The derivation of two-dimensional surface shape from shadows

MICHAEL HATZITHEODOROU

Department of Computer Science
Columbia University
New York, NY 10027

CUCS - 349 - 88
May 1988

Abstract. We study theoretical and implementation issues that arise when solving the shape
from shadows problem. In this problem, the shadows created by a light falling on a surface
are used to recover the surface itself. The problem is formulated and solved in a Hilbert
space setting. We construct the spline algorithm that interpolates the data and show that
it is the best possible approximation to the original function. The optimal error algorithm
is implemented and a series of tests is shown. We additionally show that the problem can
be decomposed into subproblems and each one can be solved independently from the others.
This decomposition is suited to parallel computation and can result in considerable reductions
in the cost of the solution.

Typeset by AyS-TEX

1. Introduction.

Research in the various Shape from X areas has produced a series of methods that
recover a surface from different types of information available about it. The information
that is most widely used in these Shape from X methods includes depth values, shading,
texture, etc.

We propose another approach for surface reconstruction. This is the Shape from Shadows
problem. Assume that we have a surface that is lighted by a light source. The light source
will cast shadows on this surface (see fig. 1.) Then the light will move to a new position
where it will cast new shadows. We collect the different images of the shadowed surfaces,
at these various times. From those we obtain the location of the start and the end of
the shadow, plus some additional information about the surface function. Given any
series of images containing shadows, we want to construct an algorithm that produces an
approximation to the surface with the smallest possible error.

N
/:\\

NN

Figure 1.

Very little work has been done on the use of shadows for the reconstruction of the
surface shape. In this paper we will extend the work presented in [5] where the solution
to the one-dimensional version of the problem is obtained. In this one-dimensional version
surface slices, intersections of the surface with planes perpendicular to the z — y plane,
were recovered. We generalize here the approach taken in [3] and present a method that
will approximate the entire surface function, instead of a finite number of functions of
one variable. The only other work we are aware of, is the one proposed in [6] where the
problem is solved using a relaxation method.

Shadows are a very strong piece of information. The process that uses shadows is not
affected by texture or by surface reflectance. Furthermore, our imaging system does not
need a grey scale or color capabilities; it is sufficient for it to be able to distinguish between

“black and white. Also, noise in the form of bright spots inside a dark area and vice-versa
can be filtered out easily. From the above, it is evident that shadows yield a powerful tool
to be used in the reconstruction process.

2

We propose an algorithm that recovers the surface and minimizes the worst possible
error within a factor of 2. The algorithm that minimizes the error is the spline algorithm.!
We choose to construct the spline algorithm in steps using a process that converges to
the optimal error algorithm. The justification behind this stepwise construction is that,
in general, the optimal error algorithm might need many iterations to construct, but in
most practical cases the initial version of the algorithm, or the one resulting from a few
iterations, already obtains the optimal error. We therefore construct a process that has
low cost, while achieving the smallest possible error.

We implement the optimal error algorithm and present a series of numerical runs so that
we can see the performance of the algorithm in practice. The resulting approximations were
very close to the function from which we obtained the data, and that can be immediately
seen from the pairs of original and reconstructed surface that we provide. We also propose
a parallel implementation of the algorithm that will considerably improve the running
time.

The organization of the rest of the paper will be the following : In section 2, we will
formulate the problem; we will define a function space in which our surface must belong.
We will also define more precisely the information that can be extracted from the shadows.

In section 3, we will define the optimal error algorithm. We show that this is the spline
algorithm which always exists and is unique. This will guarantee that the shape from
shadows problem under this formulation is well-posed. The definition of a well-posed
problem can be found in [3, 11]. In contrast to many other shape from X algorithms, our
formulation does not require any regularization (see [9, 10] for a review of vision problems
requiring regularization.) Understandably, if we suspect that the data are noisy, we might
want to use a smoothing algorithm. In this case, the formulation that is produced by our
approach is similar to the one that could be obtained from the application of regularization
theory.

