence , T' w il1 not adequately test Q.
written in program-based terms , it is equally applicable to specification-based testing.

In particu1缸， the enclosing program P may not utilize all the functionality defined by

由e speci且cation of Q and thus could not possibly test Q adequately.

。由erwise.

While 也is axiom is

Anticomposition. Adequately testing each individual program component in isolation

does not necessarily suffice to adequately test 由e en出e program. Composing two

program components resu1ts in interactions 由at carmot arise in isolation.

There exist programs P and Q , and test set T , such that T is adequate for P, and

the set of νectors of values that νariables can assume on entrance to Q for inputs

in T is adequate for Q , but T is not adequate for P;Q. [P;Q is the composition of

P and Q.]

P Q

l
p「

Figure 1

η1Ìs axiom is counter-intuitive if we limit oUI think.ing to sequential composition of P

Consider instead the composition il1ustrated in figure 1, which

inte甲reted as ei由er P calls Q multiple tirnes or P and Q are mutually recursive.

el由er case , one has the opponunity to modi鸟I the context seen by the other in a more

could be done using

and Q. can be
n '··a

complex manner 由an stubs during testmg of individual

components in isolation.

- 7 -

日出e composition of P and Q is in fact sequenti础. then the axiom is still true - just

less useful. The proof is by a simple combinatorics argument: If p is the set of pa由s

through P and q is the set of pa由s through Q , then the set of pa由s through P;Q may

be as large as p x q, depending on the fonn of composition and on reachability 臼

considered by 由e previous axiom. However , T applied to P;Q generates at most p

pa由s. A larger test set may be needed to induce the full set of pa由s. This is an issue

for speci1ìcation-based 笛 well as program-based testing when the specification

captures only what the program is supposed to do , not inc1uding what it is not

supposed to do.

5. Encapsulation in Classes

h 由is and the following two sections , we consider only abstractions of encapsulation.

overriding of inherited methods and multiple inheritance. respectively. rather than

concem ourselves wi由 the details of specific object-oriented languages. such as

Smal1t此-80 [7]. Flavors [1 剖， CommonLoops [1] and C++ [28].

Encapsulatìon is a technique for enforcing infonnation hiding , where the interface and

implementation of a program urut are syntactically sep缸ated. This enables the

prograrruner to hide design decisions withín the implementation , and to narrow 由e

possible interdependencies with other components by means of the interface.

Encapsulation encourages program modularity , isolates separately developed program

units. and restricts the implications of changes. In particular, if a progranuner changes

the implementation of a 山山. leaving the interface the sarne. other units should be

unaffected by those changes. Our initia1 intuition. grounded in speci且cation-based

testing , is that we should be able to limit testing to just the modified unit. However.

由e anticomposition axiom reminds us of the necessity of retesting eve可 dependent

山tit as well. because a prograrn that has been adequately tested in isolation may not be

adequately tested in combination. 丁l1is means 由at integration testing is always

necessary in addition to urut testing. regardless of the programming language

paradigm.

Fortunately. one rami且cation of encapsulation for testing is that 由e dependencies tend

to be explicit and obvious. If a prograrnmer changes only the implementation of a

山山， he need only retest that 山ùt and any 山ùts 由at explicitly depend on it (call it , use

- 8 -

its global variables , etc), as opposed to the entire program. Sirnilarly , if 由e

progranuner adds a new 山山， he need only test 由at 山ut and those existing units that

have been modifi.ed to use it (plus unmodi且ed existing 山uts that previously used a

different 山山由at is now masked due to a naming conflict).

One would assume that the classes of object-oriented languages would exhibit 由is

behavior, so 由at it would be both necess缸y and sufficient to retest those classes

explicitly dependent on a changed class as well as 由e modi且ed class itself. We would

expect that, when a superclass is modi fi.ed, it would be necessary to retest all its

subclasses since they depend on it in the sense 由at they inherit its rnethods. What we

don't expect is the result of the antidecomposition axiom 一由剑， when we add a new

subclass (or modify an existing subclass). we must retest the methods inherited 仕om

each of its ancestor superclasses. The use of subclasses adds this unexpected form of

dependency because it provides a new context for the inheri出d components 一由at is.

由e dependency is in both directions where we thought it was only in the one

direction.

