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Abstrac t. We study theoretical and implementation issu臼 that arise when solving the shape 
from shadows problem. In this problem, the shadows created by a light falling on a surface 
are used to recover the surface itself. The problem is formulated and 四lved in a Hilbert 
space setting. We construct the spline algorithm that interpolat四 the data and show that 
it is the b臼t possible approximation to the original function. The optimal error algorithm 
is implemented and a 四ri臼 of tests is shown. We additionally show that the problem can 
be decomposed into subproblems and each one can be solved independently from the others. 
This decomposition is suited to parallel computation and can result in considerable reductions 
in the cost of the solution. 
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1. Introduction. 

Research in the various Shαpe 卢om X areas has produced a series of methods that 
recover a surface from different types of information available about it. The information 
that is most widely used in these Shape from X methods includes depth values, shading, 
texture甲 etc.

vVe propose another approach for surface reconstruction. This is the Shape 介om Shadow8 
problem. Assume that we have a surface that is lighted by a light source. The light source 
will cast shadows on this surface (see fì.g. 1.) Then the light will move to a new position 
where it will cast new shadows. We collect the different images of the shadowed surfaces, 
at these various times. From those we obtain the location of the start and the end of 
the shadow, plus some additional information about the surface function. Given any 
series of images containing shadows, we want to construct an algorithm that produces an 
approximation to the surface with the smallest possible error. 

Figure 1. 

Very little work has been done on the use of shadows for the reconstruction of the 
surface shape. In this paper we will extend the work presented in [5] where the solution 
to the one-dimensional version of the problem is obtained. In this one-dimensional version 
3urface 8lice8 , intersections of the surface with planes perpendicular to the x - y plane, 
were recovered. \Ve generalize here the approach taken in [5] and present a method that 
will approximate the entire surface function , instead of a fì.nite number of functions of 
one variable. The only other work we are aware of‘ is the one proposed in [6] where the 
problem is solved using a relaxation method. 

Shadows are a very strong piece of information. The process that uses shadows is not 
affected by texture or by surface reflectance. Furthermore, our imaging system does not 
need a grey scale or color capabilities; it is sufTI.cient for it to be able to distinguish between 
black and white. Also, noise in the fo口n of bright spots inside a dark area and vice-versa 
can be fì.l tered out easily. From the above、 it is evident that shadows yield a powerful tool 
to be used inthe reconstruction process. 
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Vve propose an algorithm that recovers the surface and minimizes the worst p但sible

error within a factor of 2. The algorithm that minimizes the error is the spline algorithm. 1 

'vVe choose to construct the spline algorithm in steps using a process that converges to 
the optimal error algorithm. The justification behind this stepwise construction is that , 
in general, the optimal error algorithm might need many iterations to construct, but in 
m臼t practical cases the initial version of the algorithm, or the one resulting frorn a few 
iterations, already obtains the optimal error. We therefore construct a process that has 
low cost , while achieving the smallest possible error. 

\Ve implement the optimal error algorithm and present a series of numerical runs so that 
we can see the performance of the algorithm in practice. The resulting approxirnations were 
very close to the function from which we obtained the data, and that can be imrnediately 
seen from the pairs of original and reconstructed surface that we provide. V'le also propose 
a parallel implernentation of the algorithm that will considerably improve the running 
tír丑e.

The organization of the rest of the paper will be the following : In section 2, we will 
formulate the problem; we will define a function space in wruch our surface must belong. 
\Ve wiU also define more precisely the information that can be extracted from the shadows. 

In section 3‘ we will define the optimal error algori thm. 毛TVe show that this is the spline 
algorithm which always exists and is unique. This will guarantee that the shape from 
shadows problem under trus formulation is well-posed. The definition of a well-posed 
problern can be found in [3 , 11J. In contrast to many other shape 介om X algorithms, our 
formulation does not req uire any regula巾ation (see [9 , 10J for a review of vision problems 
requiring regularization.) Unde削andably， if we suspect that the data are noisy, we might 
want to use a smoothing algorithm. In this case, the formulation that is produced by our 
approach is similar to the one that could be obtained from the application of regularization 
theory. 