Section 4 deals with the implementation of the optimal algorithm. Its performance is
analyzed in terms of the error it creates in recovering a surface. We will show sample runs
that achieve a good approximation with a small number of data.

In section 5 we discuss the cost of the proposed algorithm. We show how to take
advantage of the structure of the data and modify the algorithm, in order to obtain
significant cost improvements. Furthermore, the algorithm can now be implemented in
parallel, resulting in an even further reduction in the running time.

2. Formulation of the problem.

In the introduction of the paper we said that our aim is to recover a surface. Formally,
a surface can be seen as a real function of two variables f : IR? — IR belonging in the
space of functions Fy. Our aim is to obtain an approximation r € F, to our function
f € Fy using the data that we can derive from the shadows. We want the approximation
T to be as close to f as possible.

! We will define the worst case.error, the spline algorithm, and all the other needed concepts later.

3

2.1 Function Space.

Let,

Fo={f]|f:[0,1]> — IR, D! absolutely cont., [|D**f|;, <1}, (2-1)

be the space that contains the functions f that we want to approximate.? * The norm
. i3 it
|l - |lz, is defined as || f||L, = \/fol fol |f(z,y)|*dzdy, and D'/ = 3%-5!7;.
Also, define the bilinear form (-,) to be such that,
141
(f.9) = [[D**(a.y) D*?g(a.y) dedy. (2:)
o Jo
and the norm || - || to be such that,
Il = (f.)2 (2-3)
Clearly (-,) defined above is a semi-inner product and ||-|| is a semi-norm. If we pose the
additional requirements f(0,y) = 0, f(z,0) = 0 and D*?f(0,y) =0, D*'f(z,0) =0 on
our function, then the bilinear form (-, -} is an inner product and ||-|| a norm. Consequently,

F, equipped with (-,-) is a semi-Hilbert space or a Hilbert space respectively.

2.2 Information.

In the next step we will extract from the image(s) the information, that is contained
in the shadows, and which will be denoted by N(f).* Assume that the light falls on the
surface along the x-axis. Clearly, from the position of the light source, we can immediately
obtain the partial derivative of the function f, with respect to z, at the point (z;,y;),
(zi,yi) being the beginning of the shadow (see fig. 2). We can also obtain the difference
between the two function values f(z;,y:) — f(Zi,y:), at the beginning and at the end of
the shadow respectively, given by gé(z,-, yi)(zi — Z;).

For a light falling on the surface along the y-axis we can obtain similar information. In
particular, for a given shadowed area starting at (z;, yi), and ending at (zi, §:), we can
obtain the partial derivative of f with respect to y and the difference f(zi,yi) — f(zi, %i)
which is given by %(m;,yg)(y; — Fi)-

Assuming that [;(z,y) is the straight line segment passing through the points (z;, yi),
(Z;.y:), an additional piece of information can be obtained. It holds (see fig. 2) that,

flz,y) < li(z,yi), Vz€ [z,). (2-4)

>The bound of 1 in ||D2'2f||L2 is assumed without loss of generality. However, as we already mentioned.
any fixed bound is equally good.

3The use of the interval [0, 1)? is not restrictive either. Any interval [a,b] x [c, d] for some a, b. ¢, and d
is equally good.

1The concept of information is considerably different from the concept of data. The data vector is a vector
of fixed values, while information is an operator. We will use the term somewhat imprecisely. The user is
referred to [12. 13, 14, 15] for a more detailed discussion on the concept of information operators.

4

|
| |
[y '
I | | '
| { | :
| | .