Class C:
Variables: v
Me由ods: J. . . .

J initiafizes Y 10 0

Class D:
Variables: . . .
Me由ods: K... .

K iniriali:es Y 10 1

Figure 2

For exar口ple. consider a class C with method J; we have adequately tested J wi由

陀spect to C. We now create a new class D as a subclass of C; D does not replace J

but inherits it 仕om C. According to 由e antidecomposition axiom, it is necessary to

retest J in the context of class D. 节1ere may be new errors when in the context of D,

WI由 its enlarged set of methods and instance variables - and perhaps subtly different

- 9 -

local meanings for instance variables inherited from C. The bug illustrated in figure 2

(由e confiicting ass山口ptions about instance variable v) would not be detected without

retesting J in the context of D.

In order to make 血is example more concrete , consider C to the class

WindowManager, D to be the class SunWindowManager, J is the method

InitializeScreen , and K is SetScreenBackground. J initializes to a blank screen, while

K puts a digitized picture in the background.ηlere are obvious problems if K is

invoked 缸st and then J , and vice versa.

ηlere is one case where adding a new subclass does not requ让e retesting the methods

inherited 仕om 由e superc1ass in order to meet the adequacy axioms. 白白 is when the

new subclass is a pure extension of the superc1ass，出at is , it adds new instance

variables and new methods and there are no interactions in either direction between the

new instance variables and methods and anY inherited instance variables and methods.

At least one 0伪圳b均'Je创C口t.仁t-o胃心-0创∞O町on阳i

prohibiting une臼xp严ec口ted d也epend叫denci巴es缸 Com口uno∞nOb叫Ijects [2苟5 ，26创] removes all implicit

inhe恕er巾i让tanc臼e 一由a副 βs ， inherited methods must b民e e以xpliciùy invoked.ηùs ， in e征ect ，

insens "缸ewalls" between each superc1ass and its subclasses , in the same sense that

encapsulation inse口s 血.rewalls between a class and its c1ients.

6. (herriding of Methods

Almost all object-oriented languages 严mùt a subclass to replace an inherited method

with a loca1ly defined method with the same name , although some support a subtyping

hierarchy 由at restricts the method to have the sarne specification [24]. In either case ,

it is obvious that the overrid.ing subclass has to be retested. What is not so obvious is

that a different test set is often needed. This is expressed by the antiextensionality

axiom: although t阳he 阳阳o me由o咄d也s c∞川omp阳u川峭t阳e s优阳sem町凹emπmar矶削川u川tica咄叫allyμclω1以。悦臼 fu阳fun川1

adequate for one is not necessarily a挝de叫quωat阳e for the other.

For ex但nple ， consider 自gure 3 where class C has subclass D , and method M is defined

in C but not in D. Say there exists an object 0 that is an instance of class D , which

receives a message containing the method selector M; M applied to 0 has already

been adequately tested. Now we change class D to add its own method M , which is

- 10 -

Class C: C国二c:
时lethods: 岛1， . . . Me由ods: M

Figure 3

similar to C.M (by "C.M'\we mean the method M from superc1ass C). Obviously,

we need to retest class D. Intuitively we would expect 由at the old test data would be

adequate. but the antiextensionality axiom reminds us 由at it may not be adequate.

Thus. we may have to develop new test cases for two reasons. First. remember 由at

prograrn-based testing considers the details of the program fonnulation. attempting to

cover. for exarnple , each statement or branch. The test data would necessarily be at

least slightly different for C. M and D.M if the formulation in terms of statements and

branches were different; the test data would probably be very different 证C.M and

D.M used different a1gorithms. Second. it is ve叩 likely that the under1ying motivation

for overriding a method affects not only 阳 intemal structure of the overriding method

but its extemal behavior 臼 well - that is , it changes the functiona1 specification.

Hence , in addition to test cases to exercise the different structure of the method. we

need test cases to test 由e different speci自cation of the that method.