Section 4 deals with the implementation of the optimal algorithm. Its performance is 
analyzed in terms of the error it creates in recovering a surface. We will show sample runs 
that achieve a good approximation with a small number of data. 

1n section 5 we discuss the cost of the proposed algorithm. We show how to take 
advantage of the structure of 

2. Formulation of the problem. 

1n the introduction of the paper we said that our aim is to recover a surface. Formally, 
a surface can be seen as a real function of two variables f : IR2 一→ IR belonging in the 
space of functions 凡. Our aim is to obtain an approximation x E Fo to our fW1ction 
f ε Fo using the data that we can derive from the shadows. vVe want the approximation 
x to be as close to f 臼 possible.

1 We will define the ωorst case.e付01\the spline algorithm , and all the other needed concepts later. 
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2.1 Function Soace. 

Let , 

几= {f 1 f : [0 , 1]2 • IR, D 1,1 f absolutely cont. , IID2.2 fllL 2 主 1} ， (2-1) 

be the space that contains the fUnctions f that we want to approximate.2 3 The norm 

11 . 11 L2 is defined as 11 fll L2 = V厅厅 If(x ， y)1 2 d哟， and DLj= ￡纭-
Also, define the bilinear form (.,.) to be such that , 

(υfω' 

and the norm 11 . 11 to be such that 、

IIfll = (1,1 )1/2. (2-3) 

Clearly (.,.) de fì.ned above is a semi-inner product and 11.11 is a semi-norm. If we pose the 
additional requirements f(O ， ν) = 0 , f( X, 0) = 0 and D 1ρ f(O ， ν) = 0, DO ,lf(x ,O) = 0 on 
our function , then the bilinear form (" .) is an inner prod uct and 11.11 a norm. Consequently, 
几 equipped with (.,.) is a semi-Hilbert space or a Hilbert space respectively. 

2.2 1nformation. 

1n the next step we will extract from the image( s) the information, that is contained 
in the shadows , and which will be denoted by N (f ).4 Assume that the light falls on the 
surface along the x-axis. Clear1y, from the position of the light source, we can immediately 
obtain the partial derivative of the function f , with respect to x , at the point (Xj ， 的) , 
(Xi , yd being the beginning of the shadow (see fig. 2). \Ve can also obtain the difference 
between the two function values f(町，如) - f(鸟，的)， at the beginning and at the end of 
the shadow respectively, given by 在(Xj ， y;) (Xj - i;) 

For a light falling on the surface along the y-axis we can obtain similar information. 1n 
particular明 for a given shadowed area starting at (Xj , Yi) , and ending at (Xj ， 如)， we can 
obtain the partial derivative of f with respect to y and the difference f(町 dJi )-f(町，如)

whic比 given by 去(Xj ， y;)(的一 Yi)
Assuming that /j(x ， ν) is the straight line segment passing through the points (巧 ， y;) , 

但i. Yi). an additional piece of information can be obtained. 1t holds (see fig. 2) that ‘ 

f(x , Yi) < /j(x , Yi) , Vxε [Xj ， i;]. (2-4) 

2 The bound of 1 in IID2 ,2 fllL 2 is assumeò without 1055 of generality. However , as we already mentioned. 
any fixed bound is equaIly good. 
3The use of the interval [0.1 ]2 is not restrictive either. Any interval [a , b) x [c , J] for some a, b. c, and d 
is equally good. 
4The concept of information is considerably different from the concept of data. The data vector is a vector 
of fìxed values , while information is an operator. \Ve will use the term somewhat imprecisely. The user is 
referred to [12 、 13 ， 14 , 15] for a more detailed discussion on the concept of information operators. 
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f(x ， ν) 

(Xi , Yi) (扎的 )(X户 Yj) (巧， Yj) Z 

Figure 2. 