(zi,yi) (Zi,yi)(=zj.95) (Z5,95) T

Figure 2.
If the light falls in the direction along the y-axis, then the obtained inequality is
f(xi,y) < li(miv y)’ Vy € [yi’ yt] (2'5)
So, formally, the information N(f) contains triplets of the form,
< f(Inyt) f(Inyl) f(ii, yi):f(x7yi)<li($yyi)>a gizyl' (2_6)

or of the form,

(g_i(li,yi)»f(ziayi) — F(Zi, 0 fziy) < L(ziy)), Ei= i (27)

Note that the third item in the above triplets is a consistency condition.

In each one of the images in our sample there are 0, 1 or more shadowed areas. From
each one of those shadowed areas we can obtain a triplet of the form (2-6) or (2-7). If we
group all the data resulting from this sampling we obtain the vector,

0
N(F) = (5@ mnde s Go(E) Gkt Uik G (ms)
f(xl7yl)—f(xlay])a"'wf(‘rnvyn —f('rnayn)a
flzr,m) = f(ts),o oo fznnn) = Fmy s Smy)y
-
f(IQ)yQ)_f(tYnzv‘S"\z))"'vf(xn’yn)—f(tmn’smn)]) (2'8)
where m;....,m, are the number of points (¢;,y) in every interval [z;, Z;] x y for which

(2-4) holds, or points (z, 3;) in z X [yi, ¥] for which (2-5) holds, and m; + - + m, = m.
Clearly, while we know that there are exactly 2n pieces of information in the first part of

S

N(f), we cannot bound the cardinality of the last part because it can be the case that
m — 40o0.

3. Solution of the problem - The optimal algorithm.

We now proceed to the solution of the problem. We want, given information N(f). to
obtain an algorithm that will provide an approximation to our function f. An algorithm
o is defined as any mapping from the space of all permissible data vectors to the space Fp.

3.1 Alporithm error.

The error of an algorithm for any fixed function f is given by || f — (N (f))||. We would
like to know what is the largest possible error that can be made by the algorithm, i.e. we
want the error of the algorithm for the worst possible function f.

DEFINITION 3.1. The worst case error of an algorithm ¢ is,

e(, N(f)) = sup {[Ilf — (NI, N(f) = N(f)}. (3-1)

f€FS

Intuitively, the error of an algorithm is obtained by an adversary type of argument where
the adversary chooses the function f so that the distance between f and ¢ is maximized.
Clearly, when solving any problem we would like to have an algorithm that will minimize

(. N(f)).
DEFINITION 3.2. An algorithm ™ that has the property,

(™ N(f)) = igf{e(v,N(f))}, Vf € Fo (3-2)

is called a strongly optimal error algorithm.

The quantity at the right side of (3-2), i.e. the infimum of the error of all algorithms
solving the problem given information N(f), is a property of the problem itself, and does
not depend on the particular algorithm used at any moment. This quantity, gives the
inherent uncertainty of the problem for given information, and is called the radius of
information. Clearly, the error of the strongly optimal algorithm equals the radius of
information.®

3.2 The spline algorithm.

We propose the spline algorithm ¢* for the solution of our problem. Splines have been
known to give the optimal solution to many interesting problems [1, 2, 7, 8, 12, 13].

5One point that must be mentioned here is that the radius of information describes, as we said before,
the inherent uncertainty of the problem and has a specific value, say R. However small or large R may
be, there is no procedure that will guarantee error less than that.

6

DEFINITION 3.3. A spline o is an element in the space of functions Fy such that,

(1) N(o) = 7.
(2) lloll = minger, {lIfIl, N(f) =7}

The meaning of (1) is that the spline must interpolate the data, and (2) says that
the spline is the function that minimizes || - ||. The spline algorithm is the process that
constructs the spline.