More concretely , consider C to be the class WindowManager. D to be the class

SunWindowManager. C.M to be the method RefreshDisplay that rewrites an entire

bitmapped screen. and D.M to be the method RefreshDisplay 由at repaints only the

.. darnaged" part of a binnapped screen. In this case. the specifications as well as the

implementations of the two methods might be different. in which case different test

sets would be required for specificarion-based as well as program-based testing.

h 由e previous section. we treated the two-way dependency between c1asses and

superclasses and explained how the antidecomposition axiom requires testing of

inherited methods in each inheriting context as well as the de血ning context. What we

did not discuss there was the application of the antie吨tensionality axiom to this

- 11 -

additional testing: different test sets may be needed at every point in the ancestor

chain between the class defìning the overriding method and its ancestor class defining

由e overridden method.

Class C:

Me由ods: M , N ,

(M uses N)

Class D:

Me由ods: M

(M uses N from C)

Class E:

Methods: N, . . .

(M from D ωes N from E)

Figure 4

h 自gure 4 , class C has subclass D , wruch in turn has subclass E; C has methods M

and N; D has me由od M, wruch uses method N (仕om C); class E does not have

method M but does have method N (overriding the N inherited from C). 白1e

antiextensionality axiom reminds us 由at we need differ町lt test data for M with

res严ct to each of the classes C , D, and E.ηtis is obvious with respect to instances

of C and D, since 由ey invoke distinct methods M in response to the message M; even

if these methods. are semantically close , test data a.dequate for one may not be

adequate for the other. This is less obvious with respect to D and E , since they invoke

the identical method M. But when we consider that M calls C.N for D whereas it

calls E.N for E, it becomes clear that different test sets are required since the

fonnulation and algorithms used by C.N and E.N are likely to be different in

functionality as weU as structure.

- 12 -

Again, πlor穹 concretely, let class C be Window Manager where method M lS

Re仕eshDisplay and method N is DrawCharacter, using bitmapped fonts; let class 0 be

SunWindowManager where method M is D's replacement for 由e method

Re仕eshDisplay; and let class E be NeWS where method N is E's replacement for the

method DrawCharacter, using Postscript fonts.

7. Multiple Inheritance

lass C: Class B:
Me由ods: M,... Me由ods: M,...

审

Class B: Class C:
Me由ods: M,... Methods: M , .

Figure 5

Some. but not all. object-oriented languages support multiple inheritance [匀， where

each class may have an arbitrary number of superclasses. The so-called .. multiple

inheritance problem川. arises when the sarne component may be inherited along

paths. Solutions to this problem 可pically define a precedence

orde由19. which linearizes the set of ancestors so that there is a unique selection (or a

山úque ordering if 由e semarltics of the language are such 由at all confiicting inherited

ancestor different

methods must be invoked) [27]. These solutions , unfortunately, cause ve叩 small

syntaαic changes to have very large semantic consequences. Fortunately , the general

multiple change axiom reminds us 由at prograrns that are syntactically sirnilar usually

- 13 -

requ让e different test sets.

In figure 5, class D lists superc1臼ses C and B , in 由at order, and the language imposes

由e precedence ordering C , B. Method M is de fi.ned by both C and B but not by D.

Class D is then changed so that the ordering of the superc1asses is B and C (meaning

由at the precedence ordering is B , C). Not oruy must c1ass D be retested, since it now

uses B.M rather than C.M , but most likely a different set of tests must be used. Since

C and B are independent, and pe由aps developed sep缸ately ， there is no reason 由at

B.M would be either syntactic剖ly or semantically simil缸 to C.M - and even 证 it

were , the antiextensionality and general mu1tiple change axiorns rernind us 由at even

then different test sets may be necessary.

As a concrete realization of 由is ex缸nple ， let class C be TextWindowManager where

method M is Re仕eshDisplay (由at rep出nts the window 仕ûm a text description), let

c1ass B be GraphicsWindowManager where method M is Re仕eshDisplay (由at rep出nts

the window frorn a bit-mapped representation) , and let class D be

SunWindowManager.

Oass SI: d必s S1: α.ass-S3: Class S4:
Me由ods: M, N, ' , • Me曲创s: N,.. Me也创s: N,., Me由ods: M, N, ' , ,

α峰s T:
Me山ods: .

Fi gur穹 6

节le example in figur苦 6 shows the inherent cornpounding e仔'ects of multiple

inheritance.

节ÚS irnplication of the general mu 1tiple change axiorn is probably the most

signi且cant result of applying the test data adequacy axiorns to object-oriented

- 14 -

languages , but a1so the 1east su.rprising to the object-oriented languages comm山U可­

Multiple inheritance is a1ready widely recognized as both a blessing and a curse

[1 5,16,17].