If the light falls in the direction along the y-axis, then the obtained inequality is 

f(町， ν) < li(Xi , y) , Vyε [Yi ， !Ïi]. (2-5) 

So‘ formally, the information N (f) contains triplets of the form , 

(Z(ZiJi) ， f(川i

or of the form ‘ 

(?/ \(町 ， Yi) ， f(町，如) - f(号， ÿi) , f(町， ν) < [i(町， ν)) ， Xi = Xi. (2-7) 

Note that the third item in the above triplets is a consistency condition. 
In each one of the images in our sample there are 0 、 1 or more shadowed areas. From 

each one of those shadowed areas we can obtain a triplet of the form (2-6) or (2-7). If we 
group all the data resulting from this sampling we obtain the vector, 

8f θfδf 
l-l (f) = [瓦(Xl'的)一(X k， Yd 一(Xk+l ， Yk+d ， 一(X n ，叫，, . . . , 8x \ - /C, ::I/C" δν 

f(Xl ， yd-f(圭 1 ， ÿd ,..., f(xn ， νn) - f( 圭 n ， ÿn) , 

f(Xl , Yd - f(tl ， S J)，... 、 f(Xl ， yr) - f (t m l' Sml)" 

f(X2 , Y2) - f (tm2' 8m2 )"" , f(xn ， νn) - f (t m n , SmJ] T , (2-8) 

where ml …·、 mn are the number of points (tj ， ωln ev町 interval [町，刘 x Y for which 
(2-4) holds , or points (ι Sj) in X x [Yi , ÿï] for which (2-5) holds , and ml +… + m n = m. 
Clear1y, while we know that there are exactly 2n pieces of information in the first part of 
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N (f), we cannot bound the cardinality of the last part because it can be the case that 

m 一→+∞.

3. Solution of the problem - The optimal algorithm. 

\Ve now proceed to the solution of the problem. vVe want , given information N(f) 、 to
obtain an algorithm that will provide an approximation to our function f. An algorithm 
tρis defined as any mapping from the space of all permissible data vectors to the space Fo. 

3.1 Akorithm error. 

The error of an algorithm for any 自xed function f is given by Ilf - cp(N(f)) 11. We would 
like to know what is the largest possible error that can be made by the algorithm, i.e. we 
want the error of the algorithm for the worst possible function f. 

DEFINITION 3. 1. The τ，rorst case error of an algorithm cp is , 

e(ψ ， N(f)) = s叩 {IIJ 一 ψ(N( Ï) )II ， N(Ï) = N (f)}. 
fε Fo 

(3-1) 

Intuitively, the error of an algorithm is obtained by an adversary type of argument where 
the adversary chooses the function f so that the distance between f and ψis maximized. 

Clearly, when solving any problem we would like to have an algorithm that will minimize 
e(ψ . I'l(f)). 

DEFINITION 3.2. An algorithm 扩 that has the property, 

ε(矿， N(f))=i2f(ε(机 N(f))} , Vfε Fo (3-2) 

is called a strongly optimal error algorithm. 

The quantity at the right side of (3-2) , i.e. the infìmum of the error of all algorithms 
solving the problem given information N (f), is a property of the problem itself, and does 
not depend on the particular algorithm used at any moment. This quantity, gives the 
inherent uncertainty of the problem for given information, and is called the radi1ω of 

information. Clearly, the error of the strongly optimal algorithm equals the radius of 
information. 5 

3.2 The soline ale:orithn1. 

\Ve propose the spline algorithm cp~ for the solution of our problem. Splin臼 have been 
known to give the optimal solution to many i川er臼ting problems [1 , 2, 7, 8, 12, 13]. 

50ne point that must be mentioned here is that the radius of information describes. as we said before , 

the inherent uncertainty 01 the prob/em and has a specific value , say R. However sma l1 or large R may 
be, there is no procedure that will guarantee error less than that. 
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DEFINITION 3.3. A spline σ is an element in the space of functions Fo sucb tbat , 

(1) N(σ)= 在

(2) 11σ ，，= mi町εFo{llfll ， N (f) = g}. 