In a Hilbert space setting one can obtain a closed form for the spline algorithm. In our
particular case, the spline algorithm is given by,

2n m
P'(z,y) = > _aigi(z.¥) + Y cjhj(z,v), (3-3)
=1 j=1

where {gi}i=1,..2n and {h;};=1,.. m are such that,

(zi — I)S.(yi —Y)+ — (zi1 — 13)3-(!/:’—1 - Y)+

VITi— Ti-)

when the light falls along the x-axis, and

D*?gi(z,y) =

i=1,....k (3-4)

D*?gi(z,y) = (i — % (i —2)4 — (yi-1 = Yi(zio1 —)4

VYi — Yi-1 '

for light along the y-axis, where (a — b)% =1 for a = b and 0 otherwise,

i=k+1,...,n (3-5)

D2,29n+i(1:vy) =(Zi—2)+ (T —y)+ ~(zi —2)4+(¥i — V4 — (zi — x)(-);-(fi -z)(¥i — ¥)+,
t=1,...,k (3-6)

D*?gnyi(z,y) = (5 —y)4(Zi —)4 — (vi — ¥)+(zi —)4 — (vi —) (- vilzi — 2)4,
i=k+1,....n (3-7)

where (a — b}y = a — b for a > b and 0 otherwise, and
D2'2hj($, y) =t —2)+(s; —)+ — (zi —) (vi =)+ — (zi — $)3.(tj —zi)(¥i — Y)+,

some i, j=1,...,m, (3-8)

CDPhj(z,y) = (55— v)+(t; — D)4 — (i — W)z — 2)4 — (v —)5(s5 — vi)(zi - 2)4,
somei, j=1,...,m. (39)

-]

The functions {g;}i=1,.,2n and {h;};=1,...m are the representers of the functionals that
construct the information N(f), properly modified to have a small area of support.

The coefficients a; and ¢; are chosen so that the definition of the spline is satisfied, that
is, ¢* interpolates the data, and also minimizes the norm || - ||. If the area of support of
every g; is disjoint from the area of support of every other and furthermore (g;, g;) = 6},
the Kronecker delta, then the coefficients a; are given directly by the theory. This is
not the case in this setting where the coefficients a; are obtained by solving a system
of linear equations and the coefficients ¢; are obtained by directly minimizing || - ||. We
will describe the implementation of the algorithm in section 4. The derivation of the
minimization problem is somewhat tedius and can be found in the appendix.

For the spline algorithm the following very strong theorem holds (8, 13].

THEOREM 3.1. Let Fy be a Hilbert space, f € Fy and information § = N(f). Then,
the spline algorithm interpolating the data y exists, is unique, and achieves error at most
twice the radius of information.

From Theorem 3.1 we can obtain two very important results. First, our problem under
the proposed formulation is well-posed. This property 3, 11] is always desirable when
solving a problem. Computer vision problems tend to be ill-posed and considerable effort
has been spent by the vision community towards the correct formulation that will yield
well-posedness (See [4, 9, 10] for a survey.)

Second, the spline algorithm has a worst case error that is within a factor of 2 from the
radius of information. The algorithm that achieves that, is called almost strongly optimal
[12]. If the problem is linear® then the spline algorithm ©* has a worst case error equal to
the radius of information and is, therefore, the strongly optimal algorithm.

We can choose to ignore the existence of the inequalities (2-4) and (2-5) and not include
them in the information N(f). If we choose to do so, we essentially assume that m = 0 and
the shape from shadows problem is a linear problem. Then, the spline algorithm becomes

2n

@'(z,y) =Y aigi(z,y). (3-10)

=1

As expected, the part ZT=1 cjhj(z,y) can now be omitted.

If on the other hand, m > 0 then, the problem is non-linear, and ¢* is an almost strongly
optimal algorithm.”

We saw before that the construction of the algorithm has to be done in steps. First,
we obtain the coefficients a; and subsequently the coefficients c;. We also mentioned that
the cardinality of the non-linear part of the information m is not known a-priori. We

SFor an exact definition of a linear problem see (8, 13. 14, 15].

"Up to this moment there does not exist a general theory that will help construct strongly optimal
algorithms for non-linear problems. These algorithms are in general difficult to construct and are derived
on a per problem basis.

would like to keep its value low to reduce the costs involved in solving the minimization
problem. To obtain this we propose to break down the implementation of the algorithm
in additional steps.