8. Conclusions

Inheritance is one of the p目mary strengths of object-oriented programming. However ,

it is precisely because of inheritance 由at we 缸ld problems arising with respe口 to

testmg.

. Encapsulation toge由er with inheritance , which intuitively ought to bring a

陀duction in testing problems , compounds them instead.

. Where non-inheritance languages ma.ke the effects of changes explicit , inheritance

languages tend to make these effects implicit and dependent on the various

underlying , and complicated, inheritance models.

Brooks concludes his section on object-oriented programming:

Nevertheless. such advances can do no more than to remove al/ the accidental

difficultie s 卢om the expression 01 the design. The complexity 01 the design itse /f is
essential. and such attacks make no change whatever in it. An order-oj己magnitude

gain can be made by object-oriented programming only il the unnecessaηη'pe­

spec庐cation underbrush still in our programming langωge is itse /f nine-tenths 01

the work involved in designing a program product. 1 doubt it.

While object-oriented programming clears away much of the accidental underbrush of

design , we have noted ways in which it adds to the accidental underbrush of change

management and testing. We conclude 由at there is a pressing need for research on

testing of object-oriented 1anguages. We have begun work on this in the context of a

data-oriented debugger for concurrent object-oriented languages [8] and in the context

of semantic analysis (applying the approach of Inscape [21] to C++).

- 15 -

Acknowledgements

Jim Coplien, Nar出n Gehar让， Jim Krist, and A1ex W olf provided useful criticism and

suggestions on earlier versions of 由is paper.

- 16 -

References

[1] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales , Larry Masinter, Mark

Ste fi.k, and Frank Zdybel. "CommonLoops: Merging Lisp and Object-Oriented

Progranuning'\ Object-Oriented Programming Systems , Languages and

Applications C on，卢rence Proceedings , Ponland OR , September 1986. pp 17-29.

[2] Alan Borning and Daniel Inga1ls. "Multiple Inheritance in Sma1ltalk-80'\

Proceedings 01 the Narional Conference on Artificial lntelligence , Pittsburgh

PA, 1982. pp 234-237.

[3] Frederick P. Brooks , Jr. .‘No Silver Bullet: Essence and Accidents of Software

Engineering'\ Computer 20:4 (April 1987). pp 10-20.

[4] Takeshi Chusho. "Test Data Selection and Quality Estimation Based on the

Concept of Essential Branches for Path Testing" , IEEE Transactions on

50户叫re Engineering SE-13:5 (May 1987). pp 509-517.

[5] Phyllis G. Frankel and Elaine J. We严血er. "Data Flow Testing in the Presence

of Une ll:ecutable Paths'\in Workshop on 50.斤ware Testing , Banff, Canada, July

1987. pp 4-13.

[6] David Gelperin and B山 Hetzel.‘节le Growth of Software Testing'\

Communications 01 the ACM 31:6 (June 1988). pp 687-695.

[7] Adele Goldberg and David Robson. 5malltalk-80: The Language and its

Impltmtntarion , Reading MA: Addison-Wesley , 1983.

[8] Wenwey Hseush and Gail E. Kaiser. "Data Path Debugging: Data-Oriented

Debugging for a Concurrent Programrning Language'\ Proceedings 01 the

ACM 51GPlanJ51GOps Workshop on Parallel and Distributed Debugging ,

Madison WI , May 1988. pp. 236-246.

[9] William Howden. 50卢ware Engineering and Technology: Functional Program

Testing and Ana抄sis ， New York: McGraw-Hill Book Co. , 1987.

[10] Gail E. Kaiser and David Garlan. "Meld.ing Software Systems from Reusable

Building Blocks'\ IEEE 50户..，are ， July 1987. pp 17-24.

- 17 -

[11] Gail E. Kaiser and David Garlan. ‘ 'MELDing Data F10w and Object-Oriented

Prograrruning" , Object-Oriented Programming Systems. Languages. and

Applications Conference Proceedings , Klssimmee FL , October 1987. SIGPlan

Notices 22: 12 (December 1987). pp 254-267.