The meaning of (1) is that the spline must 川erpolate the data, and (2) says that 
the spline is the function that mir山nizes " . 11. The spline algorithm is the process that 
constructs the spline. 

In a Hilbert space setting one can obtain a closed form for the spline algorithm. In our 
particular case, the spline algorithm is given by, 

(3-3) "3 2 ·h c m
Z间

+ 
U
ν
 

z 
n可
M

α
 

h
艺
问

一
-

uu z 
ψ
'
 

(3-4) i = 1,..., k 

where {gdi=1 ,...,2n and {hj }j=l ,...,m are such that , 

2.2 _ f_ ..\ (Xi - X)~(Yi - y)+ - (Xi-l - x)~(的-1 - y)+ 
,2gi (X , y) = 二，

飞jXi - Xi-l 

(3-5) i=k+1，...， η 

when the light falls along the x-axis , and 

2.2 _ f.. ( νi - Y)~(Xi - x)+ - (Yi-1 - Y)~(Xi-l - x)+ D2 . 2 g i (X ， ν) ,\7' vIT'- /T 

〉的一切一 l

for light along the y-axis, where (α - b)~ = 1 for α = b and 0 otherwise, 

D2
,2gn+i(X , y) = (Xi - X)+Uïi - y)+ 一 (Xj - X)+(Yi - y)+ 一 (Xi - X)~(Xi - Xi)(的 - y)+ , 

i = 1 、 ...， k (3-6) 

D2 ,2gn+j(x , y) = U/i - Y)+(Xi - x)+ 一 (νi - Y)+(Xi - x)+ 一 (Yi - y)~(ÿi 一切)(Xi - X )+, 

i = k + 1 ，...、 η(3-7)

where (α - b)+ = α - b forα > b and 0 otherwi町、 and

D2 ,2h j(x , y) = (tj - x)+(Sj - y)+ 一 (Xi - x)+(的 - y)+ 一 (Xi - x)~(tj - Xi)(Yi - y)+ , 

some í , j = 1,..., m, (3-8) 

D2 ,2h j(x , Y) = (Sj - y)+ (t j - x)+ - (的 - y)+(Xj - x)+ 一(的 - Y)~(8j - Yi)(Xj - x)+ , 

some i , j = 1,..., m. (3-9) 

归'



The functions {gdi=1.....2n and {hj }j=l.....m are the represe1山 rs of the fu江肌I
C∞O∞ns创tru飞飞lct the information N(Jη) ， proper1y modi 击ed to have a small area of support. 

The coefficientsαi and Cj are chosen so that the definition of the spline is satisfied, that 
is，旷 interpolates the data, and also rr山lÎmizes the ∞rm 11 . 11. If the area of support of 
every gi is disjoint frorn the area of support of every other and ft时herrnore (剑 ， gj) = 句，

the Krönecker de1ta , then the coefficientsαare given directly by the theory. This is 
not the case in this setting where the coefficientsαare obtained by solving a systern 
of linear equations and the coefficients Cj are obtained by directly minirnizing 11 . 11. \Ve 
叭11 describe the irnplementation of the algorithm in scction 4. The derivation of the 
rninimization problern is somewhat tedius and can be found in the appendix. 

For the spline algorithrn the followi吨 very strong theorern holds [8, 13]. 

THEOREM 3. 1. Let Fo be a Hilbert space, f ε Fo and infoπnation ÿ = N (J). Then , 
the sp1ine algorithm interpolating the data ÿ exists, is unique, and achieves error at most 
twice the radius of information. 

Frorn Theorern 3.1 we can obtain two very important results. First, our problem under 
the proposed formulation is well-posed. This property [3, 11] is always desirable when 
solving a problem. Computer vision problems tend to be ill-posed and considerable effort 
has been spent by the vision community towards the correct fo口nulation that will yield 
we11-posedness (See [4, 9, 10] for a survey.) 