4. Application of the algorithm - Numerical runs.

The spline algorithm of section 3 has been applied and its performance has been tested
in practice.

4.1 Algorithm implementation.

From our early experience we have concluded that in many cases, the non-linear part of
the information is not needed.
Stage 1:

Therefore, we begin the implementation of the spline algorithm by assuming that m = 0.
We first construct the values of the coefficients a;. This is done by solving the system of
equations,

Gad = v, (4-1)
where G = {(g;, gj)}?z:l and {g;}i=1...2n are given by (3-4), (3-5), (3-6) and (3-7). The
system is solved by a direct method without the need for pivoting since it is symmetric,
positive definite and has a nice structure that reduces the number of calculations.

As a next step, we use the computed values of the a;’ s to construct the spline algorithm.

Third, we check to see whether the non-linear constraints are violated.

If the non-linear constraints (2-4) and (2-5) are not violated, which is usually the case,
we do not need to do anything else. We have already obtained the approximation ¢*(z, y)
to the function f.

Since we have not used the non-linear part of the information, the problem is linear
hence the spline algorithm achieves the radius of information.

Stage 2:

If the constraints (2-4) or (2-5) are violated, then we do not have a sufficiently good
approximation, which means that we must obtain the coefficients ¢; of (3-3). To do so, we
have to solve the minimization problem derived in section 3.3.

We will consequently proceed as follows. We will take a few points (¢, s;) in the shad-
owed intervals where the constraints are violated. For these points we solve the minimiza-
tion problem. Then we check again for violations of the non-linear constraints. If there
are violations we repeat Stage 2. We select a few more points from the new interval(s) in
which (2-4) or (2-5) are violated, and we add them to the sample. The minimization is
repeated for the new set of points and the new coefficients are derived. At the same time,
the a;’ s and the old ¢;’ s are modified.

We perform the minimization for a few points at a time for various reasons.

(1) Theoretically, the cardinality of the non-linear information m can be arbitrarily
large. In practice though, we rarely need to use more that one or two points per

9

shadowed area. Taking a few points at a time we can minimize the cost of the
algorithm.

(2) At each new iteration we do not need to undo our previous work, but we simply
modify the existing coefficients while deriving the new ones.

4.2 Test runs.

We have constructed a broad series of functions, and have run the algorithm using these
as test surfaces.

From early test runs, we have observed that smooth functions can be approximated
easily with almost non-observable error, using a small number of sample points.

The functions that are the most difficult to approximate, are the ones that have as few
derivatives as possible. In the class Fy these functions are piecewise quadratic polynomials
which are constructed as the product of one-dimensional quadratic polynomials. We will
show the performance of the algorithm ¢°® on these functions.

We start the series of test runs with a function consisting of 100 polynomial pieces. We
use two different light angles from each direction, two along the x-axis and two along the
y-axis. The function and the reconstruction can be seen in figure 3.

flz,y) ©°(z,y)

Figure 3.

In figure 4 we show a function consisting of 200 polynomial pieces. We again draw the
reconstruction together with the function for comparison purposes. The information was
obtained by using 4 different lighting angles in each direction.

Finally, in figure 5 we show one of the most difficult functions that we have constructed.
It consists of 400 polynomial pieces with large jumps in the second derivatives.® The

3Which means that |[D?2f|| < 1 does not hold. As we mentioned earlier, this does not change the
mathematical formulation. Nevertheless, the visual effect it creates in the quality of the reconstruction is
significant.

10

flz,v) ©°(z,y)

Figure 4.
¢ (z,y)

Figure 5.

function has been approximated using a sample created from lights falling from six different
light angles in each direction.®

5. Cost of the algorithm - Speed improvements.
5.1 Algorithm cost.

Let us now discuss the speed performance of our algorithm. The spline algorithm, as
defined in section 3, is linear in terms of its input. Thus, if we knew the coefficients q;
and c; then, cost(p?®) would be O(n).