口 2] Gail E. Kaiser and Dewayne E. Peπy. 川Workspaces and Experimental

Databases: Automated Support for So仕ware Maintenance and Evolution'\

Proceedings of the Con.卢rence on Sofnωre Maintenance , Austin TX,

September 1987". pp 108-114.

[13] Gail E. Kaiser and Dewayne E. Perry. "INFUSE: Integration Testing wi由

Crowd Control". Technical Report. Computing Systems Research Laboratory,

AT&T Bell Laboratories , January 1988.

[14] Gail E. Kaiser , Simon M. K叩lan and Josephine Micallef. "Multiuser,

Distributed Language-Based Environments'\ IEEE So.如ωre ， November 1987.

pp 58-67.

[15] Norman Meyrowitz. Object-Orienred Programming Systems. Languages and

Applications Conference Proceedings, Portland OR, September 1986. Special

Issue of SIGP但n Notices , 21:11 (November 1986).

[16] Norman Meyrowitz. Object-Oriented Programming Systems. Languages and

Applicarions C01价rence Proceedings , Orlando FL, October 1987. Special

Issue of SIGPlan Norices , 22: 12 (December 1987).

[17] Nonnan Me严owitz. Object-Oriented Programming Systems. Languages and

Applicarions C 01矿erence Proceedings. San Diego CA, September 1988. Special

Issue of SIGPlan Notices , 23: 11 (November 1988).

[18] David A. M∞n. "Object-Oriented Programming with Flavors" , in Object­

Oriented Programming Systems , ÚJnguages and Applications Conference

Proceedings , Portland OR , September 1986. pp 1-8.

[19]η10mas J. Ostrand , Ron Sigal，臼d Elaine Weyuker. .. Design for a Tool to

Manage Speci且cation-Based Testing". in Workshop on So.户ωre Tesring , Banff.

Canada, July 1987. pp 41-50.

- 18 -

[20] Dewa严le E. Perry and Gail E. Kaiser. "Infuse: A Tool for Autornatically

Managing and Coorctinating Source Changes in Large Systems" , Proceedings

0/ the ACM F拚eenth Annual Computer Science Conference , St. Louis MO ,

February 1987. pp 292-299.

[21] Dewayne E. Peπ予 "So位wa.re Interconnection Models" , Proceedings 01 the

9th Internationa/ Conference on So.斤ware Engineering , Monterey CA, April

1987. pp 61 -69.

[22] Dewa严le E. Peπy. "Version Control in the Inscape Environment'\

Proceedings 0/ the 9th International Co~卢rence on So户侃re Engineering ,

Monterey CA, April 1987. pp 142-149.

[23] Robert P. Rωand John H. Rowland. "Some Theory Conceming Certification

of Mathematical Subrou由les by Black Box Testing'\ IEEE Transactions on

50.斤ware Engineering SE-13:7 (Ju1y 1987). pp 761-766.

[24] Craig Schaff町， Topher Cooper. Bruce Bullis. Mike Kil ian , and Carrie Wilpolt.

.. An Introduction to Trell臼ρwl'\in Object-Oriented Programming 5ystems,

Languages and App /ications Conference Proceedings, Portland OR, September

1986. pp 1-8.

[25] Alan Snyder. "ComrnonObjects: An Overview" , Object-Oriented

Programming Workshop Proceedings , Yorktown Heights NY , June 1986. pp

19-29.

[26] Alan Snyder. "lnheritance and 阳民velopment of Encapsulated So仕ware

Components" , Twentieth Hawaii lnternational Conference on 5ystem 5ciences,

Kona 阻， January 1987. volume 日， pp. 227-238.

[27] Mark Stefik and Daniel G. Bobrow. ‘ 'Object-Oriented Prograrnming: Themes

and Variations" , The Al Magazine (Winter 1985). pp 40-62.

[28] Bjarne Stroustrup. The C++ Programming Language. Reading MA: Addison­

Wesley , 1986.

[29] 回aine J. We归血er. 川Axiomatizing So仕ware Test Data Adequacy'\ fEEE

Transactions on So.如'are Engineering SE-12: 12 (De臼mber 1986). pp 1128-

- 19 -

1138.

[30] Elaine 1. We严血er. "The Eva1uation of Program-Based Software Test Data

Adequacy Criteria'\ Communications of the ACM 31:6 (June 1988). pp 668-

675.