Second, the spline algorithrn has a worst case error that is within a factor of 2 from the 
radius of inforrnation. The algorithm that achieves that , is called almost strongly optimal 
[12]. If the problem is liπear6 then the spline algorithrn 旷 has a worst case error equal to 
the radius of inforrnation and is , therefore, the strongly optirnal algorithrn. 

We can choose to ignore the existence of the inequalities (2-4) and (2-5) and not include 
thern in the inforrnation N (J). If we choose to do so, we essentially assurne that m = 0 and 
the shape from shadows problern is a linear problem. Then, the spline algorithm becorn臼

旷(x ， y) = 2二 αigi(X ， y) (3-10) 

As expected ‘ the part L二1 cjhj(x ， ν) can now be ornitted. 
If on the other hand , m > 0 then、 the problern is non-linear, and r.p!l is an almost strongly 

optirnal algorithrn.7 

\Ve saw before that the construction of the algorithrn ha.s to be done in steps. Fir时，

we obtain the coefficients aj and subsequently the coefficients Cj. We also mentioned that 
the cardinality of the non-linear part of the information m is not known a-priori. We 

6For an exact definition of a linear problem see [8.13. 14. 15] 
7 U P to this moment there does not exist a general theory that will help construct strongly optimal 
algorithms for non-linear problems. These algorithms are in general difficult to construct and are derived 
on a per problem basis. 
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would like to keep its value low to reduce the costs involved in solving the minimization 
problem. To obtain this we propose to break down the implementation of the algorithm 
in additional steps. 

4. Application of the algorithm - Numerical runs. 

The spline algorithm of section 3 has been applied and its performance hωbeen tested 
l口 practlce.

4.1 Ahz:orithm implementation. 

From our early experience we have concluded that in many Cases, the non-linear part of 
the information is not needed. 
Stage 1: 

Therefore, we begin the implementation of the spline algorithm by assuming that m = O. 
\Ve first construct the values of the coefficients 向. This is done by solving the system of 
equatíons、

G δ=5， (4-1 ) 

where G = {(gj , gj)} :,r;=l and {gdi=1 ,...,2n are given by (3-4) , (3-5) , (3-6) and (3-ï). The 
system is solved by a direct method without the need for pivoting since it is symmetric, 
positive definite and has a ruce structure that reduces the number of calculations. 

As a next step , we use the computed values of the 肉， s to construct the spline algorithm. 
Third , we check to see whether the non-linear constraints are violated. 
If the non-linear constraints (2-4) and (2-5) are not violated , which is usually the case, 

we do not need to do anything else. \Ve have already obtained the approximation 旷(x ， ν)

to the function f. 
Since we have not used the non-linear part of the information, the problem is linear 

hence the spline algorithm achiev臼 the radius of information. 

Stage 2: 

If the constraints (2-4) or (2凸) are violated, then we do not have a sufficiently good 
approximation, which means that we must obtain the coefficients Cj of (3-3). To do so, we 
have to solve the minimization problem derived in section 3.3. 

飞Ve will consequently proceed as follows. \Ve will take a few points (白， Sj) in the shad­
owed intervals where the constraints are violated. For these points we solve the minimiza­
tion problem. Then we check again for violations of the non-linear constraints. If there 
are violations we repeat Stage 2. We select a few more points from the new interval(s) in 
which (2-4) or (2-5) are violated, and we add them to the sample. The mi巾r山ation is 
repeated for the new set of points and the new coefficients are derived. At the same time, 
the aj' s and the old 勺， s are modified. 

\Ve perform the minimization for a few points at a time for various reasons. 

(1) Theoret ically‘ the cardinality of the non-linear info口nation m can be 的itrarily

large. In practice though , we rarely need to use more that one or two points per 
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shadowed area. Taking a few points at a time we can minimize the cωt of the 
algorithm. 