In our case, the coefficients of the spline algorithm are not known, and must be con-
structed. To achieve this we must solve a system of linear equations, and sometimes, a
minimization problem. These costs dominate the cost of the algorithm.

In particular the solution of the system (4-1) has a cost O(n®). The cost of the non-

S Theoretically, light falling from one direction only could be used, but in this case the problem is identical
to the one-dimensional one [5].

11

linear minimization is considerably higher in the general case. Due to the special structure
of the problem, whose derivation we show in the appendix, we can use a variation of the
feasible directions approach. The proposed method has a cost of O(n). We are in the
process of investigating the properties of this method.

5.2 Speed improvements.

In section 5.1 we have discussed the cost of a very straightforward implementation of
the spline algorithm described in section 4.1. We now show that a slight improvement in
the implementation of the algorithm can yield a significant speedup. This speedup can be
achieved only if the function we want to recover can be split in distinct sections that we
will from now on call valleys. A valley is defined by two local maxima of the function, but
also depends on the specific sampling. For example, the function of figure 4 has 2 valleys.
In particular, we say that the function f, under some fixed sampling, has k valleys if we
can define k partitions II;,II,, ..., Iy of the functions {g;}i=1..2n, given by (3-4) and
(3-5), such that the union of the areas of support of all the functions in each partition is
disjoint from the union of the areas of support of the functions in every other partition.

We can detect the existence of any number of valleys in time O(n) and subsequently, we
can solve k problems of sizes ny,ns,. .., ny respectively, instead of solving one problem of
size n, where n =n, + ny + -+ + ni.

To connect the pieces resulting from each of the k problems we need constant time per
problem, hence combining can be done in time O(k).

Therefore, the total cost of this algorithm, which we will denote ¢f, will be O(kv?),
where v = max{ni,...,n¢}.

5.3 Parallel implementation.

Since splitting the problem into individual subproblems and combining the resulting
surfaces is straightforward and cheap to implement, one immediate extension to the above
set-up of the problem is to assign one individual subproblem to a different processor and
solve the initial problem in a parallel or in a distributed environment.

Again, splitting into k subproblems requires time O(n) and combining the individ-
ual solutions into one requires time of O(k). Then every processor will require time
O(n}), i=1,...,k resulting in a total cost for the parallel version y; of our algorithm
of O(v?), where v = max{ny,...,n;}.

6. Conclusion - Future work.

There are certain issues that we would like to investigate in the future. We would like to
study optimal and adaptive information. The study of optimal information will determine
the light placement that will minimize the error of the algorithm for a fixed number of
samples. Having adaptive information will permit, given a number of samples, to choose
where to place a new light so as to reduce the error as much as possible.

Although the work presented in this paper is not directly related to signal processing,
the construction of.a complete system will also have to address many issues that arise

12

when the information is obtained from the shadows.

We solved the problem of recovering a surface from the shadows it casts on itself when
lighted by a light source positioned at various locations.

We proposed a formulation that results in a well-posed problem and we have conse-
quently proceeded into solving it. We proposed an optimal error algorithm which addi-
tionally achieves a low time cost. especially if a clever but simple breakdown of the problem
is used.

The work described in this paper, extends the results on the reconstruction of one-
dimensional surface slices. This new approach can be very desirable, especially if our
purpose is to recover the entire shape of the surface.

The one-dimensional model can still be used if our aim is to recover the function value
at just one point, in which case we only have to use the slice passing through this point.
Also, if we only have lights along one axis then, the one- and two-dimensional models
become equivalent.

7. Acknowledgements.

I would like to thank Prof. John Kender for many valuable suggestions and discussions.
I would also like to thank Prof. Greg Wasilkowski, currently with the University of
Kentucky at Lexington, whose guidance made this work possible.