(2) At each new iteration we do not need to undo our previous work, but we simply 
modify the existing coeffi.cients while deriving the new ones. 

4.2 Test runs. 

We have constructed a broad series of functions , and have run the algorithm using these 
as test surfaces. 

From early test runs, we have observed that smooth functions can be approximated 
easily with almost non-observable error, using a small number of sample points. 

The functions that are the mωt diffi.cult to approximate, are the ones that have as few 
derivatives as possible. 1n the class Fo these functions are piecewise quadratic polynomials 
which are constructed as the product of one-dimensional quadratic polynomia1s. We will 
show the performance of the algorithm r.p s on these functions. 

We start the series of test runs with a function consisting of 100 polynomial pieces. We 
use two different light angles from each direction, two along the x-axis and two along the 
y-axis. The function and the reconstruction can be seen in figure 3. 

f(x ， ν) ψS(x ， ν) 

Figure 3. 

1n 直gure 4 we show a function consisting of 200 polynomial pieces. vVe again draw the 
reconstruction together with the function for comparison purpos臼. The information was 
obtained by using 4 different lighting angles in each direction. 

Finally, in fìgure 5 we show one of the most diffi.cu1t functions that we have constructed. 
1 t consists of 400 polynomial piec臼 with large jumps in the second derivatives.8 The 

8 飞Vhich means that 川 D2 ， 2 I11 三 1 does not hold. As we mentioned earlier , this does not change the 
mathematical formulation. Nevertheless 、 the vísual eπ'ect it creates in the quality of the reconstruction is 
signifìcan t. 
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f(x , y) <p S(x 、 ν)

Figure 4. 

f(x ， ω 旷(x ， ν)

Figure 5. 

function has been approximated using a sample created from lights falling from six different 
light angles in each direction. 9 

5. Cost of the algorithm - Speed improvements. 

5.1 Al e:orithm cost. 

Let us now discuss the speed performance of our algorithm. The spline algorithm, as 
defined in section 3, is linear in terms of its inpu t. Thus , if we knew the coefficientsαg 
and C j then, C03 t( <p S) would be O( n). 

In our case, the coefficients of the spline algorithm are not known, and must be con­
structed. To acrneve this we must solve a system of linear equations , and sometimes, a 
minimization problem. Th臼e costs dominate the cost of the algorithm. 

In particular the solution of the system (4-1) has a cost O( n 3
). The cost of the non-

9 Theoretically, light falling from one direction only could be used , but in this case the problem is identical 
to the one-dimensional one [5]. 
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linear minimization is considerably higher in the general case. Due to the special structure 
of the problem, whose derivation we show in the appendix, we can use a variation of the 
feasible directions approach. The proposed method has a cost of O(叫. We are in the 
process of investigating the properties of this method. 

5.2 Soeed imorovements. 

In section 5.1 we have discussed the cost of a very straightforward implementation of 
the spline algorithm described in section 4. 1. \Ve now show that a slight improvement in 
the implementation of the algorithm can yield a significant speedup. This speedup can be 
achieved only if the function we want to recover can be split in distinct sections that we 
will from now on call valley.s. A valley is defined by two local maxima of the function, but 
also depends on the specific sampling. For example, the function of figure 4 has 2 valleys. 
In particular, we say that the function f , under some fixed sampling, has k valleys if we 
can define k partitions TI 1 , TI2 ,..., TI k of the functions {gdi=1....,2n' given by (3-4) and 
(3-5) , such that the union of the areas of suppo时 of all the functions in each partition is 
disjoint from the union of the areas of support of the functions in every other partition. 

Vve can detect the existence of any number of valleys in time O(叫 and subsequently, we 
can solve k problems of sizes nl ， 时，... ，叫 re叩ectively， instead of solving one problem of 
size n , where n = nl + n2 + … +ηk. 

To connect the pieces resulting from each of the k problems we need constant time per 
problem, hence combining can be done in time O(k). 

Therefore, the total cost of this algorithm, which we will denote 叫， will be O(叭，
where ν= max{nl ,"', nk}. 