13

I. Appendix - The minimization problem.

We want to minimize ||o||> where o is given by (3-3). We can write,

lol|* = (o,0)

n n n k k k
= Z Z @i, @iy (9i,» Gia) + szaicj(givhj) + Z Z URIRIRYIN

i1=1ip=1 i=1 j=1 N1=1j2=1

=i"Ga+23"PTe+ETHE, (I-1)
where G = {{gi.9;)}; =1, 2n P = {(hjygx)}{:lln:l, and H = {(hi,hj)}; io -
Also,

n

k
(U,gs) = Z ai(giy gs) + ch(hjsgs> =Ys

i=1]

and,

J
— PTa+HZ < 4
I2 pTG-'j—PTG'PE+HZ < 4
= (H-P'G'P)é¢ < A-PTG™!y. (1-3)
Now, if we substitute (I-2) for @ in (I-1) we obtain,

lol? =T He+2 (G (F~ Pé‘))TP 4+ (G (g - Pa‘))TG (G™! (7 - P®)

=¢"He-'PTG'PE+§'G 1y
="(H-P'G7'P) e+ 7 Gy (1-4)

Since §'G™'§ has a known fixed value for any given problem, it remains to mini-
mize &' (H — PTG™!P) ¢ given the conditions in (I-3). This is a non-linear minimization
problem. We can solve this problem using a feasible directions method. The matrix
Q = (H-PTG™!P) is positive definite, hence the problem is convex. Therefore, we
are guaranteed to find the global minimum. At the same time, it can be noticed, that
the constraints that we have are linear!® which permits us to speed up the minimization

method considerably. We are currently working on an even faster method for the solution
of this problem.

19Even more, they are simple constant bounds on the variables.

14

REFERENCES

(1] Anselone, P. M., and Laurent, P. J., A general method for the construction of interpolating or
smoothing spline functions, Nummer. Math, 12 (1968).

[2] Atteia, M., Fonctions spline généralisées, C.R. Acad. Sci. Paris 261 (1965).

(3] Hadamard, J., Sur les problémes auz derivées partielles et leur signification physique, Princeton
Univ. Bulletin 13 (1902).

(4] Hatzitheodorou, M. G., The Application of Approzimation theory methods to the solution of com-
puter vision problems, Columbia University, Comp. Science dep. (1988).

[5] Hatzitheodorou M. G., and Kender, J. R., An optimal algorithm for the derivation of shape from
shadows, Proceedings IEEE CVPR (1988).

[6] Kender. J. R., and Smith, E. M., Shape from darkness. Deriving surface information from dynamic
shadows, Proceedings AAAI (1986).

[7] Holmes, R.. R-splines in Banach spaces : I. Interpolation of linear manifolds, J. Math. Anal. Appl.
40 (1972).

[8] Michelli, C. A.. and Rivlin, T. J, A Survey of optimal recovery. in “Optimal estimation in Approx-
imation theory,” Plenum Press, 1977.

[9] Poggio, T.. Computer vision, MIT Artificial Inteligence Lab (1986).

(10] Poggio. T., and Torre, V.. [ll-posed problems and regularization analysis in early vision, MIT
Artificial Inteligence Lab (1984).

[11] Tikhonov, A. N., and Arsenin, V. Y., “Solutions of ill-posed problems,” V.H.Winston and Sons,
1977.

{12] Traub. J. F., Wasilkowski, G., and WozZniakowski. H., “Information, Uncertainty, Complexity,”
Addison-Wesley, 1983.

[13] Traub, J. F., and Wozniakowski, H., “A general theory of optimal algorithms,” Academic Press,
1981.

[14] Wozniakowski, H., A survey of information-based complezity, Journal of Complexity 1 (1985).

[15] Wozniakowski, H.. Information-based complezity, Annual Review of Computer Science 1 (1986).

15