5.3 Parallel imolementation. 

Since splitting the problem into individual subproblems and combining the resulting 
surfaces is straightforward and cheap to implement , orle immediate extension to the above 
set-up of the problem is to assign one individual subproblem to a different processor and 
solve the initial problem in a parallel or in a distributed environment. 

Again, splitting into k subproblems requires time O(叫 and combining the individ­
ual ?olutiom iato one requires time of O(k).Then every pmcessor will require time 
O(叫)，。 i =1,..., k resulting ia a total coet for the parallel version ψ; of our algorithm 
of O(vJ

) , where ν= max{nl ，'"、 ηd.

6. Conclusion - Future work. 

There are certain issues that we wowd like to investigate in the future. We would like to 
study optimal and adaptive information. The study of optimal information will determine 
the light placement that will minimize the error of the algorithm for a ßxed number of 
samples. Having adaptive information will pe口口it ， given a number of samples, to choose 
where to place a new light so 臼 to reduce the error as much as possible. 

Although the work presented in this paper is not directly related to signal processing, 
the construction of a complete system will also have to address many issues that arise 
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when the information is obtained from the shadows. 
\Ve solved the problem of recovering a surface from the shadows it casts on itself when 

lighted by a light source positioned at various locations. 
\Ve proposed a fo口nulation that resu1ts in a wel1-posed problem and we have conse­

quently proceeded into solving it. \Ve proposed an optima1 error algorithm which addi­
tionally achieves a 10w time cost , especially if a clever but simp1e breakdown of the problem 
is used. 

The work described in this paper, extends the results on the reconstruction of one­
dimensional surface slices. This new approach can be very desirab1e, especially if our 
purpc时 is to recover the entire shape of the surface. 

The one-dimensional mode1 can still be used if our aim is to recover the function value 
at just one point , in which case we only have to use the slice passing through this point. 
Also, if we only have lights along one axis then、 the one- and two-dimensiona1 models 
become equiva1ent. 
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I. Appendix - The minimization problem. 

vVe want to minimize 11σ11 2 whereσis given by (3-3). 矶、 can write ‘ 
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H = {(儿 ， hj) L,j=l ,...,m G = {(缸， gi)}i-FL·-JWP={(hJ ， gi)}iztγwhere 

(σ ， 98) =艺创(gj ， 98) +艺以hj ， 98) = Y8 

Gã+P ë' =ÿ 

5=G-I (5-P 司，

Also, 

今

(I-2) 字

A 
<
一

'hM C 
K

汇
问

+ -h Gd 
α
 

n
Z同

一
一

'n 
σ
 

and, 

(I剖

A 

p T G-1 ÿ_ p T G-1p ë' +H ë'三

(H-pTG-1p) ë'三 .4 - p T G- 1 ÿ. 

Now, if we substitute (I-2) for ã in (I-1) we obtain, 

11σ11 2 = ë'TH ë'+ 2 (G- 1 (ÿ 一 P司)TP ë' +(G-1(ÿ_p ê))T G (G-1(ÿ_P司)

A 

pTã+H ë' < 学

出

今

=ETEZE-ETpTG-I P Z+gTG-15 

= ë'T (H - pTG一 lp) ë'+ ÿTG一lz (1-4) 

Since ÿT G- 1 ÿ has a known fixed value for any given problern, it remains to mml­
mize ë'T (H - pTG一 1 P) ë' given the conditions in (I-3). This is a non-1inear minimization 
problem. vVe can solve this problem using a feasible directions method. The matrix 
Q (H-pTG-1p) is positive definite, hence the problern is convex. Therefore, we 
are guaranteed to fìnd the global mlmmum. At the same time, it can be noticed , that 
the constraints that we have are linear10 which perrnits us to speed up the minimization 
method considerably. 、"N'e are currently working on an even faster method for the solution 
of this problem. 

lOEven more , they are si ll1 ple constant bounds 011 the variables. 
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